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We present an elementary elaboration of Dwork’s idea of explicit p-adic limit formulas

for zeta functions of toric hypersurfaces.

1 Introduction

In his study of zeta-functions of families of algebraic varieties Dwork discovered a

number of remarkable congruences for truncated solutions of Picard–Fuchs equations.

For example, let

F(z) = 1

π

∫ ∞

1

dx√
x(x − 1)(x − z)

=
∑
k≥0

(
(1/2)k

k!

)2

zk

be the period function associated to the Legendre family of elliptic curves y2 = x(x −
1)(x − z). Here (1/2)k denotes the Pochhammer symbol �(k + 1/2)/�(1/2). Let p be an

odd prime and s a positive integer. Let Fps be the truncation of F given by

Fps(z) =
ps−1∑
k=0

(
(1/2)k

k!

)2

zk.
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8808 F. Beukers and M. Vlasenko

Let z0 be a p-adic integer and suppose Fp(z0) is a p-adic unit. Then Fps(z0) is a p-adic

unit for all s ≥ 1 and we have

Fps+1(z0)/Fps(z0) ≡ Fps(z0)/Fps−1(z0)(mod ps).

The p-adic unit λ(z0) = (−1)
p−1

2 lim
s→∞Fps(z0)/Fps−1(z0) is a root of the zeta function of the

elliptic curve corresponding to z0(mod p). (Though it looks slightly different, this fact

is a version of [3, (6.29)].)

In a series of papers culminating in [8, Theorem 6.2], Katz developed a general

theory of such congruences and their underlying mechanism. However, his congruences

involve formal expansion coefficients of differential forms instead of truncated power

series solutions of a differential equation. In this paper we consider a 3rd alternative,

namely coefficients of certain powers of the polynomial defining a variety. For example,

in the case of the Legendre elliptic curve they are given by

Gps(z) = coefficient of (xy)ps−1 of (y2 − x(x − 1)(x − z))ps−1.

Although different from Fps(z), they both satisfy the hypergeometric differential equa-

tion modulo ps. The congruences read

Gps+1(z0)/Gps(z0) ≡ Gps(z0)/Gps−1(z0)(mod ps)

and the quotients converge to the p-adic unit root λ(z0). In this paper we shall deal with

a generalized version of the congruences of the latter type. A number of ideas in this

paper are already present in [8], but in a very different language. There will also be no

smoothness assumptions on the underlying variety. We plan to come back to the case of

truncated power series solutions in a later paper.

Let R be a ring of characteristic zero and p a prime number. Suppose that we

have a pth power Frobenius lift on R, which is a ring endomorphism σ : R → R with

the property that σ(r) ≡ rp(mod p) for all r ∈ R. For example, when R = Z is the ring of

integers we can take σ(r) = r for all r. When R = Z[t] is a polynomial ring we can take

σ(g(t)) = g(tp).

Let f (x) = ∑N
i=1 fix

ai be a Laurent polynomial in x1, . . . , xn with fi ∈ R for all i.

Here we use the vector notation xe = xe1
1 xe2

2 · · · xen
n . Let � ⊂ Rn be the Newton polytope

of f (x), which is the convex hull of its support {ai : fi 
= 0}. Let J be the set of interior

lattice points in � and set g = #J. We assume that g > 0. For any integer m ≥ 1 we
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Dwork Crystals I 8809

define the g × g-matrix βm with entries

(βm)u,v∈J := coefficient of xmv−u of f (x)m−1.

When m = 1 we take for βm the identity matrix. We call βp the Hasse–Witt matrix

of f . When βp is invertible modulo p it turns out that βps is invertible modulo p for

every s ≥ 1. Note that being invertible modulo p implies being invertible modulo all

powers of p.

In [11], it is shown that if the Hasse–Witt matrix is invertible modulo p, then

βps+1σ(βps)
−1 ≡ βpsσ(βps−1)

−1 (mod ps)

for every s ≥ 1. One may observe that this congruence as similar to the last part of

Theorem 6.2 in Katz’s paper [8]. We believe that the merit of [11] is that the proof of the

congruence is completely elementary.

Let δ be a derivation on R. Again in an elementary way, it is shown in [11] that if

βp is invertible in R, then

δ(βps+1)β
−1
ps+1 ≡ δ(βps)β

−1
ps (mod ps)

for every s ≥ 1.

These congruences imply the existence, for each Frobenius lift σ and each

derivation δ on R, of p-adic limit matrices 	σ and Nδ such that

	σ = lim
s→∞ βpsσ(βps−1)

−1 and Nδ = lim
s→∞ δ(βps)β

−1
ps .

It is the goal of the present paper to give an interpretation of these matrices in terms

of operations with regular rational functions on Tn \ Zf , the complement of the set of

zeroes Zf = {x : f (x) = 0} in the n-dimensional torus Tn. At the same time we provide an

alternative proof of the congruences.

To be slightly more precise, we consider the R-module 
f of rational functions

generated over R by

(u0 − 1)!
xu

f (x)u0
,

where u0 is a positive integer and u ∈ (u0�)∩Zn. Any derivation δ on R can be extended

naturally to 
f by setting δ(xi) = 0 for all i.
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8810 F. Beukers and M. Vlasenko

In this paper we construct the R-linear Cartier operator Cp : 
̂f → 
̂f σ , where


̂f = lim← (
f /ps
f ) is the p-adic completion of 
f and f σ (x) = ∑N
i=1 f σ

i xai is simply f

with σ applied to its coefficients. The Cartier operator commutes with any derivation δ

of R.

The main results of this paper are Theorems 4.3 and 5.3. Applied to the open set

μ = �◦ of interior points of �, they describe a free rank g subquotient Qf = Qf (�
◦)

of 
f to which the Cartier operator descends and 	σ is the (transposed) matrix that

corresponds to the R-linear map Cp : Qf → Qf σ . As a bonus of our considerations we

also recover a version of Katz’s theorem [8, Theorem 6.2] as Theorem 5.7.

Finally in this introduction we point out the connection with the de Rham

cohomology of the complement of Zf . Define the modules 
n
f = 
f

dx1
x1

∧ · · · ∧ dxn
xn

and


n−1
f = ⊕n

i=1
f
dx1
x1

∧ · · · ˇdxi
xi

· · · ∧ dxn
xn

of differential n- and n − 1-forms, respectively. The

above-mentioned R-module Qf is in fact a (p-adic) subquotient of

Wf := 
n
f /d(
n−1

f ).

We call the latter the Dwork module. It is known due to the work of Griffiths and

Batyrev that, when R is a field and f satisfies certain regularity conditions (so called

�-regularity), then Wf is isomorphic to the middle de Rham cohomology Hn
dR(Tn\Zf ) (see

Corollary A.4 and [1, Theorem 7.13]). In particular, it is a vector space over R of finite

dimension. In this paper we will not assume regularity. We also will not assume that

the Newton polytope � ⊂ Rn is of maximal dimension.

2 Regular Functions and Formal Expansion

Let R be a characteristic zero domain, f ∈ R[x±1
1 , . . . , x±1

n ] be a Laurent polynomial and

� ⊂ Rn be its Newton polytope. By C(�) we denote the subset of Rn+1 given by

C(�) = {λ(1, u1, . . . , un) | (u1, . . . , un) ∈ �, λ ≥ 0}, (1)

the positive cone spanned by the Newton polytope � placed in Rn+1 in the hyperplane

u0 = 1.

The set of integral points C(�)∩Zn+1 is denoted by C(�)
Z

. Let C(�)+
Z

= C(�)
Z
\{0}

be the set of non-zero integral points in the cone. For any (u0, u1, . . . , un) = u ∈ C(�)
Z

we

denote xu = xu1
1 · · · xun

n (we simply drop the component u0 here, as there is no respective
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Dwork Crystals I 8811

variable x0). Consider the R-module 
f of regular rational functions generated over

R by

ωu := (u0 − 1)!
xu

f (x)u0

for all u ∈ C(�)+
Z

. Note that 1 is an R-linear combination of ωu with u0 = 1, so the

constant functions are also in 
f .

We define the module d
f as the R-span of all derivatives xi
∂

∂xi
ω with ω ∈ 
f

and 1 ≤ i ≤ n. Note that d
f ⊂ 
f . The quotient R-module

Wf := 
f /d
f ,

will be called the Dwork module.

Remark 2.1. Having the extra factor (u0 − 1)! in the definition of ωu appears to be

essential in many ways when working over rings R (rather than fields). At the end of

the introduction we mentioned that the Dwork module can be also written in terms

of differential forms as Wf = 
n
f /d(
n−1

f ). Factors (u0 − 1)! in ωu allow the so-called

Griffiths–Dwork reduction when we work in Wf . This is the procedure to reduce the

pole order of a form by shifting it by exact forms. More concretely, suppose we have

a form of the shape k! g(x)

f k+1
dx
x and there exist Laurent polynomials g0(x), g1(x), . . . , gn(x)

with support in k� such that g = g0f +∑n
i=1 gixi

∂f
∂xi

. Then

k!
g(x)

f k+1

dx

x
= k!

g0

f k

dx

x
+

n∑
i=1

k!
gi

f k+1
xi

∂f

∂xi

dx

x

= k!
g0

f k

dx

x
+

n∑
i=1

(k − 1)!
xi

f k

∂gi

∂xi

+
n∑

i=1

(−1)id

⎛⎝(k − 1)!
gi

f k

dx1

x1
∧ · · ·

∨
dxi

xi
· · · ∧ dxn

xn

⎞⎠
≡ k!

g0

f k

dx

x
+

n∑
i=1

(k − 1)!
xi

f k

∂gi

∂xi
(mod d(
n−1

f )).

The final form is again in 
n
f . Note that factorials appear in the Laplace transform

in [1, §7].
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8812 F. Beukers and M. Vlasenko

Rational functions can be expanded as formal Laurent series. To that end we fix

a vertex b of � and assume that the coefficient of f at xb is a unit in R. Denote this

coefficient by fb and expand rational functions as

g(x)

f (x)m = g(x)x−mb

f m
b (1 + . . .)m = g(x)x−mb

f m
b

∑
k≥0

hk(x),

where hk(x) are Laurent polynomials supported in k(� − b) for every k. There are only

finitely many summands contributing to each monomial in the cone C(� − b) ⊆ Rn.

