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1 Introduction

In string theory an oft-used approach to studying black holes is to consider wrapped black

strings in one dimension higher. The supergravity solution of the black string contains an

AdS3 factor in the near-horizon limit, and via the AdS/CFT corespondence there exists

a dual two-dimensional CFT. This CFT gives a microscopic interpretation of the entropy

of the black string and by reduction also that of the black hole. The black string arises

from a brane configuration wrapped in the internal geometry of an M/F- or string theory

compactification and the CFT is the infrared worldvolume theory living on these wrapped

branes. The prime example of studying black holes in this way is given by the two-

dimensional N = (4, 4) SCFT living on the D1-D5 system in type IIB string theory on

T4 × S1 [1]. A further example is provided by the MSW string which lives in M-theory

on a Calabi-Yau threefold (CY3), and is obtained by wrapping M5-branes on a divisor

in the CY3. In the infrared the worldvolume theory living on the resulting string flows
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to a 2d N = (0, 4) SCFT. Though little is known about this SCFT, its central charge

was computed in [2] and gives a microscopic interpretation of the black hole entropy via

Cardy’s formula. There are closely related constructions in F-theory, where D3-branes

wrap a curve in the base of an elliptically fibered CY3, again leading to N = (0, 4) SCFTs

in the infrared [3]. In this example the black strings live in the six-dimensional N = (1, 0)

supergravity theory obtained by reducing F-theory on the CY3 and have an AdS3×S3

near-horizon. These SCFTs not only have an SU(2)R symmetry in the supersymmetric

right-moving sector, but also an SU(2)L symmetry in the left-moving sector. The level of

this SU(2)L current algebra was computed in [4] and plays a prominent role in Cardy’s

formula which determines the entropy of the five-dimensional spinning black holes obtained

by wrapping these black strings on a circle.

The study of supersymmetric solutions admitting AdS3 factors, not necessarily related

to black strings but more generally for AdS/CFT purposes, has a long and rich history.

Various works classify and identify such solutions. Of interest to us in this paper are those

which preserve N = (0, 4) supersymmetry. In M-theory, this program was initiated in [5]

and later refined in [6]. More recently additional solutions have been found in [7] where

earlier works on N = (0, 4) AdS3 solutions in (massive) type IIA [8–11] were used. Further

work in type IIA (and also type IIB) can be found in [12] where solutions preserving the

large N = (0, 4) supersymmetry algebra were found.1 Type IIB and F-theory N = (0, 4)

solutions were discussed in [14], whilst further work on AdS3 solutions in type IIB, with

varying amounts of supersymmetry, can be found in [15–24].

Typical observables which are computed are the central charges and levels of current

algebras of the CFT. They can provide evidence for the AdS/CFT correspondence and

determine the entropy when the setup descends from a black string. Various methods

and directions have been used to compute these observables. Knowledge of the UV data

of the CFT is often sufficient by virtue of ’t Hooft anomaly matching. Anomalies of

the UV theory can be determined directly using the spectrum, by reducing the anomaly

polynomial of a higher-dimensional parent theory or by anomaly inflow [25–29]. The central

charges can then be computed either via spectrum counting or using c-extremization [30].2

Alternatively, the central charges and levels can be determined using holographic methods

in the dual supergravity theory.

Throughout this paper we are interested in N = (0, 4) SCFTs dual to near-horizon

geometries of the form AdS3 × S3/Γ, where Γ is a freely acting finite subgroup of SU(2)L.

Such a setup in F-theory was discussed in [32, 33]. There D3-branes probe a transverse

Taub-NUT space and are wrapped on both a curve in the base of a smooth elliptically

fibered Calabi-Yau threefold CY3 and a circle. The transverse Taub-NUT space leads

to a Γ = Zm quotient of the three-sphere in the near-horizon. Since Taub-NUT space

1See also [13] for solutions with exceptional supersymmetry algebras.
2Strictly in order to perform c-extremization one needs only N = (0, 2) supersymmetry and c-

extremization is often not necessary when the R-symmetry is a non-abelian group since generically it

cannot mix with other symmetries. However, there are cases where a non-abelian R-symmetry can mix

with other symmetries and application of c-extremization using the U(1)R of the Cartan of the symmetry

group is necessary, see for example [31].
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asymptotically approaches R3 × S1 there are two circles in the geometry on which one can

compactify, allowing for the construction of four-dimensional black holes in F-theory. Two

extensions are possible here and are the subject of this paper. The first is to consider non-

smooth Calabi-Yau threefolds. This allows for additional (non-abelian) gauge groups in

the supergravity setup, which act as flavour symmetries in the dual N = (0, 4) SCFT. We

macroscopically determine the levels of the corresponding current algebras in the SCFT.

The second extension we consider is to allow for more general subgroups Γ. In fact one

can generalize even further by allowing the transverse space probed by the D3-brane to be

either asymptotically locally flat (ALF) (to which Taub-NUT belongs) or asymptotically

locally Euclidean (ALE). Both families of spaces allow for an AD(E) classification which

in the near-horizon leads to a Γ quotiented three-sphere. This extension was considered in

type IIB on K3 in [34] (see also earlier work in [35, 36]), here we extend to F-theory.

The two main extensions considered here, namely singular Calabi-Yau threefolds and

the ALE/ALF spaces transverse to the brane, lead to new 2d N = (0, 4) SCFTs. We com-

pute all relevant anomaly coefficients, i.e. central charges and levels in both left- and right-

moving sectors, using holography and supergravity techniques as introduced in [37–39]. In

particular we reduce the relevant 6d N = (1, 0) supergravity theory on the compact part

of the black strings. The anomaly coefficients are given by the coefficients of Chern-Simons

terms in the resulting 3d action. Following [33, 34, 40] we perform this reduction in the

asymptotic geometry in order to include the contribution of degrees of freedom living out-

side of the horizon [35, 36]. This is the reason why the SCFTs dual to the black strings

probing ALE and ALF spaces have different anomaly coefficients, even though the near-

horizon geometry in both cases is AdS3×S3/Γ. The so-called classical part of the anomaly

coefficients is found by reducing the six-dimensional supergravity action to 3d and this

computation is performed in section 3. For ALF transverse spaces there are additional

contributions from one-loop Chern-Simons terms where massive Kaluza-Klein modes run

in the loop. For the case of a smooth CY3 and Taub-NUT as transverse space, these con-

tributions were essential for the matching to the microscopic results [33].3 We compute

these quantum contributions for a general ALF transverse space and possibly singular CY3

in section 4.

The plan for the paper is as follows. We begin by discussing the relevant 6d supergrav-

ity theories and black string solutions in section 2. We then compute the anomaly coeffi-

cients of the dual SCFTs in sections 3 and 4. The full anomaly coefficients are presented

in the summary section 5 and we end the paper in section 6 with a discussion. In addition

there are two appendices with some of the more technical details of the calculations.

2 Macroscopic setup

Compactifying F-theory on an elliptically fibered Calabi-Yau threefold CY3 yields in the

low energy limit a six-dimensional supergravity theory with chiral N = (1, 0) supersym-

metry. Depending on the choice of threefold, the six-dimensional theory contains a fixed

3Contributions of one-loop induced Chern-Simons terms to the entropy of black holes were also important

in [34, 41, 42].
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Γ ⊂ SU(2) |Γ| p1(MΓ) (ALE) p1(MΓ) (ALF)

cyclic group Zm m 2m− 2
m 2m

binary dihedral D∗m 4m 2m+ 6− 1
2m 2m+ 6

binary tetrahedral T∗ 24 167
12

binary octahedral O∗ 48 383
24

binary icosahedral I∗ 120 1079
60

Table 1. The freely acting discrete subgroups of SU(2), their sizes and the first Pontryagin numbers

of the different ALE and ALF spaces MΓ. The empty entries signify that such a space does not

exist.

number of massless hypermultiplets, vector multiplets and tensor multiplets. Within this

theory it is possible to find black string solutions which are the supergravity description

of self-dual strings charged under tensor multiplets. The tensor multiplets descend from

expanding the RR four-form C4 in harmonic forms on the base B of the Calabi-Yau three-

fold and therefore the strings admit an interpretation as D3-branes compactified on a curve

C ⊂ B inside the base of the CY3. On the worldsheet of these strings lives a field theory

which flows in the IR to a 2d N = (0, 4) SCFT. In this paper we will not attempt to

construct the explicit 2d SCFTs, for recent work along these lines see [43, 44], instead we

shall compute the central charges and current levels of these SCFTs using AdS/CFT.

The strings we consider are embedded in an asymptotically R ×M4 × S1 spacetime,

with the string wrapped on the S1 and probing the transverse space M4. Preservation of su-

persymmetry and the equations of motion imply that M4 must be a hyper-Kähler manifold

equipped with its Ricci-flat metric. In addition, we take it to be non-compact. Such four-

dimensional spaces M4 have been classified and fall into four categories depending on their

asymptotic properties. These are the ALE, ALF, ALG and ALH spaces. At infinity the

metrics approach a quotient of the flat metric on R4−k ×Tk with k = 0 for ALE, k = 1 for

ALF and so forth. We will consider two of these classes in this paper, namely ALE and ALF

transverse spaces.4 A manifold with an ALE or ALF metric is diffeomorphic to R+×S3/Γ,

with Γ a freely acting finite subgroup of SU(2). The metric is ALE when it asymptotically

approaches a quotient of the Euclidean flat space metric. It is ALF when it approaches

the metric on (R3 × S1)/Γ at infinity. The ALE metrics are known to exist for all discrete

subgroups Γ ⊂ SU(2) and these admit an ADE-classification. ALF metrics are only known

for the A-series and D-series in this classification. We have listed some important charac-

teristic data of the groups Γ and spaces MΓ in table 1. In the black string solutions we

always take the spaces in the limit that they have an R4/Γ singularity at their center. De-

spite this singularity the black string solutions have a smooth near-horizon limit. The final

piece of the jigsaw necessary to understand the later computations is the isometry group

of the various spaces. For the A-series both ALE and ALF spaces admit a U(1)L×SU(2)R
isometry group, whilst for D- and E-series the isometry group is reduced to just SU(2)R.

