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INTERNAL PARTIAL COMBINATORY ALGEBRAS AND THEIR
SLICES

JETZE ZOETHOUT

Abstract. A partial combinatory algebra (PCA) is a set equipped with a partial
binary operation that models a notion of computability. This paper studies a general-
ization of PCAs, introduced by W. Stekelenburg, where a PCA is not a set but an object
in a given regular category. The corresponding class of categories of assemblies is closed
both under taking small products and under slicing, which is to be contrasted with the
situation for ordinary PCAs. We describe these two constructions explicitly at the level
of PCAs, allowing us to compute a number of examples of products and slices of PCAs.
Moreover, we show how PCAs can be transported along regular functors, enabling us
to compare PCAs constructed over different base categories. Via a Grothendieck con-
struction, this leads to a (2-)category whose objects are PCAs and whose arrows are
generalized applicative morphisms. This category has small products, which correspond
to the small products of categories of assemblies, and it has finite coproducts in a weak
sense. Finally, we give a criterion when a functor between categories of assemblies that
is induced by an applicative morphism has a right adjoint, by generalizing the notion of
computational density.

1. Introduction

A partial combinatory algebra (PCA) is an abstract model of computation that generalizes
the classical notion of computability on the set of natural numbers. A more precise
definition will be given below. These models can be studied from the point of view of
category theory. Every PCA A gives rise to a category of assemblies Asm(A), which may
be viewed as the category of all data types that can be implemented in A. Moreover, the
ex/reg completion of Asm(A) is always a topos, called the realizability topos of A and
denoted by RT(A). In this topos, the internal logic is governed by computability in the
model A.

The fundamental theorem of topos theory states that a slice category of a topos is
again a topos. This implies that a category of the form RT(A)/I is also a topos. However,
it is not in general a realizability topos, which we can show as follows. In every realizability
topos, the terminal object is projective. In the slice topos RT(A)/I, on the other hand,
the terminal object is projective if and only if I itself is projective in RT(A). Therefore, if
we let I be a non-projective object of RT(A), which almost always exists, then RT(A)/I
will not be a realizability topos. Similar observations apply for categories of assemblies.
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Explicitly, Asm(A) is always a quasitopos, and quasitoposes are closed under slicing.
However, a slice of Asm(A) is not in general a category of assemblies, for the same reason
we presented above.

This leads to the question whether there is a natural class of categories that contains
all categories of the form Asm(A) and is closed under slicing. Recently, J. Frey has given
an extensional characterization of toposes of the form RT(A), where A is a PCA ([Fre19],
Theorem 4.6). This characterization provides an important hint as to where to look for
such a class. But first, let us give a more precise definition of a PCA.

1.1. Definition. A partial combinatory algebra (PCA) is a nonempty set A equipped
with a partial binary map A × A ⇀ A : (a, b) 7→ ab, called application, for which there
exist k, s ∈ A such that

(i) (ka)b is defined and equal to a;

(ii) (sa)b is defined;

(iii) if (ac)(bc) is defined, then ((sa)b)c is defined and equal to (ac)(bc),

for all a, b, c ∈ A.

1.2. Remark. Other sources employ a slightly stronger definition of PCA, where in item
(iii), ((sa)b)c should be defined exactly when (ac)(bc) is defined. A PCA in our sense is
then called a weak PCA. It has been shown ([FvO16], Theorem 5.1) that there is no
essential difference between these two notions. We choose the above as our definition of
a PCA because for our purposes, it is more pleasant to work with.

It follows from this definition that A satisfies an abstract version of the Smn-theorem:
every expression built using the application map can be computed using an element from
A itself. We refer to Section 2 for a more precise formulation of ‘expression’ and what it
means to compute such an expression (Definitions 2.2 and 2.3).

A well-known generalization of a PCA is that of a relative PCA. A relative PCA is a
pair (A,C), where A is a PCA and C is a subset of A that is closed under the application
map from A, and such that suitable elements k and s as in Definition 1.1 may be found
in C. We regard the elements of C as ‘computable’ elements that may act on possibly
non-computable data. A certain operation then counts as computable if it is computed by
some element from C. The constructions Asm and RT mentioned above can be generalized
to these relative PCAs.

A crucial ingredient in Frey’s characterization is the fact that toposes of the form
RT(A) carry a geometric inclusion Set ↪→ RT(A), where the inverse image is the global
sections functor. Similarly, categories of the form Asm(A) allow an adjunction with Set,
where the left adjoint is the global sections functor. Slicing over an assembly I affects
this adjunction in two important ways. First of all, we get an adjunction with a slice
Set/|I| of Set, rather than Set itself. This suggests that we should allow for other ‘base
categories’ than Set. Second, the left adjoint Asm(A)/I → Set/|I| ceases to be the global
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sections functor. This is no surprise, since the codomain of this left adjoint is no longer
Set. But we can even say something stronger: the left adjoint does not even commute
with the global sections functors Asm(A)/I → Set and Set/|I| → Set. This situation,
where the left adjoint of the adjunction is not the global sections functor, is typical of
relative realizability (see also [Fre14], Corollary 4.11.7(i)). This suggests that we should
allow for some kind of relative PCA.

A class of PCA-like structures satisfying both these desiderata was described by
W. Ste- kelenburg in his PhD thesis [Ste13]. Stekelenburg considers an even more general
notion of relative realizability than the one described above, where certain (nonempty)
subsets of A are declared to be ‘realizing sets’. In this setting, an operation counts as
computable if there is a realizing set, all whose elements compute this operation. This
more general notion is crucial for removing the difficulty surrounding the projective ter-
minal object mentioned above, as we will explain in Section 5 below. Here we will see
that, in order to define the ‘underlying’ PCA of a slice category Asm(A)/I, we need to
declare the existence predicate EI of I (to be defined in Section 2) to be a realizing set.
Such a construction would not be available if we work with relative PCAs in the more
classical sense, i.e., where the relativity is given by a subset (or more generally, subobject)
of A. A very simple instance of this phenemenon can be found in Example 5.12.

We explain the relevant notions from [Ste13] in Section 2 below, where we shall simply
use ‘PCA’ to refer to the generalized notion of a PCA. We shall use ‘classical (relative)
PCA’ to refer to the notion defined in Definition 1.1. Stekelenburg also defined a notion of
morphism between PCAs over a given base category, which generalizes a notion formulated
by Longley ([Lon94]). In Section 3, we define such a notion for PCAs over different base
categories, making PCAs the objects of a 2-category. We investigate the interaction of
this 2-category with the construction Asm in Section 4. Then, in Section 5, we present an
explicit description of the slice of a category of assemblies, and we use this description to
calculate a number of examples of slices. Finally, we discuss the notion of computational
density (see [HvO03]) in the present setup, in Section 6.

Since we will be working with 2-categories, a few comments on terminology are in
order. In general, the prefix ‘2-’ will signify that we discuss a notion enriched over cat-
egories. Thus, a 2-category has a strictly associative and unital composition of 1-cells,
and a 2-functor strictly preserves the identity 1-cells and the composition of 1-cells. A
2-(co)product is a (co)product whose universal property is expressed by an isomorphism
of categories. We use the term ‘pseudo(co)product’, on the other hand, for a (co)product
with a universal property expressed by an equivalence of categories, rather than an iso-
morphism.

We also mention that, even though we replace the category of sets by a more general
category, we still presuppose some ambient set theory to work in. In particular, we suppose
we have a notion of ‘small’.

Finally, I wish to thank my PhD supervisor Jaap van Oosten, with whom I have
had many constructive conversations on the topics discussed here, and who has provided
countless valuable comments on earlier draft versions of this paper. Furthermore, I thank
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the attendees of CT2019 with whom I have had fruitful discussions about this paper, and
the anonymous referee for their comments on the final draft.

2. PCAs and assemblies

In this section, we introduce our main object of study: relative partial combinatory
algebras constructed over a regular category. Many of the definitions provided in this
section can also be found in some form in [Ste13]. We deviate in one important respect
from [Ste13], because all our base categories will be regular categories, rather than Heyting
categories. This also requires adjusting certain definitions from [Ste13] so that they work
for this more general context.

Throughout this section, we will work with a fixed locally small regular category C.
Such a category soundly interprets (typed) regular logic, that is, the logic of =, >, ∧
and ∃. If ϕ(x1, . . . , xn) is a regular formula and xi is of type Xi, then we denote its
interpretation in C by

{(x1, . . . , xn) ∈ X1 × · · · ×Xn | ϕ(x1, . . . , xn)} ⊆ X1 × · · · ×Xn.

(Here we do not require that all the variables x1, . . . , xn actually occur free in ϕ.) A regular
sequent is an expression of the form ϕ `Γ ψ, where Γ is a context of typed variables and
ϕ and ψ are regular formulas whose free variables are among Γ. If Γ = x1, . . . , xn and xi
is of type Xi, then such a sequent is valid in C if

{(x1, . . . , xn) ∈ X1 × · · · ×Xn | ϕ} ⊆ {(x1, . . . , xn) ∈ X1 × · · · ×Xn | ψ}.

In this case, we write ϕ |=Γ ψ, or C : ϕ |=Γ ψ if we need to clarify in which category we
are working.

As is customary when working with an internal logic, we will freely use subobjects
and arrows of C as relation resp. function symbols of our language. We will frequently,
and usually implicitly, employ the soundness of the interpretation to derive that certain
regular sequents are valid in C given that others are. If we give such a soundness argument
explicitly, we will signal this to the reader by writing ‘reason inside C’.

We start by defining the suitable generalization of a partial applicative structure.

2.1. Definition. A partial applicative structure over C (PAS) is an inhabited object A
of C equipped with a partial binary map A × A ⇀ A, called application. Explicitly, the
application map is given by a subobject D ⊆ A× A and an arrow D → A : (a, b) 7→ a · b.

We write a · b ↓ for the formula D(a, b). When no confusion can arise, we will just
write ab instead of a · b. In general, application maps will not be associative. In order
to avoid an unmanageable number of brackets, we adopt the convention the application
associates to the left, that is, we write abc as an abbreviation of (ab)c.

In order to define combinatorial completeness for PASs, we first need to introduce
terms. Suppose that a countable stock of distinct variables is given; we shall use x, y, z
to range over variables.
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2.2. Definition. The set of terms is defined recursively by:

(i) every variable is a term;

(ii) if s and t are terms, then (s · t) is a term as well.

The conventions for application also apply to terms. That is, we omit · and brackets
whenever possible, subject to the stipulation that rst abbreviates (rs)t. Every term
t = t(x0, . . . , xn), where n ≥ 0, determines a partial map An+1 ⇀ A in the obvious
way, and we denote this map by λ~x.t. The domain of λ~x.t can be expressed by a regular
formula involving D and the application map. We abbreviate this formula by t(~a)↓, where
~a : An+1. For example, abc↓ may be expressed as D(a, b)∧D(ab, c). One may object that
the function symbol for application is a unary function symbol with domain D, rather
than a binary function symbol taking inputs from A. We can circumvent this difficulty by
expressing the application map by a tertiary single-valued relation symbol onA, expressing
‘ab = c’. The formula abc↓ may then be rendered as ∃w : A(ab = w∧D(w, c)). Likewise,
if t(~a)↓, then we will freely use the expression t(~a) in our formulas. E.g., we may write
abc ↓ ∧ ϕ(abc), which should really be read as ∃v, w : A(ab = w ∧ wc = v ∧ ϕ(v)).
Other solutions may also be employed; in particular, it is possible to treat formulas
involving the application without using existential quantification at all, therefore staying
within the realm of cartesian logic. However, we will need existential quantification in
the remainder of the paper anyway, e.g. to define the application map on subobjects of A
(Definition 2.3(i)) and to define the composition of applicative morphisms (Definition 3.1).

2.3. Definition. Let A be a PAS.

(i) We write P∗A for the set of inhabited subobjects of A, that is, the set of subobjects
U ⊆ A such that |= ∃x : A(U(x)), or equivalently, U → 1 is regular epi.

(ii) (Cf. [Ste13], Definition 1.2.4.) Let t(~x, y) be a term. We say that U ∈ P∗A realizes
λ~x.t if:

– U(r) |=r,~a:A r~a↓, and

– t(~a, b)↓ ∧ U(r) |=r,~a,b:A r~ab↓ ∧ r~ab = t(~a, b).

(Here the tuple ~a has the same length as ~x.)

2.4. Definition. (Cf. [Ste13], Definition 1.3.14.) Let A be a PAS.

(i) We make P∗A into a PAS over Set in the following way. For U, V ∈ P∗A, we say
that UV ↓ if U × V ⊆ D. In this case, UV is the image of U × V ⊆ D → A, which
is again an element of P∗A.

(ii) A filter φ on A is a subset of P∗A satisfying the following two conditions:

– φ is upwards closed, i.e., if U ⊆ V and U ∈ φ, then V ∈ φ;
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– φ is closed under application, i.e., if U, V ∈ φ and UV ↓, then UV ∈ φ.

(iii) A set G ⊆ P∗A is called combinatorially complete if, for every term t(~x), there
exists a U ∈ G realizing λ~x.t.

(iv) If φ is a combinatorially complete filter on A, then (A, φ) is called a (relative) partial
combinatory algebra over C (PCA).

2.5. Definition. The set P∗A is always a filter, and it is clearly the largest possible filter.
We call this filter the maximal filter on A. If this filter is combinatorially complete, we
say that A is an absolute PCA.

2.6. Definition. (Cf. [Ste13], Definition 2.4.1.) More generally, we may select a privi-
leged set C consisting of global sections of A that is closed under application: if a, b ∈ C
and ab↓, then ab ∈ C. Then

φC = {U ⊆ A | ∃a ∈ C (a ⊆ U)}

is a filter, called the filter generated by C. We say that such a filter is generated by
singletons. This filter is combinatorially complete if and only if for every term t(~x), there
is an element from C that realizes λ~x.t. We also write (A,C) instead of (A, φC).

2.7. Example. Suppose that C = Set, so that a PAS is just a set A equipped with a
binary partial function. Then the maximal filter is combinatorially complete if and only
if A is a classical PCA. If C ⊆ A is a set of elements of A that is closed under application,
then the filter generated by C is combinatorially complete if and only if (A,C) is a classical
relative PCA.

In order to work with realizing sets efficiently, we generalize the notation of Defini-
tion 2.3.

2.8. Definition. Let A be a PAS, let t(y0, . . . , ym−1, x0, . . . , xn) be a term, and let ~U =

U0, . . . , Um−1 be from P∗A. If V ∈ P∗A, then we say that V realizes λ~x.t(~U, ~x) if there

exists a W realizing λ~y~x.t such that V ⊆ W ~U .

2.9. Remark. This notation will occasionally create a slight ambiguity. For example,
if we say that V realizes λx.UU , then this might arise from either t(y, x) = yy or from
t(y, z, x) = yz. Therefore, we also adopt the following convention: if we write a subobject
U of A more than once in a term, then we assume we have substituted all these occurrences
for the same variable, that is, we go with the first option. This is only for the sake of
definiteness; in practice it does not matter which option one uses, except for the fact that
the first option introduces fewer variables.

With Definition 2.8, we have the following generalization of combinatorial complete-
ness: if t(~y, ~x) is a term, where the tuple ~x is nonempty, and ~U ∈ φ, then there exists a

V ∈ φ realizing λ~x.t(~U, ~x). Indeed, we may first take a W ∈ φ realizing λ~y~x.t itself, and

then set V = W ~U . We also note the following important property of realizing sets: if V
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realizes λ~x.t(~U, ~x) and ~W is a tuple of inhabited subobjects from A such that t(~U, ~W )↓,
then V ~W is defined as well, and it is a subobject of t(~U, ~W ).

In the usual way, we have the following result.

2.10. Lemma. Let A be a PAS and let φ be a filter on A. Then (A, φ) is a PCA if and
only if φ contains sets K and S realizing λxy.x and λxyz.xz(yz) respectively.

