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1 Introduction

In string theory an oft-used approach to studying black holes is to consider wrapped black
strings in one dimension higher. The supergravity solution of the black string contains an
AdS;3 factor in the near-horizon limit, and via the AdS/CFT corespondence there exists
a dual two-dimensional CFT. This CFT gives a microscopic interpretation of the entropy
of the black string and by reduction also that of the black hole. The black string arises
from a brane configuration wrapped in the internal geometry of an M /F- or string theory
compactification and the CFT is the infrared worldvolume theory living on these wrapped
branes. The prime example of studying black holes in this way is given by the two-
dimensional N' = (4,4) SCFT living on the D1-D5 system in type IIB string theory on
T4 x S! [1]. A further example is provided by the MSW string which lives in M-theory
on a Calabi-Yau threefold (CY3), and is obtained by wrapping Mb5-branes on a divisor
in the CY3. In the infrared the worldvolume theory living on the resulting string flows



to a 2d N = (0,4) SCFT. Though little is known about this SCFT, its central charge
was computed in [2] and gives a microscopic interpretation of the black hole entropy via
Cardy’s formula. There are closely related constructions in F-theory, where D3-branes
wrap a curve in the base of an elliptically fibered CY3, again leading to N = (0,4) SCFTs
in the infrared [3]. In this example the black strings live in the six-dimensional N = (1,0)
supergravity theory obtained by reducing F-theory on the CY3 and have an AdS3xS3
near-horizon. These SCFTs not only have an SU(2)r symmetry in the supersymmetric
right-moving sector, but also an SU(2);, symmetry in the left-moving sector. The level of
this SU(2)r current algebra was computed in [4] and plays a prominent role in Cardy’s
formula which determines the entropy of the five-dimensional spinning black holes obtained
by wrapping these black strings on a circle.

The study of supersymmetric solutions admitting AdSs factors, not necessarily related
to black strings but more generally for AdS/CFT purposes, has a long and rich history.
Various works classify and identify such solutions. Of interest to us in this paper are those
which preserve N' = (0,4) supersymmetry. In M-theory, this program was initiated in [5]
and later refined in [6]. More recently additional solutions have been found in [7] where
earlier works on A/ = (0,4) AdSs solutions in (massive) type ITA [8-11] were used. Further
work in type ITA (and also type IIB) can be found in [12] where solutions preserving the
large N' = (0,4) supersymmetry algebra were found.! Type IIB and F-theory N = (0,4)
solutions were discussed in [14], whilst further work on AdSs solutions in type IIB, with
varying amounts of supersymmetry, can be found in [15-24].

Typical observables which are computed are the central charges and levels of current
algebras of the CFT. They can provide evidence for the AdS/CFT correspondence and
determine the entropy when the setup descends from a black string. Various methods
and directions have been used to compute these observables. Knowledge of the UV data
of the CFT is often sufficient by virtue of ’t Hooft anomaly matching. Anomalies of
the UV theory can be determined directly using the spectrum, by reducing the anomaly
polynomial of a higher-dimensional parent theory or by anomaly inflow [25-29]. The central
charges can then be computed either via spectrum counting or using c-extremization [30].2
Alternatively, the central charges and levels can be determined using holographic methods
in the dual supergravity theory.

Throughout this paper we are interested in N' = (0,4) SCFTs dual to near-horizon
geometries of the form AdS3 x S3/T', where T is a freely acting finite subgroup of SU(2).
Such a setup in F-theory was discussed in [32, 33]. There D3-branes probe a transverse
Taub-NUT space and are wrapped on both a curve in the base of a smooth elliptically
fibered Calabi-Yau threefold CY3 and a circle. The transverse Taub-NUT space leads
to a I' = Z,, quotient of the three-sphere in the near-horizon. Since Taub-NUT space

1See also [13] for solutions with exceptional supersymmetry algebras.

2Strictly in order to perform c-extremization one needs only N = (0,2) supersymmetry and c-
extremization is often not necessary when the R-symmetry is a non-abelian group since generically it
cannot mix with other symmetries. However, there are cases where a non-abelian R-symmetry can mix
with other symmetries and application of c-extremization using the U(1)r of the Cartan of the symmetry
group is necessary, see for example [31].



asymptotically approaches R3 x S! there are two circles in the geometry on which one can
compactify, allowing for the construction of four-dimensional black holes in F-theory. Two
extensions are possible here and are the subject of this paper. The first is to consider non-
smooth Calabi-Yau threefolds. This allows for additional (non-abelian) gauge groups in
the supergravity setup, which act as flavour symmetries in the dual ' = (0,4) SCFT. We
macroscopically determine the levels of the corresponding current algebras in the SCFT.
The second extension we consider is to allow for more general subgroups I'. In fact one
can generalize even further by allowing the transverse space probed by the D3-brane to be
either asymptotically locally flat (ALF) (to which Taub-NUT belongs) or asymptotically
locally Euclidean (ALE). Both families of spaces allow for an AD(E) classification which
in the near-horizon leads to a I' quotiented three-sphere. This extension was considered in
type IIB on K3 in [34] (see also earlier work in [35, 36]), here we extend to F-theory.

The two main extensions considered here, namely singular Calabi-Yau threefolds and
the ALE/ALF spaces transverse to the brane, lead to new 2d N' = (0,4) SCFTs. We com-
pute all relevant anomaly coefficients, i.e. central charges and levels in both left- and right-
moving sectors, using holography and supergravity techniques as introduced in [37-39]. In
particular we reduce the relevant 6d N' = (1,0) supergravity theory on the compact part
of the black strings. The anomaly coefficients are given by the coefficients of Chern-Simons
terms in the resulting 3d action. Following [33, 34, 40] we perform this reduction in the
asymptotic geometry in order to include the contribution of degrees of freedom living out-
side of the horizon [35, 36]. This is the reason why the SCFTs dual to the black strings
probing ALE and ALF spaces have different anomaly coefficients, even though the near-
horizon geometry in both cases is AdS3 x S?/T". The so-called classical part of the anomaly
coefficients is found by reducing the six-dimensional supergravity action to 3d and this
computation is performed in section 3. For ALF transverse spaces there are additional
contributions from one-loop Chern-Simons terms where massive Kaluza-Klein modes run
in the loop. For the case of a smooth CYg3 and Taub-NUT as transverse space, these con-
tributions were essential for the matching to the microscopic results [33].> We compute
these quantum contributions for a general ALF transverse space and possibly singular CY 3
in section 4.

The plan for the paper is as follows. We begin by discussing the relevant 6d supergrav-
ity theories and black string solutions in section 2. We then compute the anomaly coeffi-
cients of the dual SCFTs in sections 3 and 4. The full anomaly coefficients are presented
in the summary section 5 and we end the paper in section 6 with a discussion. In addition
there are two appendices with some of the more technical details of the calculations.

2 Macroscopic setup

Compactifying F-theory on an elliptically fibered Calabi-Yau threefold CY3 yields in the
low energy limit a six-dimensional supergravity theory with chiral A’ = (1,0) supersym-
metry. Depending on the choice of threefold, the six-dimensional theory contains a fixed

3Contributions of one-loop induced Chern-Simons terms to the entropy of black holes were also important
in [34, 41, 42].



I € SU(2) U] pu(Mr) (ALE) py(Mr) (ALF)

2

cyclic group Z, m 2m — 2 om
binary dihedral Dy, dm  2m+6 — ﬁ 2m + 6
binary tetrahedral T* 24 %
binary octahedral Q* 48 %
binary icosahedral I* 120 %

Table 1. The freely acting discrete subgroups of SU(2), their sizes and the first Pontryagin numbers
of the different ALE and ALF spaces Mr. The empty entries signify that such a space does not
exist.

number of massless hypermultiplets, vector multiplets and tensor multiplets. Within this
theory it is possible to find black string solutions which are the supergravity description
of self-dual strings charged under tensor multiplets. The tensor multiplets descend from
expanding the RR four-form C} in harmonic forms on the base B of the Calabi-Yau three-
fold and therefore the strings admit an interpretation as D3-branes compactified on a curve
C' C B inside the base of the CY3. On the worldsheet of these strings lives a field theory
which flows in the IR to a 2d N/ = (0,4) SCFT. In this paper we will not attempt to
construct the explicit 2d SCFTs, for recent work along these lines see [43, 44], instead we
shall compute the central charges and current levels of these SCFTs using AdS/CFT.
The strings we consider are embedded in an asymptotically R x M, x S! spacetime,
with the string wrapped on the S' and probing the transverse space My. Preservation of su-
persymmetry and the equations of motion imply that M, must be a hyper-Kéahler manifold
equipped with its Ricci-flat metric. In addition, we take it to be non-compact. Such four-
dimensional spaces My have been classified and fall into four categories depending on their
asymptotic properties. These are the ALE, ALF, ALG and ALH spaces. At infinity the
metrics approach a quotient of the flat metric on R*~* x T* with k = 0 for ALE, k = 1 for
ALF and so forth. We will consider two of these classes in this paper, namely ALE and ALF
transverse spaces.? A manifold with an ALE or ALF metric is diffeomorphic to Rt x S3/T',
with I" a freely acting finite subgroup of SU(2). The metric is ALE when it asymptotically
approaches a quotient of the Euclidean flat space metric. It is ALF when it approaches
the metric on (R? x S!)/I" at infinity. The ALE metrics are known to exist for all discrete
subgroups I' C SU(2) and these admit an ADE-classification. ALF metrics are only known
for the A-series and D-series in this classification. We have listed some important charac-
teristic data of the groups I" and spaces Mr in table 1. In the black string solutions we
always take the spaces in the limit that they have an R*/T singularity at their center. De-
spite this singularity the black string solutions have a smooth near-horizon limit. The final
piece of the jigsaw necessary to understand the later computations is the isometry group
of the various spaces. For the A-series both ALE and ALF spaces admit a U(1), x SU(2)r
isometry group, whilst for D- and E-series the isometry group is reduced to just SU(2)g.