4No explicit metrics are known for ALG and ALH spaces.
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Multiplet
Representation

little group
Field content Multiplicity

Gauge

rep.

Gravity

multiplet
(1, 1)⊕2

(
1
2 , 1
)
⊕ (1, 0)

1 graviton

1 Weyl LH gravitino

1 self-dual 2-form

1 1

Tensor

multiplet
(0, 1)⊕2

(
0, 1

2

)
⊕ (0, 0)

1 anti-self-dual 2-form

1 Weyl RH tensorino

1 real scalar

nT 1

Hyper-

multiplet
2(0, 1

2)⊕ 4(0, 0)
1 Weyl RH hyperino

2 complex scalars
nH R

Vector

multiplet

(
1
2 ,

1
2

)
⊕ 2

(
1
2 , 0
) 1 vector

1 Weyl LH gaugino
nV adi

Table 2. Field content of 6d N = (1, 0) supergravity. We have used the shorthand RH and LH for

right- and left-handed.

In the remainder of this section we first review 6d N = (1, 0) supergravity obtained by

compactifying F-theory on an elliptically fibered Calabi-Yau threefold in order to introduce

the necessary notation and to set the scene. We then give the relevant black string solutions

of this theory which will form the basis of our macroscopic computations.

2.1 Six-dimensional N = (1, 0) supergravity from F-theory on CY3

In [45, 46] the authors reduced F-theory on an elliptically fibered Calabi-Yau threefold,

which is not necessarily smooth, to obtain six-dimensional N = (1, 0) supergravity. The

multiplets of the theory are classified by representations of the little group SU(2) × SU(2)

and are given in table 2. The multiplicities of the matter fields are not arbitrary and

depend on the choice of Calabi-Yau threefold. The 6d spectrum also needs to satisfy

anomaly constraints as we will briefly explain below.

To classify the singularities of the elliptic fibration one can look at the vanishing of

the discriminant ∆ of the Weierstrass equation along the base of the Calabi-Yau. The

complex codimension one loci determined by the vanishing of the discriminant signifies

the loci of the 7-branes. The types of singular fibers, classified by Kodaira-Néron [47, 48],

characterize the singularities of the total space. In general there may be effective divisors

Si over which the threefold develops a singularity, in the F-theory picture this is dual to

the existence of a stack of multiple 7-branes.5 One can then expand the Poincaré dual of

the discriminant as

[∆] =
∑
i

νi[Si] + [∆′] , (2.1)

5The fiber degenerations in the classification of Kodaira-Néron, which render the total space of the elliptic

fibration smooth, are the type I0,1 and type II fibers, see e.g. table 4.1 in [49]. F-theory compactifications

on Calabi-Yau threefolds with these mild fiber degenerations lead to 6d N = (1, 0) supergravity theories

without vector multiplets and charged matter.
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Figure 1. The 7-branes (green) wrap the discriminant locus ∆ = 0 ⊂ B and extend along the

dimensions R× S1 ×MΓ. The D3-brane (blue) wraps the curve C ⊂ B and extends along R× S1.

where [∆′] is associated to singularities of the fibration which render the total space

smooth.6 The stacks of 7-branes along the divisors Si give rise to non-abelian gauge

theories on their worldvolumes. A schematic illustration of the F-theory geometry and the

wrapped branes therein is given in figure 1.

The exact nature of the gauge group is determined by the type of singularity of the

total space and admits an ADE classification. These gauge groups naturally descend to

become the gauge groups of the 6d theory. In the following we will assume that the gauge

group G is a product of simple factors,

G =
∏
i

Gi . (2.2)

Each simple factor Gi arises from a 7-brane stack along Si in the underlying F-theory

geometry with associated singularity of the threefold. The gauge fields have the usual

non-abelian field strength

F̂ i = dÂi + Âi ∧ Âi (2.3)

with associated Chern-Simons three-form

ωCS(Âi) = tr

(
Âi ∧ dÂi +

2

3
Âi ∧ Âi ∧ Âi

)
. (2.4)

Let us denote a basis of two-forms on the base of the elliptically fibered Calabi-Yau

threefold by {ωα} with α = 1, . . . , h1,1(B). Associated to this basis is an intersection matrix

ηαβ =

∫
B
ωα ∧ ωβ (2.5)

which defines an inner product for objects in H1,1(B). The matrix is of mostly minus

Lorentzian signature and is invariant under SO(1, h1,1(B) − 1) transformations. We can

6In the following we will drop the brackets to distinguish a curve and its Poincaré dual two-form, using

the same symbol for both in slight abuse of notation.
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expand the Poincaré dual of the divisor Si in terms of this basis as Si = sαi ωα, with sαi
constants. Likewise the Poincaré dual of the curve C and the first Chern class of the

base c1(B) can be expanded as C = qαωα and c1(B) = cαωα respectively, with qα and cα

constants. These constant coefficients will play a prominent role in the following sections.

The scalars q̂U of the hypermultiplets parametrize a quaternionic manifold. Since the

explicit details of this manifold will not play a role in the following we shall not discuss

it further and just denote the metric on this space by hUV . The scalars are gauged with

respect to the vector multiplets in the usual minimal coupling manner

Dq̂U = dq̂U + Âi(TRi
i q̂)U , (2.6)

where TRi
i are the group generators acting on the scalars q̂U in the representation Ri of

Gi. The scalars of the tensor multiplets parametrize the scalar manifold

SO(1, nT )

SO(nT )
, (2.7)

and are uncharged under the gauge group G. To describe them it is convenient to introduce

nT + 1 scalars ̂α, α = 1, . . . , nT + 1, satisfying the constraint ηαβ ̂
α̂β = 1. Finally let us

consider the two-forms in the theory. We will denote all the two-forms, i.e. two-forms in

the gravity and tensor multiplets, collectively as B̂α. The gauge invariant field strength of

the tensors is given by

Ĝα = dB̂α +
1

2
cαω̂CS

grav − 2sαi ω
CS(Âi) , (2.8)

with the sαi and cα as introduced below (2.5). Using the scalars ̂α we can define the

positive definite metric

gαβ = 2̂α̂β − ηαβ . (2.9)

such that the (anti-)self-duality constraints satisfied by the two-forms can be collectively

written as

gαβ ∗̂Ĝβ = ηαβĜ
β . (2.10)

Due to these (anti-)self-duality constraints it is strictly speaking only possible to construct

a pseudo-action. This will not pose a problem so long as we correctly implement the self-

duality constraints at the level of the equations of motion. The bosonic action of gauged

N = (1, 0) supergravity is given by7

S(6) =
1

(2π)3

∫
M6

[
1

2
R̂∗̂1− hUVDq̂U ∧ ∗̂Dq̂V −

1

4
gαβĜ

α ∧ ∗̂Ĝβ − 1

2
gαβd̂α ∧ ∗̂d̂β

+ 2
∑
i

ηαβ ̂
αsβi tr F̂ i ∧ ∗̂F̂ i − 1

4
ηαβB̂

α ∧ X̂β
4 − V∗̂1

]
. (2.11)

7We use conventions where κ2
6 = (2π)3.
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The precise form of the potential does not concern us, though it may be found in [50] for

example. The Green-Schwarz-Sagnotti-West coupling X̂α
4 is given by

X̂α
4 = dX̂α

3 =
1

2
cαtr R̂ ∧ R̂ − 2

∑
i

sαi tr F̂ i ∧ F̂ i ,

X̂α
3 =

1

2
cαω̂CS

grav − 2
∑
i

sαi ω
CS(Âi) . (2.12)

Here the gravitational Chern-Simons term takes the usual form

ω̂CS
grav = tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
, (2.13)

with ω the spin connection in 6d.

Since we consider six-dimensional theories which have a string embedding we must

impose a set of necessary consistency conditions for the theory to be anomaly free.8 With

the aid of the concrete string embedding, these conditions may be written in terms of

topological quantities of the underlying compactification geometry. Let us first introduce

some notation. Denote by tr Ri the trace in the representation Ri of Gi, and let f i denote

the fundamental representation of Gi. We define the normalization constants λi which

depend on the simple group factor and whose purpose is such that the trace operator for

the field strengths appearing above satisfies λitr = tr f i . The normalization constant is

fixed by requiring the lowest topological charge of an SU(2) instanton to be 1 with respect

to the trace tr .9 Next, define the group theory coefficients ARi , BRi , CRi via

tr RiF̂
i 2 = ARitr f iF̂

i 2 ,

tr RiF̂
i 4 = BRitr f iF̂

i 4 + CRi(tr f iF̂
i 2)2 . (2.14)

Further, let the multiplicity of the irreducible representation Ri of Gi be xiRi
, and the

multiplicity of the irreducible representation (Ri,Rj) of Gi × Gj be xijRiRj
. Then the

anomaly constraints read

nH − nV = 273− 29nT , (2.15)

nT = 9− ηαβcαcβ , (2.16)

Badi
=
∑
Ri

xiRi
BRi , (2.17)

ηαβc
αsβi =

1

6
λi

(∑
Ri

xiRi
ARi −Aadi

)
, (2.18)

ηαβs
α
i s
β
i =

1

3
λ2
i

(∑
Ri

xiRi
CRi − Cadi

)
, no sum over i (2.19)

ηαβs
α
i s
β
j = λiλj

∑
Ri,Rj

xijRiRj
ARiARj , (i 6= j) . (2.20)

In order for the theory to be anomaly free each of the above conditions must be satisfied.