Observe that when g(x) is supported in m� the formal series in the right-hand side is

itself supported in C(� − b). (Here we need a word of caution regarding our notation. In

(1) the polytope � was placed in the hyperplane u0 = 1 in Rn+1, which will be our usual

convention throughout the paper. Note that, with this convention, the difference � − b

is a polytope in the hyperplane u0 = 0 and one can view the respective cone C(� − b)

as a subset of this hyperplane {u0 = 0} ∼= Rn.) Denote the ring of formal Laurent series

with support in C(� − b) and coefficients in R by


formal =
⎧⎨⎩ ∑

k∈C(�−b)

akxk
∣∣∣∣ ak ∈ R

⎫⎬⎭ .

It is indeed a ring because the cone has 0 as a vertex. The above-explained procedure

of formal expansion defines an embedding of 
f into 
formal as an R-submodule. Note

that we do not include the choice of b in the notation 
formal.

Similarly to d
f , the R-module of formal derivatives d
formal is defined as the

R-span of derivatives xi
∂

∂xi
ω with 1 ≤ i ≤ n and ω ∈ 
formal.

Lemma 2.2. A series
∑

k∈C(�−b) akxk is a formal derivative if and only if

ak ≡ 0(mod gcd(k1, . . . , kn)) for all k.

Proof. Notice that for any monomial xk, any i and any a ∈ R we have

xi
∂

∂xi

(
axk

)
= akix

k ≡ 0(mod ki).

This shows the ⇒ part. To see the reverse implication, write gcd(k1, . . . , kn) = ∑
i miki

for some mi ∈ Z and note that∑
i

mixi
∂xk

∂xi
= gcd(k1, . . . , kn)xk.

�
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Dwork Crystals I 8813

3 Cartier Operator

Let us fix a prime number p. We define the Cartier operator Cp on 
formal by

Cp

(∑
k

akxk

)
:=

∑
k

apkxk. (2)

Although acting on different spaces, this operation was already used in early papers of

Dwork (see ψ in [4, §2]) and Reich (see � in [9, §(b)]).

From now on we assume that ∩sp
sR = {0}, in which case we have a well defined

p-adic valuation

ordp(r) = sup
{
s ∈ Z≥0 : r ∈ psR

}
on R which extends the usual p-adic valuation on Z ⊂ R. This valuation takes

finite values on all non-zero elements of R and satisfies the inequalities ordp(r1r2) ≥
ordp(r1) + ordp(r2) and ordp(r1 + r2) ≥ min(ordp(r1), ordp(r2)). We also assume that

R is p-adically complete. In particular, R is a Zp-algebra and Lemma 2.2 can be

reformulated as

Lemma 3.1. A series h ∈ 
formal is a formal derivative if and only if C s
p(h) ≡ 0(mod ps)

for all integers s ≥ 1.

One easily shows that Cp ◦ θi = p θi ◦ Cp for any θi = xi
∂

∂xi
. We thus observe that

the Cartier operator preserves the submodule of formal derivatives and is divisible by p

on it, that is,

Cp : d
formal → p d
formal. (3)

Applying this commutation identity s times yields C s
p ◦ θi = psθi ◦C s

p , which immediately

gives one of the implications in the last lemma. Here is another straightforward

property of Cp:

Lemma 3.2. Let g, h ∈ 
formal. Then Cp(g(xp)h) = g(x)Cp(h).

Since Cartier operators are usually defined mod p in the literature, naming Cp

a Cartier lift might be more appropriate. Nevertheless, we prefer to call it the Cartier

operator.
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8814 F. Beukers and M. Vlasenko

We now like to restrict the Cartier operator to 
f . We will need the p-adic

completion 
̂f := lim← 
f /ps
f . Fix a Frobenius lift σ on R: this is a ring endomophism

σ : R → R such that σ(r) ≡ rp(mod p) for every r ∈ R. Our main observation is that

Proposition 3.3. If p > 2 then Cp(
f ) ⊂ 
̂f σ .

Proof. To see this, rewrite 1/f (x)u0 as f (x)p�u0/p�−u0/f (x)p�u0/p�. Then note that f (x)p =
f σ (xp) − pG(x) for some Laurent polynomial G with coefficients in R and support in p�.

Then we use the p-adic expansion

xu

f (x)u0
= xuf (x)p�u0/p�−u0

(f σ (xp) − pG(x))�u0/p� =
∑
r≥0

pr
(�u0/p� + r − 1

r

)
G(x)r

f σ (xp)r+�u0/p� xuf (x)p�u0/p�−u0 .

Multiply this with (u0 − 1)! and apply Cp. Using Lemma 3.2 we find that

Cp(ωu) =
∑
r≥0

pr

r!

(u0 − 1)!

(�u0/p� − 1)!
(�u0/p� + r − 1)!

Qr(x)

f σ (x)r+�u0/p� ,

where the Qr(x) = Cp(G(x)rxuf (x)p�u0/p�−u0) are Laurent polynomials in x1, . . . , xn with

support in (�u0/p� + r)� and coefficients in R. The last formula can be rewritten as

Cp(ωu) =
∑

v∈C(�)+
Z

Fu,vωσ
v , (4)

where

Fu,v =
⎧⎨⎩

pr

r!
(u0−1)!

(�u0/p�−1)! × coefficient of xv in Qr(x), r := v0 − �u0/p� ≥ 0,

0, v0 < �u0/p�.
(5)

To show that Cp(ωu) ∈ 
̂f σ it suffices to show that ordp(Fu,v) → ∞ as v0 → ∞. To that

end we observe that

ordp(Fu,v) ≥ r − ordp(r! ) + ordp

(
(u0 − 1)!

(�u0/p� − 1)!

)
.

It is straightforward to see that (u0−1)!
(�u0/p�−1)! has order ≥ �u0/p�−1 and that ordp(r! ) < r

p−1 .

This gives us

ordp(Fu,v) ≥ r + �u0/p� − 1 − r

p − 1
= v0 − 1 − r

p − 1
≥ p − 2

p − 1
(v0 − 1). (6)

The latter goes to ∞ with v0 when p > 2. �
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Dwork Crystals I 8815

From now on we assume that p > 2. By Proposition 3.3 we have a well-defined

R-linear map

Cp : 
̂f → 
̂f σ . (7)

It is in fact given by the explicit formulas (4) and (5), which also show that the map (7)

is independent of the choice of vertex b of � at which we are doing formal expansions.

We shall also be interested in regular functions supported in subsets of the cone

C(�). For a subset μ ⊆ � let us denote by


f (μ) ⊆ 
f

the R-module generated by functions ωu with u ∈ C(μ)+
Z

. Here C(μ) ⊆ C(�) is the positive

cone spanned by μ placed in Rn+1 in the hyperplane u0 = 1, and C(μ)
Z

= C(μ) ∩ Zn+1

is the set of integral points in this cone and C(μ)+
Z

= C(μ)
Z

\ {0} is the set of non-

zero integral points. Note that 
f (�) = 
f . The respective p-adic completion is denoted


̂f (μ) = lim← 
f (μ)/ps
f (μ).

Proposition 3.4. Define a finite topology on �, where the closed sets are unions of

faces of any dimension. Let μ ⊂ � be an open set. Then the Cartier operator Cp maps


̂f (μ) into 
̂f σ (μ) and derivations of R map 
f (μ) to itself.

Proof. Since open sets are intersections of the complements of faces, it is enough

to prove our statement for μ being such a complement. Without loss of generality we

assume that μc is a face of �. In this case C(μ) = �c = C(�) \ � where � = C(μc) is the

respective face of the cone C(�). The R-module 
f (μ) is generated by functions ωu with

u ∈ �c. To prove our proposition we recall that the Cartier operator (6) is given explicitly

by formula (3) and one easily sees that u ∈ �c and Fu,v 
= 0 imply v ∈ �c.

Let δ be a derivation of R and u ∈ C(μ)
Z

. Observe that in the formula

δ(ωu) = −u0!
xuδ(f )(x)

f (x)u0+1

dx

x

the support of xuδ(f ) is in u + �, which again lies in C(μ) when μ is open in our

sense. �

Definition 3.5. Fix a non-empty subset μ ⊆ � that is open in the topology from

Proposition 3.4. Let μ
Z

= μ ∩ Zn be the set of integral points in μ. We assume this

set is non-empty and let h = #μ
Z

be the number of such points. For any integer m ≥ 1
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8816 F. Beukers and M. Vlasenko

we define the h × h-matrix βm = βm(μ) with entries

(βm)u,v∈μZ
:= coefficient of xmv−u of f (x)m−1. (8)

When m = 1 we take for β1(μ) the identity matrix. We call βp(μ) the Hasse–Witt matrix

of f relative to μ.

Proposition 3.6. Suppose that p > 2 and μ ⊆ � is a non-empty subset which is open

in the topology defined in Proposition 3.4. Then

Cp(
̂f (μ)) ⊆ SpanR(ωσ
u)u∈μZ

+ p 
̂f σ (μ).

Moreover, for any u ∈ μ
Z

we have

Cp(ωu) ≡
∑

v∈μZ

(βp)u,vωσ
v (mod p
̂f σ (μ)).

Proof. From the proof of Propositions 3.3 and 3.4, in particular equations (4) and

(5), we know an expression for Cp(ωu) as a linear combination
∑

v∈C(μ)+
Z

Fu,vωσ
v for every

u ∈ μ
Z

. Moreover, it follows from (6) that Fu,v ≡ 0(mod p) when v0 > 1. Our 1st statement

follows immediately. The observation that (βp)u,v ≡ Fu,v(mod p) whenever v0 = 1 proves

the 2nd statement. �

4 The Unit-Root Crystal

In this section we formulate the 1st main result of this paper. But first we need some

preparations.

Definition 4.1. For a non-empty subset μ ⊆ � that is open in the topology from

Proposition 3.4, define Uf (μ) = 
̂f (μ) ∩ d
formal.