4No explicit metrics are known for ALG and ALH spaces.



R tati G
Multiplet .epresen aron Field content Multiplicity anee
little group rep.
Gravit 1 graviton
ravi
. Y (L,1)®2 (%,1)@(1,0) 1 Weyl LH gravitino 1 1
multiplet
1 self-dual 2-form
T 1 anti-self-dual 2-form
ensor
) (0,1)®2(0,3)®(0,0) 1 Weyl RH tensorino nr 1
multiplet
1 real scalar
Hyper- 1 1 Weyl RH hyperino
2(0,=) ®4(0,0 R
multiplet (0,3) ©4(0,0) 2 complex scalars i
Vector 11 1 1 vector
1 1ygpn9o(lg d;
multiplet (3:2) ©2(3,0) 1 Weyl LH gaugino nw adi

Table 2. Field content of 6d A = (1,0) supergravity. We have used the shorthand RH and LH for
right- and left-handed.

In the remainder of this section we first review 6d N' = (1,0) supergravity obtained by
compactifying F-theory on an elliptically fibered Calabi-Yau threefold in order to introduce
the necessary notation and to set the scene. We then give the relevant black string solutions
of this theory which will form the basis of our macroscopic computations.

2.1 Six-dimensional N = (1,0) supergravity from F-theory on CY3

In [45, 46] the authors reduced F-theory on an elliptically fibered Calabi-Yau threefold,
which is not necessarily smooth, to obtain six-dimensional N' = (1,0) supergravity. The
multiplets of the theory are classified by representations of the little group SU(2) x SU(2)
and are given in table 2. The multiplicities of the matter fields are not arbitrary and
depend on the choice of Calabi-Yau threefold. The 6d spectrum also needs to satisfy
anomaly constraints as we will briefly explain below.

To classify the singularities of the elliptic fibration one can look at the vanishing of
the discriminant A of the Weierstrass equation along the base of the Calabi-Yau. The
complex codimension one loci determined by the vanishing of the discriminant signifies
the loci of the 7-branes. The types of singular fibers, classified by Kodaira-Néron [47, 48],
characterize the singularities of the total space. In general there may be effective divisors
S; over which the threefold develops a singularity, in the F-theory picture this is dual to
the existence of a stack of multiple 7-branes.” One can then expand the Poincaré dual of
the discriminant as

[A] =) wlSi]+ (AT, (2.1)

i

5The fiber degenerations in the classification of Kodaira-Néron, which render the total space of the elliptic
fibration smooth, are the type Io,1 and type II fibers, see e.g. table 4.1 in [49]. F-theory compactifications
on Calabi-Yau threefolds with these mild fiber degenerations lead to 6d A" = (1,0) supergravity theories
without vector multiplets and charged matter.



R x S!

Figure 1. The 7-branes (green) wrap the discriminant locus A = 0 C B and extend along the
dimensions R x S* x Mp. The D3-brane (blue) wraps the curve C' C B and extends along R x S*.

where [A’] is associated to singularities of the fibration which render the total space
smooth. The stacks of 7-branes along the divisors S; give rise to non-abelian gauge
theories on their worldvolumes. A schematic illustration of the F-theory geometry and the
wrapped branes therein is given in figure 1.

The exact nature of the gauge group is determined by the type of singularity of the
total space and admits an ADE classification. These gauge groups naturally descend to
become the gauge groups of the 6d theory. In the following we will assume that the gauge
group G is a product of simple factors,

¢=]][¢:. (2.2)

Each simple factor G; arises from a 7-brane stack along S; in the underlying F-theory
geometry with associated singularity of the threefold. The gauge fields have the usual
non-abelian field strength

Fi=dA 4+ A" A A (2.3)
with associated Chern-Simons three-form

WS (A = tr (/1" AdA" + ;Ai A AT A Ai) : (2.4)

Let us denote a basis of two-forms on the base of the elliptically fibered Calabi-Yau
threefold by {w,} with a = 1,..., h1!(B). Associated to this basis is an intersection matrix

Nap = / Wa A wpg (2.5)
B

which defines an inner product for objects in H%!'(B). The matrix is of mostly minus
Lorentzian signature and is invariant under SO(1,h%!(B) — 1) transformations. We can

5Tn the following we will drop the brackets to distinguish a curve and its Poincaré dual two-form, using
the same symbol for both in slight abuse of notation.



expand the Poincaré dual of the divisor S; in terms of this basis as S; = s{w,, with s
constants. Likewise the Poincaré dual of the curve C' and the first Chern class of the
base ¢1(B) can be expanded as C' = ¢“w, and ¢1(B) = c®w, respectively, with ¢* and ¢
constants. These constant coefficients will play a prominent role in the following sections.

The scalars ¢V of the hypermultiplets parametrize a quaternionic manifold. Since the
explicit details of this manifold will not play a role in the following we shall not discuss
it further and just denote the metric on this space by hyy. The scalars are gauged with
respect to the vector multiplets in the usual minimal coupling manner

DV = d¢” + AT g)Y (2:6)

where TiRi are the group generators acting on the scalars ¢V in the representation R; of
G;. The scalars of the tensor multiplets parametrize the scalar manifold

SO(1,nyp)

St (2.7)

and are uncharged under the gauge group G. To describe them it is convenient to introduce
np + 1 scalars 7%, a = 1,...,np + 1, satisfying the constraint nagjajﬂ = 1. Finally let us
consider the two-forms in the theory. We will denote all the two-forms, i.e. two-forms in
the gravity and tensor multiplets, collectively as B, The gauge invariant field strength of
the tensors is given by

A . 1 o
G* =dB“ + 500‘&108 — 258w S (A1), (2.8)

grav

with the s and ¢ as introduced below (2.5). Using the scalars j* we can define the
positive definite metric

Jap = zjajﬂ — Nagj - (29)
such that the (anti-)self-duality constraints satisfied by the two-forms can be collectively

written as

e e (2.10)

Due to these (anti-)self-duality constraints it is strictly speaking only possible to construct
a pseudo-action. This will not pose a problem so long as we correctly implement the self-
duality constraints at the level of the equations of motion. The bosonic action of gauged
N = (1,0) supergravity is given by’

1 1. 1 R A 1
S<6):/ SRi1 — hyyDGU ARDGY — Z oG A RGP — Zgapdi® A 2d5°
@) Jy, (20 T VP AP T g Gap G ARG T 5 el AR

+2> napisitr FUARET — Z%BBO‘/\XE—V*l . (2.11)

)

"We use conventions where kg = (2)3.



The precise form of the potential does not concern us, though it may be found in [50] for
example. The Green-Schwarz-Sagnotti-West coupling X 4 is given by

N ~ 1 ~ R - ~.
Xf:ng‘f‘:5catrR/\R—2Zs?trF’/\F’,

%
Xg— DG, — 2250‘ 54 (2.12)

Here the gravitational Chern-Simons term takes the usual form

2
GCS ¢ <w/\dw+3w/\w/\w>, (2.13)

grav

with w the spin connection in 6d.

Since we consider six-dimensional theories which have a string embedding we must
impose a set of necessary consistency conditions for the theory to be anomaly free.® With
the aid of the concrete string embedding, these conditions may be written in terms of
topological quantities of the underlying compactification geometry. Let us first introduce
some notation. Denote by tr g, the trace in the representation R; of G;, and let f; denote
the fundamental representation of G;. We define the normalization constants A; which
depend on the simple group factor and whose purpose is such that the trace operator for
the field strengths appearing above satisfies A\;jtr = tr¢,. The normalization constant is
fixed by requiring the lowest topological charge of an SU(2) instanton to be 1 with respect
to the trace tr.” Next, define the group theory coefficients Ar., Br,, Cr, via

tr RiFiZ = AR, tr fiFi2 ,
tI‘RiFi4 :BRitI'fiF“l+CRi(trfiFi2>2. (2.14)
Further, let the multiplicity of the irreducible representation R; of G be ziRl_, and the

multiplicity of the irreducible representation (R;,R;) of G; x G; be xR R;" Then the
anomaly constraints read

ng —ny = 273 — 29nT, (2.15)

ny =9 — nagcc’, (2.16)

Bad, = inRiBRi , (2.17)

NasCc” s f)\ (Z:L‘R AR, — > (2.18)

1 .