8However, a six-dimensional theory satisfying these conditions may still be in the swampland.
9The values of the constants can be found in [51] among other places.
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2.2 Black string solutions

In [33, 52] black string solutions of two-derivative N = (1, 0) supergravity coupled to

an arbitrary number of tensor multiplets were constructed. These solutions can also be

embedded in the supergravity theory containing hyper- and vector multiplets, as given

in the previous section, by setting the hyperscalars to constants and the vector fields to

zero. Clearly this solution essentially truncates away the hyper- and vector multiplets,

nevertheless when computing the levels these multiplets will still play a role. The metric

for the black string is

dŝ2
6 = 2H−1(du+ β)

(
dv + ω +

1

2
F(du+ β)

)
+Hds2(MΓ) , (2.21)

with ds2(MΓ) the Ricci-flat metric for the ALE or ALF space with ADE subgroup Γ. The

solution is supported by a non-trivial three-form field strength. The scalar functions F and

H and one-forms β and ω are independent of the u and v coordinates and can be derived

by solving certain differential equations given in [52] once the explicit metric on MΓ has

been chosen. When the Killing vector ∂u is taken to be spacelike, the metric corresponds

to a black string wound in the u-direction.

The near-horizon limit of this geometry is fixed to be AdS3 × S3/Γ [14] as expected

from our comments about the existence of a 2d SCFT living on the worldvolume of the

strings and consistency with AdS/CFT. Note that the near-horizon geometry is blind to

the full details of its UV origin: it is unable to distinguish between an ALE or ALF UV

completion. The asymptotic form of the solution is easily constructed by replacing the

metric on MΓ by its asymptotic metric ds2(M
(∞)
Γ ). For ALE and ALF spaces this is given

by a Γ quotient of the covering space, which we denote by M (∞), and whose asymptotic

metric is

ds2(M (∞)) =

{
dr2 + 1

4r
2(σ2

1 + σ2
2 + σ2

3) , MΓ is ALE ,

dr2 + r2(σ2
1 + σ2

2) + σ2
3 , MΓ is ALF ,

(2.22)

with σi the left-invariant Maurer-Cartan forms on S3. The usefulness of the covering space

is that it can be used to treat all quotients simultaneously.

The charges of the black string are obtained by integrating the field strengths ĜαΓ
over the compact part of the geometry of the quotient space, given by the σi part in

equation (2.22), and denoted by M sph
Γ from now on. We will use the same conventions as

in [33, 34] for normalizing the charge, i.e.∫
Msph

Γ

ĜαΓ =
1

|Γ|

∫
Msph

Ĝα = −(2π)2Qα . (2.23)

In going from the first expression to the second we have used the quotient map π : M →MΓ,

which acts on the three-forms as Ĝα = π∗ĜαΓ. To relate these macroscopic charges to their

microscopic counterparts qα in the expansion C = qαωα we use the results of [33]. There

it was shown that

Qα = qα − 1

4
p1(MΓ)cα (2.24)
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with p1(MΓ) the first Pontryagin number of MΓ as given in table 110 and the cα as given

below equation (2.5). The charge shift is due to the

ηαβc
αB̂β ∧ tr R̂ ∧ R̂ (2.25)

term in (2.11).11 When integrating the tensor field equation of motion over the transverse

space MΓ in the presence of string-like sources with microscopic charges qα, this term

generates a shift of the charge by a term proportional to∫
MΓ

tr R̂ ∧ R̂ ∝ p1(MΓ) . (2.26)

One may wonder if there is a further charge shift due to the gauge fields and the coupling

ηαβs
α
i B̂

β ∧ tr F̂ i ∧ F̂ i (2.27)

appearing in the action. Indeed, if in the background of the black string vector multiplets

are turned on with field strengths satisfying∫
MΓ

tr F̂ i ∧ F̂ i 6= 0 (2.28)

this would induce a further shift in the charge. From the F-theory perspective these

instantons can be viewed as gauge instantons living on the 7-branes. The instantons

induce D3-brane charge localized on the 7-brane worldvolume transverse to the instanton

configuration through a Chern-Simons coupling of the RR four-form and the gauge fields.12

We will consider solutions where such instanton configurations are not present and therefore

the dictionary between macroscopic and microscopic quantities is given by (2.24). It may

be interesting in the future to study such instanton configurations. For Taub-NUT space

instanton configurations have been discussed in [54–56].

3 Classical contributions

In this section we compute the classical contribution to the central charges and levels

of current algebras of the black string solutions.13 One can then use these results to

make a prediction about the corresponding microscopic anomaly polynomial of the dual

2d N = (0, 4) SCFTs, and compare for example with the prediction one can infer from the

conjecture of [57].

In both the ALE and ALF cases the near-horizon geometry takes the product form

AdS3 × S3/Γ. In contrast the asymptotic regime of the two cases does not suffer this

10They can be computed using the data in [53].
11When the elliptic fibration is trivial, and we are thus in type IIB on K3 or T4, there are no such higher

derivative corrections which is why there is no charge shift in [34].
12This is similar to D(-1)-brane charge induced on D3-branes via gauge instantons in N = 4 SYM. In

the case of the 7-branes, the coupling in question has the form C4 ∧ trF ∧ F .
13We call these the classical contributions since they are computed by dimensionally reducing the six-

dimensional action to three dimensions. In the next section we will consider the contributions from inte-

grating out massive KK modes which are quantum in nature.

– 10 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
0

degeneracy. Both cases approach R1,1 ×M (∞)
Γ with M

(∞)
Γ given by a quotient of (2.22).

Naively one would compute the central charges and current levels of the 2d SCFT by

dimensionally reducing the six-dimensional action on the compact space in the near-horizon

to obtain an AdS3 effective action [37–39]. The central charges and current levels can then

be read off from the resultant Chern-Simons terms using the AdS/CFT dictionary. However

in [40] and further confirmed in [33, 34] this was shown to be insufficient to reproduce the

correct microscopic results. A quick way of seeing that this is not the correct procedure is

to observe that there is nothing to distinguish between a D3-brane probing an ALE or ALF

space via this method of looking at the near-horizon geometry. This near-horizon analysis

precisely misses the degrees of freedom living outside the near-horizon region which also

contribute to the microscopic degeneracy [35, 36].

Instead the correct procedure is to reduce the action on the compact part of the

asymptotic geometry [33, 34]. Again this is not quite the full story, one must also integrate

out massive Kaluza-Klein (KK) modes and include their contributions to the central charges

and levels. We refer to the contributions arising from the massive KK modes as quantum

contributions and to those from the reduction of the action as classical. Computing these

classical contributions will be the content of this section, whilst the computation of the

quantum corrections will be the subject of the subsequent section.

We split the discussion into two parts. In the first part we compute the levels kL,R
associated to the current algebras of the U(1)L (when it exists) and the SU(2)R. In addition

we compute the difference of the central charges cL− cR which follows from the coefficient

of the 3d gravitational Chern-Simons term. We refer to kL,R as the universal levels in

the following. When SU(2)R can be identified with the right-moving SU(2)r R-symmetry,

supersymmetry implies that the right-moving central charge and universal level are related

by cR = 6kR and both the central charges can be determined.14 In the second part of this

section we compute the levels of non-abelian flavour symmetries associated to 6d vector

multiplets coming from the reduction on singular Calabi-Yau threefolds.

3.1 Central charges and universal levels

Let us now proceed in determining the classical contribution to the central charges and

levels associated to the current algebras arising from the isometries of the solution. Recall

that for the A-series we have a U(1)L × SU(2)R isometry group whilst for D- and E-series

the isometry group is reduced to SU(2)R. We will reduce the six-dimensional pseudo-action

on the compact space of the black string solution at asymptotic infinity in order to obtain

Chern-Simons terms for the associated current algebra. Since the reduction works similarly

for the ALE and ALF transverse spaces we shall perform the reduction simultaneously. This

can be done via the covering space at asymptotic infinity which is given by the black string

solution (2.21) with ds2(MΓ) replaced by

ds2
4 = V −1(dψ + cos(θ)dφ)2 + V

(
dr2 + r2dθ2 + r2 sin2(θ)dφ2

)
(3.1)

14However, the identification of SU(2)R with the R-symmetry might fail for (a small) part of the spectrum,

e.g. the center of mass modes, and the result for cL,R determined this way might differ from the central

charges at subleading order in the charges, see e.g. [34, 40].
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in the limit that r →∞. Here 0 ≤ ψ < 4π, 0 ≤ φ < 2π, r > 0, 0 ≤ θ < π and

V = v∞ +
1

r
,

{
v∞ = 0 for ALE ,

v∞ 6= 0 for ALF .
(3.2)

Indeed in the limit r → ∞ this agrees with the asymptotic metric (2.22). One proceeds

by gauging the isometries of the compact part of the solution, i.e. gauge the symmetries

acting on the SU(2) Maurer-Cartan one-forms. We are therefore gauging the isometries

of S3/Γ.

We split the ansatz for the covering space as

dŝ2
6 = ds2

M3
+ δabe

aeb (3.3)

with M3 the three-dimensional non-compact part of spacetime, and

ea =

ê
a −KIa

R A
I
R −Ka

LAL A-series ,

êa −KIa
R A

I
R D- and E-series .

(3.4)

Here AL, KL, AR and KR are the gauge fields and Killing vectors corresponding to the

isometry group of the transverse space. Explicit expressions for the Killing vectors can

be found in [33]. The dreibein êa corresponds to the spherical part of the black string

solution (2.21) with base space (3.1) and are given by

ê1 =
√
HV r

(
sin(ψ)dθ − cos(ψ) sin θdφ

)
,

ê2 =
√
HV r

(
cos(ψ)dθ + sin(ψ) sin θdφ

)
, (3.5)

ê3 =
√
H/V

(
dψ + cos(θ)dφ

)
.

For the three-form Ĝα on the covering space we take as ansatz

Ĝα = −Qα[(2π)2|Γ|(e3 − χ3) + ω(M3)] , (3.6)

where ω(M3) is a three-form on M3 which is necessary for the existence of the solution but

whose explicit form is not required. The three-form e3 is the invariant volume form on the

gauged compact space. It is normalized such that∫
Msph

e3 = 1 (3.7)

and it has exterior derivative

de3 =


1

8π2
trFR ∧ FR +

1

16π2
FL ∧ FL A-series ,

1

8π2
trFR ∧ FR D- and E-series .