We call Uf (μ) the submodule of formal derivatives. Differential n-forms associ-

ated to elements of Uf (μ) were called forms that “die on formal expansion” by Nick Katz

in [8, p.258]. It turns out that one can give a characterization of Uf (μ), which does not

make any reference to 
formal:
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Dwork Crystals I 8817

Proposition 4.2. With the notations as above we have

Uf (μ) = {ω ∈ 
̂f (μ) | C s
p(ω) ≡ 0(mod ps
̂f σs (μ)) for all s ≥ 1}. (9)

Proof. Let ω ∈ 
̂f (μ). Suppose that C s
p(ω) ≡ 0(mod ps
̂f σs (μ)) for all s ≥ 1. Then it

follows from Lemma 3.1 that ω ∈ d
formal.

Suppose conversely that ω ∈ 
̂f (μ) ∩ d
formal. From the 1st part of Proposition

3.6 it follows that Cp(ω) = A(x)
f σ (x)

+ pω1 for some ω1 ∈ 
̂f σ (μ) and A(x) a Laurent

polynomial with support in μ
Z

. Since ω ∈ d
formal we have that the Laurent series

of Cp(ω) is divisible by p. This implies that p divides A(x). Hence, Cp(ω) = pω2 with

ω2 = ω1 + A(x)/pf σ (x) ∈ 
̂f σ (μ). Applying this observation recursively then yields

C s
p(ω) ∈ ps
̂f σs (μ), which ends our proof. �

It is clear from Definition 4.1 that the Cartier operator preserves this submodule

and is divisible by p on it, that is, we have

Cp : Uf (μ) → p Uf σ (μ).

Recall that the Cartier operator commutes with the connection operations for all

derivations δ of R. It is then immediate from Definition 4.1 that all δ preserve Uf (μ).

In other words, Uf (μ) is a differential submodule of 
̂f (μ).

Theorem 4.3. Assume that the Hasse–Witt matrix βp(μ) is invertible in R. Then the

quotient

Qf (μ) := 
̂f (μ)/d
formal

is a free R-module of rank h = #μ
Z

with a basis given by the images of ωu, u ∈ μ
Z

.

Strictly speaking,the quotient 
̂f (μ)/d
formal should be read as 
̂f (μ)/Uf (μ)

since Uf (μ) = 
̂f (μ) ∩ d
formal. We prefer to use the former, more suggestive, notation.

Remark 4.4. Recall that we work under assumptions that ∩sp
sR = {0} and R is p-

adically complete, in which case an element of R is invertible if and only if it is invertible

modulo p. Indeed, if uv = 1 + pw then the inverse element is given by u−1 = v(1 +
pw)−1 = ∑

k≥0(−p)kvwk. With this observation, we conclude from Theorem 4.3 and
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8818 F. Beukers and M. Vlasenko

Proposition 3.6 that the Cartier operator on the quotients

Cp : Qf (μ) → Qf σ (μ)

is invertible because its matrix in the bases {ωu}, {ωσ
u} is congruent modulo p to the

(transposed) Hasse–Witt matrix βp(μ).

Later we will give an explicit p-adic formula for the Cartier matrices on the

quotients Qf (μ) using matrices βps(μ) for s ≥ 1 (see Theorem 5.3). The proof of

Theorem 4.3 exploits the p-adic contraction property of the Cartier operator from

Proposition 3.6. The main argument is essentially contained in the following

Proposition 4.5. Let M0, M1, M2, . . . be an infinite sequence of R-modules and φi :

Mi−1 → Mi R-linear maps for all i ≥ 1. Suppose that ∩s≥1psMi = {0} for all i. For

each i let Ni be a submodule of Mi such that φi(Mi−1) ⊂ Ni + pMi for all i ≥ 1.

Suppose that Ni ∩ pMi = pNi (equivalently, Mi/Ni is p-torsion free) and the induced

maps φi : Ni−1/pNi−1 → Ni/pNi are isomorphisms for all i ≥ 1. Define submodules

Ui = {ω ∈ Mi|φi+s ◦ φi+s−1 ◦ · · · ◦ φi+1(ω) ≡ 0(mod psMi+s) for all s ≥ 1} ⊂ Mi.

Then, for all i,

(i) Mi = Ni + Ui.

(ii) φi(Ui−1) ⊂ pUi.

(iii) φi(Mi−1) ⊂ Ni + pUi.

(iv) Ni ∩ Ui = {0}.

Proof. Note that (ii) is an immediate consequence of the definition of Ui’s. Indeed,

for ω ∈ Ui−1 the element ω1 ∈ Mi such that φi(ω) = pω1 satisfies φi+s ◦ · · · ◦ φi+1(ω1) =
1
pφi+s ◦ · · · ◦ φi(ω) ∈ psMi+s for all s ≥ 1.

Let us show that (iii) follows easily from (i). For any ω ∈ Mi−1 write φi(ω) =
ω1 + pω′

1 with ω1 ∈ Ni, ω′
1 ∈ Mi. Using (i) we can write ω′

1 = ν1 + u1 with ν1 ∈ Ni, u1 ∈ Ui.

Thus, we get φi(ω) = ω1 + ν1 + pu1 ∈ Ni + pUi.

Proof of (i). Clearly it is enough to do it for i = 0.

Consider φi modulo p, which is a map from Mi−1/pMi−1 to Mi/pMi. By the

assumption that φi(Mi−1) ⊂ Ni + pMi, the image of φi(mod p) lies in Ni/(Ni ∩ pMi). Since

we also assume that Ni ∩ pMi = pNi, the image of φi(mod p) lies in Ni/pNi. Restricting
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Dwork Crystals I 8819

φi(mod p) to Ni−1/pNi−1 we obtain what we call the induced map φi : Ni−1/pNi−1 →
Ni/pNi. It is assumed that this induced map is invertible for each i, and hence the

composition ψi := φi ◦ · · ·φ2 ◦ φ1 : N0/pN0 → Ni/pNi is an isomorphism for all i ≥ 1.

Define for each s ≥ 1

U(s)
0 = {

ω ∈ M0|ψt(ω) ∈ ptMt for all t ≤ s
}

and U(0)
0 = M0. In particular observe that U(s+1)

0 ⊂ U(s)
0 for all s ≥ 0. We first show

that U(s)
0 = U(s+1)

0 + psN0 for all s ≥ 0. Let ω ∈ U(s)
0 . Then ωs := p−sψs(ω) ∈ Ms. By

our assumptions there exists ηs ∈ Ns such that φs+1(ηs) ≡ φs+1(ωs)(mod pMs+1). Choose

η0 ∈ N0 such that ψs(η0) ≡ ηs(mod pMs). Then,

ψs+1(ω − psη0) ≡ φs+1(psωs − psηs)(mod ps+1Ms+1)

≡ ps(φs+1(ωs) − φs+1(ηs))(mod ps+1Ms+1)

≡ 0(mod ps+1Ms+1).

Hence, ω − psη0 ∈ U(s+1)
0 .

Let ω ∈ M0. For s ≥ 1 we define ωs ∈ U(s)
0 inductively via ωs = ωs+1 +psηs, ηs ∈ N0.

One easily sees that ω−∑s≥1 psηs ∈ ∩s≥1U(s)
0 = U0. Hence, we conclude that M0 = N0+U0.

We finally show that N0 ∩U0 is trivial. Suppose, on the contrary, that ω ∈ N0 ∩U0

and ω 
= 0. Because ∩s≥1psM0 = {0} there exists s ≥ 0 such that p−sω ∈ M0 \ pM0. Since

M0/N0 is p-torsion free this implies that p−sω ∈ N0 \ pM0. Since ψi : N0/pN0 → Ni/pNi is

an isomorphism we have that ψi(p
−sω) 
∈ pMi for all i. In particular for i = s + 1 we get

ψs+1(p−sω) 
∈ pMs+1. Hence, ψs+1(ω) 
∈ ps+1Ms+1. This contradicts the fact that ω ∈ U0.

Thus, we get a contradiction and conclude that N0 ∩ U0 is trivial. �

Proof of Theorem 4.3. We apply Proposition 4.5 to Mi = 
̂
f σ i (μ) and φi = Cp for all

i ≥ 0. For Ni we take the SpanR(ωσ i

u )u∈μZ
. The property Ni ∩ pMi = pNi clearly holds.

Proposition 3.6 states that φi(Mi) ⊂ Ni + pMi and the matrix of φi : Ni−1/pNi−1 → Ni/pNi

is given by βσ i−1

p (μ) modulo p, which is invertible by the assumption in Theorem 4.3. So

the assumptions of Proposition 4.5 are satisfied.

From Proposition 4.2 we find that U0 = Uf (μ). Then application of parts (i) and

(iv) of Proposition 4.5 shows that


̂f (μ) = SpanR(ωu)u∈μZ
⊕ Uf (μ)

as R-modules. Hence, Qf (μ) ∼= SpanR(ωu)u∈μZ
. �
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8820 F. Beukers and M. Vlasenko

Remark 4.6. Parts (iii) and (iv) in Proposition 4.5 imply that

Cp(
̂f (μ)) ⊂ SpanR(ωσ
u)u∈μZ

⊕ p Uf σ (μ).

Remark 4.7. Theorem 4.3 is not true if we would have defined ωu without the factorial

(u0 − 1)!. To see this take the simplest example f = 1 − x in one variable and R = Zp.

Theorem 4.3 implies that every rational function (k − 1)! xr

(1−x)k with 0 ≤ r ≤ k is modulo

(formal) derivatives equivalent to a function of the form A+ B
1−x . Now drop the factorial,

take k = p + 1, r = 0 and suppose there exist A, B ∈ Zp such that A + B
1−x = 1

(1−x)p+1 + xu′

for some rational function u. Apply Cp modulo p on both sides. The derivative xu′ is

mapped to 0, 1
1−x is mapped to itself and we get

A + B

1 − x
≡ Cp

(
1

(1 − x)p(1 − x)

)
≡ Cp

(
1

(1 − xp)(1 − x)

)
≡ 1

(1 − x)2 (mod p).

On the right of this equality we see a rational function with a double pole at x = 1 on

the left a simple pole. This is clearly contradictory.

Remark 4.8. Knowledge of the explicit basis in Qf (μ) from Theorem 4.3 implies that

this R-module is in fact a quotient of 
f (μ). However, writing it as a quotient of

the completion 
̂f (μ) yields the Cartier operator on Qf (μ). Note also that Qf (μ) is a

subquotient of the Dwork module Wf because derivatives are contained in Uf (μ).