Mo 5 8;8 3)‘?<leRiORi - Cadi> , no sum over ¢ (2.19)
R;

Magsis] = Aidj ) TRp ARAR, . (i # 5). (2:20)
R;,R;

In order for the theory to be anomaly free each of the above conditions must be satisfied.

8However, a six-dimensional theory satisfying these conditions may still be in the swampland.
“The values of the constants can be found in [51] among other places.



2.2 Black string solutions

In [33, 52] black string solutions of two-derivative N/ = (1,0) supergravity coupled to
an arbitrary number of tensor multiplets were constructed. These solutions can also be
embedded in the supergravity theory containing hyper- and vector multiplets, as given
in the previous section, by setting the hyperscalars to constants and the vector fields to
zero. Clearly this solution essentially truncates away the hyper- and vector multiplets,
nevertheless when computing the levels these multiplets will still play a role. The metric
for the black string is

ds2 =20 (du + B) <dv +w+ %]—"(du - 6)) + Hds*(Mr), (2.21)

with ds?(Mr) the Ricci-flat metric for the ALE or ALF space with ADE subgroup I'. The
solution is supported by a non-trivial three-form field strength. The scalar functions F and
H and one-forms 8 and w are independent of the u and v coordinates and can be derived
by solving certain differential equations given in [52] once the explicit metric on Mp has
been chosen. When the Killing vector g, is taken to be spacelike, the metric corresponds
to a black string wound in the u-direction.

The near-horizon limit of this geometry is fixed to be AdS3 x S?/T" [14] as expected
from our comments about the existence of a 2d SCFT living on the worldvolume of the
strings and consistency with AdS/CFT. Note that the near-horizon geometry is blind to
the full details of its UV origin: it is unable to distinguish between an ALE or ALF UV
completion. The asymptotic form of the solution is easily constructed by replacing the
metric on Mt by its asymptotic metric ds? (Mlgoo)). For ALE and ALF spaces this is given
by a I' quotient of the covering space, which we denote by M(®), and whose asymptotic
metric is

ds?(M)) = {dr2 + 1202+ 02 +02), Mris ALE, 0.22)
dr? +r%(0? + 03) + 03, Mris ALF,

with o; the left-invariant Maurer-Cartan forms on S?. The usefulness of the covering space
is that it can be used to treat all quotients simultaneously.

The charges of the black string are obtained by integrating the field strengths @fi
over the compact part of the geometry of the quotient space, given by the o; part in
equation (2.22), and denoted by M;ph from now on. We will use the same conventions as
in [33, 34] for normalizing the charge, i.e.

/ Ge = 1 G = —(2n)%Q" . (2.23)
P Y -

In going from the first expression to the second we have used the quotient map 7 : M — Mr,
which acts on the three-forms as G* = ﬂ*éfﬁ To relate these macroscopic charges to their
microscopic counterparts ¢¢ in the expansion C' = ¢“w, we use the results of [33]. There
it was shown that

QY =q“ — ipl(MF)ca (2.24)



with p;(Mr) the first Pontryagin number of M as given in table 110

below equation (2.5). The charge shift is due to the

and the ¢* as given

nagcaéﬁ AIRAR (2.25)

term in (2.11).'! When integrating the tensor field equation of motion over the transverse
space Mr in the presence of string-like sources with microscopic charges ¢%, this term
generates a shift of the charge by a term proportional to

/ tr R AR o p1(Mr). (2.26)

Mr

One may wonder if there is a further charge shift due to the gauge fields and the coupling
Napsd BP Atr FUA F! (2.27)

appearing in the action. Indeed, if in the background of the black string vector multiplets
are turned on with field strengths satisfying

/ tr FPAEFT £ 0 (2.28)
Mr

this would induce a further shift in the charge. From the F-theory perspective these
instantons can be viewed as gauge instantons living on the 7-branes. The instantons
induce D3-brane charge localized on the 7-brane worldvolume transverse to the instanton
configuration through a Chern-Simons coupling of the RR four-form and the gauge fields.'?
We will consider solutions where such instanton configurations are not present and therefore
the dictionary between macroscopic and microscopic quantities is given by (2.24). It may
be interesting in the future to study such instanton configurations. For Taub-NUT space
instanton configurations have been discussed in [54-56].

3 Classical contributions

In this section we compute the classical contribution to the central charges and levels

13 One can then use these results to

of current algebras of the black string solutions.
make a prediction about the corresponding microscopic anomaly polynomial of the dual
2d N = (0,4) SCFTs, and compare for example with the prediction one can infer from the
conjecture of [57].

In both the ALE and ALF cases the near-horizon geometry takes the product form

AdS3 x S3/T. In contrast the asymptotic regime of the two cases does not suffer this

%They can be computed using the data in [53].

"When the elliptic fibration is trivial, and we are thus in type IIB on K3 or T*, there are no such higher
derivative corrections which is why there is no charge shift in [34].

12This is similar to D(-1)-brane charge induced on D3-branes via gauge instantons in ' = 4 SYM. In
the case of the 7-branes, the coupling in question has the form Cy Atr FF A F.

13We call these the classical contributions since they are computed by dimensionally reducing the six-
dimensional action to three dimensions. In the next section we will consider the contributions from inte-
grating out massive KK modes which are quantum in nature.

~10 -



degeneracy. Both cases approach RV x Mlgoo) with Mlgoo) given by a quotient of (2.22).
Naively one would compute the central charges and current levels of the 2d SCFT by
dimensionally reducing the six-dimensional action on the compact space in the near-horizon
to obtain an AdSs effective action [37-39]. The central charges and current levels can then
be read off from the resultant Chern-Simons terms using the AdS/CFT dictionary. However
in [40] and further confirmed in [33, 34] this was shown to be insufficient to reproduce the
correct microscopic results. A quick way of seeing that this is not the correct procedure is
to observe that there is nothing to distinguish between a D3-brane probing an ALE or ALF
space via this method of looking at the near-horizon geometry. This near-horizon analysis
precisely misses the degrees of freedom living outside the near-horizon region which also
contribute to the microscopic degeneracy [35, 36].

Instead the correct procedure is to reduce the action on the compact part of the
asymptotic geometry [33, 34]. Again this is not quite the full story, one must also integrate
out massive Kaluza-Klein (KK) modes and include their contributions to the central charges
and levels. We refer to the contributions arising from the massive KK modes as quantum
contributions and to those from the reduction of the action as classical. Computing these
classical contributions will be the content of this section, whilst the computation of the
quantum corrections will be the subject of the subsequent section.

We split the discussion into two parts. In the first part we compute the levels kj, g
associated to the current algebras of the U(1)z, (when it exists) and the SU(2) . In addition
we compute the difference of the central charges c¢;, — cg which follows from the coefficient
of the 3d gravitational Chern-Simons term. We refer to kr r as the universal levels in
the following. When SU(2)r can be identified with the right-moving SU(2), R-symmetry,
supersymmetry implies that the right-moving central charge and universal level are related
by cr = 6kgr and both the central charges can be determined.'* In the second part of this
section we compute the levels of non-abelian flavour symmetries associated to 6d vector
multiplets coming from the reduction on singular Calabi-Yau threefolds.

3.1 Central charges and universal levels

Let us now proceed in determining the classical contribution to the central charges and
levels associated to the current algebras arising from the isometries of the solution. Recall
that for the A-series we have a U(1) x SU(2)g isometry group whilst for D- and E-series
the isometry group is reduced to SU(2) z. We will reduce the six-dimensional pseudo-action
on the compact space of the black string solution at asymptotic infinity in order to obtain
Chern-Simons terms for the associated current algebra. Since the reduction works similarly
for the ALE and ALF transverse spaces we shall perform the reduction simultaneously. This
can be done via the covering space at asymptotic infinity which is given by the black string
solution (2.21) with ds?(Mr) replaced by

dsi = V- Hde + cos(0)dg)? + V (dr? + r*d6? + r* sin®(0)d¢?) (3.1)

MHowever, the identification of SU(2) g with the R-symmetry might fail for (a small) part of the spectrum,
e.g. the center of mass modes, and the result for c¢;, r determined this way might differ from the central
charges at subleading order in the charges, see e.g. [34, 40].
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in the limit that » — co. Here 0 < ¢ < 4w, 0 < ¢ < 2w, r > 0,0 <6 < 7 and

1 {voo —0 for ALE, 32)

V =0+ —,
r Voo 7 0 for ALF.