(3.8)

Its explicit form can be found in appendix A. Finally, the three-form χ3 is included in order

for the ansatz to satisfy its Bianchi identity and takes the form

χ3 =


1

8π2
tr

(
AR ∧ dAR +

2

3
A3
R

)
+

1

16π2
AL ∧ FL A-series ,

1

8π2
tr

(
AR ∧ dAR +

2

3
A3
R

)
D- and E-series .

(3.9)
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Having introduced the necessary notation and conventions we can proceed with computing

the difference of the central charges and the levels of the various universal current algebras.

These are related to the following Chern-Simons terms in the 3d effective action

SCS ⊃
kL
8π

∫
M3

AL ∧ FL +
kR
4π

∫
M3

ωCS(AR) +
cL − cR

96π

∫
M3

ωCS
grav , (3.10)

where it is understood that for the D- and E-series the first term is absent. The only part

of the 6d action which yields such Chern-Simons terms is given by

S(6) ⊃ 1

(2π)3

∫
M6

[
− 1

4
gαβ Ĝ

α
Γ ∧ ∗̂ ĜβΓ −

1

8
ηαβ c

αB̂β
Γ ∧ tr R̂ ∧ R̂

]
, (3.11)

and we restrict our focus to this part of the action in the following section. We compute

the contributions arising from two- and four-derivative terms in (3.11) separately.

3.1.1 Two-derivative contributions

To determine the contributions from the two-derivative part of the action we perform a

gauge transformation for the universal current algebras u(1)L⊕ su(2)R for the A-series and

su(2)R for the D- and E-series. We then reduce this variation on the spherical part of the

geometry and relate the result to the variation of the 3d Chern-Simons terms (3.10). We

denote the gauge parameter by Λ in the following. The three-form e3 is gauge invariant

by construction and therefore the only contribution to the variation of the two-derivative

terms in (3.11) will arise from varying χ3. Performing the above steps, and using the

covering space to compute the integral, we find15

δΛL2-der
CS ∗3 1 = − 1

16π3

∫
Msph

Γ

gαβδΛĜ
α
Γ ∧ ∗̂ĜβΓ = − 1

16π3|Γ|

∫
Msph

gαβδΛĜ
α ∧ ∗̂Ĝβ

= π|Γ|ηαβQαQβ
∫
Msph

δΛχ3 ∧ e3 = π|Γ|ηαβQαQβδΛχ3 . (3.12)

In going from the first line to the second line we have used the self-duality constraints (2.10).

By comparison with the variation of (3.10) we obtain

k2-der
L =

1

2
|Γ|ηαβQαQβ ,

k2-der
R =

1

2
|Γ|ηαβQαQβ , (3.13)

c2-der
L = c2-der

R ,

where Qα is defined as in (2.24) and kL is only present for the A-series. The central charges

are equal because the reduction of the two-derivative term in (3.11) does not generate a

3d gravitational Chern-Simons term.

15We use conventions in which
∫
M6

=
∫
M3
·
∫
M

sph
Γ

.
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3.1.2 Four-derivative contributions

Let us now consider the contributions from the four-derivative term in (3.11). We can

rewrite this term in terms of objects on the covering space of the solution as

1

64π2

∫
Msph

Γ

ηαβc
αĜβΓ ∧ ω̂CS

grav,Γ =
1

64π2|Γ|

∫
Msph

ηαβc
αĜβ ∧ ω̂CS

grav , (3.14)

where ω̂CS
grav,Γ is the 6d gravitational Chern-Simons term of the Γ quotiented space. We

evaluate (3.14) for the ansatz with respect to the black string solution (2.21) with base

space (3.1) and will only take the r → ∞ limit afterwards. In the process we only keep

terms leading to 3d Chern-Simons terms. The details of this computation can be found in

appendix A but the result is given by

L4-der
CS ∗3 1 =

1

16
ηαβc

αQβ

[
ωCS

grav −
1 + 4v∞r + 2v2

∞r
2

(1 + v∞r)4
AL ∧ FL (3.15)

+ 2
1 + 4v∞r + 10v2

∞r
2 + 8v3

∞r
3 + 2v4

∞r
4

(1 + v∞r)4
ωCS(AR)

]
,

where one has to set AL = 0 for the D- and E-series. By setting v∞ = 0 for ALE transverse

spaces we find

L4-der
CS ∗3 1 =


1

16π
ηαβc

αQβ
[
ωCS

grav −AL ∧ FL + 2ωCS(AR)
]

A-series ,

1

16π
ηαβc

αQβ
[
ωCS

grav + 2ωCS(AR)
]

D- and E-series .

(3.16)

Comparing this to (3.10) we find that the four-derivative part of the central charges and

levels is given by

k4-der
L = −1

2
ηαβc

αQβ A-series only ,

k4-der
R =

1

2
ηαβc

αQβ , (3.17)

(cL − cR)4-der = 6ηαβc
αQβ .

The Chern-Simons terms for ALF transverse spaces are obtained by taking v∞ 6= 0 and

taking the limit r →∞ in (3.15):

L4-der
CS ∗3 1 =

1

16π
ηαβc

αQβ
[
ωCS

grav + 4ωCS(AR)
]
. (3.18)

The four-derivative part of the central charges and levels is thus equal to

k4-der
L = 0 ,

k4-der
R = ηαβc

αQβ , (3.19)

(cL − cR)4-der = 6ηαβc
αQβ .

The computation of the contribution to the left level is of course only relevant for the

A-series.
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3.1.3 Total classical contributions

We can now compute the total classical contribution by simply adding the result in (3.13)

to (3.17) for ALE spaces and to (3.19) for ALF spaces. We use that the macroscopic

charges are related to the microscopic charges via (2.24). For ALE transverse spaces we

thus find

kclass
L =

1

2
|Γ|ηαβQαQβ −

1

2
ηαβc

αQβ A-series only

≡ 1

2
|Γ|
(
C − 1

4
p1(MΓ)c1(B)

)2

− 1

2
c1(B) ·

(
C − 1

4
p1(MΓ)c1(B)

)
,

kclass
R =

1

2
|Γ|ηαβQαQβ +

1

2
ηαβc

αQβ (3.20)

≡ 1

2
|Γ|
(
C − 1

4
p1(MΓ)c1(B)

)2

+
1

2
c1(B) ·

(
C − 1

4
p1(MΓ)c1(B)

)
,

(cL − cR)class = 6ηαβc
αQβ ≡ 6c1(B) ·

(
C − 1

4
p1(MΓ)c1(B)

)
.

For ALF transverse spaces the total classical contribution is given by

kclass
L =

1

2
|Γ|ηαβQαQβ A-series only

≡ 1

2
|Γ|
(
C − 1

4
p1(MΓ)c1(B)

)2

,

kclass
R =

1

2
|Γ|ηαβQαQβ + ηαβc

αQβ (3.21)

≡ 1

2
|Γ|
(
C − 1

4
p1(MΓ)c1(B)

)2

+ c1(B) ·
(
C − 1

4
p1(MΓ)c1(B)

)
,

(cL − cR)class = 6ηαβc
αQβ ≡ 6c1(B) ·

(
C − 1

4
p1(MΓ)c1(B)

)
.

The first Pontryagin numbers p1(MΓ) are given in table 1. We can see that if we specify

the ALF result to Taub-NUT we recover the classical results of [33] as expected.

3.2 Levels of non-abelian flavour symmetries

In order to compute the levels of the non-abelian flavour symmetries we should perform

similar manipulations as in the previous section. We reduce the action on the compact

part of the black string solution including the vectors corresponding to the non-abelian

flavour symmetries, and extract the coefficients of the Chern-Simons terms of the gauge

fields. Since these fields have trivial profile in the black string solution we take the trivial

reduction ansatz Âi = Ai for the gauge-fields, where now the Ai just depend on M3. The

only potential source for Chern-Simons terms for the gauge fields are the terms

1

2(2π)3

∑
i

ηαβs
α
i

∫
M6

B̂β
Γ ∧ tr F̂ i ∧ F̂ i (3.22)
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in the 6d action (2.11). Reducing these terms with the ansatz for the gauge fields results in

1

2(2π)3

∑
i

ηαβs
α
i

∫
M6

B̂β
Γ ∧ tr F̂ i ∧ F̂ i = − 1

2(2π)3

∑
i

ηαβs
α
i

∫
M6

ĜβΓ ∧ ωCS(Âi)

=
1

2(2π)3

∑
i

ηαβs
α
i

∫
M3

ωCS(Ai)

∫
Msph

1

|Γ|Ĝ
β

= − 1

4π

∑
i

ηαβs
α
i Q

β

∫
M3

ωCS(Ai) . (3.23)

For such a left-moving16 non-abelian current algebra the level is defined via

SCS ⊃ −
1

4π

∑
i

kclass
Gi

∫
M3

ωCS(Ai) . (3.24)

Therefore, the level associated to the gauge group factor Gi is

kclass
Gi

= ηαβs
α
i Q

β ≡
(
C − 1

4
p1(MΓ)c1(B)

)
· Si . (3.25)

For the final equality we have used the relation between the microscopic and macroscopic

charges in (2.24).

4 Quantum contributions to levels

Having determined the contributions arising from the classical action we now turn our

attention to computing the quantum corrections to the levels. Such corrections arise

from one-loop Chern-Simons terms induced by integrating out massive Kaluza-Klein (KK)

states. We will only be interested in corrections up to but not including terms O(1) in the

charges. The KK modes contributing to the one-loop Chern-Simons terms come from the

six-dimensional fields which can lead to anomalies in the six-dimensional theory, namely the

chiral fields. For the theory at hand these 6d fields are the gravitino, the spin- 1
2 fermions in

the tensor-, vector- and hypermultiplets and the (anti-)self-dual two-forms. Upon reducing

to three dimensions these fields give rise to massive spin- 3
2 and spin-1

2 fermions, and to

massive chiral vector fields.