We will also need a few other common combinators that may be found in φ: an identity
combinator I realizing λx.x, a combinator K realizing λxy.y, and pairing and unpairing
combinators P,P0 and P1 realizing λxyz.zxy, λx.xK and λx.xK respectively. For any
choice of these pairing and unpairing combinators, we have:

P(p) |=p,a,b:A pab↓,
P(p) ∧ P0(p0) |=p,p0,a,b:A p0(pab) = a, and

P(p) ∧ P1(p1) |=p,p1,a,b:A p1(pab) = b

We will assume that, whenever we work with a PCA, we have made some choice of the
combinators above in the filter φ.

In Definition 2.6, we used the idea of generating a filter by a certain subset of P∗A.
We can generalize this as follows.

2.11. Proposition. (Cf. [Ste13], Example 1.3.20.) If A is a PAS and G ⊆ P∗A, then
there exists a least filter 〈G〉 extending G, given by

〈G〉 = {V ∈ P∗A | ∃ term t(~x)∃~U ∈ G(t(~U)↓ ∧ t(~U) ⊆ V )}. (1)

Proof. The existence of 〈G〉 is obvious from the definition of a filter and the fact that
P∗A itself is always a filter. Therefore, it remains to prove (1). First of all, we show that
the right-hand side of (1) is indeed a filter containing G. Upwards closure is obvious, so

suppose we have V, V ′ ∈ P∗A, terms t(~x), t′(~x′), and ~U, ~U ′ ∈ G such that t(~U)↓, t′(~U ′)↓,
t(~U) ⊆ V , t′(~U ′) ⊆ V ′ and V V ′ ↓. Define the term s(~x, ~x′) as t(~x) · t′(~x′). Since V V ′ ↓,
we see that s(~U, ~U ′) = t(~U) · t′(~U ′) denotes as well, and is a subobject of V V ′, as desired.
Finally, it is clear that the right-hand side of (1) contains G.

Now suppose that φ is any filter extending G. Since φ is closed under application, it
must contain t(~U) whenever ~U ∈ G and t(~U) ↓. Since φ is also upwards closed, it must
contain the entire right-hand side of (1), which completes the proof.

Clearly, if G ⊆ P∗A is combinatorially complete, then (A, 〈G〉) is a PCA.

2.12. Example. If C is a set of global sections of A that is closed under application (see
Definition 2.6), then 〈C〉 = φC .

As in the case of Set, we have a category of assemblies, which we define now.



1914 JETZE ZOETHOUT

2.13. Definition. Let (A, φ) be a PCA.

(i) An assembly X over (A, φ) is a pair (|X|, EX), where |X| is an object of C and
EX is a total relation between |X| and A. More explicitly, EX is a subobject of
|X|×A such that |=x:|X| ∃a : A(EX(x, a)), or equivalently, the projection EX → |X|
is regular epi.

(ii) Let X and Y be assemblies. A morphism of assemblies X → Y is an arrow f : |X| →
|Y | for which there exists a U ∈ φ such that

EX(x, a) ∧ U(r) |=x:|X|;r,a:A ra↓ ∧ EY (f(x), ra)

holds. We say that such a U tracks f : X → Y .

2.14. Proposition. Assemblies over a PCA (A, φ) and morphisms between them form
a category Asm(A, φ), and there exists a pair of functors

C Asm(A, φ)
∇

Γ

with Γ a ∇.

Proof. If X is an assembly, then I tracks id|X| as a morphism X → X. Now let X
f−→

Y
g−→ Z be morphisms, tracked by U and V from φ respectively, and pick a W ∈ φ

realizing λx.V (Ux). We claim that W tracks gf : X → Z. To this end, select a W ′

realizing λyzx.z(yx) such that W ⊆ W ′UV . We reason internally in C: suppose we
have x ∈ |X| and r, a ∈ A such that EX(r, a) and W (r). Then there exist r′, s, t ∈ A
such that W ′(r′), U(s), V (t) and r = r′st. From EX(x, a) and U(s), we can conclude
that sa ↓ and EY (f(x), sa). From the latter and V (t), we can conclude that t(sa) ↓ and
EZ(g(f(x)), t(sa)). Since W ′(r′), we have that ra = r′sta is defined and equal to t(sa),
so EZ(g(f(x)), ra), as desired.

If Y is an object of C, then we define ∇Y by |∇Y | = Y and E∇Y = Y × A. This
is always an assembly because A is inhabited. Moreover, an arrow f : Y → Y ′ of C is
always a morphism ∇Y → ∇Y ′, since it is tracked by I, so this extends to a functor
∇ : C → Asm(A, φ).

Similarly, if X is an assembly and Y is an object of C, then any arrow f : |X| → Y
is automatically a morphism X → ∇Y , since it is always tracked by I. This shows that
Γ a ∇.

2.15. Remark. The proof above that gf is a morphism proceeded as follows: first, we
constructed the desired tracker W ∈ φ by mimicking the usual construction of this tracker
in the case of classical PCAs. Then we unpacked all the definitions, and finally, we gave
an internal argument that this is indeed a tracker, and this argument parallels the usual
argument for classical PCAs. In the sequel, we will usually only show how to construct a
desired element of φ, leaving the unpacking of the definitions and the internal reasoning
needed to verify that this element meets the appropriate conditions to the reader.
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2.16. Example. If (A,C) is a classical relative PCA, then Asm(A,C) as defined above
coincides with the familiar category of assemblies for (A,C).

Proposition 2.14 implies in particular that∇1 is the terminal object of Asm(A, φ). The
notation Γ comes from the fact that, as we mentioned in the Introduction, in the case of a
classical absolute PCA over Set, this Γ is the global sections functor. For classical relative
PCAs, this is no longer true. In fact, we can use global sections to determine whether a
given PCA is absolute.

2.17. Proposition. A PCA (A, φ) is absolute if and only if Γ commutes (up to isomor-
phism) with the global sections functors Asm(A, φ)→ Set and C → Set.

Proof. Since Γ is faithful, it commutes with the global sections functors if and only if, for
every assembly X, any global section of |X| is also a global section of X. First, suppose
that (A, φ) is absolute and that x : 1 → |X| is a global section. Then U := {a ∈ A |
EX(x, a)} is inhabited, so it belongs to φ. Since KU tracks x : 1→ X, it follows that x is
also a global section of X.

Conversely, suppose that (A, φ) is not absolute. Then there exists an inhabited sub-
object U of A that does not belong to φ. Define the assembly X by |X| = 1 and
EX = U ⊆ A ' 1×A; this is indeed an assembly since U is inhabited. Moreover, |X| = 1
has the global section ! : 1→ 1. If ! were also a morphism 1→ X tracked by V , then we
would have VA ↓ and VA ⊆ U . Since φ is nonempty (it must contain K) and upwards
closed, it always contains A itself. This means that VA ∈ φ, but U 6∈ φ, which contradicts
the upwards closure of φ.

3. Applicative morphisms and transformations

In [Ste13], Stekelenburg generalizes Longley’s definition of applicative morphisms between
classical PCAs ([Lon94], Definition 2.1.1) to applicative morphisms between PCAs con-
structed over a certain (Heyting) category C. The goal of this section will be to generalize
this to PCAs constructed over possibly different regular categories. As a preliminary to
this, we again fix a regular category C, and we define the category of PCAs over C.

As usual, a relation between two objects A and B of C is a subobject f ⊆ A × B.
These may be composed: if f ⊆ A×B and g ⊆ B ×C, then we define their composition
gf ⊆ A× C as

{(a, c) ∈ A× C | ∃b : B (f(a, b) ∧ g(b, c))}.
This composition is associative and for each object A, we have the diagonal relation
δA ⊆ A× A, which acts as an identity.

3.1. Definition. (Cf. [Ste13], Definition 2.3.20.) Let (B,ψ) be a PCA and let A be an
object of C.

(i) If f, f ′ ⊆ A×B, then we say that f ≤ f ′ if there exists a U ∈ φ such that

f(a, b) ∧ U(r) |=a:A;r,b:B rb↓ ∧ f ′(a, rb).
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We say that such a U realizes the inequality f ≤ f ′.

(ii) Suppose that A is equipped with a partial applicative structure. A relation f ⊆ A×B
is an applicative premorphism A→ (B,ψ) if:

(a) f is total, i.e., |=a:A ∃b : B (f(a, b));

(b) there exists a U ∈ ψ such that

f(a, b) ∧ f(a′, b) ∧ aa′ ↓ ∧ U(r) |=a,a′:A;r,b,b′:B rbb
′ ↓ ∧f(aa′, rbb′).

A set U as in item (b) is said to track the applicative premorphism f : A→ (B,ψ).

(iii) Suppose that (A, φ) is a PCA. We say that a relation f ⊆ A× B is an applicative
premorphism (A, φ) → (B,ψ) if it is one A → (B,ψ). The relation f is called an
applicative morphism if it is an applicative premorphism, and moreover:

(c) if U ∈ φ, then f(U) := {b ∈ B | ∃a : A(U(a) ∧ f(a, b))} ∈ ψ.

Applicative premorphisms between PCAs are not particularly well-behaved; for ex-
ample, they do not form a category. If we restrict to applicative morphisms, on the
other hand, we do get a well-behaved category (see also [Ste13], p. 69). We prove this as
part of the next proposition, which explains the compatibility between the notions from
Definition 3.1 and composition.

3.2. Proposition. Let (B,ψ) be a PCA, let A be an object of C.

(i) ≤ is a preorder on the set of relations between A and B.

Now let f, f ′ ⊆ A×B such that f ≤ f ′.

(ii) If g : (B,ψ)→ (C, χ) is an applicative morphism, then gf ≤ gf ′.

(iii) If g ⊆ C × A is any relation, then fg ≤ f ′g.

Now suppose that A is a PAS and that f is an applicative premorphism A→ (B,ψ).

(iv) If g : (B,ψ)→ (C, χ) is an applicative morphism, then gf is an applicative premor-
phism A→ (C, χ).

Finally, suppose that (A, φ) is a PCA and that f : (A, φ) → (B,ψ) is an applicative
morphism.

(v) If g : (B,ψ) → (C, χ) is an applicative morphism, then gf is an applicative mor-
phism (A, φ)→ (C, χ).

In particular, PCAs over C and applicative morphisms form a preorder-enriched category,
which we denote by PCAC.
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Proof. If f ⊆ A×B, then I always realizes f ≤ f . Now suppose we have f, f ′, f ′′ ⊆ A×B
such that f ≤ f ′ ≤ f ′′, and say that U, V ∈ ψ realize f ≤ f ′ and f ′ ≤ f ′′ respectively.
Then any realizer of λx.V (Ux) also realizes f ≤ f ′′, as desired.

For statement (ii), let U ∈ ψ realize f ≤ f ′ and let V ∈ χ track g. Then g(U) ∈ χ,
and any realizer of λx.V (g(U) · x) also realizes gf ≤ gf ′.

For statement (iii), we simply observe that every realizer of f ≤ f ′ also realizes
fg ≤ f ′g.

For statement (iv), it is easy to check that gf satisfies requirement (a). For requirement
(b), let U ∈ ψ track f and let V ∈ χ track g. Then any realizer of λxy.V (V · g(U) · x)y
tracks gf .

For statement (v), we observe that (gf)(U) = g(f(U)) for every U ⊆ A, so requirement
(c) follows.

For the final claim, it suffices to show that, if (A, φ) is a PCA, then the identity relation
δA is always an applicative morphism. Requirement (a) is clear. For requirement (b), we
observe that I always tracks δA, and for requirement (c), we use that δA(U) = U for every
U ⊆ A. This completes the proof.

The following proposition simplifies the definition of an applicative morphism if we
work with generated filters.

3.3. Proposition. Suppose that A is a PAS, that G ⊆ P∗A is combinatorially complete,
that (B,ψ) is a PCA and that f : A → (B,ψ) is an applicative premorphism. Then f is
an applicative morphism (A, 〈G〉)→ (B,ψ) if and only if it satisfies:

(c’) if U ∈ G, then f(U) ∈ ψ.

Proof. Since G ⊆ 〈G〉, any applicative morphism must satisfy (c’).
For the converse, suppose that (c’) holds. Define

f−1(ψ) := {U ⊆ A | f(U) ∈ ψ}.

We claim that f−1(ψ) is a filter on A. First of all, since every element of ψ is inhabited,
every element of f−1(ψ) must be inhabited as well. If U ∈ f−1(ψ) and U ⊆ V , then we
see that f(U) ⊆ f(V ). Since f(U) ∈ ψ, it follows that f(V ) ∈ ψ as well, so V ∈ f−1(ψ).
Finally, suppose that U,U ′ ∈ f−1(ψ) and UU ′ ↓. If W ∈ ψ tracks f , then W · f(U) · f(U ′)
is defined and a subobject of f(UU ′). But we know that W, f(U), f(U ′) ∈ ψ, so since ψ
is a filter, we can conclude that f(UU ′) ∈ ψ as well, as desired.

Requirement (c’) means that G ⊆ f−1(ψ). By what we have just shown, it follows
that 〈G〉 ⊆ f−1(ψ), which means that f : (A, 〈G〉)→ (B,ψ) satisfies requirement (c).

We investigate some of the structure of PCAC; this generalizes known properties of the
category PCA.

3.4. Proposition. For a regular category C, the category PCAC has a pseudozero object.
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Proof. First of all, consider the terminal object 1 ∈ C, equipped with the total applica-
tion map 1 × 1 → 1 and the maximal filter {1}. This is a PCA, since 1 realizes λ~x.t for
every term t(~x). Suppose that (A, φ) is an object of PCAC. If f ⊆ A ' A × 1, then f
always satisfies requirement (b) for an applicative morphism (A, φ) → 1, and it satisfies
requirement (a) if and only if f = A. In this case, (c) is also satisfied, since every element
of φ is inhabited. This shows that 1 is in fact a 1-terminal object, which automatically
makes it a pseudoterminal object.

On the other hand, f ⊆ A ' 1×A always satisfies requirement (b) for an applicative
morphism 1 → (A, φ), and it satisfies requirement (c) if and only if f ∈ φ. In this case,
requirement (a) is also satisfied, again since every element of φ is inhabited. Moreover,
it is easily seen that all these possible f are isomorphic, so 1 is a pseudoinitial object in
PCAC.

This means that PCAC also has zero morphisms. In fact, the zero morphism (A, φ)→
(B,ψ) is the top element of PCAC((A, φ), (B,ψ)), which we can represent by A × B
itself. Moreover, f : (A, φ) → (B,ψ) is a zero morphism if and only if A × U ⊆ f for
some U ∈ ψ. Intuitively, we can view this as the applicative morphism that carries no
information: every element of A is represented by the same realizing subset of B.

3.5. Proposition. The category PCAC has finite pseudocoproducts.

Proof. We have already seen that PCAC has a pseudoinitial object, so consider two PCAs
(A, φ) and (B,ψ). We equip their product A×B in C with the coordinatewise application
map, that is, we have DA×B(a, b, a′, b′) if and only if DA(a, a′)∧DB(b, b′), and in this case,
(a, b) · (a′, b′) = (aa′, bb′). Define φ×ψ = {U ×V ⊆ A×B | U ∈ φ, V ∈ ψ} ⊆ P∗(A×B).
If t(~x) is a term and U ∈ φ and V ∈ ψ realize λ~x.t with respect to A and B respectively,
then U ×V realizes λ~x.t with respect to A×B. This shows that φ×ψ is combinatorially
complete, so (A × B, 〈φ × ψ〉) is a PCA. We claim that this is the pseudocoproduct of
(A, φ) and (B,ψ).

First of all, we have an applicative morphism κ0 : (A, φ)→ (A× B, 〈φ× ψ〉), defined
by κ0 = {(a, a′, b) ∈ A × (A × B) | a = a′}. Requirements (a) and (c) are obviously
satisfied, and we observe that I× K tracks κ0, so requirement (b) is satisfied as well. We
define κ1 : (B,ψ)→ (A×B, 〈φ× ψ〉) analogously.