Indeed in the limit » — oo this agrees with the asymptotic metric (2.22). One proceeds
by gauging the isometries of the compact part of the solution, i.e. gauge the symmetries
acting on the SU(2) Maurer-Cartan one-forms. We are therefore gauging the isometries
of S3/T.
We split the ansatz for the covering space as
ds? = ds?\/l3 + Ogpee? (3.3)

with Mgz the three-dimensional non-compact part of spacetime, and

. |- KA — KA, A-series, 5.4)
e = .
e* — Kk AL D- and E-series.

Here Aj, K;, Ar and Kg are the gauge fields and Killing vectors corresponding to the
isometry group of the transverse space. Explicit expressions for the Killing vectors can
be found in [33]. The dreibein é* corresponds to the spherical part of the black string
solution (2.21) with base space (3.1) and are given by

é' = VHVr(sin(¢)dd — cos(y) sin 6dg)
¢ = VHVr(cos(1)dd + sin(y)) sin 0dg) , (3.5)
& = /H/V(dy + cos(0)do) .
For the three-form G® on the covering space we take as ansatz
G = —Q[(2m)*[T|(e3 — x3) +w(M3)], (3.6)

where w(M3) is a three-form on M3 which is necessary for the existence of the solution but
whose explicit form is not required. The three-form e3 is the invariant volume form on the
gauged compact space. It is normalized such that

/ es =1 (3.7)
Msph

and it has exterior derivative

1 1
—trFrANFr+ —=FrL ANF], A-series,
872 1672
d63 = 1 (38)
—tr Fr A Fp D- and E-series.
82

Its explicit form can be found in appendix A. Finally, the three-form yj is included in order
for the ansatz to satisfy its Bianchi identity and takes the form

1 2 1
87_‘_2tr<AR/\dAR+ 3A%> + @AL /\FL A-Series,

I
—
o
=)
~—

X3

1 2
S?tr (AR NdAR + 3A3R> D- and E-series.
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Having introduced the necessary notation and conventions we can proceed with computing
the difference of the central charges and the levels of the various universal current algebras.
These are related to the following Chern-Simons terms in the 3d effective action

kr kr CS CL —CR / CS
Scg D — A NF — A - , 3.10
CS ST M, L L+ An Ma w ( R) + 967 M Werav ( )

where it is understood that for the D- and E-series the first term is absent. The only part
of the 6d action which yields such Chern-Simons terms is given by

1 1 A A 1 N R .
S(G)D/ — Cgus GENEGE — Znas CBE AT R AR, 3.11
2™ Jase 4 Jos&T P~ gllapc Bp AU (3.11)
and we restrict our focus to this part of the action in the following section. We compute
the contributions arising from two- and four-derivative terms in (3.11) separately.

3.1.1 Two-derivative contributions

To determine the contributions from the two-derivative part of the action we perform a
gauge transformation for the universal current algebras u(1)z @ su(2)g for the A-series and
su(2)p for the D- and E-series. We then reduce this variation on the spherical part of the
geometry and relate the result to the variation of the 3d Chern-Simons terms (3.10). We
denote the gauge parameter by A in the following. The three-form es is gauge invariant
by construction and therefore the only contribution to the variation of the two-derivative
terms in (3.11) will arise from varying xs. Performing the above steps, and using the
covering space to compute the integral, we find!®

1 N N 1 N N
5 £2—der 1=— / IAGE A AGﬁ S IANGY A AG/B
A~cs *3 1671'3 M;ph gaﬁ AMT * r 167T3’F’ Msph ga,B A ¥
= W‘F‘naﬁQaQﬁ/ ) oaxz A ez = T NasQYQda X3 - (3.12)
Msp

In going from the first line to the second line we have used the self-duality constraints (2.10).
By comparison with the variation of (3.10) we obtain

der _ 1
KL = 5 IPInapQ Q7

1
kR = 5 PlnapQ°Q” (3.13)
C%—der — C%—der7

where Q¢ is defined as in (2.24) and k7, is only present for the A-series. The central charges
are equal because the reduction of the two-derivative term in (3.11) does not generate a
3d gravitational Chern-Simons term.

15 . . . _
We use conventions in which st = st ~fM§ph.
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3.1.2 Four-derivative contributions

Let us now consider the contributions from the four-derivative term in (3.11). We can
rewrite this term in terms of objects on the covering space of the solution as

b a8 1 afB A ~CS
647T2 /Msph naﬁC G A wgrav r = 647T2|F| Afeph 770450 G A wgrav 5 (314)

where ajgriv,l—‘ is the 6d gravitational Chern-Simons term of the I' quotiented space. We
evaluate (3.14) for the ansatz with respect to the black string solution (2.21) with base
space (3.1) and will only take the r — oo limit afterwards. In the process we only keep
terms leading to 3d Chern-Simons terms. The details of this computation can be found in
appendix A but the result is given by

1 + dvoor + 202
(1 4 voor)?

1
LELT 431 = EHQQCQQB [ oy — il AL A Fp, (3.15)

1 4 10 2 .2 8 3 ,.3 2 4 .4
P + dveor + 1005 77 + Sus r° + 20 T wCS(AR) 7
(14 voor)*

where one has to set Ay, = 0 for the D- and E-series. By setting vy, = 0 for ALE transverse
spaces we find

1 .
T6m nagcaQB[ Weray — AL AN FL + 2wCS(AR)] A-series,
LET 1= (3.16)
Lo € aQﬁ[ Werav QWCS(AR)] D- and E-series.

Comparing this to (3.10) we find that the four-derivative part of the central charges and
levels is given by

1
= —57]@500‘@5 A-series only,

1
kR = Snapc® Q7 (3.17)

(cp — cr) ™ = 61apc” Q" .

]C4 der

The Chern-Simons terms for ALF transverse spaces are obtained by taking v, # 0 and
taking the limit r — oo in (3.15):

£4 der yo 1 = %na[gco‘@g[ Weray T 4wCS(AR)] (3.18)
The four-derivative part of the central charges and levels is thus equal to
der _
KR = napc®Q (3.19)
(cr. — cr)™ " = 61apc* Q"

The computation of the contribution to the left level is of course only relevant for the
A-series.
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3.1.3 Total classical contributions

We can now compute the total classical contribution by simply adding the result in (3.13)
to (3.17) for ALE spaces and to (3.19) for ALF spaces. We use that the macroscopic
charges are related to the microscopic charges via (2.24). For ALE transverse spaces we
thus find

1 1 '
kzlass = §|F|na5QO‘Q5 — QnQBCO‘Qﬁ A-series only
1 1 | 1
= §|T| C - Zpl(MF)Cl(B) - 501(3) | C— Zpl(MF)Cl(B) )
class 1 « 1 (07
K™ = 5 IT1asQ° Q7 + 1asc"Q” (3.20)

2
= %\T\ (C - ipl(MF)Cl(B)> + 301(3) : <C - jlpl(MF)Cl(B)> :
(e = )™ = 6105e°Q” = 6ex(B) - (€ = (M) (B) )

For ALF transverse spaces the total classical contribution is given by

1
Slass — §’F|77a ﬁQO‘QB A-series only

1 1 2
§|F| C - Zpl(Mr)Cl(B) ;
1
k;:%lass _ §|F|77aﬁQaQ6 + naﬁcaQﬁ (3.21)

2
=5 0(C - nma®) +am (0~ nma).

1

(CL — CR)daSS = GnagcaQﬁ = 601(3) . <C — 4])1(MF)61(B)> .

The first Pontryagin numbers p; (Mr) are given in table 1. We can see that if we specify
the ALF result to Taub-NUT we recover the classical results of [33] as expected.

3.2 Levels of non-abelian flavour symmetries

In order to compute the levels of the non-abelian flavour symmetries we should perform
similar manipulations as in the previous section. We reduce the action on the compact
part of the black string solution including the vectors corresponding to the non-abelian
flavour symmetries, and extract the coefficients of the Chern-Simons terms of the gauge
fields. Since these fields have trivial profile in the black string solution we take the trivial
reduction ansatz A" = A for the gauge-fields, where now the A’ just depend on Ms. The
only potential source for Chern-Simons terms for the gauge fields are the terms

1 a > i) i)
i 6
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in the 6d action (2.11). Reducing these terms with the ansatz for the gauge fields results in
1 o A8 fri A i 1 / AB . CSy A
— ; BENtr FPAFY = ———— & Gt A A
e B a2 o0 [, G e

1 a/ CS( 4i / L Ap
= — 0355 w(A —G
2(2m)3 22:77 ? Ms ) aeen [T

1 .
= 5 > TessiQ” /M3 W (AT (3.23)
(2
For such a left-moving'® non-abelian current algebra the level is defined via
1 ,
Scs D —— Y kg “S(Aty. 3.24
Cs - ; G; /Mgw (A) ( )

Therefore, the level associated to the gauge group factor G; is

1
k™ = napsiQ° = <C - 4p1(MF)Cl(B)> 55 (3.25)

For the final equality we have used the relation between the microscopic and macroscopic
charges in (2.24).