We argued in section 3 that in order to obtain the correct anomaly coefficients from

supergravity, one has to perform the dimensional reduction of the six-dimensional effective

action to three dimensions on the spherical part of the asymptotic geometry which sur-

rounds the string in six dimensions. The two classes of transverse spaces which we consider

in this paper, namely ALE and ALF spaces, behave qualitatively different at asymptotic

infinity. For an ALE space the metric approaches a quotient of the Euclidean metric,

whereas for an ALF space it approaches the metric on (R3 × S1)/Γ. In both cases the

spherical geometry in the asymptotic region is topologically S3/Γ, however whilst one is

left with a finite radius circle in the asymptotic geometry of an ALF space (the Hopf fiber

16In our conventions a positive definite coefficient for a non-abelian Chern-Simons term implies that the

current is right-moving, similarly a negative definite coefficient implies that it is left-moving.
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of the S3), the S3/Γ in the asymptotic ALE geometry becomes infinitely large. The KK

modes, whose masses are inversely proportional to the radius, therefore become massless

for an ALE geometry and consequently they do not contribute to the one-loop Chern-

Simons terms. In contrast, because of the finite Hopf fiber for ALF transverse spaces the

KK modes remain finite and must be integrated out at low energies. It follows that one

only needs to compute the one-loop corrections to the Chern-Simons levels for transverse

ALF spaces and not for ALE spaces.

In the following we assume that the squashing of the three-sphere does not alter the

representation content of the KK modes under the isometry group and moreover that it

does not change the signs of the KK masses of the states in the spectrum. This will effec-

tively mean that we can compute the one-loop corrections on the round S3/Γ. In [33, 34]

for similar settings, this assumption was shown to lead to results which agree with the

microscopic predictions.

4.1 Kaluza-Klein spectrum

The spectrum of N = (2, 0) supergravity on AdS3 × S3 was computed in [58, 59] and

can be truncated to the spectrum of N = (1, 0) supergravity coupled to tensor multi-

plets. Each mode in the spectrum admits a representation under the isometry group

so(4) = su(2)L ⊕ su(2)R and has a mass of which only the sign will be important in this

paper. In addition to tensor multiplets we have hypermultiplets and vector multiplets in

the N = (1, 0) 6d supergravity theory which are absent in the truncation from N = (2, 0)

supergravity. Since only the massive KK modes of the spin- 1
2 fermions in these multiplets

are relevant for the computation of the one-loop Chern-Simons terms in 3d we focus on

these. The computation of the KK spectrum of these spin- 1
2 fields requires a harmonic

expansion of the linearized Dirac equation, analogous to the one for the spin- 1
2 fermions

in the tensor multiplets. It is therefore conceivable that the massive KK spin- 1
2 fermions

from the hyper- and vector multiplets fall into the same su(2)L⊕ su(2)R representations as

the KK fermions from the tensor multiplets. The only potential difference is in the sign of

the KK mass which is correlated with the chirality of the parent 6d spin- 1
2 fermions. The

6d fermions are given by two Weyl fermions subject to a symplectic-Majorana condition

and the tensors obey a reality condition. It is computationally simpler to not impose these

conditions from the outset but to impose them at a later point.

Taking these considerations into account we can infer the KK spectrum of the N =(1, 0)

6d supergravity theory coupled to nT tensor multiplets, nV vector multiplets and nH
hypermultiplets on AdS3 × S3. It is given below in terms of representations of su(2)L ⊕
su(2)R ⊕ g, as (jL, jR,R)sgn(M) with the superscript denoting the sign of the mass of

the field.

• Spin-3
2 :

2
∞⊕

jL= 1
2

(
jL, jL ±

1

2
,1

)∓
.
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• Spin-1
2 :

2

∞⊕
jL= 3

2

(
jL, jL ±

3

2
,1

)∓
⊕ 2

1⊕
jL=0

(
jL, jL +

3

2
,1

)−
⊕ 2

∞⊕
jL=1

(
jL, jL ±

1

2
,1

)±

⊕ 2

(
1

2
, 1,1

)+

⊕ 2

(
0,

1

2
,1

)+

⊕ 2nT

[ ∞⊕
jL= 1

2

(
jL, jL ±

1

2
,1

)±
⊕
(

0,
1

2
,1

)+]

⊕ 2
⊕
R

xR

[ ∞⊕
jL= 1

2

(
jL, jL ±

1

2
,R

)±
⊕
(

0,
1

2
,R

)+]

⊕ 2
⊕
i

[ ∞⊕
jL= 1

2

(
jL, jL ±

1

2
,adi

)∓
⊕
(

0,
1

2
,adi

)−]
.

• Chiral vectors:

∞⊕
jL=1

(
jL, jL ± 1,1

)∓ ⊕ (1

2
,

3

2
,1

)−
⊕
(
0, 1,1

)−
⊕nT

[ ∞⊕
jL=1

(
jL, jL ± 1,1

)± ⊕ (1

2
,

3

2
,1

)+

⊕
(
0, 1,1

)+]
.

For simplicity we have used the shorthand notation(
jL, jL ± n

)± ≡ (jL, jL + n
)+ ⊕ (jL, jL − n)− . (4.1)

The hypermultiplets transform in representations R of g which come with multiplicities

xR. Moreover we have denoted adi for the representation under g where the field is in the

adjoint of the i’th gauge group factor Gi and singlet of the other group factors. Therefore,∑
R

xRdim(R) = nH ,
∑
i

dim(adi) = nV . (4.2)

Denoting the eigenvalues of the Cartans of su(2)L,R by j(3)

L,R, the 6d reality and symplectic-

Majorana conditions of the tensors and fermions respectively map modes with eigenvalues

(j(3)

L , j(3)

R ) → (−j(3)

L ,−j(3)

R ). We are thus left with either the modes that satisfy j(3)

L ≥ 0 or

the modes that satisfy j(3)

R ≥ 0.

Ultimately we are interested in the one-loop corrections induced by KK modes on

S3/Γ. We must therefore extract out the Γ-invariant subsector of the above spectrum.

Since we need to compute the corrections for the ALF spaces only, we are interested in

the projection conditions for Γ either Zm or D∗m. The action of the subgroup Γ ⊂ SU(2)L
may be understood by elementary group theory techniques. From the action of Γ on the

fundamental representation of SU(2)L one can straightforwardly deduce its action on a

general representation using that the latter can be written as a totally symmetric tensor

product of the fundamental representation. One finds for Γ = Zm that only states with

j(3)

L = 1
2mk for some k ∈ Z are invariant under Zm. The symplectic-Majorana and reality
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conditions refine this to k ∈ Z≥0. For Γ = D∗m we first note that D∗m has a Z2m subgroup.

This implies, that the invariant states need to satisfy j(3)

L = mk for some k ∈ Z. In addition

to this subgroup, D∗m has another generator that maps a state with eigenvalue j(3)

L to a

state with eigenvalue −j(3)

L . By taking appropriate linear combinations of these two states

we obtain a state which is invariant under the full group D∗m. We can therefore restrict to

states that have j(3)

L = mk for some k ∈ Z≥0. Furthermore the symplectic-Majorana and

reality conditions imply that we should only take states with j(3)

R ≥ 0. A more detailed

discussion of the projection conditions can be found in appendix A of [34].

4.2 One-loop contributions of massive KK modes to Chern-Simons terms

The contributions of the KK modes to the u(1)L , su(2)R and gravitational Chern-Simons

terms were computed in [33] in the absence of vector multiplets and charged matter for

Taub-Nut transverse space. Here we extend those results to include vector multiplets and

charged matter and to the D-series. Since the only matter that can contribute to the

coefficients of the Chern-Simons terms and that is also charged under the gauge group G

are spin-1
2 fermions, we solely need to modify the contributions from these terms. Moreover

we must compute the contribution of these fields to the levels of the flavour current algebra.

Let j(3)

L and jR be the quantum numbers of the Casimirs of a representation of u(1)L⊕
su(2)R. If one computes a two-point function of the currents in the theory, one sees that

in integrating out the massive fields one-loop Chern-Simons terms of the form

αL

∫
M3

AL ∧ FL + αR

∫
M3

ωCS(AR) + αgrav

∫
M3

ωCS
grav + αGi

∫
M3

ωCS(Ai) (4.3)

are induced. The contribution of each massive field can be evaluated by either explicitly

computing the one-loop Feynman diagram or by using the index theorem and appealing

to anomaly inflow. For example the parity anomaly of a spin- 1
2 field is canceled by the

counter-term [60]

πsgn(M)

∫
M3

Q 1
2

(
{Ai}, ω

)
, (4.4)

where

dQ 1
2
({Ai}, ω) = Â(M3) ∧ ch(F )

∣∣
4-form

= Â(M3) ∧ ch(FL) ∧ ch(FR) ∧
∧
i

ch(F i)
∣∣
4-form

,

Â(M3) = 1 +
1

(4π)2

1

12
trR∧R+ . . . , (4.5)

ch(F i) = dim Ri +
i

2π
trRi F

i − 1

2

1

(2π)2
trRi F

i ∧ F i + . . . .

Let r be the dimension of the SU(2)R representation. Since we have assumed that the
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group factors Gi are simple it follows that trF i = 0 and therefore

dQ 1
2
({Ai}, ω) =

r dim R

(4π)2

1

12
trR∧R− r

2(2π)2

∑
i

di(R)trRi F
i ∧ F i

+
r dim R

4(2π)2
FL ∧ FL −

dim R

2(2π)2
trFR ∧ FR

=
r dim R

(4π)2

1

12
trR∧R− r

2(2π)2

∑
i

di(R)ARiλi trF i ∧ F i (4.6)

+
r dim R

4(2π)2
FL ∧ FL −

dim R

2(2π)2
trFR ∧ FR ,

with

dim R =
∏
i

dim Ri , di(R) =
∏
j 6=i

dim Rj , (4.7)

and the group theoretic objects, λi and ARi are as introduced in section 2.1. We used that

the generator of u(1)L is given in terms of the Pauli matrices by − i
2σ3. It follows that the

contribution of a single spin- 1
2 fermion in the representation R of G gives a contribution of

α
(1/2)
Gi

= − r

8π
sgn(M)di(R)ARiλi (4.8)

to the Chern-Simons term corresponding to the non-abelian flavour symmetry Gi. The

contribution to the universal sector is17

α
(1/2)
L =

1

8π
sgn(M)dimR (2jR + 1)

(
j

(3)
L

)2
,

α
(1/2)
R = − 1

12π
sgn(M)dimR jR(jR + 1)(2jR + 1) , (4.9)

α(1/2)
grav =

1

192π
sgn(M)dimR (2jR + 1) .