Now suppose that applicative morphisms f : (A, φ) → (C, χ) and g : (B,ψ) → (C, χ)
are given. We define [f, g] : (A×B, 〈φ× ψ〉)→ (C, χ) as

{(a, b, c) ∈ (A×B)× C | ∃p, c′, c′′ : C (P(p) ∧ f(a, c′) ∧ g(b, c′′) ∧ pc′c′′ = c)}.

Requirement (a) is clearly satisfied. For requirement (b), if U, V ∈ χ track f and g
respectively, then any realizer of

λxy.P(U(P0x)(P0y))(V (P1x)(P1y))

tracks [f, g]. If U ∈ φ and V ∈ ψ are arbitrary, then [f, g](U × V ) = Pf(U)g(V ) ∈ χ, so
by Proposition 3.3, requirement (c) is satisfied as well.
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Furthermore, we have that P0 realizes [f, g] ◦ κ0 ≤ f , whereas any realizer of λx.P · x ·
g(B) realizes f ≤ [f, g] ◦ κ0. This means that [f, g] ◦ κ0 ' f , and similarly, we prove that
[f, g] ◦ κ1 ' g.

Now suppose that we have applicative morphisms h, k : (A×B, 〈φ×ψ〉)→ (C, χ) such
that hκ0 ≤ kκ0 and hκ1 ≤ kκ1. Let U ∈ χ be a tracker of k, and let V,W ∈ χ realize
hκ0 ≤ kκ0 and hκ1 ≤ kκ1 respectively. Then any realizer of

λx.U(U · k(K× K) · (V x))(Wx)

realizes the inequality h ≤ k, which finishes the proof.

3.6. Remark. One may wonder whether (A × B, 〈φ × ψ〉) is also the product of (A, φ)
and (B,ψ). It turns out that this is only true in a weak sense. We can define a projection
map π0 : (A× B, 〈φ× ψ〉)→ (A, φ) by π0 = {(a, b, a′) ∈ (A× B)× A | a = a′}; define π1

similarly. If f : (C, χ) → (A, φ) and g : (C, χ) → (B,ψ) are applicative morphisms, then
we get a new morphism 〈f, g〉 : (C, χ)→ (A×B, 〈φ× ψ〉), defined by

〈f, g〉 = {(c, a, b) ∈ C × (A×B) | f(c, a) ∧ g(c, b)}.

This morphism satisfies π0◦〈f, g〉 ' f and π1◦〈f, g〉 ' g (we even have equality here), but
it is not necessarily essentially unique with this property. If h : (C, χ)→ (A×B, 〈φ×ψ〉)
satisfies π0h ' f and π1h ' g (or even with equality), then we can only guarantee that
h ≤ 〈f, g〉, but not that 〈f, g〉 ≤ h.

Later, we shall pass to a larger category PCA, in which we can form finite products,
and even all small products).

We now proceed to consider PCAs constructed over different regular categories. In
the following, C,D and E will always denote regular categories.

In order to move between two regular categories C and D, we consider regular functors
p : C → D. These functors preserve the interpretation of regular formulas, and as a result,
they preserve the validity of regular sequents.

If A is a PAS over C and G ⊆ P∗A, then we write p(G) = {p(U) | U ∈ G}, which is a
subset of P∗(p(A)), since p preserves inhabited objects.

3.7. Proposition. Let p : C → D be a regular functor, let A be a PAS over C, and let
G ⊆ P∗A. Then:

(i) p(A) is a PAS over D;

(ii) 〈p(〈G〉)〉 = 〈p(G)〉;

(iii) if G is combinatorially complete, then so is p(G);

(iv) if (A, φ) is a PCA over C, then (p(A), 〈p(φ)〉) is a PCA over D.
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Proof. (i) Since p is left exact, the object p(A) inherits a partial applicative structure
from A in the obvious way. Explicitly, its domain is p(D) ⊆ p(A)×p(A), and the required
map p(D)→ p(A) is the image of the application map D → A under p.

(ii) First of all, we observe that p(G) ⊆ p(〈G〉) ⊆ 〈p(〈G〉)〉, which implies 〈p(G)〉 ⊆
〈p(〈G〉)〉. For the converse, suppose that we have an element V ∈ p(〈G〉). This means

that there exist a V ′ ⊆ A, a term t(x0, . . . , xn) and U0, . . . , Un ∈ G such that t(~U)↓,
t(~U) ⊆ V ′ and p(V ′) = V . Now we observe that t(p(U0), . . . , p(Un)) also denotes, and

t(p(U0), . . . , p(Un)) = p(t(U0, . . . , Un)) ⊆ p(V ′) = V.

Since p(Ui) ∈ p(G) for each i, this yields that V ∈ 〈p(G)〉. We conclude that p(〈G〉) ⊆
〈p(G)〉, hence also 〈p(〈G〉)〉 ⊆ 〈p(G)〉.

(iii) Let t(~x) be a term, and suppose that U ∈ G realizes λ~x.t w.r.t. A. Since p
preserves apoplication and the validity of regular sequents, it follows that p(U) ∈ p(G)
realizes λ~x.t w.r.t. p(A), as desired.

(iv) now follows immediately from (iii).

3.8. Remark. In the proof above, we used the following fact: if U, V ∈ P∗A satisfy
UV ↓, then p(U) · p(V ) is defined as well, and equal to p(UV ). The converse does not
hold, i.e., we can have that p(U) · p(V )↓ without UV being defined. To see this, consider
for example the unique functor p : C → 1.

For a PCA (A, φ) over C and a regular functor p : C → D, we shall denote the PCA
(p(A), 〈p(φ)〉) by p∗(A, φ). Our next goal is to define p∗ on applicative morphisms.

3.9. Proposition. Let p : C → D be a regular functor, let A be an object of C, let (B,ψ)
be a PCA over C, and let f, f ′ ⊆ A×B.

(i) If f ≤ f ′, then p(f) ≤ p(f ′). (Here we see p(f) and p(f ′) as relations between p(A)
and p(B), the latter being the underlying object of p∗(B,ψ).)

(ii) If A is a PAS and f : A → (B,ψ) is an applicative premorphism, then p(f) is an
applicative premorphism p(A)→ p∗(B,ψ).

(iii) If (A, φ) is a PCA and f : (A, φ)→ (B,ψ) is an applicative morphism, then p(f) is
an applicative morphism p∗(A, φ)→ p∗(B,ψ).

Proof. (i) Since p preserves application and regular sequents, we have that p(U) realizes
p(f) ≤ p(f ′) whenever U ∈ φ realizes f ≤ f ′.

(ii) Requirement (a) follows since p preserves total relations. For requirement (b), we
again use the fact that p preserves regular sequents to see that: if U ∈ φ tracks f , then
p(U) tracks p(f).

(iii) Suppose that U ⊆ A. Since p preserves regular logic, we have that p(f(U)) =
p(f)(p(U)). Therefore, if U ∈ φ, then f(U) ∈ ψ, so p(f)(p(U)) = p(f(U)) ∈ p(ψ) ⊆
〈p(ψ)〉. By Proposition 3.3, p(f) also satisfies requirement (c).
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If f : (A, φ) → (B,ψ) is an arrow of PCAC, then we write p∗f for the applicative
morphism p(f) : p∗(A, φ)→ p∗(B,ψ).

3.10. Theorem. If p : C → D is a regular functor, then p∗ is a preorder-enriched functor
PCAC → PCAD. Moreover, the construction p 7→ p∗ is functorial.

Proof. Since p is left exact, we have that p(δA) = δp(A) for every object A of C. Moreover,
if f ⊆ A × B and g ⊆ B × C, then p(gf) = p(g) ◦ p(f) since p preserves regular logic.
Together with Proposition 3.9, this implies that p∗ is a preorder-enriched functor.

It is clear that id∗C = idPCAC . Now suppose that we have regular functors C p−→ D q−→ E
and a PCA (A, φ) over C. The partial applicative structures q(p(A)) and (qp)(A) clearly
coincide. Moreover, by Proposition 3.7(ii), we have

〈q(〈p(φ)〉)〉 = 〈q(p(φ))〉 = 〈(qp)(φ)〉,

so q∗(p∗(A, φ)) = (qp)∗(A, φ). Finally, if f is an arrow of PCAC, then q∗(p∗(f)) and
(qp)∗(f) are clearly the same relation, which completes the proof.

Let REG denote the category of locally small regular categories and regular functors.
We may, of course, consider this as a 2-category, the 2-cells being natural transformations
between regular functors. One might wonder whether (−)∗ can be extended to a 2-functor
from regular categories into (preorder-enriched) categories. This does not seem to be the
case, but we can get a partial result, which suffices for our purposes.

Suppose that p, q : C → D are regular functors and that µ : p ⇒ q is a natural trans-
formation. If (A, φ) is a PCA over C, then µA is an arrow p(A)→ q(A). We can also view
that arrow as its graph, which is the (single-valued) relation

{(a, b) ∈ p(A)× q(A) | µA(a) = b},

that we denote by µA.

3.11. Proposition. Let p, q : C → D be regular functors and let µ : p ⇒ q be a natural
transformation.

(i) If (A, φ) is a PCA over C, then µA is an applicative premorphism p∗(A, φ) →
q∗(A, φ).

(ii) If f : (A, φ)→ (B,ψ) is an applicative morphism, then µB ◦ p(f) ≤ q(f) ◦ µA.

(iii) If µ is an isomorphism, then µ∗(A,φ) := µA yields a natural isomorphism µ∗ : p∗ ⇒ q∗.

Proof. (i) Requirement (a) clearly holds. By applying the naturality of µ to the inclusion
D ⊆ A× A and the application map D → A, we can see that

ab↓ |=a,b:p(A) µA(a) · µA(b)↓ ∧ µA(a) · µA(b) = µA(ab).

This means that I tracks µA, so requirement (b) is satisfied as well.
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(ii) By applying the naturality of µ to the inclusion f ⊆ A×B, we see that

p(f)(a, b) |=a:p(A);b:p(B) q(f)(µA(a), µB(b)).

This implies that µB ◦ p(f) ⊆ q(f) ◦ µA, so in particular, we have µB ◦ p(f) ≤ q(f) ◦ µA.
(iii) First of all, if U ∈ φ, then the naturality square for the inclusion U ⊆ A tells

us that µA(p(U)) = q(U) ∈ q(φ) ⊆ 〈q(φ)〉. By Proposition 3.3, µA is an applicative
morphism p∗(A, φ) → q∗(A, φ). Moreover, this morphism is clearly invertible, its inverse

being µ−1
A .

If f : (A, φ) → (B,ψ) is an applicative morphism, then we already know that µB ◦
p(f) ⊆ q(f) ◦ µA. For the converse inclusion, reason inside D and let a ∈ p(A) and
b ∈ q(B) such that (q(f) ◦ µA)(a, b), i.e., q(f)(µA(a), b). Then there exists a b′ ∈ p(B)
such that µB(b′) = b. The naturality diagram for the inclusion f ⊆ A × B now allows
us to conclude that p(f)(a, b′). Together with µB(b′) = b, this yields (µB ◦ p(f))(a, b), as
desired.

3.12. Remark. The relation µA does not, in general, seem to be an applicative morphism.
If U ⊆ A, then the naturality of µ only guarantees that µA(p(U)) ⊆ q(U), but not that
equality holds. So it could be possible that µA sends an element of p(φ) to a subobject
of q(A) that is too small to be in 〈q(φ)〉. As part (iii) of the previous proposition tells us,
this problem cannot occur when µ is an isomorphism.

At this point, we have enough data to perform a Grothendieck construction to obtain
a category PCA together with a forgetful functor PCA → REG whose fiber above C is
exactly PCAC.

3.13. Definition. The 2-category PCA is defined as follows.

(i) The objects are triples (C, A, φ), where (A, φ) is a PCA over the regular category C.
We will usually just write (A, φ) instead of (C, A, φ).

(ii) If (A, φ) and (B,ψ) are PCAs over C and D respectively, then an arrow (A, φ) →
(B,ψ) is a pair (p, f), where p : C → D is a regular functor and f : p∗(A, φ)→ (B,ψ)
is an applicative morphism;

(iii) A 2-cell (p, f)⇒ (q, g) is a natural transformation µ : p⇒ q such that f ≤ g ◦ µA.

An arrow of PCA is also called an applicative morphism, whereas a 2-cell is called an
applicative transformation.

Convention: when writing (A, φ) instead of (C, A, φ), we drop the reference to the
underlying regular category C of (A, φ). For example, we write that (p, f) : (A, φ)→ (B,ψ)
is an applicative morphism, thereby understanding that p is a regular functor between the
underlying regular categories of (A, φ) and (B,ψ). We will only specify the underlying
category when necessary, i.e., when it plays a role in the argument.

As usual, we identify an arrow f of PCAC with the arrow (idC, f) of PCA. In par-
ticular, every applicative morphism in the sense of Definition 3.1 is also an applicative
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morphism in the sense of Definition 3.13. Concerning item (iii), since the applicative pre-
morphism µA is always single-valued, we can easily formulate the given inequality directly.
If (p, f), (q, g) : (A, φ)→ (B,ψ), then U ∈ ψ realizes the inequality f ≤ g ◦µA if and only
if

f(a, b) ∧ U(r) |=a:p(A);r,b:B rb↓ ∧ g(µA(a), rb).

We will also say that such a U tracks the applicative transformation µ.

3.14. Theorem. PCA as defined above is indeed a 2-category.

Proof. The composition of two applicative morphisms (A, φ)
(p,f)−→ (B,ψ)

(q,g)−→ (C, χ) is
given by (qp, g ◦ q∗f) = (qp, g ◦ q(f)). It is well-known from the theory of Grothendieck
fibrations that this yields a 1-category.

We define the vertical and horizontal composition of 2-cells as in REG. Suppose that
we have parallel applicative morphisms (p, f), (q, g), (r, h) : (A, φ)→ (B,ψ) and that

(p, f)
µ⇒ (q, g)

ν⇒ (r, h)

are applicative transformations. Then νµ is an applicative transformation (p, f)⇒ (r, h)
since f ≤ g ◦ µA ≤ h ◦ νA ◦ µA = h ◦ νAµA.

Now suppose that (p, f), (q, g) : (A, φ) → (B,ψ) are applicative morphisms and that
µ is an applicative transformation (p, f)⇒ (q, g). Let (r, h) : (B,ψ)→ (C, χ) be another
applicative morphism. Since r is left exact, we have r(µA) = r(µA). Now we see that

h ◦ r(f) ≤ h ◦ r(g ◦ µA) = h ◦ r(g) ◦ r(µA) = h ◦ r(g) ◦ r(µA),

so rµ is an applicative transformation (r, h) ◦ (p, f)⇒ (r, h) ◦ (q, g).
On the other hand, if (r, h) : (C, χ)→ (A, φ) is another applicative morphism, then

f ◦ p(h) ≤ g ◦ µA ◦ p(h) ≤ g ◦ q(h) ◦ µr(C),

so µr is an applicative transformation (p, f) ◦ (r, h)⇒ (q, g) ◦ (r, h).
All the required equations for 2-cells in PCA are inherited from REG.

As we saw in Remark 3.6, the fibers PCAC have products only in a weak sense. By
passing to PCA, we can form all small products.

3.15. Proposition. The category PCA has small 2-products.

Proof. Suppose that we have a collection (Ai, φi) indexed by a set I, where (Ai, φi) is
a PCA over Ci. Consider the product category C =

∏
i∈I Ci, which is also a locally small

regular category in which regular formulas are interpreted coordinatewise. The object
A = (Ai)i∈I is a PAS over C in the obvious way, and we can define a combinatorially
complete filter φ on A by

φ = {U = (Ui)i∈I | ∀i ∈ I (Ui ∈ φi)}.
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For each i ∈ I, we have the projection map pi : C → Ci, which satisfies pi(A) = Ai
and pi(U) = Ui for every subobject U of A. This implies that (pi, δAi

) is an applicative
morphism (A, φ)→ (Ai, φi).