4 Quantum contributions to levels

Having determined the contributions arising from the classical action we now turn our
attention to computing the quantum corrections to the levels. Such corrections arise
from one-loop Chern-Simons terms induced by integrating out massive Kaluza-Klein (KK)
states. We will only be interested in corrections up to but not including terms O(1) in the
charges. The KK modes contributing to the one-loop Chern-Simons terms come from the
six-dimensional fields which can lead to anomalies in the six-dimensional theory, namely the
chiral fields. For the theory at hand these 6d fields are the gravitino, the spin—% fermions in
the tensor-, vector- and hypermultiplets and the (anti-)self-dual two-forms. Upon reducing
to three dimensions these fields give rise to massive spin—% and spin—% fermions, and to
massive chiral vector fields.

We argued in section 3 that in order to obtain the correct anomaly coefficients from
supergravity, one has to perform the dimensional reduction of the six-dimensional effective
action to three dimensions on the spherical part of the asymptotic geometry which sur-
rounds the string in six dimensions. The two classes of transverse spaces which we consider
in this paper, namely ALE and ALF spaces, behave qualitatively different at asymptotic
infinity. For an ALE space the metric approaches a quotient of the FEuclidean metric,
whereas for an ALF space it approaches the metric on (R? x S')/I". In both cases the
spherical geometry in the asymptotic region is topologically S3/T', however whilst one is
left with a finite radius circle in the asymptotic geometry of an ALF space (the Hopf fiber

18Tn our conventions a positive definite coefficient for a non-abelian Chern-Simons term implies that the
current is right-moving, similarly a negative definite coefficient implies that it is left-moving.
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of the S3), the S3/I" in the asymptotic ALE geometry becomes infinitely large. The KK
modes, whose masses are inversely proportional to the radius, therefore become massless
for an ALE geometry and consequently they do not contribute to the one-loop Chern-
Simons terms. In contrast, because of the finite Hopf fiber for ALF transverse spaces the
KK modes remain finite and must be integrated out at low energies. It follows that one
only needs to compute the one-loop corrections to the Chern-Simons levels for transverse
ALF spaces and not for ALE spaces.

In the following we assume that the squashing of the three-sphere does not alter the
representation content of the KK modes under the isometry group and moreover that it
does not change the signs of the KK masses of the states in the spectrum. This will effec-
tively mean that we can compute the one-loop corrections on the round S3/T. In [33, 34]
for similar settings, this assumption was shown to lead to results which agree with the
microscopic predictions.

4.1 Kaluza-Klein spectrum

The spectrum of A/ = (2,0) supergravity on AdS3 x S? was computed in [58, 59] and
can be truncated to the spectrum of A/ = (1,0) supergravity coupled to tensor multi-
plets. Each mode in the spectrum admits a representation under the isometry group
s50(4) = su(2);, @ su(2)r and has a mass of which only the sign will be important in this
paper. In addition to tensor multiplets we have hypermultiplets and vector multiplets in
the N' = (1,0) 6d supergravity theory which are absent in the truncation from N = (2,0)
supergravity. Since only the massive KK modes of the spin—% fermions in these multiplets
are relevant for the computation of the one-loop Chern-Simons terms in 3d we focus on
these. The computation of the KK spectrum of these spin—% fields requires a harmonic
expansion of the linearized Dirac equation, analogous to the one for the spin—% fermions
in the tensor multiplets. It is therefore conceivable that the massive KK spin—% fermions
from the hyper- and vector multiplets fall into the same su(2)r, @ su(2) g representations as
the KK fermions from the tensor multiplets. The only potential difference is in the sign of
the KK mass which is correlated with the chirality of the parent 6d spin—% fermions. The
6d fermions are given by two Weyl fermions subject to a symplectic-Majorana condition
and the tensors obey a reality condition. It is computationally simpler to not impose these
conditions from the outset but to impose them at a later point.

Taking these considerations into account we can infer the KK spectrum of the N'=(1,0)
6d supergravity theory coupled to np tensor multiplets, ny vector multiplets and npy
hypermultiplets on AdS3 x S2. It is given below in terms of representations of su(2); @
su(2)r @ g, as (jr,jr, R)®¥" M) with the superscript denoting the sign of the mass of
the field.

e Spin- %:

1 +
<jL7jL:t271> .

.6‘;8

<

™

Il
N|=
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e Spin-3:

— 00 +
2 @ (JL,JLi; 1> @2@ (]L;]L+ ) o2 P (JLJLi )
=

jL=3 jr=0 jr=1
1 * 1 \" - 1 1 \"
2(=,1,1 210,=-,1 2 ir,Jr £ =,1 0,-,1
® <27 ) > @ (727 ) @ nTI:@I (jLajL 27 ) @< 727 ) :|
JIL=73
1 _\* 1 _\*
@2@1’1{[@ (ijjL:tQaR> @<O727R> :|
JL=
22|
7

1 * 1 -
]L,]Li ,ad; | @ 0,§,adi .

[N

S

Il
[NIES

JL

e Chiral vectors:

@ (jL?jL:l:171):F® <27271> 69(07171)_
Jjr=1

T 13 \*
@"T[ @ (jr,jr £ 1,1)i @ (2,2,1) @ (0,1,1)*] )

Jjr=1
For simplicity we have used the shorthand notation
. . + /. . + . . _
(Jr,jr£n)" = (jr.jr +n)" ® (jr,jr —n) " . (4.1)

The hypermultiplets transform in representations R of g which come with multiplicities
xRr. Moreover we have denoted ad; for the representation under g where the field is in the
adjoint of the i’th gauge group factor GG; and singlet of the other group factors. Therefore,

Z rrdim(R) = ng, Z dim(ad;) = ny . (4.2)
= -

Denoting the eigenvalues of the Cartans of su(2)r, by 4 L Rv the 6d reality and symplectic-
Majorana conditions of the tensors and fermions respectively map modes with eigenvalues
(jL ,]S)) — (= jf), (3)) We are thus left with either the modes that satisfy j( ) >0 or
the modes that satisfy j(3> > 0.

Ultimately we are interested in the one-loop corrections induced by KK modes on
S3/I'. We must therefore extract out the I'-invariant subsector of the above spectrum.
Since we need to compute the corrections for the ALF spaces only, we are interested in
the projection conditions for I' either Z,, or D} . The action of the subgroup I' C SU(2),
may be understood by elementary group theory techniques. From the action of I' on the
fundamental representation of SU(2)z one can straightforwardly deduce its action on a
general representation using that the latter can be written as a totally symmetric tensor
product of the fundamental representation. One finds for I' = Z,, that only states with
j(L?’> = %mk: for some k € Z are invariant under Z,,. The symplectic-Majorana and reality
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conditions refine this to k € Z>¢. For I' = Dy, we first note that Dy, has a Zs,, subgroup.
This implies, that the invariant states need to satisfy j(LS) = mk for some k € Z. In addition
to this subgroup, D;, has another generator that maps a state with eigenvalue j(LB') to a
state with eigenvalue — jf”. By taking appropriate linear combinations of these two states
we obtain a state which is invariant under the full group D} . We can therefore restrict to
states that have jf) = mk for some k € Z>¢p. Furthermore the symplectic-Majorana and
reality conditions imply that we should only take states with jg’) > 0. A more detailed
discussion of the projection conditions can be found in appendix A of [34].

4.2 One-loop contributions of massive KK modes to Chern-Simons terms

The contributions of the KK modes to the u(1)z , su(2)r and gravitational Chern-Simons
terms were computed in [33] in the absence of vector multiplets and charged matter for
Taub-Nut transverse space. Here we extend those results to include vector multiplets and
charged matter and to the D-series. Since the only matter that can contribute to the
coefficients of the Chern-Simons terms and that is also charged under the gauge group G
are spin—% fermions, we solely need to modify the contributions from these terms. Moreover
we must compute the contribution of these fields to the levels of the flavour current algebra.