Finally, since the other fields are singlets of the gauge group G their contributions are

precisely given by the ones in [33]. We collect the contributions of the single fields in

table 3.

In order to compute the one-loop corrections to the levels kL of U(1)L, kR of SU(2)R,

kGi of Gi and cL − cR multiplying the gravitational Chern-Simons term in 3d, we have to

sum the single field contributions in table 3 over the KK towers given in section 4.1. In

performing the sums over the infinite towers of KK states one encounters sums of the form

∞∑
n=1

nk , (4.10)

which are divergent and need regularizing. We employ Zeta-function regularization to

obtain finite results for the one-loop Chern-Simons terms. It was shown in [61, 62], that

17In translating between the trace in the Chern-Simons terms used here and the one used in the section on

the classical contributions a field in the representation (j(3)

L , jR) picks up a factor of 2(j(3)

L )2 for left-moving

Chern-Simons terms and a factor of 2
3
jR(jR + 1)(2jR + 1) for right-moving Chern-Simons terms. This is

the analogue of λi appearing earlier. Moreover we substitute the r = 2jR + 1.
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spin-1
2 spin-3

2 chiral vectors

αL
1

8π sgn(M)dim R r
(
j

(3)
L

)2 3
8π sgn(M)r

(
j

(3)
L

)2 − 1
4π sgn(M)r

(
j

(3)
L

)2
αR − 1

12π sgn(M)dim RλR − 1
4π sgn(M)λR

1
6π sgn(M)λR

αgrav
1

192π sgn(M)dim R r − 7
64π sgn(M)r 1

48π sgn(M)r

αGi − 1
8π sgn(M)di(R)ARiλi r 0 0

Table 3. One-loop contributions of a single field in the representation (j(3)

L , jR,R) of u(1)L ⊕
su(2)R⊕ g to the Chern-Simons terms. We have used the shorthand λR = jR(jR + 1)(2jR + 1) and

the dimension of the SU(2)R representation r = 2jR + 1.

Zeta-function regularization gives the correct result for the constant, field independent one-

loop corrections to Chern-Simons terms, while extra care has to be taken concerning the

field-dependent part. Since we start from an anomaly free 6d F-theory model, Zeta-function

regularization provides a safe shortcut in the computation of the three-dimensional Chern-

Simons coefficients we are interested in. The details of the computation of the sums over

the Kaluza-Klein towers are spelled out in appendix B. In these computations we use the

identities (2.15), (2.16) and (2.18) to express the final results entirely in terms of m, c1(B)

and Si. In the following we will give the results for the two relevant cases Γ = Zm and

Γ = D∗m, i.e. we present the one-loop corrections induced by massive KK modes on S3/Γ.

A-series (Γ = Zm). We first turn our attention towards the case where Γ = Zm, which

corresponds to a string propagating in 6d probing a transverse Taub-NUT space with NUT

charge m. We are interested in contributions to kL,R, kGi and cL−cR, which scale with the

charge m and we will neglect all O(1) contributions which do not depend on the charges. As

described in section 4.1, we need to sum over states which satisfy the projection condition

j(3)

L = 1
2mk for k ∈ Z≥0. The explicit sums over all states can be found in appendix B

and are performed by first summing over all representations, which contain a state with

j(3)

L = 1
2mk for generic k. That is, we sum over representations with jL = 1

2mk,
1
2mk+1, . . . ,

and then sum over all values of k. After applying the identities (2.15), (2.16) and (2.18)

we obtain the corrections

kloop
L = −m

3

8
c1(B) · c1(B) ,

kloop
R =

m3

24
c1(B) · c1(B) +

m

3
c1(B) · c1(B) +m,

kloop
Gi

=
m

2
c1(B) · Si , (4.11)

(cL − cR)loop = 2mc1(B) · c1(B) + 6m,

to the levels up to O(1) corrections which are independent of m.

D-series (Γ = D∗
m). For this case we do not have a left level to compute. In section 4.1

we found that we need to sum over states with j(3)

L = mk for k ∈ Z≥0 and j(3)

R ≥ 0. It is
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clear that the first restriction can be imposed by simply replacing m→ 2m in the one-loop

results for the A-series (4.11). The second condition may be effectively implemented by

dividing the result of that replacement by a factor two. This simple procedure gives the

sums for the case Γ = D∗m up to terms which are independent of m. Since this is sufficient

for our purposes, we immediately obtain the result for Γ = D∗m:

kloop
R =

m3

6
c1(B) · c1(B) +

m

3
c1(B) · c1(B) +m,

kloop
Gi

=
m

2
c1(B) · Si , (4.12)

(cL − cR)loop = 2mc1(B) · c1(B) + 6m,

again, up to terms independent of the charge m.

5 Summary

In this paper we have studied the central charges and levels corresponding to black strings

in F-theory compactified on an elliptically fibered Calabi-Yau threefold CY3. The strings

arise from wrapping D3-branes, living in the asymptotic geometry R×MΓ× S1×CY3, on

the curve C in the base of the CY3 and on the S1. The space MΓ transverse to the string

is either taken to be asymptotically locally Euclidean (ALE) or asymptotically locally flat

(ALF). These spaces are characterized by the choice of a freely acting discrete subgroup

Γ ⊂ SU(2). Living on the strings are 2d N = (0, 4) SCFTs which result from compactifying

the woldvolume theory of the branes on C. These SCFTs have associated central charges

and levels which we have computed from the macroscopic 6d N = (1, 0) supergravity theory

which is the low energy limit of F-theory on CY3.

The isometry group of the ALE and ALF spaces is U(1)L × SU(2)R for the A-series

and SU(2)R for the D- and E-series in the ADE classification of subgroups of SU(2). This

isometry group corresponds to a current algebra in the dual SCFT with associated levels

kL,R. Degenerations in the fiber of the CY3 leading to singularities of the total space

yield vector multiplets in the 6d supergravity theory which lead to gauge symmetries of

the 6d bulk theory. From the perspective of the string, this leads to non-abelian flavour

symmetries of the 2d SCFT each of which has an associated level.

Macroscopically the levels and central charges correspond to the coefficients of Chern-

Simons terms in the effective 3d action that is obtained by reducing the 6d supergravity

theory on the spherical part of the black string solutions. We have determined these

Chern-Simons terms including one-loop contributions arising from integrating out massive

Kaluza-Klein modes. We have performed the reduction at asymptotic infinity in order to

take into account the contributions of degrees of freedom living outside of the horizon.

In addition, a necessary shift in the identification of macroscopic and microscopic charges

arising from the Green-Schwarz-Sagnotti-West term in the pseudo-action has been included.

When the transverse space is ALE the central charges and levels are given by the

coefficients of the Chern-Simons terms resulting from the reduction of the 6d classical

action on the spherical part of the black string geometry. We have computed this in
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section 3 and the result is

kL =
1

2
|Γ|
(
C − 1

4
p1(MΓ)c1(B)

)2

− 1

2
c1(B) ·

(
C − 1

4
p1(MΓ)c1(B)

)
,

kR =
1

2
|Γ|
(
C − 1

4
p1(MΓ)c1(B)

)2

+
1

2
c1(B) ·

(
C − 1

4
p1(MΓ)c1(B)

)
,

kGi =

(
C − 1

4
p1(MΓ)c1(B)

)
· Si , (5.1)

cL − cR = 6c1(B) ·
(
C − 1

4
p1(MΓ)c1(B)

)
,

where |Γ| and p1(MΓ) can be found in table 1. The left level is only relevant for the A-series.

As discussed in section 3, the left- and right-moving central charges follow from (5.1) by

using the relation cR = 6kR which is valid when one can identify SU(2)R with the right-

moving R-symmetry.

When the transverse space is ALF one also has to include the one-loop contributions

derived in section 4. For the A-series, i.e. MΓ = TNm, we find that the final result is

kL =
1

2
mC2 − 1

2
m2c1(B) · C ,

kR =
1

2
mC2 − 1

2
m2c1(B) · C +

1

6
m3c1(B)2 + c1(B) · C − 1

6
mc1(B)2 +m,

kGi = C · Si , (5.2)

cL − cR = 6c1(B) · C −mc1(B)2 + 6m.

Alternatively when the transverse space MΓ is ALF with Γ given by the D-series, the levels

and central charges are18

kR = 2mC2 − (2m2 + 6m− 1)c1(B) · C +
1

6
(4m3 + 18m2 + 26m)c1(B)2 +m,

kGi = C · Si , (5.3)

cL − cR = 6c1(B) · C −mc1(B)2 + 6m.

All results in this section are up to terms of O(1) in the charges.

6 Discussion

The results in this paper have been obtained from purely macroscopic computations, it

would be very interesting to reproduce the central charges and levels from a microscopic

computation. This is possible for the central charges and levels corresponding to the

isometry group of MΓ when the transverse space is either Taub-NUT [32] or R4 [4, 43].

For Taub-NUT one can use the dual M-theory setting while for R4 one can work directly

with the woldvolume theory of the D3-brane. In the latter case one compactifies the theory

18These results are the sums of the classical and quantum contributions for the D-series up to terms of

O(1) in the charges.
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living on a D3-brane on the curve C in the presence of a varying axio-dilaton which requires

one to perform a topological duality twist [63] which was further studied in [43, 64]. The

central charges and levels are computed in terms of anomaly coefficients or by spectrum

counting in the resulting 2d theory.19 Generalizing the latter computation to arbitrary

ALE MΓ is not straightforward. The worldvolume theory of a D3-brane probing MΓ is

known [65, 66], and its construction relies on performing a quotient of the non-abelian

theory living on a stack of D3-branes. However the topological duality twist is not yet

understood well enough for non-abelian gauge theories without appealing to M-theory

and therefore at present has no obvious application to these theories. It is interesting to

note that the difficulties for ALE transverse spaces are purely the result of the non-trivial

elliptic fibration since if one considers type IIB settings without 7-branes one can study

these strings both macroscopically and microscopically. We have pursued this for type IIB

compactifications on K3 in [34].