First, we show that (A, φ) is the 1-product of the (Ai, φi). Suppose that (B,ψ) is a
PCA over D and that, for each i ∈ I, we have an applicative morphism (qi, fi) : (B,ψ)→
(Ai, φi). The qi have a unique amalgamation q : D → C such that pi ◦ q = qi for all i ∈ I.
Moreover, there exists a unique relation f ⊆ q(B)×A such that pi(f) ⊆ qi(B)×Ai is equal
to fi, and it is easily seen that (q, f) is in fact an applicative morphism (B,ψ)→ (A, φ).

Now suppose we have two applicative morpisms (q, f), (r, g) : (B,ψ) → (A, φ), and
for each i, an applicative transformation µi : (pi, δAi

) ◦ (q, f) ⇒ (pi, δAi
) ◦ (r, g). Write

qi = pi ◦ q and fi = pi(f), so that (pi, δAi
) ◦ (q, f) = (qi, fi), and similarly for (r, g). Then

the fact that µi is an applicative transformation tells us that fi ≤ gi ◦ µi,Ai
. The µi have

a unique amalgamation µ : q ⇒ r such that piµ = µi for all i. If Ui ∈ φi realizes this
inequality, then (Ui)i∈I ∈ φ realizes f ≤ g ◦ µA, so µ is an applicative transformation
(q, f)⇒ (r, g).

3.16. Remark.

(i) Observe that the proof above uses the Axiom of Choice on the index set I.

(ii) If all the (Ai, φi) are absolute PCAs, then so is
∏

i∈I(Ai, φi).

The fibers PCAC all have finite pseudocoproducts. We will show that these are pre-
served by reindexing, but first we need the following auxilliary result.

3.17. Lemma. Let p : C → D be regular, let A and B be PASs over C, and suppose that
G ⊆ P∗A and H ⊆ P∗B are combinatorially complete. Then 〈〈G〉 × 〈H〉〉 = 〈G×H〉 as
filters on the PAS A×B.

Proof. We clearly have G×H ⊆ 〈G〉×〈H〉 ⊆ 〈〈G〉×〈H〉〉 and since the right-hand side
is a filter, this yields 〈G×H〉 ⊆ 〈〈G〉 × 〈H〉〉.

For the converse inclusion, let U × V ∈ 〈G〉 × 〈H〉. Then there exist terms t(~x)

and s(~y), and elements ~W ∈ G and ~T ∈ H such that t( ~W ) ↓, t( ~W ) ⊆ U , s(~T ) ↓ and

s(~T ) ⊆ V . By our assumption, we can choose combinators K, I ∈ G and K, I ∈ H. For

every component Wi from ~W , define W ′
i = Wi× I ∈ G×H. Moreover, it is easily see that

t( ~W ′) is defined and equal to t( ~W )× I. Similarly, set T ′j = I× Tj ∈ G×H, so that s(~T ′)

is defined and equal to I × s(~T ). Now define the term r(~x, ~y, z) as z · t(~x) · s(~y). Then

r( ~W ′, ~T ′,K× K) is defined and equal to

(K× K) · t( ~W ′) · s(~T ′) = (K× K) · (t( ~W )× I) · (I× s(~T ))

= (K · t( ~W ) · I)× (K · I · s(~T ))

= t( ~W )× s(~T )

⊆ U × V.



INTERNAL PARTIAL COMBINATORY ALGEBRAS AND THEIR SLICES 1925

Since ~W ′, ~T ′,K × K ∈ G × H, we can conclude that U × V ∈ 〈G × H〉, so we have
shown that 〈G〉 × 〈H〉 ⊆ 〈G × H〉. Since the right-hand side is a filter, this yields
〈〈G〉 × 〈H〉〉 ⊆ 〈G×H〉, as desired.

3.18. Proposition. If p : C → D is regular, then p∗ : PCAC → PCAD preserves finite
pseudocoproducts.

Proof. The only difficult part is showing that, for PCAs (A, φ) and (B,ψ) over C, the
filters on p∗((A, φ) + (B,ψ)) and p∗(A, φ) + p∗(B,ψ) coincide (modulo the isomorphism
p(A × B) ' p(A) × p(B)). It is clear that p(φ × ψ) = p(φ) × p(ψ), so by combining
Proposition 3.7(ii) and Lemma 3.17, we see that

〈p(〈φ× ψ〉)〉 = 〈p(φ× ψ)〉 = 〈p(φ)× p(ψ)〉 = 〈〈p(φ)〉 × 〈p(ψ)〉〉,

as desired.

The category REG also has pseudocoproducts: if C and D are regular, then their
pseudocoproduct is C×D. The inclusions C ι0−→ C×D ι1←− D are given by ι0(X) = (X, 1)
and ι1(Y ) = (1, Y ). If the forgetful functor PCA → REG were a 2-opfibration, then this
would mean we also have pseudocoproducts in PCA. However, we have not shown this,
since we do not in general have a natural transformation µ∗ : p∗ ⇒ q∗ when µ : p ⇒ q.
This means that, while it does have 2-cocartesian lifts of 1-cells, the forgetful functor
PCA→ REG lacks cartesian lifts of 2-cells. We do, on the other hand, have cartesian lifts
of invertible 2-cells by Proposition 3.11(iii), which means we can get a partial result.

For a 2-category B, let Biso be the 2-category which has the same 0- and 1-cells as
B, but whose 2-cells are only the invertible 2-cells of B. Then we also have a forgetful
functor PCAiso → REGiso, which is a 2-opfibration. We know that REGiso still has finite
pseudocoproducts, as do all the fibers (PCAC)iso, and reindexing still preserves finite pseu-
docoproducts. From this, we can conclude that PCAiso also has finite pseudocoproducts.
In the binary case, they are computed as follows. If (A, φ) and (B,ψ) are PCAs over C
and D respectively, then their pseudocoproduct in PCAiso is formed by taking the pseudo-
coproduct ι∗0(A, φ) + ι∗1(B,ψ) in C × D. Its onderlying object is (A, 1)× (1, B) ' (A,B),
and its filter is generated by

{(U, V ) ⊆ (A,B) | U ∈ φ, V ∈ ψ}.

But this set is already a filter; and moreover, it is the filter that yields the 2-product of
(A, φ) and (B,ψ) in PCA, and hence also in PCAiso. So we see that the pseudocoproduct
of (A, φ) and (B,ψ) in in PCAiso coincides with their product. It is also easy to see that
the pseudoinitial object of PCAiso coincides with the terminal object, so PCAiso has a
pseudozero object. Moreover, one readily calculates that the composition

(A, φ)→ (A, φ)× (B,ψ)→ (A, φ)

is the identity on (A, φ), whereas

(A, φ)→ (A, φ)× (B,ψ)→ (B,ψ)

is a zero morphism. We can conclude:
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3.19. Proposition. The 2-category PCAiso has finite pseudobiproducts.

4. The functor Asm

In the previous section, we defined applicative morphisms and transformations. At this
point, it is not so clear how well-behaved these notions are. In this section, we investigate
the compatibility between these notions and the category of assemblies defined in Sec-
tion 2. More precisely, we extend Asm to a 2-functor PCA→ Cat and we characterize its
image on the 1- and 2-cells. The proofs in this section are adaptations of the proofs for
the corresponding results in the case of classical PCAs. In this sense, the results in this
section are not innovative. Neventheless, we include them because they provide evidence
that our notions of applicative morphism and transformation are the ‘right’ ones.

We start by extending the assignment Asm.

4.1. Definition.

(i) Let (p, f) : (A, φ)→ (B,ψ) be an applicative morphism. We define Asm(p, f) as the
functor F : Asm(A, φ)→ Asm(B,ψ) determined by:

– |FX| = p(|X|);

– EFX = f ◦ p(EX) = {(x, b) ∈ p(|X|)×B | ∃a : p(A)(p(EX)(x, a) ∧ f(a, b))};
– Fg = p(g).

(ii) If µ : (p, f) ⇒ (q, g) is an applicative transformation, then Asm(µ) : Asm(p, f) ⇒
Asm(q, g) is defined by Asm(µ)X = µ|X| for X ∈ Asm(A, φ).

4.2. Proposition. The assignment Asm is a well-defined 2-functor PCA→ Cat.

Proof. Let (p, f) : (A, φ) → (B,ψ) be an applicative morphism, and write F for the
functor Asm(p, f). We first show that F is indeed a functor, for which we only need to
check that p(k) is actually a morphism FX → FY when k : X → Y is a morphism in
Asm(A, φ). If U ∈ φ tracks k and V ∈ ψ tracks f , then any realizer of λx.V · f(p(U)) · x
tracks p(k) : FX → FY , which shows that F is indeed a functor.

Now suppose that (q, g) : (B,ψ)→ (C, χ) is another applicative morphism. Since q is
a regular functor, we have that

g ◦ q(f ◦ p(EX)) = g ◦ q(f) ◦ q(p(EX)),

for every assembly X over (A, φ). From this, it easily follows that Asm(q, g)◦Asm(p, f) =
Asm((q, g) ◦ (p, f)), so Asm is a 1-functor.

Now suppose that (p, f), (q, g) : (A, φ)→ (B,ψ) and µ : (p, f)⇒ (q, f). The naturality
of Asm(µ) is obvious, but we need to check that Asm(µ)X = µ|X| is actually a morphism
Asm(p, f)(X)→ Asm(q, g)(X). Applying the naturality of µ to the inclusion EX ⊆ |X|×A
yields that

p(EX)(x, a) |=x:p(|X|);a:p(A) q(EX)(µ|X|(x), µA(a))
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is valid in the underlying category of (B,ψ). From this, it easily follows that a tracker of
the applicative transformation µ also tracks µ|X|, so the latter is indeed a morphism. It
is clear from the definitions that Asm respects the vertical and horizontal composition of
2-cells.

4.3. Remark. In fact, since the forgetful functor Γ: Asm(A, φ) → C is regular, we can
also view Asm as a functor PCA → REG→. Here we send a PCA (A, φ) to the functor
Γ: Asm(A, φ)→ C, and an applicative morphism (p, f) : (A, φ)→ (B,ψ) to the diagram

Asm(A, φ) Asm(B,ψ)

C D
Γ

Asm(p,f)

Γ

p

(2)

In this way, Asm becomes a functor fibred over REG, in the sense that the diagram

PCA REG→

REG

Asm

cod

commutes.

We immediately get the following corollary.

4.4. Corollary. Let (A, φ) and (B,ψ) be PCAs over C and D respectively. If (A, φ) and
(B,ψ) are isomorphic (equivalent), then the functor Γ: Asm(A, φ) → C and the functor
Γ: Asm(B,ψ)→ D are also isomorphic (equivalent) in REG→.

Proof. If (p, f) : (A, φ)→ (B,ψ) is an isomorphism (equivalence), then so is the map in
REG→ displayed in diagram (2).

Combining this with Proposition 2.17, we find that absoluteness is stable under equiv-
alence of PCAs.

The category of assemblies for a classical (relative) PCA is always a quasitopos. This
cannot be guaranteed in our setting, since not all the relevant constructions can be carried
out in the base category C. We do still have that Asm(A, φ) is itself a regular category. In
the proof of the next proposition, we describe the regular structure of Asm(A, φ), which
we will need later in this section.

4.5. Proposition. If (A, φ) is a PCA over C, then Asm(A, φ) is a regular category, and
the functors Γ: Asm(A, φ)→ C and ∇ : C → Asm(A, φ) are regular.

Proof. As we have already remarked, the constant object ∇1 is a terminal object in
Asm(A, φ). If X and Y are assemblies, then we can form their product by taking |X×Y | =
|X| × |Y | and

EX×Y = {(x, y, a) ∈ |X| × |Y | × A | ∃b, c, d : A(P(b) ∧ EX(x, c) ∧ EY (y, d) ∧ bcd = a)}.
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The projections of |X × Y | onto |X| and |Y | are morphisms of assemblies, since they are
tracked by P0 and P1 respectively. If f : Z → X and g : Z → Y are morphisms, then there
exists a unique mediating arrow 〈f, g〉 : |Z| → |X| × |Y | in C. This is also a morphism
Z → X × Y since a realizer of λx.P(Ux)(V x) tracks 〈f, g〉, where U, V ∈ φ track f and g
respectively. Observe that this construction of the product works for any choice of P ∈ φ
realizing λxyz.zxy, a fact we will use later in this section.

If f, g : X → Y is a parallel pair, then first form the equalizer m : |Z| ↪→ |X| of f and
g in C. Now define

EZ = (m× idA)−1(EX) = {(z, a) ∈ |Z| × A | EX(m(z), a)}.

Then m is a morphism Z → X, since it is tracked by I. Moreover, if h : W → X satisfies
fh = gh, then we get a unique mediating arrow k : |W | → |Z|, which is a morphism since
every tracker of h is also a tracker of k.

It follows that the pullback of a cospan X
f−→ Z

g←− Y is formed as follows. First
take the pullback

|W | |X|

|Y | |Z|

p

q
y

f

g

in C, and then equip |W | with

EW = {(w, a) ∈ |W | × A | ∃b, c, d : A(P(b) ∧ EX(p(w), c) ∧ EY (q(w), d) ∧ bcd = a)}.

From the description of finite limits above, it follows that Γ preserves all finite limits. In
particular, Γ preserves monos. Being faithful, Γ also reflects monos.

Now suppose that e : X → Y is a regular epimorphism in Asm(A, φ). Since Γ preserves
finite limits and colimits, it follows that e : |X| → |Y | must be a regular epimorphism in
C. Suppose, conversely, that we have an arrow e : X → Y such that e : |X| → |Y | is a
regular epimorphism. Then we can form the coequalizer e′ : X → Y ′ of the kernel pair of
e by taking |Y ′| = |Y |, e′ = e and

EY ′ = {(y, a) ∈ |Y | × A | ∃x : |X|(e(x) = y ∧ EX(x, a))}.

It follows immediately that e : X → Y is a regular epimorphism if and only if id|Y | is a
morphism Y → Y ′. And this is to say that there exists a U ∈ φ satisfying

EY (y, a) ∧ U(r) |=y:|Y |;r,a:A ra↓ ∧ ∃x : |X|(e(x) = y ∧ EX(x, ra)).

We will say that such a U witnesses the fact the e is a regular epimorphism. If there
exists such a U ∈ φ, then in particular, U is inhabited and in this case, it follows easily by
soundness that e : |X| → |Y | is a regular epimorphism. Therefore, we can summarize the
above as follows: e : X → Y is a regular epimorphism if and only if there exists a U ∈ φ
witnessing this.
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It follows at once that Asm(A, φ) has regular epi-mono factorizations. Indeed, if

f : X → Y is a morphism, then we can first factor f in C as |X|
e
� |Z| m

↪→ |Y |, and
then put

EZ = {(z, a) ∈ |Z| × A | ∃x : |X|(e(x) = z ∧ EX(x, a))}.

Here I both tracks e : X → Z and witnesses the fact that e is a regular epimorphism, and
any tracker of f also tracks m : Z → Y .

So, in order to prove that Asm(A, φ) is regular, it remains to show that regular epi-

morphisms are stable under pullback. Suppose that we have a cospan X
f−→ Z

g←− Y
with f a regular epimorphism, and define its pullback W as above. Let U ∈ φ witness the
fact that f is a regular epimorphism and let V ∈ φ track g. Then there exists a T ∈ φ
realizing

λx.P(U(V x))x.

We claim that T also witnesses the fact that q is a regular epimorphism. Let T ′ be a
realizer of λyzwx.y(z(wx))x such that T ⊆ T ′PUV .