Let 51 and jr be the quantum numbers of the Casimirs of a representation of u(1), ®
su(2)g. If one computes a two-point function of the currents in the theory, one sees that
in integrating out the massive fields one-loop Chern-Simons terms of the form

aL/ Ar N Fr —1—043/ wCS(AR) —|—agrav/ wgrgw+agi/ wCS(Ai) (4.3)
Ms M3 M- M3

3

are induced. The contribution of each massive field can be evaluated by either explicitly
computing the one-loop Feynman diagram or by using the index theorem and appealing
to anomaly inflow. For example the parity anomaly of a spin—% field is canceled by the
counter-term [60]

msgn(M) /M Q% ({Ai},w) , (4.4)

3

where

dQ%({Al}7w) A(M3) A Ch(F)‘4—form

= A(M;) A ch(Fp) Ach(Fg) A J\ ch(F')|,
A(M)—1+LitrRAR+ (4.5)
YT 4m2 12 '
: i 11 o
h(F') = dimR; + —trg, F' — = trr, FPAF' 4 ... .
ch(F") m R; + o I'R; 2 (2m)2 IR; +

Let r be the dimension of the SU(2)g representation. Since we have assumed that the

~19 —



group factors G; are simple it follows that tr F* = 0 and therefore

: rdimR 1 r : .
Al = - — i N
dQ%({ }w) (im)? 12‘51"7?,/\72 3022 % d;i(R)trr, F* A
rdimR dimR
— F— ———trFr A F
T a@mE TN T g IR AR
rdimR 1 r ) .
=" ——— N G(R)AR N\ tr F A F? 4.
(P 12 rRAR 2(%)2; (R)AR, )\ tr F' A (4.6)
rdimR dimR
—  CFANF,— ———trFp A F
a2z LT e R A TR,
with
dimR =[[dimR;,  &(R)=][][dinR;, (4.7)
) JF#i

and the group theoretic objects, A\; and AR, are as introduced in section 2.1. We used that
the generator of u(1)z, is given in terms of the Pauli matrices by —%03. It follows that the
contribution of a single spin—% fermion in the representation R of G gives a contribution of

.
aly/? = — g sen(M)d;(R)Ar, A (4.8)

to the Chern-Simons term corresponding to the non-abelian flavour symmetry G;. The

contribution to the universal sector is'”

a\/? = isgn(M)dimR (2jr + 1) (G2,

8
1
a%/z) = —msgn(M)diijR(jR +1)(2jr + 1), (4.9)
1/2) _ ; ;
aérév) = 1927rsgn(M)d1mR (2jr+1).

Finally, since the other fields are singlets of the gauge group G their contributions are
precisely given by the ones in [33]. We collect the contributions of the single fields in
table 3.

In order to compute the one-loop corrections to the levels kz, of U(1)r, kg of SU(2)g,
kg, of G; and cf, — cg multiplying the gravitational Chern-Simons term in 3d, we have to
sum the single field contributions in table 3 over the KK towers given in section 4.1. In
performing the sums over the infinite towers of KK states one encounters sums of the form

i nk, (4.10)
n=1

which are divergent and need regularizing. We employ Zeta-function regularization to
obtain finite results for the one-loop Chern-Simons terms. It was shown in [61, 62], that

'"In translating between the trace in the Chern-Simons terms used here and the one used in the section on
the classical contributions a field in the representation (5$, jr) picks up a factor of 2(j:*)? for left-moving
Chern-Simons terms and a factor of %jR(jR + 1)(2jr + 1) for right-moving Chern-Simons terms. This is
the analogue of \; appearing earlier. Moreover we substitute the r = 2jr + 1.
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1 .3 .
spin-3 spin-3 chiral vectors

ar | Lsen(M)dimRr(5)? Zsen(M)r(j)? —Lsgn(M)r (i)

aR —ﬁsgn(M)dimRAR —ﬁsgn(M))\R ésgn(M))\R
Qlgrav ﬁsgn(M)dimRr —%sgn(M)r ﬁsgn(M)r
ag, | —e=sgn(M)d;(R)Ar,\ir 0 0

Table 3. One-loop contributions of a single field in the representation (ji,jr,R) of u(l)y @
s5u(2)r @ g to the Chern-Simons terms. We have used the shorthand Ag = jr(jr + 1)(2jr + 1) and
the dimension of the SU(2) g representation r = 2jg + 1.

Zeta-function regularization gives the correct result for the constant, field independent one-
loop corrections to Chern-Simons terms, while extra care has to be taken concerning the
field-dependent part. Since we start from an anomaly free 6d F-theory model, Zeta-function
regularization provides a safe shortcut in the computation of the three-dimensional Chern-
Simons coefficients we are interested in. The details of the computation of the sums over
the Kaluza-Klein towers are spelled out in appendix B. In these computations we use the
identities (2.15), (2.16) and (2.18) to express the final results entirely in terms of m, ¢ (B)
and S;. In the following we will give the results for the two relevant cases I' = Z,, and
I = D}, i.e. we present the one-loop corrections induced by massive KK modes on S3/T.

A-series (I' = Z;,). We first turn our attention towards the case where I' = Z,,,, which
corresponds to a string propagating in 6d probing a transverse Taub-NUT space with NUT
charge m. We are interested in contributions to kr, r, kg, and ¢z, — cg, which scale with the
charge m and we will neglect all O(1) contributions which do not depend on the charges. As
described in section 4.1, we need to sum over states which satisfy the projection condition
j(L3> = %mk for k € Z>p. The explicit sums over all states can be found in appendix B
and are performed by first summing over all representations, which contain a state with
j(L‘” = %mk for generic k. That is, we sum over representations with j; = %mk, %mk—i—l, cee
and then sum over all values of k. After applying the identities (2.15), (2.16) and (2.18)

we obtain the corrections

3
o m
= ()l
00 m3 m
k;% P — ﬂcl(B) . Cl(B) + Ecl(B) . Cl(B) + m’
= )5 1y

(¢ — ¢g)'°°P = 2mey(B) - ¢1(B) + 6m,,
to the levels up to O(1) corrections which are independent of m.

D-series (I' = D ). For this case we do not have a left level to compute. In section 4.1
we found that we need to sum over states with j<L3> = mk for k € Z>p and jg’) > 0. It is
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clear that the first restriction can be imposed by simply replacing m — 2m in the one-loop
results for the A-series (4.11). The second condition may be effectively implemented by
dividing the result of that replacement by a factor two. This simple procedure gives the
sums for the case I' = D}, up to terms which are independent of m. Since this is sufficient
for our purposes, we immediately obtain the result for I' = D7 :

3

00 m m
k;% P _ ?01(3) . Cl(B) —+ §CI(B) . CI(B) +m,
kg = Teu(B) - S (4.12)

(¢, — cr)°P = 2mey(B) - ¢1(B) + 6m,

again, up to terms independent of the charge m.

5 Summary

In this paper we have studied the central charges and levels corresponding to black strings
in F-theory compactified on an elliptically fibered Calabi-Yau threefold CY3. The strings
arise from wrapping D3-branes, living in the asymptotic geometry R x Mr x S! x CY3, on
the curve C in the base of the CY3 and on the S'. The space My transverse to the string
is either taken to be asymptotically locally Euclidean (ALE) or asymptotically locally flat
(ALF). These spaces are characterized by the choice of a freely acting discrete subgroup
I' € SU(2). Living on the strings are 2d N' = (0,4) SCFTs which result from compactifying
the woldvolume theory of the branes on C. These SCFTs have associated central charges
and levels which we have computed from the macroscopic 6d N' = (1, 0) supergravity theory
which is the low energy limit of F-theory on CYj.

The isometry group of the ALE and ALF spaces is U(1)1, x SU(2)g for the A-series
and SU(2)g for the D- and E-series in the ADE classification of subgroups of SU(2). This
isometry group corresponds to a current algebra in the dual SCFT with associated levels
kr r. Degenerations in the fiber of the CY3 leading to singularities of the total space
yield vector multiplets in the 6d supergravity theory which lead to gauge symmetries of
the 6d bulk theory. From the perspective of the string, this leads to non-abelian flavour
symmetries of the 2d SCF'T each of which has an associated level.

Macroscopically the levels and central charges correspond to the coefficients of Chern-
Simons terms in the effective 3d action that is obtained by reducing the 6d supergravity
theory on the spherical part of the black string solutions. We have determined these
Chern-Simons terms including one-loop contributions arising from integrating out massive
Kaluza-Klein modes. We have performed the reduction at asymptotic infinity in order to
take into account the contributions of degrees of freedom living outside of the horizon.
In addition, a necessary shift in the identification of macroscopic and microscopic charges
arising from the Green-Schwarz-Sagnotti-West term in the pseudo-action has been included.

When the transverse space is ALE the central charges and levels are given by the
coefficients of the Chern-Simons terms resulting from the reduction of the 6d classical
action on the spherical part of the black string geometry. We have computed this in
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section 3 and the result is

2
k= %m (C’ - ip1(MF)cl(B)) - %q(B) ' <C - 1p1(Mr)01(B)) )

2
kr = %m (C’ - ip1(MF)Cl(B)> + %Cl(B) ' <C - 1p1(Mr)01(B)) )

kG’i = (C — jlpl(MF)Cl(B)> . Sz (5.1)

cr, —cp = 6¢1(B) - <C — ipl(Mp)cl(B)> ,
where |I'| and p; (Mr) can be found in table 1. The left level is only relevant for the A-series.
As discussed in section 3, the left- and right-moving central charges follow from (5.1) by
using the relation cg = 6kr which is valid when one can identify SU(2)r with the right-
moving R-symmetry.
When the transverse space is ALF one also has to include the one-loop contributions
derived in section 4. For the A-series, i.e. M = TN,,, we find that the final result is

1 1

kp = —mC? — —m?ci(B) - C,
2 2
b = mC? — mPei(B) - C + smPer(B) + ei(B)-C — tmer(B) +m,
ka, =C- Sy, (5.2)

¢, —cg = 6¢1(B) - C —me (B)? 4+ 6m.