One also encounters problems if one wants to compute the levels for the ALF D-

series microscopically. In fact the situation is worse than for ALE spaces since the four-

dimensional parent theory is not even known in this case. Instead one can try to mimic

the progress made in the A-series ALF case by using an M-theory picture and performing

a similar computation as in [2]. The D-series theory admits a dual M-theory realization

if one also introduces orientifold M5-branes. However the burden to bare by introducing

orientifolds is too high with the available technology and the counting of states is currently

intractable. A potential avenue for obtaining the microscopic results is via anomaly inflow

in F-theory, see [57, 67] for the current status of this line of research.

An alternative approach, applicable to all the settings considered here, is to dualize

along the circle wrapped by the D3-brane and then uplift to M-theory. One obtains an

M2-brane system wrapped on a curve in the elliptically fibered CY3 and probing the ALE

or ALF space. For transverse space R4 the spectrum counting of the M2-brane states was

performed in [3], however for transverse ALE or ALF spaces this has not been considered

so far. As noted in [68] there are potential subtleties in matching the central charge of the

2d SCFT with the computation of the partition function of the dual 1d SQM theory living

on the M2-branes.

We have considered a general class of Calabi-Yau threefolds admitting a single rational

section, known as the zero section σ0 : B → CY3, whose existence distinguishes between an

elliptic fibration rather than a genus-one fibration without section. The zero section maps

each point of the base to the zero-point on the elliptic fiber. One may consider additional

sections to the zero section which form a finitely generated abelian group called the free part

of the Mordell-Weil group. Up to potential subtleties which are beyond the scope of this

discussion, these sections give rise to U(1) gauge factors in the six-dimensional supergravity

theory in addition to the non-abelian group factors considered here. These may then again

act as flavour symmetries on the strings which we considered in this paper. One could

therefore extend our results to include these U(1) factors. Computing the (classical and

19The microscopic computation of the central charges/anomaly coefficients misses subleading contribu-

tions from D3-D7 modes. These contributions may again be obtained from the dual M5-brane picture [4, 43].
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quantum) contributions to the anomaly coefficients of these U(1) flavour symmetries of the

strings appears straightforward with the methods presented here.

An additional direction one can follow is to consider Calabi-Yau threefolds which do

not admit crepant resolutions. Implicitly the Calabi-Yau threefold used in the compact-

ification to six-dimensional supergravity admits a crepant resolution. This implies that

the resolution does not change the canonical bundle of the space and therefore the space

remains Calabi-Yau. However there exist Calabi-Yau threefolds which admit non-crepant

resolvable singularities. From the physics point of view the existence of non-crepant re-

solvable singularities implies that there is matter which is not charged under any of the

massless gauge fields in the five-dimensional effective action arising from M-theory on the

Calabi-Yau threefold, see e.g. [69]. Instead the matter may be charged under a massive

U(1) or a discrete Zk symmetry. The existence of this additional matter will affect the

one-loop computations performed here.

A further interesting direction has already been alluded to in section 2.2. We noted

that if one considers a non-trivial profile for the vector multiplets in the string background

such that they generate instanton configurations living on the ALE or ALF space, one

introduces an additional shift of the macroscopic charge. From the F-theory perspective

this arises from gauge instantons living on the 7-branes which induce D3-brane charge

localized on the 7-brane worldvolume. This problem has not been attempted even in the

simplest case of R4 transverse space. Suitable gauge instanton configurations on both R4

and Taub-NUT are known in the literature, therefore leaving the possibility to extend the

settings discussed in the paper to include these instantons.
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A 6d to 3d reduction higher derivative term

In this appendix we show how one obtains the result (3.15). That is, we determine the 3d

Chern-Simons terms resulting from the integral20

∫
Msph

Ĝα ∧ ω̂CS
grav . (A.1)

The integral is over the spherical part of the black string solution (2.21) with ds2(MΓ)

replaced by the covering space in (3.1).

20This integral is also computed in appendix A of [33], but we include it here so that the paper is

self-contained.
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In order to perform this computation, we first discuss a few details of this black string

solution. Its explicit form is given by

dŝ2
6 = 2H−1du

(
dv +

1

2
Fdu

)
+Hds2

4 , (A.2)

with ds2
4 the metric in equation (3.1). Here

H =
(
ηαβW

αW β
)1/2

, (A.3)

and the functions F and Wα are given by

F = 1− n

r
,

Wα = wα∞ +
Qα

4r
. (A.4)

The constants wα∞ satisfy ηαβw
α
∞w

β
∞ = 1 in order to obtain the correct asymptotic be-

haviour. Furthermore, the scalars in the tensor multiplets take the form

̂α =
Wα

H
(A.5)

and the three-forms are given by

Ĝα = −dv ∧ du ∧ d(WαH−2)− ∗4d(Wα) . (A.6)

Here ∗4 denotes the Hodge dual with respect to the metric ds2
4.

Having given the necessary notation and conventions we turn our attention to evaluat-

ing the integral in (A.1). We begin by gauging the isometries of the base space of the black

string and decompose the spin connection of the resultant metric ansatz to determine the

part leading to 3d Chern-Simons terms. We denote indices of the non-spherical part M3

of the black string solution by ã = 1, 2, 3 with corresponding vielbein êã. Additionally, we

denote by ω̂ãb̃ the components of the spin connection ω̂M3 with respect to the vielbein êã

of M3 and by ω̂ab the components of the spin connection ω̂sph with respect to the vielbein

êa of the spherical part of the black string solution. A vielbein of the ansatz is then given

by eã ≡ êã, ea (see equation (3.4)) and the corresponding spin connection is [70]

ωãb̃ = ω̂ãb̃ +
1

2
F i
ãb̃
Ki
ce
c , ωãb =

1

2
F iãc̃K

i
bê
c̃ , ωab = ω̂ab +

(
∇̂aKi

b

)
Ai , (A.7)

where the sum over i runs over the gauge fields corresponding to the symmetries of the

transverse space. From the gravitational Chern-Simons form,

ω̂CS
grav = tr

(
ω ∧ dω +

2

3
ω3

)
, (A.8)

one sees that all 3d Chern-Simons terms can be obtained by restricting (A.7) to

ωãb̃ = ω̂ãb̃ , ωãb = 0 , ωab = ω̂ab +
(
∇̂aKi

b

)
Ai . (A.9)
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Since this connection is a direct sum, the gravitational Chern-Simons form can be written

as the sum of two Chern-Simons forms, i.e.

ω̂CS
grav = ωCS

grav + ωCS(X) . (A.10)

Here ωCS
grav is the gravitational Chern-Simons form of M3 and

ωCS(X) = tr

(
X ∧ dX +

2

3
X3

)
(A.11)

is the Chern-Simons form corresponding to the connection X with components ω̂ab +(
∇̂aKi

b

)
Ai.

The part of Ĝα in the ansatz (3.6) leading to 3d Chern-Simons terms is

−Qα(2π)2|Γ|(e3 − χ3) . (A.12)

The three-form e3 is equal to [39]

e3 =


1

2π2

[
e1 ∧ e2 ∧ e3 +

1

2
KI
Rae

a ∧ F IR −
1

2
KLae

a ∧ FL
]

A-series ,

1

2π2

[
e1 ∧ e2 ∧ e3 +

1

2
KI
Rae

a ∧ F IR
]

D- and E-series ,

(A.13)

where the vielbein ei can be found in (3.4) and one has to take the limit r → 0. The

three-form χ3 has all its legs on the non-spherical part M3 such that when wedged with

ω̂CS
grav we only get a contribution of ωCS (ω̂sph). Using the expansion (A.10), the part of the

integral (A.1) of interest to us can be written as∫
Msph

Ĝα∧ ω̂CS
grav ⊃ −Qα(2π)2|Γ|

∫
Msph

[
e3∧ωCS

grav +e3∧ωCS(X)−χ3∧ωCS(ω̂sph)
]
. (A.14)

Evaluating these three integrals results in21∫
Msph

e3 ∧ ωCS
grav = −ωCS

grav ,∫
Msph

e3 ∧ ωCS(X) =

{
2AL ∧ FL A-series ,

0 D- and E-series ,
(A.15)

∫
Msph

χ3 ∧ ωCS(ω̂sph) =
1 + 4v∞r + 10v2

∞r
2 + 8v3

∞r
3 + 2v4

∞r
4

(1 + v∞r)4
× 16π2χ3 .

Using the definition of χ3 in equation (3.9), we find that the integral (A.1) leads to the

following 3d Chern-Simons terms:∫
Msph

Ĝα ∧ ω̂CS
grav ⊃ Qα (2π)2 |Γ|

[
ωCS

grav −
1 + 4v∞r + 2v2

∞r
2

(1 + v∞r)4
AL ∧ FL (A.16)

+ 2
1 + 4v∞r + 10v2

∞r
2 + 8v3

∞r
3 + 2v4

∞r
4

(1 + v∞r)4
ωCS(AR)

]
.

One has to set AL = 0 for the D- and E-series. This is the result as presented in (3.15).