Now reason inside C and consider y ∈ |Y | and t, a ∈ A such that EY (y, a) and T (t).
Then there exist t′, b, r, s ∈ A such that T ′(t′), P(b), U(r), V (s) and t = t′brs. Since
EY (y, a) and V (s), we see that sa ↓ and EZ(g(y), sa). Combining this with U(r) yields
that r(sa) ↓, and we find an x ∈ |X| such that f(x) = g(y) and EX(x, r(sa)). Since
|W | is the pullback of f and g, we get that there is a w ∈ |W | such that p(w) = x and
q(w) = y. Since P(b), EX(p(w), r(sa)) and EY (q(w), a), it follows that EW (w, b(r(sa))a).
We conclude that ta is defined and equal to t′brsa = b(r(sa))a, so EW (w, ta), as desired.

If e : X � Y is a regular epimorphism in C, then we easily see that I witnesses the fact
that ∇e is a regular epimorphism, so ∇ preserves regular epimorphisms. Since Γ a ∇, we
conclude that Γ and ∇ are both regular.

We will say that an assembly is a constant object if it is isomorphic to an object in
the image of ∇. As a more direct characterization, we have: an assembly X is a constant
object if and only if there exists a U ∈ φ such that |X| × U ⊆ EX .

Every assembly is a subobject of a constant object. Indeed, if η is the unit of the
adjunction Γ a ∇, then ηX : X → ∇ΓX is mono, since its underlying arrow is simply
id|X|. We introduce the following definition from [Ste13].

4.6. Definition. A morphism of assemblies f : X → Y is called prone if the naturality
square

X Y

∇ΓX ∇ΓY

f

ηX ηY

∇Γf

is a pullback square.

A morphism f : X → Y is prone if and only if the identity on |X| is an isomorphism
X → X ′, where |X ′| = |X| and EX′ = (f × idA)∗(EY ). In particular, if Y is an assembly
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and m : U ↪→ |Y | is a subobject, then there exists a unique prone subobject of Y whose
underlying subobject in C is m, given by |X| = U and EX = (m× idA)∗(EY ) = EY |U×A.
Observe that every regular subobject is also prone (but conversely, a prone subobject
m : X ↪→ Y is regular if and only if m is already regular in C). We also remark that prone
morphisms are stable under pullback. One can prove this directly from the definition, but
also from the alternative description of prone morphisms above, along with the explicit
description of a pullback in Asm(A, φ) provided in the proof of Proposition 4.5.

We finish this section characterizing the functors and natural transformations that are
of the form Asm(p, f) and Asm(µ) respectively. Our proofs are an adaptation of Longley’s
methods from [Lon94], who obtained similar results for classical absolute PCAs.

4.7. Theorem. Let (A, φ) and (B,ψ) be PCAs over C and D respectively.

(i) If p : C → D is a regular functor, then a functor F : Asm(A, φ) → Asm(B,ψ) is
naturally isomorphic to a functor the form Asm(p, f) for some applicative morphism
(p, f) if and only if:

– F is regular;

– Γ ◦ F ' p ◦ Γ;

– F ◦ ∇ ' ∇ ◦ p.

(ii) Suppose that (p, f), (q, g) : (A, φ)→ (B,ψ) are applicative morphisms and µ : p⇒ q
is a natural transformation. For an assembly X ∈ Asm(A, φ), define µ̃X = µ|X|.
Then µ̃ is a natural transformation Asm(p, f) ⇒ Asm(q, g) if and only µ is an
applicative transformation (p, f)⇒ (q, g).

Proof. (i) First suppose that F is of the form Asm(p, id), i.e. that our applicative
morphism is cocartesian. We will show that F is regular. For binary products, one needs
to observe the following: if X, Y ∈ Asm(A, φ), then |F (X × Y )| = p(|X|) × p(|Y |) and
EF (X×Y ) is the subobject

{(x, y, a) | ∃b, c, d : p(A)(p(P)(b) ∧ p(EX)(x, c) ∧ p(EY )(y, d) ∧ bcd = a)}

of p(|X|)× p(|Y |)× p(A). Since p(P) belongs to 〈p(φ)〉 and realizes λxyz.zxy w.r.t. p(A),
we can conclude that F (X × Y ) is a product of FX and FY . For regular epimorphisms,
we observe: if U ∈ φ witnesses the fact that e : X → Y is a regular epimorphism, then
p(U) ∈ 〈p(φ)〉 witnesses this for p(e) = Fe : FX → FY . The preservation of the terminal
object and of equalizers is easy, so we conclude that F is indeed regular. Moreover, if F is
of the form Asm(id, f) for some vertical applicative morphism f , then we can show that
F is regular by adapting Longley’s argument from [Lon94] (Propositions 2.2.2 and 2.2.3).

Now take a general F of the form Asm(p, f), with (p, f) : (A, φ) → (B,ψ). Since
any applicative morphism can be decomposed as a cocartesian morphism followed by a
vertical one, the above implies that F is regular. Moreover, we have Γ ◦ F = p ◦ Γ by
definition. Finally, suppose that X ∈ Asm(A, φ) is constant, and take U ∈ φ such that
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|X| × U ⊆ EX . Then it easily follows that p(|X|) × f(p(U)) ⊆ p(EX) ◦ f = EFX . We
have p(U) ∈ p(φ), so f(p(U)) ∈ ψ, and therefore FX is a constant object as well. In
other words, F preserves constant objects, which implies F ◦ ∇ ' ∇ ◦ p.

For the converse, suppose that F satisfies the three requirements above. It is easy to
see that F is naturally isomorphic to an F ′ such that Γ◦F ′ = p◦Γ. Therefore, we assume
that we have Γ ◦ F = p ◦ Γ on the nose. Since F preserves pullbacks and commutes with
∇ and Γ, we see that F also preserves prone morphisms. In particular, F preserves prone
subobjects.

First, we define the assembly R ∈ Asm(A, φ) by |R| = A and ER = δA. (This object
is also known as the object of realizers.) Then FR satisfies |FR| = p(|R|) = p(A), so
EFR is a subobject of p(A) × B. We claim that f := EFR is an applicative morphism
p∗(A, φ)→ (B,ψ), so that (p, f) is an arrow (A, φ)→ (B,ψ) in PCA.

Requirement (a) is immediate since FR is an assembly. For requirement (b), consider
the prone subobject S ↪→ R × R with |S| = D ⊆ A× A. If k : D → A is the application
map, then k is a morphism S → R, since it is tracked by any realizer of λx.(P0x)(P1x).
Since F preserves products and prone subobjects, we see that FS ↪→ FR × FR is also
prone, and that p(k) = F (k) is a morphism FS → FR, say tracked by U ∈ ψ. Without
loss of generality,

EFS = {(a, a′, b) ∈ p(D)×B | ∃c, d, d′ : B (P(c) ∧ EFR(a, d) ∧ EFR(a′, d′) ∧ cdd′ = b)}.

From this it easily follows that any realizer of λxy.U(Pxy) tracks f , so requirement (b)
holds. For requirement (c), consider a U ∈ φ. Define the prone subobject RU ↪→ R by
|RU | = U . Then e : RU → 1 is a regular epimorphism, since KU witnesses this fact. It
follows that FRU ↪→ FR is prone and Fe : FRU → F1 is regular epi, which means that
without loss of generality,

EF1 = {b ∈ B | ∃a : p(U)EFR(a, b)} = f(p(U)).

But F1, being the terminal object of Asm(B,ψ), must be a constant object, which implies
that f(p(U)) ∈ ψ. By using Proposition 3.3, we see that requirement (c) holds as well.

It remains to show that F ' Asm(p, f). Let X ∈ Asm(A, φ), and consider the assembly
∇|X| ×R. We can describe this as the assembly such that |∇|X| ×R| = |X| × A and

E∇|X|×R = |X| × δA = {(x, a, a′) ∈ (|X| × A)× A | a = a′}.

Let Y ↪→ ∇|X|×R be the prone subobject with |Y | = EX ⊆ |X|×A. Then the projection
map π : EX → |X| is a regular epimorphism Y → X, since I witnesses this fact. It follows
that the subobject FY ↪→ F∇|X| ×FR is prone and that Fπ : FY → FX is regular epi.
Since F∇|X| is constant, we can assume without loss of generality that

EF∇|X|×FR = p(|X|)× EFR = {(x, a, b) ∈ (p(|X|)× p(A))×B | EFR(a, b)}.

We see that the identity on p(|X|) is an isomorphism FX → X ′, where |X ′| = p(|X|) and

EX′ = {(x, b) ∈ p(|X|)×B | ∃a : p(A)(p(|Y |)(x, a) ∧ EFR(a, b))}.
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Since |Y | = EX and EFR = f , this means that X ′ = Asm(p, f)(X), which completes the
proof of (i).

For (ii), we already know that µ̃ = Asm(µ) is a natural transformation if µ is an
applicative transformation. Conversely, suppose that µ̃ is a natural transformation. Then
in particular, µA should be a morphism Asm(p, f)(R) → Asm(q, g)(R), which means
exactly that µ is an applicative transformation (p, f)⇒ (g, q).

4.8. Remark. Let (A, φ) and (B,ψ) be PCAs over C and D respectively. Then we can
view Asm as a functor PCA((A, φ), (B,ψ)) → REG(Asm(A, φ),Asm(B,ψ)). This functor
is faithful, and Theorem 4.7 describes its essential image.

4.9. Remark. In the case of classical absolute PCAs, the requirement that F preserves
constant objects can be removed, since any functor commuting with Γ automatically
commutes with ∇ ([Lon94], Proposition 2.3.3). The argument used to show this is set
theoretic and involves selecting a set of sufficiently high cardinality. We have not been
able to generalize this proof to the present situation.

5. Products and slicing

In this section, we show that the class of categories of the form Asm(A, φ) are, up to
equivalence, closed under small products and under slicing. The first claim, which in fact
holds up to isomorphism, follows from the following proposition, whose proof is omitted.

5.1. Proposition. The functor Asm preserves small (2-)products.

We now turn our attention to showing that a slice of a category of the form Asm(A, φ)
is again of this form. This result was already obtained by Stekelenburg ([Ste13], p. 62),
but in an indirect way. We will construct the required PCA explicitly, and use this to
compute some specific slices of categories of assemblies.

But first, let us explain how the obstacle mentioned in the Introduction is removed in
the current setting. There we explained that the terminal object of a category of the form
Asm(A) (or Asm(A,C)) is always projective, whereas the terminal object of Asm(A)/I
is only projective if I itself is projective in Asm(A). It turns out that for PCAs in the
current setting, the terminal object of Asm(A, φ) need not be projective. An obvious
reason for this is that Γ: Asm(A, φ) → C preserves projectives (this easily follows from
the fact that ∇ is regular), so the terminal object of Asm(A, φ) can only be projective
if the terminal object of C is already projective. But even if 1 ∈ C is projective, the
projectivity of 1 ∈ Asm(A, φ) puts a very strong requirement on the filter φ. We prove
this in the following proposition, the first part of which is Proposition 2.5.9 from [Ste13].

5.2. Proposition. Let (A, φ) be a PCA over the regular category C.

(i) If 1 ∈ Asm(A, φ) is projective, then φ is generated by singletons.

(ii) If 1 ∈ C is projective and φ is generated by singletons, then 1 ∈ Asm(A, φ) is
projective.
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Proof. (i) Let R ∈ Asm(A, φ) be the object of realizers, i.e., |R| = A and ER = δA ⊆
A× A, and consider the set

C = {a : 1 ↪→ A | a is a morphism 1 ↪→ R in Asm(A, φ)}

of global sections of A. We claim that C generates φ. To show that C is closed under
application, consider again the prone subobject S ⊆ R×R given by |S| = D. As we saw
in the previous section, the application map D → A is a morphism S → R. Now suppose
we have a, b ∈ C such that ab↓. Then the global section 〈a, b〉 : 1 ↪→ A×A factors through
D, and we get the diagram

1

R×R S R

〈a,b〉 ab

·

in Asm(A, φ), which shows that ab ∈ C as well. It remains to show that φ = φC .
Let a ∈ C, and let U ∈ φ track the morphism a : 1 ↪→ R. Then UA ↓ and UA ⊆ c,

which shows that c ∈ φ as well. From this, we may conclude that φC = 〈C〉 ⊆ φ.
Conversely, suppose that U ∈ φ, and consider the prone subobject RU ↪→ R with

|RU | = U . Then RU → 1 is a regular epimorphism, for KU witnesses this. Since we
assumed that 1 ∈ Asm(A, φ) is projective, this regular epimorphism splits and yields a
global section a : 1 ↪→ RU ↪→ R. We see that a ∈ C, and a ⊆ U , so U ∈ φC , as desired.

(ii) Suppose that φ = φC for some set C ⊆ C(1, A) that is closed under application.
Then C is nonempty, so we can select a c0 ∈ C. Now let 1′ ∈ Asm(A, φ) be the object

defined by |1′| = 1 and E1′ = 1
c0
↪→ A ∼= 1 × A. Then 1′ is isomorphic to 1 = ∇1, since

I ∈ φ tracks id1 as a morphism 1′ → 1, whereas Kc0 ∈ φ tracks id1 as a morphism 1→ 1′.
This means that 1′ is also a terminal object of Asm(A, φ), so it suffices to prove that 1′ is
projective.

To this end, let X → 1′ be a regular epimorphism, and let U ∈ φ witness this fact.
Then we can select a c ∈ C such that c ⊆ U , and we find that |= ∃x : |X|(EX(x, cc0)).
Since 1 ∈ C is projective, this implies that there exists a global section x : 1 ↪→ |X| such
that |= EX(x, cc0). Moreover, c ∈ φ tracks x as a morphism 1′ ↪→ X, which completes
the proof that 1′ is projective.

5.3. Remark.

(i) In the classical case, many results on projective objects in the category of assemblies
Asm(A,C) rely on the Axiom of Choice in Set, and the fact that the filter φC is
generated by singletons. Both of these may fail in the current setup, which means
that many classical results on projectives do not go through for Asm(A, φ) if either
AC does not hold in C or φ is not generated by singletons (see also [Ste13], Section
2.5). In particular, it is no longer true that the projective assemblies are precisely
those assemblies isomorphic to the partitioned assemblies, i.e., assemblies X for
which EX is not only total, but also single-valued.
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In the case where C is a topos, one may define the realizability topos RT(A, φ), as
usual, as the ex/reg completion of Asm(A, φ) ([Ste13], Definition 2.4.19). However,
by the above, we can no longer present RT(A, φ) as the ex/lex completion of the
full subcategory of partitioned assemblies. This fact plays a crucial role in Frey’s
characterization theorem ([Fre19]) mentioned in the introduction. This means that
a characterization theorem for toposes of the form RT(A, φ) along the lines of [Fre19]
does not seem possible. (It should be mentioned that, even though [Fre19] assumes
AC, [Fre14] is actually very careful to provide an AC-independent version of the
characterization theorem. However, the problem that the filter may fail to be gen-
erated by singletons seems to be far more serious.)

(ii) In the classical case, some attention is given to applicative morphisms that are
projective, i.e., isomorphic to a single-valued applicative morphism. Of course, the
corresponding functors between the categories of assemblies preserve partitioned as-
semblies. But as we have seen above, the partitioned assemblies are not necessarily
the projective assemblies in the current setup. Other results on projective applica-
tive morphisms also use AC and the fact that realizing sets are singletons; most
notably the fact that left adjoints are always projective.

From a categorical perspective, projective applicative morphisms are a bit more
well-behaved than general applicative morphisms. For example, (classical) PCAs
and projective applicative morphisms allow small 2-products (see, e.g., [HvO03],
Remark (2) on p. 450), but PCAs and general applicative morphisms do not. But
as we have seen, we also have small 2-products in the current setup, which, at least
partially, removes the need to consider projective applicative morphisms.