Alternatively when the transverse space Mr is ALF with I" given by the D-series, the levels

and central charges are'®

1
kr = 2mC? — (2m* 4+ 6m — 1)cy(B) - C + 6(4m3 + 18m? 4+ 26m)c; (B)? +m,

kg, =C-S;, (5.3)
¢, — cr = 6¢1(B) - C —mey(B)? + 6m.

All results in this section are up to terms of O(1) in the charges.

6 Discussion

The results in this paper have been obtained from purely macroscopic computations, it
would be very interesting to reproduce the central charges and levels from a microscopic
computation. This is possible for the central charges and levels corresponding to the
isometry group of Mr when the transverse space is either Taub-NUT [32] or R* [4, 43].
For Taub-NUT one can use the dual M-theory setting while for R* one can work directly
with the woldvolume theory of the D3-brane. In the latter case one compactifies the theory

8These results are the sums of the classical and quantum contributions for the D-series up to terms of
O(1) in the charges.
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living on a D3-brane on the curve C' in the presence of a varying axio-dilaton which requires
one to perform a topological duality twist [63] which was further studied in [43, 64]. The
central charges and levels are computed in terms of anomaly coefficients or by spectrum
counting in the resulting 2d theory.'® Generalizing the latter computation to arbitrary
ALE Mr is not straightforward. The worldvolume theory of a D3-brane probing Mt is
known [65, 66], and its construction relies on performing a quotient of the non-abelian
theory living on a stack of D3-branes. However the topological duality twist is not yet
understood well enough for non-abelian gauge theories without appealing to M-theory
and therefore at present has no obvious application to these theories. It is interesting to
note that the difficulties for ALE transverse spaces are purely the result of the non-trivial
elliptic fibration since if one considers type IIB settings without 7-branes one can study
these strings both macroscopically and microscopically. We have pursued this for type IIB
compactifications on K3 in [34].

One also encounters problems if one wants to compute the levels for the ALF D-
series microscopically. In fact the situation is worse than for ALE spaces since the four-
dimensional parent theory is not even known in this case. Instead one can try to mimic
the progress made in the A-series ALF case by using an M-theory picture and performing
a similar computation as in [2]. The D-series theory admits a dual M-theory realization
if one also introduces orientifold M5-branes. However the burden to bare by introducing
orientifolds is too high with the available technology and the counting of states is currently
intractable. A potential avenue for obtaining the microscopic results is via anomaly inflow
in F-theory, see [57, 67] for the current status of this line of research.

An alternative approach, applicable to all the settings considered here, is to dualize
along the circle wrapped by the D3-brane and then uplift to M-theory. One obtains an
M2-brane system wrapped on a curve in the elliptically fibered CY3 and probing the ALE
or ALF space. For transverse space R?* the spectrum counting of the M2-brane states was
performed in [3], however for transverse ALE or ALF spaces this has not been considered
so far. As noted in [68] there are potential subtleties in matching the central charge of the
2d SCFT with the computation of the partition function of the dual 1d SQM theory living
on the M2-branes.

We have considered a general class of Calabi-Yau threefolds admitting a single rational
section, known as the zero section og : B — CY3, whose existence distinguishes between an
elliptic fibration rather than a genus-one fibration without section. The zero section maps
each point of the base to the zero-point on the elliptic fiber. One may consider additional
sections to the zero section which form a finitely generated abelian group called the free part
of the Mordell-Weil group. Up to potential subtleties which are beyond the scope of this
discussion, these sections give rise to U(1) gauge factors in the six-dimensional supergravity
theory in addition to the non-abelian group factors considered here. These may then again
act as flavour symmetries on the strings which we considered in this paper. One could
therefore extend our results to include these U(1) factors. Computing the (classical and

19The microscopic computation of the central charges/anomaly coefficients misses subleading contribu-
tions from D3-D7 modes. These contributions may again be obtained from the dual M5-brane picture [4, 43].
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quantum) contributions to the anomaly coefficients of these U(1) flavour symmetries of the
strings appears straightforward with the methods presented here.

An additional direction one can follow is to consider Calabi-Yau threefolds which do
not admit crepant resolutions. Implicitly the Calabi-Yau threefold used in the compact-
ification to six-dimensional supergravity admits a crepant resolution. This implies that
the resolution does not change the canonical bundle of the space and therefore the space
remains Calabi-Yau. However there exist Calabi-Yau threefolds which admit non-crepant
resolvable singularities. From the physics point of view the existence of non-crepant re-
solvable singularities implies that there is matter which is not charged under any of the
massless gauge fields in the five-dimensional effective action arising from M-theory on the
Calabi-Yau threefold, see e.g. [69]. Instead the matter may be charged under a massive
U(1) or a discrete Zj symmetry. The existence of this additional matter will affect the
one-loop computations performed here.

A further interesting direction has already been alluded to in section 2.2. We noted
that if one considers a non-trivial profile for the vector multiplets in the string background
such that they generate instanton configurations living on the ALE or ALF space, one
introduces an additional shift of the macroscopic charge. From the F-theory perspective
this arises from gauge instantons living on the 7-branes which induce D3-brane charge
localized on the 7-brane worldvolume. This problem has not been attempted even in the
simplest case of R* transverse space. Suitable gauge instanton configurations on both R*
and Taub-NUT are known in the literature, therefore leaving the possibility to extend the
settings discussed in the paper to include these instantons.
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A 6d to 3d reduction higher derivative term

In this appendix we show how one obtains the result (3.15). That is, we determine the 3d
Chern-Simons terms resulting from the integral

a4 ~CS
G N Wgray -
Msph

(A1)

The integral is over the spherical part of the black string solution (2.21) with ds?(Mr)
replaced by the covering space in (3.1).

20This integral is also computed in appendix A of [33], but we include it here so that the paper is
self-contained.
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In order to perform this computation, we first discuss a few details of this black string
solution. Its explicit form is given by

1
d%_2H‘Mqu+2me+fmﬁ, (A.2)
with ds? the metric in equation (3.1). Here
H = (nagWew?)'/?, (A.3)

and the functions F and W< are given by

F=1-12,
"
Qa
) i A A4
W =wi + - (A4)

The constants wg, satisfy nagwg“owgo = 1 in order to obtain the correct asymptotic be-

haviour. Furthermore, the scalars in the tensor multiplets take the form

we
= — A.
H (A:5)
and the three-forms are given by
G = —dv Adu AA(WOH™2) — s4d(W?). (A.6)

Here *4 denotes the Hodge dual with respect to the metric ds?.

Having given the necessary notation and conventions we turn our attention to evaluat-
ing the integral in (A.1). We begin by gauging the isometries of the base space of the black
string and decompose the spin connection of the resultant metric ansatz to determine the
part leading to 3d Chern-Simons terms. We denote indices of the non-spherical part Mj
of the black string solution by @ = 1,2, 3 with corresponding vielbein é%. Additionally, we
denote by w.; the components of the spin connection wys, with respect to the vielbein el
of M3 and by wq, the components of the spin connection Wy with respect to the vielbein
€% of the spherical part of the black string solution. A vielbein of the ansatz is then given

a

by €% = é%, e (see equation (3.4)) and the corresponding spin connection is [70]

A 1. . 1. . R NP
Wsj = Wsj + §Fg5ngc, Wgp = iFéngec’ Wabh = Wap + (VaKg)AZ R (A.7)

where the sum over i runs over the gauge fields corresponding to the symmetries of the
transverse space. From the gravitational Chern-Simons form,

2
obgcisav = tr <w A dw + 3w3> , (A.8)

one sees that all 3d Chern-Simons terms can be obtained by restricting (A.7) to

Wiy =@, Wb =0,  wap = Dap + (VaKG) A" (A.9)
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Since this connection is a direct sum, the gravitational Chern-Simons form can be written
as the sum of two Chern-Simons forms, i.e.

Dy = weay, +w (X)) (A.10)
Here wgriv is the gravitational Chern-Simons form of M3 and
2
wB(X) =tr <X ANdX + 3X3> (A.11)
is the Chern-Simons form corresponding to the connection X with components &g, +
(Vo kE) AP,
The part of G in the ansatz (3.6) leading to 3d Chern-Simons terms is

—Q¥(2m)*|Tl(es — x3) - (A.12)

The three-form e3 is equal to [39]

1 1 1
5.2 [el Ae?Aed+ iK{%ae“ AFh — §KLaea A FL] A-series,
™
ez = . . (A.13)
9.2 [el ANe2 Ned + §K{%aea A Fé} D- and E-series,

where the vielbein ef can be found in (3.4) and one has to take the limit » — 0. The

three-form x3 has all its legs on the non-spherical part M3 such that when wedged with

wgrgv we only get a contribution of w"® (Wgpy). Using the expansion (A.10), the part of the

integral (A.1) of interest to us can be written as

GoneSS, 5 —QY(2r)|T| [egchs +es AwSS(X) — x3 AwCS (@epn) | . (AL14)

Afsph grav fsvh grav

Evaluating these three integrals results in?!