21The second and third integral were computed using Mathematica.
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B One-loop corrections to 3d Chern-Simons terms

In this appendix we compute the one-loop corrections to the Chern-Simons terms. We

perform the sums of the contributions of the separate fields given in table 3 over the

spectrum given in section 4.1. We will focus on ALF spaces for the A-series, i.e. transverse

Taub-NUT spaces with NUT charge m. All the results we give in this appendix are up to

O(1) contributions. As explained in the main text the one-loop corrections for the case

of the ALF spaces in the D-series can be obtained from the A-series results by a simple

procedure. Since our focus will be on contributions to the Chern-Simons levels which scale

with the charges, we only need to consider the infinite towers of states in the spectrum and

can neglect the isolated representations. The relevant part of the spectrum is therefore

given by

• Spin-3
2 :

2
∞⊕

jL= 1
2

(
jL, jL ±

1

2
,1

)∓
,

• Spin-1
2 :

2

∞⊕
jL= 3

2

(
jL, jL ±

3

2
,1

)∓
⊕ 2

∞⊕
jL=1

(
jL, jL ±

1

2
,1

)±
⊕ 2nT

∞⊕
jL= 1

2

(
jL, jL ±

1

2
,1

)±

⊕ 2
⊕
R

xR

∞⊕
jL= 1

2

(
jL, jL ±

1

2
,R

)±
⊕ 2

⊕
i

∞⊕
jL= 1

2

(
jL, jL ±

1

2
,adi

)∓
,

• Chiral vectors:

∞⊕
jL=1

(
jL, jL ± 1,1

)∓ ⊕ nT ∞⊕
jL=1

(
jL, jL ± 1,1

)±
.

Level kR of the right-moving SU(2)R current algebra. In the following we compute

the one-loop correction to the Chern-Simons level kR up toO(1) contributions. We compute

these contributions individually for the spectra of massive spin- 3
2 , spin-1

2 and chiral vectors

in 3d. Summing these contributions, we obtain the total one-loop correction. To project

on the Zm-invariant states in the summations over all states, we must impose j(3)

L = 1
2mk

for k ∈ Z≥0. For the computation of the one-loop Chern-Simons level kR we first use

Zeta-function regularization to define

AR(n) =

∞∑
k=1

∞∑
jL= 1

2
mk

[
(jL + n)(jL + n+ 1)(2jL + 2n+ 1)

− (jL − n)(jL − n+ 1)(2jL − 2n+ 1)
]

(B.1)

=
∞∑
k=1

[
kmn− 1

2
k3m3n+ 2n3 − 2kmn3

]
= −m

12
(n− 2n3)− m3

240
n− n3 .
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This is the infinite sum involved when summing over a tower of states of the form
(
jL, jL±

n
)±

necessary to obtain the correction to kR. For the massive spin- 3
2 fermions in the

spectrum and using table 3 for the contributions of a single state the contribution to the

level kR is

α
(3/2)
R =

1

2π

∞∑
k=1

∞∑
jL= 1

2
mk

[(
jL +

1

2

)(
jL +

3

2

)(
2jL + 2

)
−
(
jL −

1

2

)(
jL +

1

2

)
2jL

]

=
1

2π
AR

(
1

2

)
= − 1

4π

(
m

24
+
m3

240

)
+O(1) . (B.2)

We remind the reader that the sum over modes with k = 0 does not contribute to the level

with terms which scale with the charge m and have therefore been dropped.

Up to terms of O(1) we can write the contribution of the spin- 1
2 fields to the Chern-

Simons coefficient as

α
(1/2)
R =

1

12π

[
2AR

(
3

2

)
− 2AR

(
1

2

)
− 2nTAR

(
1

2

)
− 2

∑
R

xRdim RAR
(

1

2

)
+ 2

∑
i

dim adiAR
(

1

2

)]
=

1

12π

[
2AR

(
3

2

)
− 2
(
1 + nT + nH − nV

)
AR

(
1

2

)]
=

1

4π

[(
7m

24
− m3

240

)
+ (1 + nT + nH − nV )

(
m

72
+
m3

720

)]
+O(1) , (B.3)

where we used (4.2). Finally, the contribution of the massive vectors is given by

α
(vect)
R =

1

6π
(nT − 1)AR(1) =

1

4π
(nT − 1)

(
m

18
− m3

360

)
+O(1) . (B.4)

Summing (B.2), (B.3) and (B.4) we obtain the correction to kR which scales with m,

namely:

kloop
R = 4π

[
α

(3/2)
R + α

(1/2)
R + α

(vect)
R

]
=

m3

720

(
nH − nV − nT − 3

)
+
m

72

(
nH − nV + 5nT + 15

)
(2.15)

=
m3

24
(9− nT ) +

m

3
(12− nT )

(2.16)
=

m3

24
c1(B) · c1(B) +

m

3
c1(B) · c1(B) +m. (B.5)

Level kL of the left-moving U(1)L current algebra. We now turn to the evaluation

of the one-loop corrections to the level kL of the left-moving U(1)L current algebra. We

define the sum

AL(n) =
∞∑
k=1

∞∑
jL= 1

2
mk

(
1

2
mk

)2[
2(jL + n) + 1− 2(jL − n)− 1

]

=
∞∑
k=1

[
1

2
k2m2n− 1

2
k3m3n

]
= −m

3

240
n , (B.6)
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which appears in the computation of the contribution of a tower with (jL, jL ± n)± to kL,

as can be seen from table 3. For spin-3
2 fermions one finds the contribution

α
(3/2)
L = −2× 3

8π
AL
(

1

2

)
=

1

8π

m3

80
. (B.7)

Likewise one obtains for the infinite towers of massive spin- 1
2 fermions the contribution

α
(1/2)
L =

1

8π

[
− 2AL

(
3

2

)
+ 2AL

(
1

2

)
+ 2nTAL

(
1

2

)
+ 2

∑
R

xR dim RAL
(

1

2

)
− 2

∑
i

dim adiAL
(

1

2

)]
=

1

8π

[
− 2AL

(
3

2

)
+ 2(1 + nT + nH − nV )AL

(
1

2

)]
=

1

8π

m3

240
(2− nT − nH + nV ) . (B.8)

Finally, the massive vectors contribute with

α
(vect)
L =

1

4π
(1− nT )AL(1) = − 1

8π

m3

120
(1− nT ) . (B.9)

Summing up the individual contributions (B.7), (B.8) and (B.9) we find the correction to

the left level

kloop
L = 8π

[
α

(3/2)
L + α

(1/2)
L + α

(vect)
L

]
=
m3

240
(3 + nT − nH + nV )

(2.15)
= −m

3

8
(9− nT )

(2.16)
= −m

3

8
c1(B) · c1(B) . (B.10)

Level cL − cR of the gravitational Chern-Simons term. We now determine the

one-loop correction to the gravitational Chern-Simons term. We once more define the

infinite sum

Agrav(n) =

∞∑
k=1

∞∑
jL= 1

2
mk

[
2(jL + n) + 1− 2(jL − n)− 1

]

=

∞∑
k=1

2n(1− km) =
m

6
n− n , (B.11)

which appears in the sums over a tower of the form (jL, jL ± n)± for the case of the

gravitational Chern-Simons term. For the tower of massive spin- 3
2 states we find

α(3/2)
grav = 2× 7

64π
Agrav

(
1

2

)
=

1

96π

7m

4
+O(1) . (B.12)
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The infinite towers of massive spin- 1
2 fermions contribute with

α(1/2)
grav =

1

96π

[
−Agrav

(
3

2

)
+Agrav

(
1

2

)
+ nTAgrav

(
1

2

)
+
∑
R

xR dim RAgrav

(
1

2

)
−
∑
i

dim adiAgrav

(
1

2

)]
=

1

96π

[
−Agrav

(
3

2

)
+ (nT + nH − nV + 1)Agrav

(
1

2

)]
=

1

96π

m

12
(nT + nH − nV − 2) +O(1) . (B.13)

Lastly, the contribution of the massive vectors is given by

α(vect)
grav =

1

96π
2(nT − 1)Agrav(1) =

1

96π
(nT − 1)

m

3
+O(1) . (B.14)

The final result is obtained by summing (B.12), (B.13) and (B.14):

(cL − cR)loop = 96π
[
α(3/2)

grav + α(1/2)
grav + α(vect)

grav

]
=
m

12
(15 + 5nT + nH − nV )

(2.15)
= 2m(12− nT )

(2.16)
= 2mc1(B) · c1(B) + 6m. (B.15)

Levels kGi of the flavour symmetries. The remaining one-loop correction to the

levels is to the level of the non-abelian flavour symmetries. From table 3 it is clear that

the relevant infinite sum is given by

AGi(n) = Agrav(n) =
m

6
n− n . (B.16)

We also note that only the massive Kaluza-Klein modes of the gauginos in the adjoint and

hyperinos in the representation

R =
⊗
i

Ri (B.17)

of the total gauge group G =
∏
iGi contribute. Summing the single field contribution over

the relevant Kaluza-Klein towers we find

αGi = − λi
4π

∑
R

xR di(R)ARi AGi

(
1

2

)
+
λi
4π
Aadi

AGi

(
1

2

)
= − λi

48π
m
[∑

R

xR di(R)ARi −Aadi

]
+O(1) . (B.18)

We can trade the summation over the product representation R of G for a summation over

the representations of the gauge group factor Gi by making use of the identity∑
R

xR di(R)ARi =
∑
Ri

xiRi
ARi , (B.19)

where xiRi
is the multiplicity of all hypermultiplet fermions transforming in the represen-

tation Ri of Gi. Up to O(1) contributions we thus find that

αGi = − λi
48π

m
[∑

Ri

xiRi
ARi −Aadi

]
. (B.20)
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The one-loop corrections to the levels of the non-abelian flavour symmetries are then

given by

kloop
Gi

= −4π × αGi =
λi
12
m
[∑

Ri

xiRi
ARi −Aadi

]
(2.18)

=
m

2
c1(B) · Si . (B.21)
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[9] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, 1/4 BPS solutions and the

AdS3/CFT2 correspondence, Phys. Rev. D 101 (2020) 026014 [arXiv:1909.09636]

[INSPIRE].
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[11] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS3 solutions in massive IIA,

defect CFTs and T-duality, JHEP 12 (2019) 013 [arXiv:1909.11669] [INSPIRE].

[12] N.T. Macpherson, Type II solutions on AdS3 × S3 × S3 with large superconformal symmetry,

JHEP 05 (2019) 089 [arXiv:1812.10172] [INSPIRE].

[13] G. Dibitetto, G. Lo Monaco, A. Passias, N. Petri and A. Tomasiello, AdS3 Solutions with

Exceptional Supersymmetry, Fortsch. Phys. 66 (2018) 1800060 [arXiv:1807.06602]

[INSPIRE].

[14] C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and
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