Now let (A, φ) be a PCA over C and let I be an object of C. We consider the regular
category C/I and the pullback functor I∗ : C → C/I, which is a regular functor. It
immediately follows that I∗(A) can be equipped with a partial applicative structure in
the obvious way. First of all, we will spell out what a PCA (I∗(A), ψ) over C/I is in terms
of the internal logic of C.

Since an arrow is mono in C/I if and only if it is mono in C, we see that the subobjects
of I∗(A) in C/I are the subobjects of I ×A in C. A subobject U ⊆ I ×A is inhabited in
C/I if and only if it is fiberwise inhabited in C, i.e., |=i:I ∃a : A (U(i, a)). The composition
of two subobjects U, V ⊆ I ×A is defined iff U ×I V ⊆ I ×D, and in this case, UV is the
image of the map U ×I V ⊆ I ×D → I × A. In other words,

UV = {(i, a) ∈ I × A | ∃b, c : A(U(i, b) ∧ V (i, c) ∧ bc = a)}.

A filter ψ on I∗(A) is then a set of fiberwise inhabited subobjects of I×A that is upwards
closed and closed under the application above. Since I∗ is a regular functor, we know that
such a filter ψ is combinatorially complete whenever it extends I∗(φ).

Suppose that a PCA (I∗(A), ψ) over C/I is given. An assembly X over this PCA is

an object |X| kX−→ I of C/I, together with a subobject EX ⊆ |X| × A that is total in C,
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i.e., such that |=x:|X| ∃a : A(EX(x, a)). (This is true since |X| ×I I∗(A) is simply equal
to |X| × A.)

Now consider another assembly Y , and suppose that f : |X| → |Y | is an arrow of C/I,
that is, kY ◦ f = kX . Then a tracker of f : X → Y , spelled out in terms of the internal
logic of C, is an inhabited U ⊆ I × A such that

kX(x) = i ∧ EX(x, a) ∧ U(i, r) |=x:|X|;i:I;r,a:A ra↓ ∧ EY (f(x), ra).

That is, if (i, r) is in U , then r must track f as if it were a morphism (|X|, EX)→ (|Y |, EY )
in Asm(A, φ), but only for those x ∈ |X| that lie in the fiber of i.

Now let I be an assembly over (A, φ). By definition, EI is an inhabited subobject of
|I|∗(A) in C/|I|. We will show that Asm(A, φ)/I is equivalent to Asm(|I|∗(A), φI), where

φI = 〈|I|∗(φ) ∪ {EI}〉.

Observe that φI is combinatorially complete since it extends |I|∗(φ). First, we give an
alternative characterization of φI .

5.4. Lemma. Let I be an assembly over the PCA (A, φ). Then

φI = {U ⊆ |I| × A | ∃V ∈ φ(|I|∗(V ) · EI ↓ ∧ |I|∗(V ) · EI ⊆ U)}. (3)

Proof. First of all, suppose that U ∈ φ. Then also KU ∈ φ. Moreover, we know that
|I|∗(K) realizes λxy.x, so we see that |I|∗(KU) · EI ↓ and

|I|∗(KU) · EI = |I|∗(K) · |I|∗(U) · EI = |I|∗(U).

This shows that the right-hand side of (3) contains |I|∗(φ). Furthermore, since |I|∗(I)
realizes λx.x, we have that |I|∗(I) · EI = EI , so EI belongs to the right-hand side of (3)
as well. This means that the right-hand side of (3) extends |I|∗(φ) ∪ {EI}.

Moreover, any filter extending |I|∗(φ) ∪ {EI} must clearly extend the right-hand side
of (3), so it remains to show that this is actually a filter; upwards closure is obvious.

Suppose that we have U,U ′ ⊆ |I|×A for which there exist V, V ′ ∈ φ with |I|∗(V )·EI ⊆
U and |I|∗(V ′) ·EI ⊆ U ′, and such that UU ′ ↓. Then SV V ′ ∈ φ. Moreover, we know that
|I|∗(S) realizes λxyz.xz(yz), so we see that |I|∗(SV V ′) · EI ↓ and

|I|∗(SV V ′) · EI = |I|∗(S) · |I|∗(V ) · |I|∗(V ′) · EI ⊆ (|I|∗(V ) · EI) · (|I|∗(V ′) · EI) ⊆ UU ′,

as desired.

5.5. Theorem. Let I be an assembly over the PCA (A, φ). Then Asm(A, φ)/I and
Asm(|I|∗(A), φI) are equivalent.
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Proof. As usual, let C be the underlying regular category of (A, φ). For Asm(|I|∗(A), φI),
we will use the notation introduced above. That is, an object X of Asm(|I|∗(A), φI) will
be an object kX : |X| → |I| of C/|I|, along with a subobject EX ↪→ |X|×A which is total
in C.

We define the required pseudoinverses

Asm(A, φ)/I Asm(|I|∗(A), φI).
F

G

An object of Asm(A, φ)/I is a morphism of assemblies lX : X → I. We define the assembly
FX over (|I|∗(A), φI) simply by |FX| = |X|, kFX = lX and EFX = EX . Moreover, given
a commutative triangle

X Y

I

f

lX lY

in Asm(A, φ), we define Ff : FX → FY simply as f . If U ∈ φ tracks f : X → Y , then
|I|∗(U) ∈ φI tracks Ff : FX → FY , so we see that F is well-defined, and clearly, F is a
functor.

Conversely, suppose that X is an object of Asm(|I|∗(A), φI). We define the object
lGX : GX → I of Asm(A, φ)/I by |GX| = |X|,

EGX = {(x, a) ∈ |X| × A | ∃b, c, d : A(P(b) ∧ EI(kX(x), c) ∧ EX(x, d) ∧ bcd = a)},

and lGX = kX . This is clearly an assembly, and kX is a morphism GX → I in Asm(A, φ),
since it is tracked by P0. For an arrow f : X → Y in Asm(|I|∗(A), φI), we define
Gf : GX → GY simply as f . By definition, we have lGY ◦ Gf = kY ◦ f = kX = lGX ,
but we need to verify that Gf is a morphism GX → GY in Asm(A, φ). Let U ∈ φI be a
tracker of f : X → Y . By (3), there exists a V ∈ φ such that |I|∗(V ) · EI ⊆ U . One now
easily verifies that every realizer of

λx.P(P0x)(V (P0x)(P1x)),

tracks Gf , which shows that Gf is indeed a morphism GX → GY . We conclude that G
is a well-defined functor.

It remains to show that F and G are pseudo inverses. If lX : X → I is in Asm(A, φ)/I,
then applying F and G yields the object lGFX : GFX → I, where |GFX| = |X| and
lGFX = lX , but

EGFX = {(x, a) ∈ |X| × A | ∃b, c, d : A(P(b) ∧ EI(lX(x), c) ∧ EX(x, d) ∧ bcd = a)}.

In order to show that GF ' id, it therefore suffices to show that the identity on |X| is
both a morphism X → GFX and a morphism GFX → X. If U ∈ φ tracks lX , then
every realizer of λx.P(Ux)x tracks id|X| : X → GFX, and in the other direction, P1 tracks
id|X| : GFX → X.
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If X is an object of Asm(|I|∗(A), φI), then |FGX| = |X| and kFGX = kX , but

EFGX = {(x, a) ∈ |X| × A | ∃b, c, d : A(P(b) ∧ EI(kX(x), c) ∧ EX(x, d) ∧ bcd = a)}.

As above, it suffices to show that the identity on |X| is a morphism X → FGX and
FGX → X. This is indeed the case, since |I|∗(P) · EI ∈ φI tracks id|X| : X → FGX,
whereas |I|∗(P1) ∈ φI tracks id|X| : FGX → X. This completes the proof.

5.6. Definition. If (A, φ) is a PCA and I is an assembly, then we denote the PCA
(|I|∗(A), φI) by (A, φ)/I.

In this way, we may reformulate Theorem 5.5 above as Asm(A, φ)/I ' Asm((A, φ)/I).
Before we treat our first example, we need the following result.

5.7. Proposition. Under the equivalence Asm((A, φ)/I) ' Asm(A, φ)/I provided by
Theorem 5.5, the constant objects of Asm((A, φ)/I) correspond to objects of Asm(A, φ)/I
that are prone morphisms in Asm(A, φ).

Proof. This is a straightforward calculation using the explicit description of the equiv-
alence Asm((A, φ)/I) ' Asm(A, φ)/I above.

5.8. Example. Let (A, φ) be a PCA over C. If f : I → J is a morphism of assemblies,
then we also have a pullback functor f ∗ : C/|J | → C/|I|, which is a regular functor. More-
over, we have the pullback functor f ∗ : Asm(A, φ)/J → Asm(A, φ)/I, which is regular. By
Theorem 5.5, we can also view f ∗ as a functor Asm((A, φ)/J) → Asm((A, φ)/I), which
clearly commutes with Γ. Moreover, we know that f ∗ : Asm(A, φ)/J → Asm(A, φ)/I
preserves prone morphisms, so f ∗ : Asm((A, φ)/J) → Asm((A, φ)/I) preserves constant
objects, i.e., commutes with ∇. By Theorem 4.7, f ∗ must be induced by an applicative
morphism (A, φ)/J → (A, φ)/I.

Let us describe this applicative morphism explicitly. The fact that f is a mor-
phism means precisely that f ∗(EJ) ⊆ f ∗(|J |∗(A)) = |I|∗(A) belongs to φI . This yields
f ∗(|J |∗(φ) ∪ {EJ}) ⊆ φI , and hence also

〈f ∗(φJ)〉 = 〈f ∗(|J |∗(φ) ∪ {EJ})〉 ⊆ φI .

Therefore, (f ∗, δ|I|∗(A)) is an applicative morphism (A, φ)/J → (A, φ)/I. A direct cal-
culcation shows that, under the equivalence from Theorem 5.5, Asm(f ∗, δ|I|∗(A)) is indeed
naturally isomorphic to the pullback functor f ∗ : Asm(A, φ)/J → Asm(A, φ)/I.

If we let J be the terminal assembly, then we see that (|I|∗, δ|I|∗(A)) is an applica-
tive morphism (A, φ) → (A, φ)/I. Moreover, under the equivalence from Theorem 5.5,
Asm(|I|∗(A), δ|I|∗(A)) is naturally isomorphic to I∗ : Asm(A, φ)→ Asm(A, φ)/I.

5.9. Example. Let (A,C) be a classical relative PCA, and let I be an assembly over
(A,C). We know that the category Set/|I| is equivalent to Set|I|. This means that
(A,C)/I is isomorphic to the PCA ((A)i∈|I|, CI) over Set|I|, where

CI = {(Ui ⊆ A)i∈|I| | ∃r ∈ C∀i ∈ |I|∀a ∈ A(EI(i, a)→ ra↓ ∧ ra ∈ Ui)}.
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We may picture this as follows. Each coordinate i ∈ |I| is labelled with information: the
set of a ∈ A such that EI(i, a). A sequence (Ui)i∈|I| of subsets of A is in the filter CI
precisely when there exists an algorithm that, uniformly in i ∈ |I|, turns the information
we have about i into elements of Ui.

5.10. Example. Let (A,C) be a PCA over C that is generated by singletons and consider
a partitioned assembly I. That is, we require EI(i, a) ∧ EI(i, a′) |=i:I;a,a′:A a = a′. This
means that there exists an arrow f : |I| → A such that EI = {(i, f(i)) | i ∈ |I|}. Then
(A,C)/I = (I|∗(A), CI), where

CI = {U ⊆ |I| × A | ∃V ∈ φC (|I|∗(V ) · EI ↓ ∧ |I|∗(V ) · EI ⊆ U)}
= {U ⊆ |I| × A | ∃r ∈ C (|I|∗(r) · EI ↓ ∧ |I|∗(r) · EI ⊆ U)}
= {U ⊆ |I| × A | ∃r ∈ C (|=i:I r · f(i)↓ ∧ U(i, r · f(i)))}.

This filter is generated by the set of global sections

{g : |I| → A | ∃r ∈ C (|=i:I r · f(i)↓ ∧ r · f(i) = g(i))}.

of |I|∗(A). In other words, a global section of |I|∗(A), which is a function |I| → A, counts
as computable iff it can be computed uniformly in terms of the ‘basic’ element f .

We see that being generated by singletons is preserved under slicing over partitioned
assemblies. Below (Example 5.15), we shall see that it is not preserved by slicing over
general assemblies.

We consider a few interesting examples of slicing over partitioned assemblies.

5.11. Example. Consider a classical relative PCA (A,C). Let I be the partitioned
assembly defined by |I| = 2 = {0, 1}, EI(0, k) and EI(1, k̄), where k and k̄ are the usual
combinators. Then I is the coproduct 1 + 1.

Then (A,C)/(1 + 1) is isomorphic to the PCA ((A,A), C1+1) over Set2. The filter
C1+1 is generated by C × C ⊆ A × A ∼= Set2(1, (A,A)). In other words, it contains all
pairs (U0, U1) such that U0 ∩ C 6= ∅ and U1 ∩ C 6= ∅. From this, it easily follows that
Asm((A,A), C1+1) is isomorphic to Asm(A,C)2. This is, of course, no surprise: since
Asm(A,C) is a quasitopos, we already knew that the categories Asm(A,C)/(1 + 1) and
Asm(A,C)2 should be equivalent.

5.12. Example. Let (A,C) be a PCA over C that is generated by singletons and let r0 ∈
C be a fixed element. (Observe that C is nonempty since φC should be combinatorially
complete.) For an object X of C, we consider the partitioned assembly I determined by
|I| = X and the function X → A assuming the constant value r0. Then I is the constant
object ∇X. Using Example 5.10, we see that C∇X is generated by all g : X → A that
factor through some element from C. In other words, U ⊆ X ×A belongs to C∇X if and
only if there is a computable element r ∈ C such that X × r ⊆ U .

If C = Set, then we may take X = 2. Then

C∇2 = {(U0, U1) ⊆ (A,A) | U0 ∩ U1 ∩ C 6= ∅},
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which is generated by the ‘diagonal’ {{(c, c)} ⊆ (A,A) | c ∈ C}. We see that the category
Asm(A,C)/∇2 is Asm(A,C)2, except that all realizing in the two coordinates needs to
take place simultaneously.

If we take C = A, so that we start with a classical absolute PCA, then C∇2 is not
the maximal filter on (A,A) (barring the case where A is the zero PCA 1). This means
that ((A,A), C∇2) is not (equivalent to) an absolute PCA. So even if we start out with
an absolute PCA, we may end up with a non-absolute PCA after slicing.

Therefore, in contrast with taking products (see Remark Remark 3.16(ii)), slicing
forces us to consider non-absolute notions of computability. We also mention that, even
though C∇2 is generated by singletons, it does not arise from a subobject of (A,A) in
Set2 in any reasonable way. So even for slicing over the very simplest kind of assembly,
one is forced to move to the more general notion of relativity involving realizing sets.

5.13. Example. Consider Kleene’s first model K1 (equipped with the maximal filter φ =
P∗N). We define the partitioned assembly N by |N | = N and EN = δN; this is the natural
numbers object in Asm(K1). Then K1/N is isomorphic to the PCA ((K1)n∈N, φN) over
SetN, where the filter φN is generated by all recursive infinite sequences of natural numbers
(more precisely, all global sections ({an})n∈N, where (an)n∈N is recursive). Therefore
Asm(K1)/N is equivalent to a category whose objects are infinite sequences of assemblies,
and whose arrows are infinite sequences of morphisms of assemblies for which there exists
a recursive sequence of trackers.

We know that the product PCA KN
1 , on the other hand, can be obtained by taking

the maximal filter on (K1)n∈N, which is generated by all infinite sequences of natural
numbers. In fact, one can show that Asm(K1)/N and Asm(K1)N are not equivalent.