We would like to point out that R-modules 
̂f (μ), Uf (μ), completed Dwork

modules 
̂f (μ)/d
̂f (μ) and the quotients Qf (μ) from Theorem 4.3 together with the

Cartier operator Cp are examples of the following structure. For the scope of this paper,

we give the following

Definition 4.9. A crystal over R is a rule that assigns

• to a polynomial f with coefficients in R a differential R-module Mf , that is,

for every derivation δ of R we have maps δ : Mf → Mf satisfying δ(rm) =
δ(r)m + rδ(m) for r ∈ R, m ∈ Mf (connection maps);

• to every pth power Frobenius lift σ : R → R an R-linear map Cp : Mf → Mf σ

which commutes with the connection, that is, we have Cp ◦δ = δ ◦Cp for every

derivation δ of R.
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Dwork Crystals I 8821

Note that over rings R that have no non-trivial derivations, for example, Zp and

its finite extensions, it still makes sense to consider crystals, though the conditions

related to connection are empty.

Following the traditional terminology, see for example [8], one can call Qf (μ) the

unit-root quotient in reflection of the fact that the Cartier operator is divisible by p on

Uf (μ) and invertible on the quotient Qf (μ) = 
̂f (μ)/Uf (μ) (see Remark 4.4).

Note also that, when the Hasse–Witt matrix is invertible, Uf (μ) ⊂ 
̂f (μ) can be

characterized as the largest subcrystal on which the Cartier operator is divisible by p.

5 Periods mod m

For any exponent vector v ∈ C(�)
Z

we define the linear functional τv on 
formal by

τv(ω) = constant term of
f v0

xv ω .

Lemma 5.1. Let m ≥ 1 be an integer. For any ω ∈ d
formal we have τmv(ω) ≡ 0(mod m).

For any ω ∈ 
formal and any derivation δ of R we have δ(τmv(ω)) ≡
τmv(δ(ω))(mod m).

Proof. Suppose that ω = xi
∂u
∂xi

for some Laurent expansion u. Then

τmv(ω) = constant term of
f (x)mv0

xmv xi
∂u

∂xi

≡ constant term of xi
∂

∂xi

(
f (x)mv0

xmv u
)

(mod m)

≡ 0(mod m).

For any derivation δ of R and any Laurent series ω we have

δ
(
constant term of

f (x)mv0

xmv ω
)

≡ constant term of
f (x)mv0

xmv δ(ω)

because operations δ and taking the constant term commute and derivation of an mth

power is zero modulo m. �

The two properties in Lemma 5.1 show that functionals τmv restricted modulo

m are what we call period maps modulo m. That is, they are R-linear maps from 
formal

to R/mR that vanish on derivatives and commute with derivations of R.
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8822 F. Beukers and M. Vlasenko

Next, we look at the behaviour of these linear functionals under the Cartier

operator:

Proposition 5.2. Let p be a prime and σ : R → R be a pth power Frobenius lift. Denote

by τσ
mv the linear functional obtained by multiplication with (f σ )mv0/xmv and then taking

the constant term. Then

τmv ≡ τσ
mv/p ◦ Cp(mod pordp(m)).

Proof. For any ω ∈ 
formal we have

τmv(ω) = constant term of
f (x)mv0

xmv ω

≡ constant term of
f σ (xp)mv0/p

(xp)mv/p ω (mod pordp(m))

≡ constant term of Cp

(
f σ (xp)mv0/p

(xp)mv/p ω

)
(mod pordp(m))

≡ constant term of
f σ (x)mv0/p

xmv/p Cp(ω) (mod pordp(m)).

The 2nd step uses the obvious fact that the constant term equals the constant term of

the Cartier transform. In the last step we used a variant of Lemma 3.2 in the bigger ring

R[x] ⊗R 
formal. �

The period maps introduced here are useful when working in 
f . Note that to

compute τv(ωu) we simply take the constant coefficient of the product f v0

xv ωu, which is a

Laurent polynomial when u0 ≤ v0. In the particular case when u0 = v0 = 1 we observe

that τmv(ωu) = (βm)u,v for each m ≥ 1, where βm are the matrices defined in (8).

The following theorem is our 2nd main result.

Theorem 5.3. Let μ ⊆ � be a set open in the topology defined in Proposition 3.4.

Suppose that R is p-adically complete and the Hasse–Witt matrix βp(μ) is invertible in

R. Then βps(μ) is invertible for all s ≥ 1.

Let Qf (μ) be the unit-root crystal from Theorem 4.3 and let 	σ = (λu,w) be the

transposed matrix of Cp : Qf (μ) → Qf σ (μ) with respect to the standard bases {ωu}, {ωσ
w}.

More precisely, it is the h × h-matrix with entries in R such that

Cp(ωu) ≡
∑

w∈μZ

λu,wωσ
w (mod Uf σ (μ)) (10)
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Dwork Crystals I 8823

for all u ∈ μ
Z

. Then, for all s ≥ 1 and all m ≥ 1, it satisfies the congruences

βmps(μ) ≡ 	σ βσ
mps−1(μ)(mod ps). (11)

In particular, when m = 1,

	σ ≡ βps(μ) βσ
ps−1(μ)−1 (mod ps). (12)

Similarly, for every derivation δ of R Theorem 4.3 implies that there exists a

unique matrix Nδ = (νu,v)u,v∈μZ
with entries in R such that

δ(ωu) ≡
∑

w∈μZ

νu,w ωw (mod Uf (μ)). (13)

This matrix then satisfies congruences

δ(βmps(μ)) ≡ Nδ βmps(μ) (mod ps)

for all m, s ≥ 1. In particular, when m = 1,

Nδ ≡ δ(βps(μ)) βps(μ)−1 (mod ps).

Proof. Using (iii) in Proposition 4.5, the congruence (10) can be refined to

Cp(ωu) ≡
∑

w∈μZ

λu,wωσ
w (mod p Uf σ (μ)) (14)

(see Remark 4.6). We apply τσ
mps−1v

with v ∈ μ
Z

to (5). By Proposition 5.2 we have

τσ
mps−1v(Cp(ωu)) ≡ τmpsv(ωu) = (βmps)u,v (mod ps)

in the left-hand side. Since elements of Uf σ (μ) are formal derivatives (see Proposition

4.2), in the right-hand side Lemma 5.1 yields p τσ
mps−1v

(Uf σ (μ)) ≡ 0(mod ps). So we obtain

congruence

(βmps)u,v ≡
∑

w∈μZ

λu,w(βσ
mps−1)w,v (mod ps).
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8824 F. Beukers and M. Vlasenko

It follows that βmps(μ) ≡ 	σ βσ
mps−1(μ)(mod ps). By Proposition 3.6, 	σ ≡ βp(μ)(mod p)

and we find that βps(μ) ≡ βp(μ)βσ
ps−1(μ)(mod p). By iteration then obtain

βps(μ) ≡ βp(μ)βσ
p (μ) · · · βσ s−1

p (μ)(mod p).

Hence, invertibility of all βps(μ) modulo p follows from the case s = 1. After

inversion of βσ
ps−1(μ) (it is invertible over R, see Remark 4.4) we find that 	σ ≡

βps(μ) βσ
ps−1(μ)−1 (mod ps).

The proof of the 2nd congruence runs similarly: we apply τmpsv with v ∈ μ
Z

to (13). Since τmpsv(Uf (μ)) ≡ 0 (mod ps) and δ commutes with τmpsv modulo ps (see

Lemma 5.1) we obtain

δ((βmps)u,v) =
∑

w∈μZ

νu,w(βmps)w,v (mod ps).

Hence, we conclude that δ(βmps(μ)) ≡ Nδ βmps(μ)(mod ps), as desired. �

Remark 5.4. In [11, §1] the 2nd author conjectured vaguely that the p-adic limits

lim
s→∞ βps(�

◦) βσ
ps−1(�

◦)−1, − lim
s→∞ δ(βps(�

◦)) βps(�
◦)−1 (15)

describe, respectively, the Frobenius operator and the Gauss–Manin connection on

the unit-root crystal attached to the Laurent polynomial f (x). However, the precise

meaning of the unit-root crystal in the conjecture was not specified. Moreover, it looked

challenging to define this object using as little assumptions on f (x) as one needs for

existence of the p-adic limiting matrices (15). Theorem 5.3 implies that this conjecture

is true with the unit-root crystal being the dual Q∨
f = HomR(Qf (�

◦), R) of the crystal

defined in Theorem 4.3 with the Frobenius operator C ∨
p : Q∨

f σ → Q∨
f . Note that in

addition to the invertibility of the Hasse–Witt matrix, which is needed to define (15), we

only use one extra assumption: there is a vertex b of � such that the coefficient of f (x)

at b is a unit in R. The latter is a technical assumption that was made in Section 2 for

the purposes of doing formal expansion at b with integral coefficients; it is most likely

that one could drop this condition as the Cartier operator (7) can be defined directly by

formulas (4) and (5).

A different proof of the conjecture was given recently in [6, §5] under certain

geometric assumptions.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/12/8807/5843658 by U
niversity Library U

trecht user on 13 O
ctober 2021
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Example 5.5. Consider f (x, y) = y2 − x(x − 1)(x − z) ∈ R[x, y] as a polynomial with

coefficients in a ring R containing Z[z], which we will specify in a moment. We would

like to apply Theorem 5.3 with μ = �◦ ⊂ R2, the interior of the Newton polytope of

f (x, y). In this case μ
Z

= {(1, 1)}, h = #μ
Z

= 1 and we have

βm(μ) = the coefficient of xm−1ym−1 in
(
y2 − x(x − 1)(x − z)

)m−1

=
⎧⎨⎩0, m even,( m−1

(m−1)/2

)∑(m−1)/2
k=0

((m−1)/2
k

)2
zk, m odd.

To shorten our notation, we will write βm(μ) simply as βm throughout this Example.

Now fix a prime p > 2. Let R = Z[z, β−1
p ]̂⊂ Zp�z� be the p-adic completion of Z[z, β−1

p ].

This ring consists of power series g(z) ∈ Zp�z� that can be approximated p-adically

by rational functions whose denominators are powers of the Hasse–Witt polynomial

βp ∈ Z[z]. One can check that the Frobenius lift σ given by (σg)(z) = g(zp) preserves R.