CS CS
/ ez A\ Werav — ~Wgrav »
Msph
2A;, AN Fr,  A-series,
/ e3s AwS(X) = TR (A.15)
Msph 0 D- and E-series,
1 4 4vaer + 100212 4 802 r3 + 202 14
CSy~ o0 0o 00 0 2
A = X 16 .
/Msph x3 AW (Qsph) @t vr)d X3

Using the definition of x3 in equation (3.9), we find that the integral (A.1) leads to the
following 3d Chern-Simons terms:

1+ 4voor + 202 12
(1 + voor)?

Ap N Fp, (Alﬁ)

grav

o G N agay, D Q* (2m)* [T [wgrgv -
1+ 4veer + 101}207“2 + 81)207“3 + 2v§or4wcs

2
+ (14 voor)*

(Ar)

One has to set Ay, = 0 for the D- and E-series. This is the result as presented in (3.15).

2IThe second and third integral were computed using Mathematica.
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B One-loop corrections to 3d Chern-Simons terms

In this appendix we compute the one-loop corrections to the Chern-Simons terms. We
perform the sums of the contributions of the separate fields given in table 3 over the
spectrum given in section 4.1. We will focus on ALF spaces for the A-series, i.e. transverse
Taub-NUT spaces with NUT charge m. All the results we give in this appendix are up to
O(1) contributions. As explained in the main text the one-loop corrections for the case
of the ALF spaces in the D-series can be obtained from the A-series results by a simple
procedure. Since our focus will be on contributions to the Chern-Simons levels which scale
with the charges, we only need to consider the infinite towers of states in the spectrum and
can neglect the isolated representations. The relevant part of the spectrum is therefore

given by
) Spin-%:
2 5, Jr £ =, 1
@1 <JL7]L 9’ > )
JL=735
° Spin—%:
o0 + [os] 1 +
2 + - + - 2 L, jr £ =,1
@3 (JLJL > @ (JLJL ) © 2nr @ (JL:]L 0% )
JL=3 - JjL= §
~ 1 1 ¥
22D @ (i + 1 R) 220 @ (et gad)
R JL=% iojr=
e Chiral vectors:
oo o0 n
P Gr.je+1.1)T onr @ (jr,je £1,1)
Jjr=1 Jjr=1

Level kg of the right-moving SU(2) g current algebra. In the following we compute
the one-loop correction to the Chern-Simons level kg up to O(1) contributions. We compute
these contributions individually for the spectra of massive spin—%, spin—% and chiral vectors
in 3d. Summing these contributions, we obtain the total one-loop correction. To project

i3 — mk‘

on the Z,-invariant states in the summations over all states, we must impose j;’
for k € Z>p. For the computation of the one-loop Chern-Simons level kr we ﬁrst use

Zeta-function regularization to define

Z Z [JL+n (Jr+n+1)(2jL +2n+1)

k=1 j; = Emk
— (=) (r = n+ )21 = 20+ 1)] (B.1)
> 1 m m3

= 2 {kmn - §k3m3n +2n3 — 2kmn3} = —E(n —2n%) — 220"~ n3.
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This is the infinite sum involved when summing over a tower of states of the form ( jr,jrt
n)ﬂE necessary to obtain the correction to kr. For the massive spin—% fermions in the
spectrum and using table 3 for the contributions of a single state the contribution to the

level kg is
320 1 o= N/ 3N\, 1\ /. 1.,
o= > [(yL — 2) <]L ~ 2) (24 +2) - (JL — 2) (JL + 2) 2]L]
1 1 1 /m m?
= — — = - - 1 . B-2
27TAR (2) 47r( + 240) +0() (B:2)

We remind the reader that the sum over modes with & = 0 does not contribute to the level
with terms which scale with the charge m and have therefore been dropped.

Up to terms of O(1) we can write the contribution of the spin—% fields to the Chern-
Simons coefficient as

aly/? = 1; [2,4}2 <3> — 24 <1> — 207 AR <;>

— ZZadelmR.AR ( > +22dlmad Ar (;)]

1 3 1
1 m m3 m m3
_47r[<24_MO>+(1+”T+HH_TW)<72+720N+O(1)’ (B.3)
where we used (4.2). Finally, the contribution of the massive vectors is given by
3
(vect) 1 1 m m
-1 ~D( 35— 20 1). B.4
R TG g — DAR() = 47 (T )<18 360) +0O(1) (B.4)

Summing (B.2), (B.3) and (B.4) we obtain the correction to kr which scales with m,
namely:

Hoop 47T{ (4/2) | Q112 agecw}
= ;ZZ(TLH—HV—”T—?’) + g(ng—nv+5nT+15)
(215) Zi(g —np) + = (12 — ny)
(219 gicl(B) cc1(B) + %cl(B) ~e1(B) +m. (B-5)

Level kr, of the left-moving U(1)r current algebra. We now turn to the evaluation
of the one-loop corrections to the level kr of the left-moving U(1); current algebra. We
define the sum

Ap(n) = i i <;mk>2 [2(31 Yn)+1-20jL —n)— 1]
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which appears in the computation of the contribution of a tower with (jz,jr, £ n)jE to kr,,
as can be seen from table 3. For spin—% fermions one finds the contribution

3 1 1 m3
o) _ g SWAL<2> S (B.7)

Likewise one obtains for the infinite towers of massive spin—% fermions the contribution

1 1 1
a(Ll/2) =5 [ —2A; <2> +2A;1 <2> + 2np Ap <2>

—G-QZdeimRAL(;) — QZdimadiAL<;>]
R i

1 3 1
=—|—-2 — 2(1 — -
877[ AL<2>+ (1+nr +ny nV)AL<2)]
1 m?
=——2—-—np— . B.
Sr 2402 T nT —nH ) (B.8)
Finally, the massive vectors contribute with
3
(VeCt):il_ 1:_im71_ B.9

Summing up the individual contributions (B.7), (B.8) and (B.9) we find the correction to
the left level

3

kll?OP = 87 Oéf)/2) + Q(LI/Q) + ageCt) = %(3 + nr—ng + nv)
2.15)  m> 2.16) m>

Level cr — cr of the gravitational Chern-Simons term. We now determine the
one-loop correction to the gravitational Chern-Simons term. We once more define the
infinite sum

Agar(m) =Y 3" |20 +m)+1 =20 —n) - 1
kzle:%mk
:;2n(1—km):6n—n, (B.11)

which appears in the sums over a tower of the form (jr,jr & n)* for the case of the
gravitational Chern-Simons term. For the tower of massive spin—% states we find

7 1 1 ™m
ag’"e/n%) =2X 647[_-Agrav<2) = 9677'('7 + O(l) . (B.12)
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The infinite towers of massive spin—% fermions contribute with

1/9 1 3 1 1
aére/w) 967T |: - Agrav ) + Agrav ) =+ nTAgrav )
1
+ ZxR dlmRAgraV( > Zdlmad Agrav<2>]

1 3 1
= @ |: - Agrav <2> + (nT +ng —ny + 1)Agrav <2>:|

1 m
_ — N+ 0(1 B.13
Lastly, the contribution of the massive vectors is given by

vee 1 1 m
afiet) = ge=2(nr = 1) Agan(1) = (0 = 1) 5+ 0(1). (B.14)

The final result is obtained by summing (B.12), (B.13) and (B.14):

m
(cr —cr)*® = 96 |ald +apld +age | = 1o 15 + 507 +npg —ny)

(2.15) ) (21

=" 2m(12 — np 2meq(B) - c1(B) + 6m. (B.15)

Levels kg, of the flavour symmetries. The remaining one-loop correction to the
levels is to the level of the non-abelian flavour symmetries. From table 3 it is clear that
the relevant infinite sum is given by

Ag,(n) = Agray(n) = %n . (B.16)

We also note that only the massive Kaluza-Klein modes of the gauginos in the adjoint and
hyperinos in the representation

R =R, (B.17)

of the total gauge group G = [[; G; contribute. Summing the single field contribution over
the relevant Kaluza-Klein towers we find

1 i 1
G, Zde ) AR, Ac, < )—l— Aad Ag, (2>

- 487r [Zde ) AR, — Aadz} +0(1). (B.18)

We can trade the summation over the product representation R of G for a summation over
the representations of the gauge group factor GG; by making use of the identity

Z IR dZ(R) ARi = Z :L’i{ZARZ s (Blg)
R

R;

where xiRi is the multiplicity of all hypermultiplet fermions transforming in the represen-
tation R; of G;. Up to O(1) contributions we thus find that

Ai m[Zmi{ZARi - Aadi} . (B.20)
R;

ag, = —
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The one-loop corrections to the levels of the non-abelian flavour symmetries are then
given by

00 )\z i 2.18) m
leiP = —47 X ag, = Em{ZQ:RiARi _ Aadi] (2.18) 581(3) .S (B.21)
R;
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