5.14. Example. Consider Scott’s graph model Pω, equipped with the maximal filter φ.
The natural numbers object N of Asm(Pω) may be defined by |N | = N and EN(n) =
{{n}} for n ∈ N. For every infinite sequence (Vn)n∈N of elements of Pω, there exists
a Scott continuous function F : Pω → Pω such that F ({n}) = Vn for all n ∈ N. This
implies that φN is the maximal filter on (Pω)n∈N, so it follows that Pω/N and PωN are
isomorphic. In particular, Asm(Pω)/N and Asm(Pω)N are equivalent.

Now we consider an example of slicing over a non-partitioned assembly.

5.15. Example. Again, consider K1 with the maximal filter φ. Define the assembly I
by |I| = {0, 1} and

EI = {(x, n) ∈ 2× N | (x = 0 ∧ n ∈ K) ∨ (x = 1 ∧ n 6∈ K)},

where K is the standard set {n ∈ N | ϕn(n)↓}. This assembly is also known as the r.e.
subobject classifier, which is usually denoted by Σ. It is easy to see that this assembly
cannot be isomorphic to a partitioned assembly. We will show that φΣ is not generated
by singletons. Suppose that the set of singletons C generates φΣ. By Lemma 5.4, φΣ

consists of all pairs (U, V ) for which there exists a (total) recursive function f satisfying:
if n ∈ K, then f(n) ∈ U , whereas if n 6∈ K, then f(n) ∈ V . This means that the pair
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(K,N\K) is certainly in φΣ, so there must exist an ({a}, {b}) ∈ C with a ∈ K and b 6∈ K.
Since ({a}, {b}) must be in φΣ, we see that there exists a recursive function f : N → N
such that f(n) = a for all n ∈ K and f(n) = b for all n 6∈ K. Since a 6= b, this implies
that K is decidable, which we know to be false. (In fact, this argument is very similar to
the argument needed to show that Σ cannot be partitioned.)

5.16. Example. Using Example 5.15 above, we may also construct a PCA over Set that
is not generated by singletons, and is therefore not a PCA in the classical sense. Let
Π: Set2 → Set be the product functor sending a pair (A,B) of sets to A × B. This
functor is regular, so we can consider the PCA Π∗(K1/Σ). Its underlying set is N × N
with the coordinatewise application, and its filter is 〈Π(φΣ)〉, which is easily shown to be
equal to

↑(Π(φΣ)) = {W ⊆ N× N | ∃(U, V ) ∈ φΣ (U × V ⊆ W )}.

Let us denote this filter by ψ, and suppose that it is generated by the set of singletons C.
We certainly have that K × (N\K) ∈ ψ, so there must exist a singleton {(a, b)} ∈ C such
that a ∈ K and b 6∈ K. But now we have ({a}, {b}) ∈ φΣ and a 6= b, which is impossible
as we have seen above.

6. Computational density

Let p : D → C be a geometric morphism between toposes. Then the inverse image p∗ : C →
D is always a regular functor, which means we can apply the theory developed above. Of
course, the internal logic of toposes is quite a bit stronger than that of regular categories,
since toposes interpret full intuitionistic (typed) higher-order logic. For the larger part of
this section, we will only need first-order logic. As for regular formulas, if ϕ(x1, . . . , xn)
is a first-order formula and xi : Xi, then we write

{(x1, . . . , xn) ∈ X1 × · · · ×Xn | ϕ(~x)}

for its interpretation. If ϕ is a first-order sentence, then we write C |= ϕ to indicate that
this sentence is valid in the topos C.

6.1. Remark. The presence of full first-order logic also allows for a somewhat more
elegant treatment of the material in the preceding sections. For example, if A is a PAS
over C and t(x0, . . . , xn) is a term, then we may the define the object of all elements that
realize it. Explicitly, we can define Jλ~x.tK ⊆ A as:

{r ∈ A | ∀~a : An (r~a↓ ∧ ∀b : A(t(~a, b)↓→ r~ab↓ ∧ r~ab = t(~a, b)))}.

In other words, this is the largest possible subobject of A that can realize λ~x.t. If φ is
a filter, then by upwards closure, it contains a realizer of λ~x.t if and only if Jλ~x.tK ∈ φ.
Moreover, the fact that a regular functor p preserves realizers can now be expressed
as p(Jλ~x.tKA) ⊆ Jλ~x.tKp(A) (where the subscript indicates w.r.t. which PAS we compute
the suobject of realizers). Similar notation can be introduced for trackers of morphisms
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of assemblies, trackers of applicative morphisms, and realizers of inequalities between
relations. This is, in fact, the approach taken in [Ste13], where all the base categories C
are Heyting categories and therefore soundly interpret intuitionistic first-order logic.

Even though toposes themselves are able to interpret full first-order logic, the mor-
phisms betweem them that we consider typically do not preserve all this structure. This
is why we have chosen to work with regular categories in the preceding sections. By for-
mulating the key concepts in terms of regular sequents, we were able to see that regular
functors suffice to transport the necessary structure from one base category to another.

Suppose that (p∗, f) is an applicative morphism (A, φ) → (B,ψ), and consider the
induced functor Asm(p∗, f) : Asm(A, φ)→ Asm(B,ψ). The goal of this section is to answer
the following question: under which conditions does Asm(p∗, f) have a right adjoint? In
the case of classical PCAs, the answer is given by a notion called computational density
[HvO03], which we define now.

6.2. Definition. Let (A,C) and (B,D) be classical relative PCAs and let f : (A,C)→
(B,D) be an applicative morphism. We say that f is computationally dense if there exists
an m ∈ D such that for all s ∈ D, there exists an r ∈ C with:

for all a ∈ A, if s · f(a)↓, then ra↓,m · f(ra)↓ and m · f(ra) ⊆ s · f(a).

Here we have written f(a) for the set of b such that f(a, b), and an expression such as
d · f(a) denotes {db | b ∈ f(a)}.

The property defining computational density is of too high logical complexity to make
sense in an arbitrary regular category. Therefore, we will only generalize this notion to
toposes. However, Johnstone has reformulated the notion of computational density into
a much simpler property ([Joh13], Lemma 3.2), which does work for regular categories.

6.3. Definition. Let (A,C) and (B,D) be classical relative PCAs and let f : (A,C)→
(B,D) be an applicative morphism. We say that f is quasi-surjective if there exists an
n ∈ D such that for all s ∈ D, there exists an r ∈ C with n · f(r) = s. (I.e., nb is defined
and equal to s, for every b ∈ f(r).)

Johnstone’s proof in fact shows that, in Definition 6.2, it makes no difference if we
require ra to be always defined (although one may have to adjust the realizer m in Def-
inition 6.2 in order to achieve this). We now give the appropriate generalizations of the
two notions above to our setting.

6.4. Definition. Let (p, f) : (A, φ)→ (B,ψ) be an applicative morphism.

(i) (p, f) is called quasi-surjective if there exists an N ∈ ψ such that for all U ∈ ψ,
there exists a V ∈ φ satisfying N · f(p(V ))↓ and N · f(p(V )) ⊆ U .

(ii) Now suppose that the underlying category D of (B,ψ) is a topos. Then (p, f) is
called computationally dense if there exists an M ∈ ψ such that for all U ∈ ψ, there
exists a V ∈ φ such that VA↓ and

D |= ∀r, a : p(A)(p(V )(r) ∧ U · f(a)↓ → M · f(ra) ⊆ U · f(a)),
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where U · f(a) ↓ abbreviates the formula ∀u, b : B (U(u) ∧ f(a, b) → ub ↓), and
M · f(ra) ⊆ U · f(a) abbreviates

∀m, b : B (M(m)∧f(ra, b)→ (mb↓ ∧ ∃u, b′ : B (U(u)∧f(a, b′)∧ub′ ↓ ∧ ub′ = mb))).

We say that such N and M witness the quasi-surjectivity resp. the computational density
of (p, f).

6.5. Remark. Observe that our requirement that VA↓ implies that p(V ) ·p(A)↓ as well,
so that D |= ∀r, a : p(A)(p(V )(r) → ra ↓). As we shall see later, it is not sufficient, for
our purposes, to require merely that p(V ) · p(A)↓.

6.6. Remark. When reasoning internally in a topos, we will also use expressions such as
U · f(a)↓, trusting that the reader can formulate those as proper first-order statements if
desired. Alternatively, the reader can think of f as a map from A into the power object of
B, rather than a relation between A and B. However, most of what follows only requires
first-order internal reasoning; we will not need the presence of power objects until the
proof of Theorem 6.12(ii).

First of all, we study the quasi-surjective applicative morphisms.

6.7. Example. Let (A, φ) be a PCA over the regular category C and let p : C → D be a
regular functor. Then (p, δp(A)) : (A, φ) → p∗(A, φ) is quasi-surjective. Indeed, as in the
proof of Lemma 5.4, one can show that

〈p(φ)〉 = {U ⊆ p(A) | ∃V ∈ φ(p(V ) · p(A)↓ ∧ p(V ) · p(A) ⊆ U)}.

Since p(A) ∈ 〈p(φ)〉, there exists a realizer N ∈ 〈p(φ)〉 of λx.x · p(A), and this N witnesses
the quasi-surjectivity of (p, δp(A)).

6.8. Example. Let (A, φ) be a PCA over C and let I be an assembly. Then the applicative
morphism (|I|∗, δ|I|∗(A)) : (A, φ)→ (A, φ)/I from Example 5.8 is quasi-surjective. Indeed,
by Lemma 5.4, we have that any realizer N ∈ φI of λx.x · EI witnesses the fact that
(|I|∗, δ|I|∗(A)) is quasi-surjective. A fortiori, all the applicative morphisms (A, φ)/J →
(A, φ)/I discussed in Example 5.8 are quasi-surjective.

6.9. Proposition.

(i) PCAs, quasi-surjective applicative morphisms and applicative transformations form
a 2-category PCAqs.

(ii) If (A, φ)
(p,f)−→ (B,ψ)

(q,g)−→ (C, χ) are applicative morphisms such that (q, g) ◦ (p, f) is
quasi-surjective, then (q, g) is quasi-surjective as well.
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Proof. For (i), we only need to show that quasi-surjective applicative morphisms are
closed under identities and composition. If (A, φ) is a PCA, then I witnesses the quasi-

surjectivity of id(A,φ). Now suppose that (A, φ)
(p,f)−→ (B,ψ)

(q,g)−→ (C, χ) are quasi-surjective
applicative morphisms, and let N ∈ ψ and N′ ∈ χ witness the quasi-surjectivity of (p, f)
and (q, g), respectively. Furthermore, let T ∈ χ be a tracker of g. We claim that any
realizer N′′ ∈ χ of

λx.N′(T · g(q(N)) · x)

witnesses the quasisurjectivity of (q, g) ◦ (p, f) = (qp, g ◦ q(f)). Suppose that a U ∈ χ is
given. Let V ∈ ψ such that N′ · g(q(V )) ⊆ U and let W ∈ φ such that N · f(p(W )) ⊆ V .
Then we also have q(N) · q(f(p(W ))) ⊆ q(V ) and therefore

T · g(q(N)) · g(q(f(p(W )))) ⊆ g(q(V )).

Since q is a regular functor, we have that

g(q(f(p(W )))) = g(q(f)(q(p(W )))) = (g ◦ q(f))((qp)(W )),

so it follows from the above that N′′ · (g ◦ q(f))((qp)(W )) is defined and a subobject of U ,
as desired.

For (ii), let N ∈ χ witness the quasi-surjectivity of (qp, g ◦ q(f)), and let U ∈ χ. Then
there exists a V ∈ φ such that

N · g(q(f(p(V )))) = N · (g ◦ q(f))((qp)(V )) ⊆ U.

We know that f(p(V )) ∈ ψ, so we conclude that N also witnesses the quasi-surjectivity
of (q, g).

6.10. Remark. Every arrow (p, f) : (A, φ)→ (B,ψ) of PCA may be factored as:

(A, φ) p∗(A, φ)

(B,ψ)

(p,δp(A)

(idD,f)

Example 6.7 and Proposition 6.9 imply that (p, f) is quasisurjective if and only if its
‘vertical part’ (idD, f) is quasisurjective. Moreover, we see that the forgetful functor
PCAqs → REG is also an opfibration.

We now proceed to show that, when both these notions apply, computational density
and quasi-surjectivity coincide. The proof is an easy adaptation of Johnstone’s argument
from [Joh13].

6.11. Proposition. Let (p, f) : (A, φ)→ (B,ψ) be an applicative morphism, and suppose
that the underlying category D of (B,ψ) is a topos. Then (p, f) is computationally dense
if and only if it is quasi-surjective.
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Proof. First, suppose that (p, f) is computationally dense, witnessed by M ∈ ψ. Let T
track f and let N ∈ ψ realize

λx.M(T · x · f(p(A))).

Suppose that U ∈ ψ. Then KU ∈ ψ as well. Let V ∈ φ such that VA↓ and

D |= ∀r, a : p(A)(p(V )(r) ∧ KU · f(a)↓ → M · f(ra) ⊆ KU · f(a)).

Now reason inside D and let a ∈ p(A) be arbitrary. Then KU · f(a) ↓ always holds. It
follows that for all r ∈ p(A) and m, b ∈ B: if p(V )(r), M(m) and f(ra, b), then mb ↓
and mb ∈ U . From this, we can conclude (externally) that M · f(p(V ) · p(A)) ↓ and
M · f(p(V ) · p(A)) ⊆ U . This yields

N · f(p(V )) ⊆ M(T · f(p(V )) · f(p(A))) ⊆ M · f(p(V ) · p(A)) ⊆ U,

as desired.
For the converse, suppose that (p, f) is quasi-surjective, witnessed by N ∈ ψ. Again,

let T ∈ ψ track f , and consider a realizer M ∈ ψ of

λx.N(T · f(P0) · x)(T · f(P1) · x).

Let U ∈ ψ, and find a V ∈ φ such that N · f(p(V )) ⊆ U . We show that W := PV
has the required properties. First of all, we observe that PVA is defined. Moreover,
p(W ) = p(P) · p(V ), and as we remarked earlier, p(P) is a pairing combinator w.r.t. p(A).
Now we reason internally in D, let r, a ∈ p(A) be arbitrary and suppose that p(V )(r) and
U · f(a)↓. Since ra ∈ p(W ) · a = p(P) · p(V ) · a, we see that

T · f(P0) · f(ra) ⊆ f(P0 · (ra)) ⊆ f(p(V )) and T · f(P1) · f(ra) ⊆ f(P1 · (ra)) ⊆ f(a).

This means that N(T · f(P0) · f(ra)) ⊆ N · f(p(V )) ⊆ U , so we conclude that M · f(ra)↓
and

M · f(ra) ⊆ N(T · f(P0) · f(ra))(T · f(P1) · f(ra)) ⊆ U · f(a),

as desired.

Now we turn to answering the question posed earlier in this section, under which
conditions the functor Asm(p∗, f) has a right adjoint.

6.12. Theorem. Let (p, f) : (A, φ) → (B,ψ) be an applicative morphism, and suppose
that the underlying category D of (B,ψ) is a topos.

(i) If p has a right adjoint and (p, f) is computationally dense, then Asm(p, f) has a
right adjoint as well.

(ii) If Asm(p, f) has a right adjoint, then (p, f) is computationally dense.
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6.13. Remark. By Remark 6.10, the content of this theorem can be decomposed into
the following two points:

1. If p has a right adjoint, then so does Asm(p, δp(A)).

2. The functor Asm(idD, f) has a right adjoint if and only if (idD, f) is computationally
dense.

The second part is completely analogous to ‘classical’ computational density, whereas the
first part allows us to incorporate a change of base category.

We will first embark on the proof of (i), which is rather involved. The proof of (ii) can
be found on page 1948.

Proof of Theorem 6.12(i). Let M ∈ ψ witness the computational density of (p, f),
and suppose that p has a right adjoint q : D → C, where C is the underlying category of
(A, φ). We denote the unit and counit of the adjunction by η and ε respectively. For the
sake of readability, we write F for Asm(p, f). We define its right adjoint G.