We claim that the respective Cartier matrix (10), which is now a 1×1-matrix, is given by

	σ = (−1)
p−1

2
F(z)

F(zp)
, (16)

where

F(z) = 2F1

(
1

2
,

1

2
, 1
∣∣∣z) =

∑
k≥0

(
(1/2)k

k!

)2

zk

is the hypergeometric series mentioned in the Introduction. Note in particular, that this

statement implies that F(z)/F(zp) ∈ Z[z, β−1
p ]̂ .

To prove (16) we notice that (1/2)k
k! = �(k+ 1

2 )

�(k+1) �( 1
2 )

= (−1)k�( 1
2 )

�(k+1) �( 1
2 −k)

= (−1)k
(− 1

2
k

)
and

(
(ps − 1)/2

k

)
≡
(−1

2
k

)
(mod ps−ordp(k!)).

The latter congruence can be checked by induction on k. Since ordp(k! ) ≤ k
(p−1)

, it follows

that

(ps−1)/2∑
k=0

(
(ps − 1)/2

k

)2

zk ≡ F(z) (mod (zs, p�s p−2
p−1 �

)Zp�z�).

This congruence is much weaker than the one in (12). However, it is sufficient to

conclude that the p-adic limit 	σ = lims→∞ βps/σ(βps−1) equals F(z)/F(zp) times the p-

adic limit of the ratios
( ps−1
(ps−1)/2

)
/
( ps−1−1
(ps−1−1)/2

)
. One can check that such a ratio is congruent
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8826 F. Beukers and M. Vlasenko

to (−1)
p−1

2 modulo ps, which completes our proof of (16). In a similar vein, one can show

that Nδ = (δF)(z)/F(z) for a derivation δ of R.

Let us mention an application of congruence (11) to integrality of formal group

laws. Consider an h-tuple of formal powers series l(z) = (lu(z))u∈μZ
in h variables z =

(zv)v∈μZ
given by

lu(z) =
∞∑

m=1

1

m

∑
w∈μZ

βm(μ)u,w zm
w .

These power series have coefficients in R ⊗ Q and satisfy lu(z) ≡ zu modulo terms of

degree ≥ 2.

Corollary 5.6. Under the assumptions of Theorem 5.3, the h-dimensional formal group

law

G(z, z′) = l−1(l(z) + l(z′))

has coefficients in R.

Proof. Since R is a Zp-algebra, congruences (11) are equivalent to the statement that

the tuple of power series l(z) − p−1	σ lσ (zp) has coefficients in R. Integrality of G(z, z′)
then follows from Hazewinkel’s functional equation lemma [5, §10.2]. �

Formal group laws G(z, z′) in Corollary 5.6 include coordinalizations of some

Artin–Mazur formal groups of algebraic varieties, see [10, Theorem 1]. In the very

particular example f = y2 − x(x − 1)(x − z) from the introduction with μ = �◦ it follows

from [10, p. 924] that the formal group is simply the formal law of addition on the elliptic

curve f = 0.

Now we would like to explain the connection between our results and [8]. For

that purpose, consider linear functionals on 
formal given by

αk(ω) = coefficient of xk in ω

for k ∈ C(� \ b)
Z

. Just as we had above with τv, for any k and m ≥ 1 functional αmk

is a period modulo m. Indeed, by Lemma 2.2 this functional takes values in mR on

formal derivatives and, since derivations of R act on 
formal simply by applying them to

coefficients, we clearly have αmk ◦ δ = δ ◦ αmk. These periods have an obvious property
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with respect to the Cartier operator:

αmk = αmk/p ◦ Cp (17)

for all m divisible by p. Combining these observations with Theorem 4.3 we obtain the

following version of [8, Theorem 6.2]:

Theorem 5.7. Let μ ⊆ � be a set open in the topology defined in Proposition 3.4 and

h = #μ
Z

. For k ∈ C(� \ b)
Z

consider the column vector ak ∈ Rh with components

(ak)u∈μZ
= coefficient of xk in the formal expansion of ωu.

Assume that R is p-adically complete and the Hasse–Witt matrix βp(μ) is invertible in

R. For any Frobenius lift σ and any derivation δ of R, let 	σ and Nδ 	σ , Nδ ∈ Rh×h be the

matrices defined in (10) and (13) respectively. (These matrices correspond to the Cartier

operator and connection on the unit-root crystal Qf (μ) defined in Theorem 4.3.) We

then have

apsk ≡ 	σ aσ
ps−1k (mod ps) (18)

and

δ(apsk) ≡ Nδ apsk (mod ps) (19)

for all k ∈ C(� − b)
Z

.

Proof. Consider the equality

Cp(ωu) ≡
∑

w∈μZ

λu,wωσ
w(mod pUσ

f (μ)).

Expand all terms in a Laurent series with respect to the vertex b and determine the

coefficient of xkps−1
on both sides. For the term in pUσ

f we get a value 0(mod ps). The

other terms give us

akps(ωu) ≡
∑

w∈μZ

λu,wakps−1(ω
σ
w)(mod ps),

which gives us the 1st statement.

For the 2nd statement we start with

δ(ωu) ≡
∑

w∈μZ

νu,wωw(mod Uf (μ)).
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Expand as Laurent series and take the coefficient of xkps
on both sides. We get

δ(akps(ωu)) ≡
∑

w∈μZ

νu,wakps(ωw)(mod ps),

which proves our 2nd statement. �

We end with an application of Theorems 5.3 and 5.7.

Corollary 5.8. Suppose that μ is an open set that consists of one vertex point v ∈ �.

Let fv be the coefficient of xv in f and suppose it is a unit in R. Then we have the equality

Cp(ωv) ≡ f σ
v
fv

ωσ
v (mod Uf σ (μ)).

Proof. This follows almost immediately from Theorem 5.3. Note that βps(μ) is a 1 × 1-

matrix with entry f ps−1
b . The matrix 	σ has the entry lims→∞ f ps−1

b /(f σ
b )ps−1−1 = f σ

b /fb.�

Note that the situation when one vertex is an open set in the topology from

Proposition 3.4 can occur if all lattice points in � are vertices. The complement of all

but one of these vertices gives us an open one-point set μ.

The following corollary is a generalization of Theorem 5.6 in [2], which deals

with congruences for coefficients of power series expansions of rational functions.

Corollary 5.9. Let f (x) be a Laurent polynomial with coefficients in Zp such that all

lattice points in its Newton polytope � ⊂ Rn are vertices. Suppose that all coefficients

of f (x) are p-adic units. Let g(x) be a Laurent polynomial with coefficients in Zp and

support in �. Choose any vertex b ∈ � and consider the respective formal expansion

g(x)

f (x)
=

∑
k∈C(�−b)

akxk.

Then, for every k ∈ C(� − b) and s ≥ 1 we have apsk ≡ aps−1k(mod ps).

Proof. It is sufficient to give a proof for a monomial g(x) = xv, v ∈ �
Z

. Application of

Theorem 5.7 with μ = {v}, which is an open set due to our assumption on �, yields the

congruence apsk ≡ 	σ aps−1k(mod ps) with 	σ ∈ Z×
p . Since R = Zp we have that f σ

v = fv

and hence 	σ = 1 as in Corollary 5.8. �
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In [2] the polytope � is a subset of the unit hypercube in Rn, hence the conditions

of Corollary 5.9 are satisfied.

6 Semi-simple Decomposition

Let ñ ≤ n be the dimension of �. For 0 ≤ l ≤ ñ let μ(l) ⊂ � be the complement of

the union of faces of codimension > l; this is an open set in the topology defined in

Proposition 3.4. The inclusions

�◦ = μ(0) ⊂ μ(1) ⊂ . . . ⊂ μ(ñ) = �

give rise to a filtration on the module of regular functions given by


f (μ
(0)) ⊂ 
f (μ

(1)) ⊂ . . . ⊂ 
f (�) = 
f . (20)

Note that this filtration is preserved by the connection and its p-adic completion is

preserved by the Cartier operator, that is, Cp : 
̂n
f (μ(l)) → 
̂n

f σ (μ(l)) for each l (see

Proposition 3.4). We quotient the p-adic completions by formally exact forms and obtain

Qf (μ
(0)) ⊂ Qf (μ

(1)) ⊂ . . . ⊂ Qf (�).

Let β
(l)
p be the Hasse–Witt matrix of f relative to μ(l). We shall call β

(0)
p simply the Hasse–

Witt matrix of f . The following fact is a straightforward corollary of the congruences

stated in Theorem 5.3. As in this theorem, we assume that ∩s≥0psR = {0} and R is p-

adically complete. Recall that in this case an element is invertible if and only if it is

invertible modulo p. Note also that for any face η ⊂ � the Newton polytope of the

restriction f |η is given by η.

Theorem 6.1. Assume that the coefficients of f at all vertices of � are units in R. Let

l ≥ 1. The matrix β
(l)
p is invertible if and only if β

(l−1)
p and the Hasse–Witt matrices of all

restrictions f |η to the faces η ⊂ � of codimension l are invertible. If this is the case, one

has the following decomposition of the quotient crystal

Qf (μ
(l))/Qf (μ

(l−1)) =
⊕

faces η ⊂ �

codim(η) = l

Qf |η (η
◦),

where η◦ is the interior of the face η, and we make the convention that an interior of a

vertex is the vertex itself.
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Proof. We write μ(�) = η◦
1 ∪ η◦

2 ∪ . . . ∪ μ(�−1), where η1, η2, . . . are all faces of � of

codimension �, and claim that for any m ≥ 1 matrices βm(μ(�)) have the following block

structure

βm(μ(�)) =

⎛⎜⎜⎜⎜⎝
βm(η◦

1) 0 0 . . . ∗
0 βm(η◦

2) 0 . . . ∗
. . . ∗

0 0 0 . . . βm(μ(�−1))

⎞⎟⎟⎟⎟⎠
with diagonal blocks corresponding to all faces of codimension � and μ(�−1) and possibly

non-zero off-diagonal blocks only in the last column. This claim follows from the

following observation: if η � � is a face, v ∈ η and u 
∈ η, then the coefficients of mv − u

in f (x)m−1 is zero. Indeed, choose a linear functional κ : Rn → R such that κ|η ≡ c, and

κ(�) ⊂ R≤c and κ(u) < c for some c ∈ R. Then κ(mv − u) = mc − κ(u) > (m − 1)c and

therefore mv − u 
∈ (m − 1)�.

Taking m = p we see that the Hasse–Witt matrix βp(μ�) is invertible if and only

if all βp(η◦
i ) and βp(μ�−1) are invertible. Since the above-mentioned block structure is

preserved under taking the inverse, by the congruences in Theorem 5.3 matrices 	σ

and Nδ for μ(�) have the same block structure and the direct sum decomposition of the

quotient crystal follows immediately. �

Remark 6.2. Corollaries 5.8 and 5.9 deal with the situation when the only lattice

points in the Newton polytope � are its vertices. In this case filtration (1) has only

one step (the set μ
(ñ−1)
Z

is empty) and, assuming that the coefficients of f (x) = ∑
v fvvxv

at all vertices are units in R, Theorem 6.1 states that the unit-root crystal Qf = Qf (�) is

a direct sum of crystals of rank 1.

Let us mention that in the regular case (i.e., when f is �-regular) under the

identification of the Dwork module Wf = 
f /d
f with the cohomology group Hn(Tn \Zf )

(after tensoring with the field of fractions of R) the image of the filtration (1) is

the weight filtration of the respective mixed Hodge structure (see [1, Theorem 8.2]).

Theorem 6.1 thus gives a semi-simple decomposition of unit-root crystals correspond-

ing to the graded pieces of the weight filtration.

7 Example

Consider f = y2+tx3+xy+x and R the p-adic completion of Zp[t]. We have the following

sets of exponent vectors with u0 = 1:

1. μ
(2)
Z

= {(0, 2), (1, 0), (3, 0), (2, 0), (1, 1)} = �
Z
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2. μ
(1)
Z

= {(2, 0), (1, 1)}
3. μ

(0)
Z

= {(1, 1)},
where the μ(l) are defined in the previous section. The ordering of the exponent vectors

in � is chosen in decreasing filtration order. Using this ordered basis a straightforward

calculation shows that for odd m,

βm =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 hm(t)

0 1 0 0 1
2hm(t)

0 0 tm−1 0 1
2thm(t)

0 0 0
(

m−1
m−1

2

)
t

m−1
2 gm(t)

0 0 0 0 fm(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where

fm(t) =
∑
k≥0

(
m − 1

4k

)(
4k

2k

)(
2k

k

)
tk, gm(t) =

∑
k≥0

(
m − 1

4k + 1

)(
4k + 1

2k

)(
2k

k

)
tk,

hm(t) =
∑
k≥1

(
m − 1

4k − 1

)(
4k − 1

2k

)(
2k

k

)
tk.

For the invertibility of βp we extend R to be the p-adic completion of Zp[t, (tfp(t))−1].

Then βps(βσ
ps−1)

−1 reads

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 (hps(t) − hps−1(tp))/fps−1(tp)

0 1 0 0 1
2 (hps(t) − hps−1(tp))/fps−1(tp)

0 0 tp−1 0 1
2t (hps(t) − hps−1(tp))/fps−1(tp)

0 0 0 c(p, s)t(p−1)/2 (gps − c(p, s)t(p−1)/2gps−1(tp))/fps−1(tp)

0 0 0 0 fps(t)/fps−1(tp)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where c(p, s) = ( ps−1
(ps−1)/2

)( ps−1−1
(ps−1−1)/2

)−1
. We now take the limit as s → ∞. It is not hard to

derive that c(p, s) ≡ (−1)(p−1)/2(mod ps). Also, using
(ps−1

m

) ≡ (ps−1−1
�m/p�

)
(mod ps), one easily

shows that

hps(t) − hps−1(tp) + 1

2
(fps(t) − fps−1(tp)) ≡ 0(mod ps).

Finally, experiment shows that

fps(t)

fps−1(tp)
≡ F(t)

F(tp)
(mod ps),
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where F(t) = 2F1(1/4, 3/4, 1|64t) and

gps(t) − (−t)(p−1)/2gps−1(tp)

fps−1(tp)
≡ G(t) − (−t)(p−1)/2G(tp)

F(tp)
(mod ps),

where G(t) = 3F2(5/4, 3/4, 1/2; 3/2, 1|64t). Putting everything together we find the limit

	 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −1
2

(
F(t)
F(tp)

− 1
)

0 1 0 0 −1
4

(
F(t)
F(tp)

− 1
)

0 0 tp−1 0 −1
4t

(
F(t)
F(tp)

− 1
)

0 0 0 (−t)(p−1)/2 G(t)−(−t)(p−1)/2G(tp)
F(tp)

0 0 0 0 F(t)
F(tp)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We make a few observations.

(i) (1, 1, t, 0, 1)	 = (1, 1, tp, 0, 1)

(ii) (2, 0, 0, 0, 1)	 = (2, 0, 0, 0, 1)

(iii) (0, 1, 3t, 0, 1)	 = (0, 1, 3tp, 0, 1).

These equalities imply that in Qf we have

Cp

(
fi

f

)
= f σ

i

f σ
i = 0, 1, 2,

where f0 = f , f1 = x ∂f
∂x , f2 = y ∂f

∂y . This is a general phenomenon, as shown in the following

theorem.

Proposition 7.1. Let f (x) = f (x1, . . . , xn) be a Laurent polynomial with coefficients in a

characteristic zero ring R such that at least one vertex coefficient of f is a unit modulo

p. Let f0 = f and fi = xi
∂f
∂xi

for i = 1, . . . , n. Then for all i,

Cp

(
fi

f

)
≡ f σ

i

f σ
(mod p d
̂f σ ).
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Proof. The case i = 0 comes down to Cp(1) = 1, which is trivial. So let i > 0. As earlier,

we will use the notation θi = xi
∂

∂xi
. Notice that

Cp

(
fi

f

)
= Cp(θi(log f (x)))

= pθi

(
Cp(log f (x))

)
= θi

(
Cp(log f (x)p)

)
= θi

(
Cp(log f σ (xp)) + Cp

(
log

(
1 + p

G(x)

f σ (xp)

)))
,

where pG(x) = f (x)p − f σ (xp). Observe that Cp(log f σ (xp)) = log f σ (x). Power series

expansion of the log in

Cp

(
log

(
1 + p

G(x)

f σ (xp)

))
gives us

−
∑
r≥1

(−p)r

r

Cp(G(x)r)

f σ (x)r .

Combining these evaluations gives us the final result

Cp

(
fi

f

)
= f σ

i

f σ
(x) −

∑
r≥1

θi

(
(−p)r

r!
(r − 1)!

Cp(G(x)r)

f σ (x)r

)
.

Clearly, the latter summation belongs to p d
̂f σ when p > 2. �

We now determine the limit of

θ(βps)β
−1
ps =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
θhps (t)
fps (t)

0 0 0 0
θhps (t)
2fps (t)

0 0 ps − 1 0
θhps (t)−pshps

2tfps (t)

0 0 0 1
2 (ps − 1)

2θgps (t)−(ps−1)gps (t)
2fps (t)

0 0 0 0
θfps (t)
fps (t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where θ = t d
dt . Some experiment suggests the following congruences

θfps(t)

fps(t)
≡ θF(t)

F(t)
(mod ps),

θhps(t)

fps(t)
≡ −1

2

θF(t)

F(t)
(mod ps)

and

2θgps(t) + gps(t)

fps(t)
≡ −4θF(t) + F(t)

F(t)
(mod ps).

This yields the limit matrix

N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1
2

θF(t)
F(t)

0 0 0 0 −1
4

θF(t)
F(t)

0 0 −1 0 −1
4t

θF(t)
F(t)

0 0 0 −1
2 −2 θF(t)

F(t) − 1
2

0 0 0 0 θF(t)
F(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From this limit matrix it easily follows that fi
f , i = 0, 1, 2 are horizontal in Qf , that is,

they are annihilated by θ . This is a general phenomenon.

Proposition 7.2. Let notations be as in Proposition 7.1 and δ be a derivation on R. Then

we have

δ

(
fi

f

)
≡ 0(mod d
f ).

Proof. The proof is immediate,

δ

(
fi

f

)
= δ(f )i · f − fi · δ(f )

f 2 = θi

(δ(f )

f

)
.

�

Finally, getting back to our example, we mention the matrix

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −1
2 F(t)

0 1 0 0 −1
4 F(t)

0 0 t−1 0 −1
4t F(t)

0 0 0 t−1/2 G(t)

0 0 0 0 F(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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This is a fundamental solution matrix of the system of 1st order equations

θy(t) = Ny(t),

where y is a column vector of 5 unknown functions in t.

Note that Propositions 7.1 and 7.2 have nothing to do with the unit-root crystal

Qf : their statements hold modulo d
̂f σ and d
f respectively and not just modulo formal

derivatives. These propositions show that ⊕n
i=0Rfi

f is a subcrystal in the completed

Dwork crystal Ŵf = 
̂f /d
̂f , on which the Cartier operator acts as the identity. In the

geometric situation mentioned at the end of the introductory section, this subcrystal

should correspond to the embedding of Hn
dR(Tn) into Hn

dR(Tn \ Zf )
∼= Wf .
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Appendix: Point counting and an alternative construction of the Cartier operator

Suppose that R = Zq where q = pa and σ is the standard pth power Frobenius lift

satisfying σa = id. Then the ath iteration of the Cartier operator Cq := C a
p maps 
̂f to

itself. It follows from the estimate (5) that modulo every power ps the image of Cp has

finite rank. By this reason the trace of Cq is a well defined p-adic value. In this section

we will prove the following

Theorem A.1 The trace of (qs − 1)n × C s
q on 
̂f equals the number of points on Tn \ Zf

with coordinates x1, . . . , xn ∈ F×
qs .

Remark A.2. Since Cq is divisible by q on the submodule of formal derivatives Uf ⊂ 
̂f ,

we conclude from Theorem A.1 that on the quotient Qf = 
̂f /Uf one has

Tr(C s
q |Qf ) ≡ 1 + (−1)n+1#Zf (Fqs) (mod qs).