Let X be an assembly over (B,ψ). First of all, we define

E ′X = {(x, a) ∈ |X| × p(A) | ∀m, b : B (M(m) ∧ f(a, b)→ mb↓ ∧ EX(x,mb))}.

Then q(E ′X) ⊆ q(|X|)× qp(A), and we let

E ′GX = (id×ηA)∗(q(E ′X)) = {(x, a) ∈ q(|X|)× A | q(E ′X)(x, ηA(a))} ⊆ q(|X|)× A.

Now we define the assembly GX over (A, φ) by setting

|GX| = {x ∈ q(|X|) | ∃a : A(E ′GX(x, a))} ⊆ q(|X|),

and by letting EGX be the restriction of E ′GX to |GX| × A.
Before we continue, we first formulate the following lemma.

6.14. Lemma. For every assembly X over (B,ψ), there is a commutative diagram:

pE ′GX E ′X

pq|X| × p(A) |X| × p(A)
ε×id

(4)

Proof. The object E ′GX is defined by the pullback diagram

E ′GX qE ′X

q|X| × A q|X| × qpAid×η
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This means that we can obtain the diagram (4) by pasting the following squares:

pE ′GX pqE ′X E ′X

pq|X| × pA pq|X| × pqpA |X| × pA

ε

id×pη ε×ε

(5)

and using the triangle identity for the bottom composition.

Now suppose that g : X → Y is an arrow in Asm(B,ψ), tracked by W ∈ ψ. Let U ∈ ψ
be a realizer of λx.W (Mx), and find a V ∈ φ such that VA↓ and

D |= ∀r, a : p(A)(p(V )(r) ∧ U · f(a)↓ → M · f(ra) ⊆ U · f(a)).

We claim that

C : V (r) ∧ E ′GX(x, a) |=x:q(|X|);r,a:A E
′
GY (q(g)(x), ra). (6)

To this end, we first prove that

D : p(V )(r) ∧ E ′X(x, a) |=x:|X|;r,a:p(A) E
′
Y (g(x), ra). (7)

Reason inside D and suppose that we have x ∈ |X| and r, a ∈ p(A) such that p(V )(r)
and E ′X(x, a). If we have m, b ∈ B such that M(m) and f(a, b), then mb↓ and EX(x,mb).
So if s ∈ W , then s(mb)↓ as well, and EY (g(x), s(mb)). This means that U · f(a)↓, and
every c ∈ U ·f(a) satisfies EY (g(x), c). Now suppose that m′, b′ ∈ B such that M(m′) and
f(ra, b′) are given. By the property of V , we know that m′b′ ↓ and m′b′ ∈ U · f(a), which
implies that EY (g(x),m′b′). From this, we can conclude that E ′Y (g(x), ra), which proves
(7).

Now we obtain a commutative diagram

pV × pE ′GX pV × E ′X E ′Y

pV × pq|X| × pA pV × |X| × pA |Y | × pAid×ε×id ∗

in D, where ∗ is the arrow sending (r, x, a) to (g(x), ra). Indeed, the left-hand square
exists by diagram (4), and the right-hand square expresses (7). Transposing this diagram
yields the diagram

V × E ′GX qE ′Y

V × q|X| × A q|Y | × qpA∗∗
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in C, where ∗∗ is the arrow sending (r, x, a) to (q(g)(x), ηA(ra)). (Observe that, since VA↓,
we know that the application map p(V ) × p(A) → p(A) is the image of the application
map V × A→ A under p.) This diagram tells us that

C : V (r) ∧ E ′GX(x, a) |=x:q(|X|);r,a:A E
′
Y (q(g)(x), ηA(ra)).

from which (6) immediately follows. Since V is inhabited, (6) implies that

C : ∃a : A(E ′GX(x, a)) |=x:q(|X|) ∃a : A(E ′GY (q(g)(x), a)),

which means that q(g) restricts to an arrow G(g) : |GX| → |GY |. Moreover, (6) implies
that V tracks G(g) as a morphism GX → GY . It is immediate that G is a functor, so it
remains to show that F a G.

Since I ∈ ψ, there exists a V ∈ φ such that VA↓ and

D |= ∀r, a : p(A)(p(V )(r) ∧ I · f(a)↓ → M · f(ra) ⊆ I · f(a)),

which may be simplified to

D |= ∀r, a : p(A)(p(V )(r)→ M · f(ra) ⊆ f(a)).

We claim that for every assembly X ∈ Asm(A, φ):

D : p(V )(r) ∧ p(EX)(x, a) |=x:p(|X|);r,a:p(A) E
′
FX(x, ra). (8)

Indeed, reason inside D and suppose that we have x ∈ p(|X|) and r, a ∈ p(A) such that
p(V )(r) and p(EX)(x, a). Consider m, b ∈ B such that M(m) and f(ra, b). Then by the
property of V , we know that mb ↓ and f(a,mb). Since p(EX)(x, a), this implies that
EFX(x,mb), so we can conclude that E ′FX(x, ra), which proves (8).

The validity of (8) can be expressed by a diagram

pV × pEX E ′FX

pV × p|X| × pA p|X| × pA∗

in D, where ∗ is the arrow sending (r, x, a) to (x, ra). Transposing this diagram yields a
diagram

V × EX qE ′FX

V × |X| × A qp|X| × qpA∗∗

in C, where ∗∗ is the arrow sending (x, r, a) to (η|X|(x), ηA(ra)). This diagram implies
that

C : V (r) ∧ EX(x, a) |=x:|X|;r,a:A E
′
GFX(η|X|(x), ra)). (9)
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Since V is inhabited and EX is total, (9) implies that the sequent

`x:|X| ∃a : A(E ′GFX(η|X|(x), a))

is valid in C, i.e., the image of η|X| : |X| → qp(|X|) = q(|FX|) is contained in |GFX|.
So we have an arrow η̃X : |X| → |GFX|, and (9) tells us that V tracks it as a morphism
X → GFX. The naturality of η implies that η̃ is natural transformation id⇒ GF .

Now consider an assembly X ∈ Asm(B,ψ). We know that |FGX| = p(|GX|) ⊆
pq(|X|), so ε|X| : pq(|X|) → |X| restricts to an arrow ε̃X : |FGX| → |X|. We will show
that M tracks ε̃X as a morphism FGX → X. To this end, reason inside D and suppose
we have x ∈ |FGX| = p(|GX|) and m, b ∈ B such that M(m) and EFGX(x, b). Then
there exists an a ∈ p(A) such that p(EGX)(x, a) and f(a, b). This also implies that
p(E ′GX)(x, a) and since we have the diagram (4), it follows that E ′X(ε|X|(x), a). Since
f(a, b), this means that mb↓, and EX(ε|X|(x),mb), as desired. We conclude that ε̃X is a
morphism FGX → X, and that ε̃ is a natural transformation FG ⇒ id. Moreover, the
triangle equalities for ε and η yield that the triangle equalities hold for ε̃ and η̃ as well,
so F a G.

The theory developed above yields a succinct proof of the following result.

6.15. Corollary. Let (A, φ) be a PCA over a topos C. Then Asm(A, φ) is locally carte-
sian closed.

Proof. Let f : I → J be a morphism of assemblies. As we showed in Example 6.8,
the applicative morphism (f ∗, δ|I|∗(A)) : (A, φ)/J → (A, φ)/I is computationally dense.
Moreover, since any topos is locally cartesian closed, we know that the pullback functor
f ∗ : C/|J | → C/|I| has a right adjoint Πf . By Theorem 6.12(i), the functor

Asm(f ∗, δ|I|∗(A)) : Asm((A, φ)/J)→ Asm((A, φ)/I)

has a right adjoint as well. In Example 5.8, we observed that, under the equivalences of
Theorem 5.5, this functor is naturally isomorphic to the pullback functor

f ∗ : Asm(A, φ)/J → Asm(A, φ)/I.

We conclude that this pullback functor always has a right adjoint, i.e., that Asm(A, φ) is
locally cartesian closed.

Now let us finally also give the proof of Theorem 6.12(ii)

Proof of Theorem 6.12(ii). Again, let C be the underlying category of (A, φ), and
write F for Asm(p, f). Suppose we have an adjunction F a G with counit ε. Consider
the assembly S ∈ Asm(B,ψ), where |S| is the object of inhabited subobjects of B, and
ES ⊆ |S| ×B is the element relation. Let N ∈ ψ be a tracker of εS : FGS → S; we claim
that N also witnesses the quasi-surjectivity of (p, f).

Suppose that U ∈ ψ. Then the global section U : 1 → |S| is also a morphism 1 → S,
since it is tracked by KU . Since F1 ' 1, this morphism can be transposed to an arrow
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Ũ : 1 → GS of Asm(A, φ). Then FŨ is a global section 1 ' F1 → FGS, and by the
adjunction, we have εS(FŨ) = U .

Now take V = {a ∈ A | EGS(Ũ , a)}. If W tracks Ũ , then WA is defined and a
subobject of V , which implies that V ∈ φ. Then f(p(V )) = {b ∈ B | EFGS(FŨ, b)},
which means that N · f(p(V )) is defined and a subobject of

{b ∈ B | ES(εS(FŨ), b)} = {b ∈ B | ES(U, b)} = U,

as desired.

Putting the above together, we get the following.

6.16. Corollary. Suppose that p : D → C is a geometric morphism between toposes,
and that (p∗, f) : (A, φ)→ (B, φ) is an applicative morphism. Then Asm(p, f) has a right
adjoint if and only if (p, f) is computationally dense.

We can also formulate this result in another way. We may generalize the notion of
a geometric morphism to include any adjunction between left exact categories for which
the left adjoint is left exact. In this way, the adjunction Γ a ∇ becomes a geometric
morphism C → Asm(A, φ), which is even an inclusion in the sense that Γ∇ ' id.

6.17. Corollary. Let p : D → C be a geometric morphism between toposes, and let
(A, φ) and (B,ψ) be PCAs over C and D respectively. If (p∗, f) : (A, φ) → (B,ψ) is
a computationally dense applicative morphism, then there exists an up to isomorpmism
commutative diagram

D C

Asm(B,ψ) Asm(A, φ)

p

F

satisfiying the Beck-Chevalley Condition F ∗∇ ' ∇p∗, with F ∗ = Asm(p∗, f). Moreover,
every such diagram arises, up to isomorphism, in this way.

In the case of classical PCAs, it is also known when the geometric morphism induced
by a computationally dense applicative morphism is an inclusion (e.g., [vO08], Proposition
2.6.2).

6.18. Proposition. Let f : (A,C)→ (B,D) be a computationally dense applicative mor-
phism, and suppose that m ∈ D witnesses the computational density of f . Then the in-
duced geometric morphism Asm(A,C) → Asm(B,D) is an inclusion if and only if there
exists an e ∈ D satisfying:

∀b ∈ B (eb↓ ∧∃a ∈ A(f(a, eb) ∧m · f(a)↓ ∧ m · f(a) = b)).

The appropriate generalization to PCAs is as follows:
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6.19. Proposition. Let (p, f) : (A, φ) → (B,ψ) be a computationally dense applicative
morphism, suppose that the underlying category D of (B,ψ) is a topos, and suppose that
p has a right adjoint q. If M ∈ ψ witnesses the computational density of (p, f), then the
induced geometric morphism Asm(B,ψ)→ Asm(A, φ) is an inclusion if and only if:

(a) p a q : D → C is an inclusion, and

(b) there exists an E ∈ ψ such that

D |= ∀b, e : B (E(e)→ (eb↓ ∧ ∃a : p(A)(f(a, eb) ∧M · f(a) = b))),

where M · f(a) = b abbreviates ∀b′,m : B (f(a, b′) ∧M(m)→ mb′ = b).

Proof. We write F = Asm(p, f), and we let G be the right adjoint of F as constructed
in the proof of Theorem 6.12(i). We also write η and ε for the unit resp. counit of p a q,
and we write η̃ and ε̃ for the unit resp. counit of F a G as constructed in the proof of
Theorem 6.12(i).

First, suppose that F a G is an inclusion. Since we have the commutative diagram

D C

Asm(B,ψ) Asm(A, φ)

paq

F aG

of geometric morphisms, this implies that p a q must be an inclusion as well, i.e., ε is an
isomorphism. Now consider the object of realizers R in Asm(B,ψ). In the diagram

|FGR| p|GR| pqB

B
ε̃R

=

εB

both εB and ε̃R are isomorphisms, so the inclusion p|GR| ↪→ pqB is in fact the iden-
tity, and εB = ε̃R (as arrows in D). Now let E ∈ ψ be a tracker of ε̃−1

R : R → FGR,
and reason internally in D. Let m, e ∈ B and suppose that E(e). Then eb ↓, and
EFGR(ε̃−1

R (b), eb), whence also EFGR(ε−1
B (b), eb). This means that these exists an a ∈ p(A)

such that p(EGR)(ε−1
B (b), a) and f(a, eb). According to (4), the former implies that

E ′R(εB(ε−1
B (b)), a), i.e., E ′R(b, a). If m, b′ ∈ B are such that M(m) and f(a, b′), then

the definition of E ′R yields that mb′ ↓ and ER(b,mb′), i.e., mb′ = b. This shows that E has
the desired property.

Conversely, suppose that (a) and (b) hold, say that (b) is witnessed by E ∈ ψ, and
let X be an assembly over (B,ψ). First of all, consider the diagram (5). The left-hand
square is a pullback, since it is the image of a pullback diagram under p. But since p a q
is an inclusion, we know that pη is an isomorphism, from which it follows that the arrow
pE ′GX → pqE ′X is an isomorphism as well. Since all the εs are isomorphisms as well, we
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conclude that the top and bottom arrows in the diagram (4) are isomorphisms. In other
words, we have

D |= ∀x : pq(|X|)∀a : p(A)(p(E ′GX)(x, a)↔ E ′X(ε|X|(x), a)).

Now reason inside D. Suppose that we have x ∈ |X| and b, e ∈ B such that E(e) and
EX(x, b). Then eb↓, and there exists an a ∈ p(A) such that f(a, eb) and M·f(a) = b. Since
EX(x, b), the latter implies that M · f(a) ⊆ EX(x), in other words, that (x, a) ∈ E ′X(x, a).
Using the above, this implies that p(E ′GX)(ε−1

|X|(x), a). So we have shown:

D |= ∀x : |X|∀b, e : B (E(e)∧EX(x, b)→ (eb↓ ∧ ∃a : p(A)(f(a, eb)∧p(E ′GX)(ε−1
|X|(x), a))))

(10)
Again, reason inside D and suppose that y ∈ pq(|X|). Then ε|X|(y) ∈ |X|, and since X
is an assembly and E is inhabited, there exist b, e ∈ B such that E(e) and EX(ε|X|(y), b).
Using (10), we find that there is an a ∈ p(A) such that p(E ′GX)(y, a). Since p is regular,
we have

p(|GX|) = {y ∈ pq(|X|) | ∃a ∈ p(A)(p(E ′GX)(y, a))},
so we can conclude that y ∈ p(|GX|) as well. In other words, the inclusion p(|GX|) ↪→
pq(|X|) is in fact an isomorphism. Modulo this isomorphism, we have that ε̃X = ε|X|. To
finish the proof, we will show that E tracks ε−1

|X| : |X| → pq(|X|) ' p(|GX|) = |FGX| as
a morphism X → FGX.

Since
pEGX pE ′GX

p|GX| × pA pq|X| × pA

is a pullback diagram (being the image of a pullback diagram under p), we see that the
inclusion p(EGX) ↪→ p(E ′GX) is also an isomorphism. Now reason inside D and suppose
that we have x ∈ |X| and b, e ∈ B such that E(e) and EX(x, b). Then by (10) and the
observation we just made, we see that eb is defined, and that there is an a ∈ p(A) such
that f(a, eb) and p(EGX)(ε−1

|X|(x), a). But the latter just means that EFGX(ε−1
|X|(x), eb), as

desired.
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