The term 1 on the right corresponds to the eigenvector 1 ∈ 
f , which has eigenvalue

1. If the Hasse–Witt matrix βp(�) is invertible, then Qf is a Zq-vector space of finite

dimension and it follows from the above congruence that the polynomial

det(1 − TCq|Qf )/(1 − T) ∈ Zq[T]

raised to the power (−1)n is the unit-root part of the zeta function of the hypersuface

Zf ⊂ Tn over Fq. Note that in our standard basis in Qf (i.e., images of ωu ∈ 
f , u ∈ �
Z

)

the operator Cq is given by the transpose of

	σ(	) . . . σa−1(	),

where 	 = 	σ is the matrix from Theorem 5.3.

We will use a resolution of the module 
f . This construction ties our crystals

with the exponential modules in the literature, for example in [1], and exhibits a natural

lift of our Cartier operator which possesses nice properties and hence might be useful
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on its own. With the lifted Cartier operator, the point counting can be done using a

version of Dwork’s trace formula, which is now a standard technique in p-adic analysis.

From now on R is a characteristic zero ring, we will impose more assumptions

when needed. Let us introduce the auxiliary variable x0 and define the subring

R[�] ⊂ R[x0, x±1
1 , . . . , x±1

n ]

as the span of monomials Xu = xu0
0 . . . xun

n with u ∈ C(�)
Z

. We remind the reader that

throughout the paper we denoted xu = xu1
1 . . . xun

n for u = (u0, . . . , un), so now we shall

use the capital letter for Xu = xu0
0 xu. We denote F(X) = x0f (x) ∈ R[�]. The operations

Di,f = xi
∂

∂xi
+ xi

∂F(X)

∂xi
: R[�] → R[�], i = 0, . . . , n

are called twisted derivatives. Formally, we have Di,f = e−F ◦ θi ◦ eF , where θi = xi
∂

∂xi
.

Twisted derivatives commute with each other.

Let R[�]+ be the free R-module generated by Xu with u ∈ C(�)+Z . It is an ideal in

R[�] and twisted derivatives preserve R[�]+. The Laplace transform is the R-linear map

R : R[�]+ → 
f given by

Xu �→ (−1)u0(u0 − 1)!
xu

f (x)u0
= (−1)u0ωu.

This Laplace transform was basically defined in [7, p.244] and [1, §7]. See also our

Remark 2.1. It is clear that R is surjective.

Proposition A.3. The kernel of the Laplace transform is given by D0,f (R[�]+). Under

the induced isomorphism

R : R[�]+/D0,f (R[�]+)
∼→ 
f

the twisted derivative Di,f corresponds to the usual derivative θi for each 1 ≤ i ≤ n.

Proof. Under the Laplace transform the elements D0,f (X
u) = u0Xu + x0f (x)Xu are

mapped to

(−1)u0u0!
xu

f (x)u0
+ (−1)u0+1u0!

xuf (x)

f (x)u0+1 = 0.

It is clear that these elements generate all relations in 
f and therefore they span the

kernel of R.

Let 1 ≤ i ≤ n. Since twisted derivatives commute, Di,f maps Ker(R) = Im(D0,f )

to itself. The fact that the induced map on 
f coincides with θi can be easily checked on
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monomials:

R
(
Di,f (X

u)
)

= R
(
uiX

u + θiF(X)Xu) = (−1)u0(u0 − 1)!
(

ui
xu

f (x)u0
− u0

xuθif (x)

f (x)u0+1

)
= (−1)u0θiωu = θiR(Xu). �

Corollary A.4. R[�]+/
∑n

i=0 Di,f (R[�]+) ∼= Wf .

We would like to remark that in [1, Theorem 7.13] the quotient module on the left

in this corollary was identified with Hn
dR(Tn \ Zf ) under the condition that R is a field

and f (x) is �-regular. At the end of the introductory section we mentioned the relation

between Dwork modules and de Rham cohomology having in mind Corollary A.4.

To define the Cartier operator, we turn on our usual assumptions that ∩sp
sR =

{0} and R is p-adically complete. Let R��� be the ring of formal power series with

coefficients in R and support in C(�). The p-adic completion R̂[�] = lim
s

R[�]/psR[�]

consists of power series with infinitely growing p-adic valuation of coefficients:

R̂[�] =
⎧⎨⎩ ∑

u∈C(�)Z

auXu : au ∈ R, ordp(au) → ∞ asu0 → ∞
⎫⎬⎭ ⊂ R���.

We denote by R̂[�]
+

the ideal of power series with zero constant term (a0 = 0). It follows

from Proposition A.3 that 
̂f
∼= R̂[�]

+
/D0,f

(
R̂[�]

+)
.

Theorem A.5. Consider the operator on power series given by

Vp

(∑
u

auXu

)
=

∑
u

(−p)u0apu Xu.

Let p > 2. For every pth power Frobenius lift σ : R → R, the operator

Vσ = e−Fσ ◦ Vp ◦ eF

maps R��� to itself. Operator Vσ preserves R���+ and it is divisible by p on this

submodule. The following commutation relation with twisted derivatives

Di,f σ ◦ Vσ = p Vσ ◦ Di,f (A.1)

holds for each 0 ≤ i ≤ n.

The operator Vσ preserves R̂[�] and the induced map p−1Vσ : 
̂f → 
̂f σ coincides

with the Cartier operator Cp : 
̂f → 
̂f σ constructed in Section 3.
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Proof. Fix any u ∈ C(�)+
Z

and denote ν0 = p�u0
p � − u0. Observe that

Vp

(
ex0f (x)Xu

)
=

∑
n≥0, p |(n+u0)

(−px0)
n+u0

p Cp(f (x)nxu)

n!

=
∑
m≥0

(−px0)
m+� u0

p �
Cp(f (x)pm+ν0xu)

(pm + ν0)!

and therefore

Vσ Xu =
∑
k≥0

(−x0)kf σ (x)k

k!

∑
m≥0

(−px0)
m+� u0

p �
Cp(f (x)pm+ν0xu)

(pm + ν0)!

=
∑
r≥0

(−px0)
r+� u0

p �
Cp

⎛⎝xu
∑

m+k=r

f (x)pm+ν0f σ (xp)k

(pm + ν0)! k! pk

⎞⎠
=

∑
r≥0

(−px0)
r+� u0

p �
Cp

(
xu

r∑
s=0

G(x)r−sf (x)ps+ν0

(r − s)!
γps+ν0

)
,

where we substituted f σ (xp) = f (x)p + pG(x) and recognised the sums

γps+ν0
=

s∑
m=0

1

(pm + ν0)! (s − m)! ps−m

as coefficients of the Dwork exponential ex0+ x
p
0
p = ∑

n≥0 γnxn
0 . The following standard

estimate of their p-adic order

ordp(γn) ≥
(

p − 1

p2 − 1

p − 1

)
n (A.2)

implies that the matrix coefficients given by Vσ Xu = ∑
v Fu,vXv have p-adic valuations

bounded by

ordp(Fu,v) ≥ r +
⌈

u0

p

⌉
+ min

0≤s≤r

((
− 1

p − 1

)
(r − s) +

(
p − 1

p2 − 1

p − 1

) (
ps + ν0

))
= r +

⌈
u0

p

⌉
− r

p − 1
+ min

0≤s≤r

(
− s

p

)
+
(

p − 1

p2 − 1

p − 1

)(
p
⌈

u0

p

⌉
− u0

)
=

(
p − 1

p
− 1

p − 1

)(
r +

⌈
u0

p

⌉)
−
(

p − 1

p2 − 1

p − 1

)
u0

=
(

p − 1

p
− 1

p − 1

)
v0 +

(
1

p − 1
− p − 1

p2

)
u0,

where we used r = v0 − �u0
p �. Since this valuation is non-negative, we conclude that all

Fu,v ∈ R and hence Vσ maps the module of formal series R��� to itself. We also observe
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8840 F. Beukers and M. Vlasenko

that Vσ is divisible by p on R���+. Moreover, Vσ preserves R̂[�] because when v0 → ∞
we have ordp(Fu,v ∈ R) → ∞ uniformly in u0.

The commutation relation (A.1) follows immediately from θi ◦ Vp = p θi ◦ Vp and

the fact that Di,f = e−F ◦ θi ◦ eF . Since 
̂f = R̂[�]
+
/D0,f (R̂[�]

+
), we have a well defined

induced map p−1Vσ : 
̂f → 
̂σ
f . Let us show that this induced map coincides with the

Cartier operator Cp defined in Proposition 3.3. Since R(Xw) = (−1)u0ωw, we consider

p−1Vσ Xu −
∑

v∈C(�)+
Z

(−1)v0+u0 Fu,vXv

= 1

p

∑
r≥0

(−px0)
r+� u0

p �
Cp

(
xu

r∑
s=0

G(x)r−sf (x)ps+ν0
γps+ν0

− δs,0�p(u0)

(r − s)!

)
,

(A.3)

where we used formula (5) and substitution (u0−1)!
(� u0

p �−1)!
= (−1)u0p� u0

p �−1
�p(u0). It is easy to

check that the difference (A.3) equals

D0,f σ

(1

p

∑
r≥0

(−px0)
r+� u0

p �
Cp

(
xu

r∑
s=0

G(x)r−sf (x)ps+ν0
μs

(r − s)!

))
, (A.4)

where the coefficients μs ∈ Q are determined by the recurrence(
s +

⌈
u0

p

⌉)
μs = p−1 μs−1 + γps+ν0

− �p(u0)δs,0.

(The initial term μ0 is also determined by this formula and convention μ−1 = 0.) We

claim that

ordp(μs) ≥
(

−1

p
− 1

p − 1

)
s + 1 −

⌈
u0

p

⌉
, (A.5)

and hence inside of D0,f σ (. . .) in (A.4) the p-adic valuation of coefficients of the

polynomial next to x
r+� u0

p �
0 can be estimated from below as

−1 + r + �u0

p
�+ min

0≤s≤r
ordp

( μs

(r − s)!

) ≥ r + min
0≤s≤r

((−1

p
− 1

p − 1

)
s − 1

p − 1
(r − s)

)
= r + (−1

p
− 1

p − 1

)
r = (p − 1

p
− 1

p − 1

)
r.

Since this valuation is non-negative and grows infinitely as r → ∞, we conclude that

(A.4) belongs to D0,f σ

(
R̂[�]+

)
and therefore p−1Vσ = Cp on 
̂f .

It only remains to prove (A.5). For this purpose we consider f (x) = 1 in (3) and

(A.4). In this case Vσ is multiplication by the Dwork exponential ex0+p−1xp
0 , followed by Cp

and the substitution x0 �→ −px0. We shall denote Vσ simply by V and D0,f σ = x0
d

dx0
+ x0
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by D . The equality of (A.4) and (A.3) can be written as

D

⎛⎝p−1
∑
r≥0

(−px0)
r+� u0

p �
μr

⎞⎠ = p−1V (xu0
0 ) − p−1�p(u0)(−px0)

� u0
p �

= p−1V

(
xu0

0 − �p(u0)x
p� u0

p �
0 e−x0−p−1xp

0

)
.

Note that D is invertible on Qp�x0�+ = x0Qp�x0�, and hence the commutation relation

V D = pDV can be rewritten as p−1D−1V = V D−1. Applying D−1 to the last identity

and using the commutation relation, we get

p−1
∑
r≥0

(−px0)
r+� u0

p �
μr = V D−1

(
xu0

0 − �p(u0)x
p� u0

p �
0 e−x0−p−1xp

0

)
. (A.6)

Let

Lα,β =
⎧⎨⎩∑

m≥1

amxm
0 ∈ x0Qp�x0� | ordp(am) ≥ αm + β

⎫⎬⎭ .

Let α0 = p−1
p2 − 1

p−1 and α1 = p−1
p − 1

p−1 . Note that (A.5) precisely means that the series

in (A.6) belongs to Lα1,0. In order to demonstrate this fact, we first notice that for any

α ≥ α0 and any β we have V : Lα,β → Lα1,β . Indeed, since ex0+p−1xp
0 ∈ Lα0,0 we decompose

V into three steps and check that

Lα,β
·ex0+p−1x

p
0→ Lmin(α0,α),β = Lα0,β

Cp→ Lpα0,β
x0 �→−px0→ Lpα0+1,β = Lα1,β .

In the view of (A.6), it now suffices to show that

D−1(xu0
0 − �p(u0)x

p� u0
p �

0 e−x0−p−1xp
0
) ∈ Lα0,0. (A.7)

It is useful to observe that D(xm
0 ) = mxm

0 + xm+1
0 and

D(xm
0 e−x0−p−1xp

0 ) = e−x0x0
d

dx0
(xm

0 e−p−1xp
0 ) = (mxm

0 − xm+p
0 )e−x0−p−1xp

0 .

Using these two rules one can easily check that

D

(
(−1)u0−1(u0 − 1)!

u0−1∑
m=0

(−x0)m

m!

)
= xu0

0 (A.8)

and

D

(
(n − 1)! pn−1

n−1∑
m=0

xpm
0

m! pm e−x0−p−1xp
0

)
= −xpn

0 e−x0−p−1xp
0 . (A.9)

Note that under D(. . .) the polynomial in (A.8) has integral coefficients and the series in

(A.9) belongs to Lα0,0 if one cuts off its constant term. We shall use (A.9) with n = �u0
p �.
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Since (−1)u0(u0 − 1)! = �p(u0)(�u0
p � − 1)! p� u0

p �−1, we get

D−1(xu0
0 −�p(u0)x

p� u0
p �

0 e−x0−p−1xp
0
)

= (−1)u0−1(u0 − 1)!

⎛⎜⎝u0−1∑
m=0

(−x0)m

m!
−

� u0
p �−1∑
m=0

xpm
0

m! pm e−x0−p−1xp
0

⎞⎟⎠ .

Note that the constant term of the series in the right-hand side vanishes, which means

that we integrated (A.7) in x0Qp�x0� explicitly. Since �p(u0) is a p-adic integer and α0 < 0,

this series belongs to Lα0,0 due to the remarks made after (A.8) and (A.9). This completes

our proof of (A.5). �

Remark A.6. One can easily define a connection on R[�] in a way and it commutes

with the twisted derivatives. Namely, for every derivation δ : R → R we define its action

on R[�] as

∇δ := δ + δF,

where the 1st summand simply means that the derivation δ is applied to the coefficients

and the 2nd one means multiplication by the polynomial δF(X) = x0(δf )(x). Formally, one

can write ∇δ = e−F · δ · eF . To see that ∇δ commutes with the twisted derivatives, recall

that Di,f = e−F · θi · eF and note that δ and θi commute. Operations ∇δ preserve R[�]+ and

descend to its quotients by the images of twisted derivatives, particularly to 
f and Wf .

It is easy to check that ∇δ acts on 
f as the natural extension of δ to rational functions,

the operation that we simply denoted by the same letter δ earlier in this paper.

Finally, observe that the operator Vσ = e−Fσ · Vp · eF defined in Theorem A.5

commutes with the connection operators. Namely, it is obvious that Vp commutes with

δ as operators on power series, and after twisting by exponentials we obtain

Vσ · ∇δ = ∇σ
δ · Vσ ,

where ∇σ
δ = δ + δFσ = e−Fσ · δ · eFσ

. This observation turns quotients of R̂[�]
+

by twisted

derivatives into crystals.

From now on we consider R = Zq with q = pa. Here we have the standard pth

power Frobenius lift σ : Zq → Zq, which satisfies σa = id. Consider the operator on

power series Zq��� given by

Vq := e−F ◦ Va
p ◦ eF .

Below we compute the traces of powers of Vq using a few standard tricks in p-adic

analysis, which are basically due to Dwork.
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Remark A.7. The traces are well-defined p-adic numbers because modulo every ps

the operator Vq has finite-dimensional image (see the p-adic estimate of the matrix

entries in the proof of Theorem A.5). Note also that the traces only depend on the mod

p reduction of the polynomial F(X) = x0f (x). Indeed, if F ′(X) − F(X) = pG(X) then the

respective operators on power series are conjugate V ′
q = e−pG ◦Vq ◦ epG and modulo each

power of p this identity can be written using matrices of finite size.

Proposition A.8. For all s ≥ 1 one has

(1 − qs)n+1Tr
(
V s

q | Zq���
)

= qs #Zf (Fqs) − (qs − 1)n.

Proof. Let π ∈ Qp be a number satisfying πp−1 = −p. We will work with Laurent series

with coefficients in R = Qq(π) and support in the cone C(�). Let ρ : R��� → R��� be the

operation given by ρ(Xu) = πu0Xu. Note that Vp = ρ−1 ◦ Cp ◦ ρ and e±F = ρ−1 ◦ e±πF ◦ ρ,

and hence

ρ ◦ V s
q ◦ ρ−1 = e−πF ◦ C s

q ◦ eπF = C s
q ◦ �F,s, (A.10)

where we used the power series

�F,s(X) := exp
(
πF(X) − πF(Xqs

)
) =

∑
u∈C(�)Z

buXu. (A.11)

From (A.10) it is clear that Tr(V s
q ) = ∑

u∈C(�)Z
b(qs−1)u. Since

∑
x∈Zq:xq−1=1

xu =
⎧⎨⎩q − 1, if (q − 1)|u,

0, otherwise,

this trace can be computed by summation of values of (A.11) over tuples of Teichmüller

units in Zqs :∑
X∈Zn+1

qs : xqs−1
i =1

�F,s(X) = (qs − 1)n+1
∑

u∈C(�)Z

b(qs−1)u = (qs − 1)n+1Tr(V s
q ). (A.12)

To evaluate the sum on the left, consider the Dwork exponential θp(z) = exp(πz−
πzp). This series has p-adic radius of convergence > 1 and ζp := θp(1) = 1 + π(mod π2)

is a pth root of unity. For k ≥ 1, let θpk(z) = exp(πz − πzpk
) = ∏k−1

i=1 θp(zpi
). The additive

character ψk : Fpk → Qp(π)× given by ψk(x̄) = ζ
TrF

pk /Fp (x̄)

p is related to the Dwork

exponential via ψk(x̄) = θpk(Teich(x̄)).

Write F(X) = x0f (x) = ∑
auXu and let F̄(X) = ∑

āuXu with āu ∈ Fq be the

reduction of F modulo p. Denote a′
u = Teich(āu) and F ′(X) = ∑

a′
uXu. For any vector
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X̄ = (x̄0, . . . , x̄n) ∈ Fn+1
qs we have

ψas(F̄(X̄)) = ψas

(∑
āuX̄u

)
=
∏

θqs(a′
uTeich(X̄)u) = �F ′(Teich(X̄)).

Therefore, the left-hand sum in (A.12) for F ′ can be evaluated as∑
X∈Zn+1

qs : xqs−1
i =1

�F ′,s(X) =
∑

X̄∈(F×
qs )n+1

ψas(F̄(X̄)) =
∑

x̄∈(F×
qs )n

∑
x0∈Fqs

ψas(x̄0f (x̄))

=
∑

x̄∈(F×
qs )n

⎧⎨⎩qs − 1, if f̄ (x̄) = 0

−1, if f̄ (x̄) 
= 0
= qs #Zf (Fqs) − (qs − 1)n.

(A.13)

By Remark A.7, since F ′ ≡ F(mod p) traces of powers of V ′
q = e−F ′ ◦ Va

p ◦ eF ′
and Vq =

e−F ◦ Va
p ◦ eF are equal. Hence, our claim follows from (A.12) and (A.13). �

Proof of Theorem A.1. By Theorem A.5, we have

qs Tr(C s
q |
̂f ) = Tr(V s

q |R̂[�]
+
) − Tr(V s

q |D0,f

(
R̂[�]

+)
) = (1 − qs) Tr(V s

q |R̂[�]
+
). (14)

Here the 2nd equality follows from the commutation relation V s
q ◦ D0,f = qs D0,f ◦ V s

q .

Traces on R̂[�]
+

and R���+ are the same. It is clear from the definition of Vq that for

every s ≥ 1 one has V s
q (X0) = X0+ terms with u0 ≥ 1, and hence Tr(V s

q |R���+) =
Tr(V s

q |R���) − 1. Finally, we combine (A.14) with Proposition A.8 and get

(qs − 1)n Tr(C s
q |
̂f ) = −q−s(qs − 1)n+1

(
Tr(V s

q |R���) − 1
)

= −q−s
(
qs #Zf (Fqs) − (qs − 1)n − (qs − 1)n+1

)
= (qs − 1)n − #Zf (Fqs) = #Z

Tn\Zf
(Fqs). �
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