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We give a generalization of p-adic congruences for truncated period functions that were

originally discovered for a class of hypergeometric functions by Bernard Dwork.

1 Introduction

This paper is a continuation of [3], which we will refer to as Part I.

In Part I, we considered p-adic limit formulas to matrices of the so-called Cartier

action. As an example, consider the elliptic curve f (x, y) = y2 − x(x − 1)(x − z) = 0. Let

Gm(z) be the coefficient of (xy)m−1 in f (x, y)m−1. Let z0 ∈ Zp and we denote its residue

modulo p by z0 ∈ Fp. Then it was shown in Part I that, if Gp(z0) �= 0, the quotients

Gps(z0)/Gps−1(z0) form a p-adic Cauchy sequence tending to the unit root λ(z0) ∈ Z
×
p of

the zeta function of y2 = x(x−1)(x−z0) as s → ∞. Furthermore, when z is a variable, the

quotients Gps(z)/Gps−1(zp) form a p-adic Cauchy sequence as s → ∞. The limit of this

sequence can be identified as (−1)
p−1

2 F(z)/F(zp), where F(z) denotes the hypergeometric

function F(1/2, 1/2, 1|z) = ∑∞
k=0

(1/2)2
k

k!2
zk. This computation was done in Example 5.5 of

Part I. It then follows from the results in Part I that the ratio F(z)/F(zp) ∈ Zp[[z]] can

be approximated p-adically by rational functions whose denominators are powers of

Gp(z). This property was observed earlier by Bernard Dwork, who used a different kind
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4428 F. Beukers and M. Vlasenko

of p-adic approximation [4, 5]. In this particular case, we can show (Remark 3.3) that

F(z)/F(zp) ≡ Fps(z)/Fps−1(zp) (mod ps), (1)

where Fm(z) = ∑m−1
k=0

(1/2)2
k

k!2
zk are truncations of F(z). This congruence is a version

of [4, (12)].

Here, Fp(z) ≡ Gp(z)(mod p). We will also see that if z0 ∈ Zp and Gp(z0) �= 0,

the sequence (−1)
p−1

2 Fps(z0)/Fps−1(z0) tends to the unit root λ(z0). This is clarified in

Remark 4.5.

In this paper, we will give a vast generalization and explain the underlying

mechanism of congruences of the above type. For a generic Laurent polynomial

f , it turns out that the corresponding generalization of F(z), Fm(z) is given by A-

hypergeometric series and their truncations.

We now recall the notations and definitions from Part I.

Let p be a prime and R a p-adically complete characteristic zero domain such

that ∩sp
sR = {0}. Let f ∈ R[x±1

1 , . . . , x±1
n ] be a Laurent polynomial and � ⊂ R

n be its

Newton polytope. A subset μ ⊂ � is said to be open if its complement � \ μ is a union

of faces of any dimensions. For such a subset, we consider the R-module of rational

functions

�f (μ) =
{
(k − 1)!

g(x)

f (x)k

∣∣∣ k ≥ 1, g ∈ R
[
x±1

1 , . . . , x±1
n

]
, supp(g) ⊂ kμ

}
.

When μ = � we tend to omit it from the notation, for example, �f (�) is simply �f . The

submodule of derivatives d�f ⊂ �f is defined as the R-span of all xi
∂

∂xi
ω with ω ∈ �f

and 1 ≤ i ≤ n. In Part I we constructed, for every Frobenius lift σ on R, an R-linear

Cartier operator on the p-adic completions

Cp : �̂f (μ) → �̂f σ (μ).

This operator commutes with the derivations of R and satisfies Cp ◦ xi
∂

∂xi
= p xi

∂
∂xi

◦ Cp

for 1 ≤ i ≤ n. It is then immediate that the Cartier operator preserves d�f . We consider

submodules

Uf (μ) = {ω ∈ �̂f (μ) | C s
p(ω) ≡ 0 (mod ps�̂f σs (μ)) for all s ≥ 1}.
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Dwork Crystals II 4429

It follows from the above-mentioned commutation relations that d�f ∩ �f (μ) ⊂ Uf (μ).

Denote by μ
Z

= μ ∩ Z
n the set of integral points in μ. The main result of Part I states

that if the Hasse–Witt matrix

βp(μ) =
(
coefficient of xpv−u in f (x)p−1

)
u,v∈μZ

is invertible then the quotient

Qf (μ) = �̂f (μ)/Uf (μ)

is a free R-module of rank h = #μ
Z

where the images of

ωu = xu

f (x)
, u ∈ μ

Z

can be taken as a basis. In this case, for every Frobenius lift σ and every derivation δ on

R, we define matrices 
σ , Nδ ∈ Rh×h by the conditions

Cp(ωu) ≡
∑

v∈μZ

(
σ )u,v ωσ
v (mod Uf σ (μ)),

δ(ωu) ≡
∑

v∈μZ

(Nδ)u,v ωv (mod Uf (μ)).

One has 
σ ≡ βp(μ) (mod p), and hence Cp : Qf (μ) → Qf σ (μ) is invertible. In this paper,

we shall give explicit formulas for the matrices 
σ , Nδ in a number of situations. One

p-adic approximation was already given in Part I:


σ ≡ βps(μ) · σ
(
βps−1(μ)

)−1
(mod ps),

Nδ ≡ δ
(
βps(μ)

)
· βps(μ)−1 (mod ps),

(2)

where βm(μ) ∈ Rh×h is given by the same formula as the above Hasse–Witt matrix with

p replaced by a positive integer m.

Let us say that a formal series q(t) = ∑
k≥0 bktk ∈ Zp[[t]] with b0 = 1 satisfies

Dwork’s congruences if one has

q(t)

q(tp)
≡

∑ps−1
k=0 bktk∑ps−1−1

k=0 bktpk
mod ps

Zp[[t]]
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4430 F. Beukers and M. Vlasenko

for every s ≥ 1. In [5], Dwork proved this congruence for a class of hypergeometric series.

His result was generalized in [6] for the generating series of sequences

bk = constant term of g(x)k,

where g(x) is a multivariable Laurent polynomial such that its Newton polytope �

contains 0 as its only internal integral point. In Sections 2, 3, and 4, we shall apply

our methods to give an alternative proof of the main result of [6]. Namely, with f (x) =
1 − tg(x) and μ = �◦, the module Qf (μ) has rank 1 and we will see that 
σ = q(t)/q(tp).

Dwork’s congruence then follows from a p-adic approximation similar to (2), where βps =∑ps−1
k=0 (−1)k

(ps−1
k

)
bktk are substituted with the truncations γps = ∑ps−1

k=0 bktk. In Section 4,

we explore the relation between truncations and periods modulo m used in Part I;

this relation is the key fact in our proof of Dwork’s congruences. The main result of

this paper is Theorem 5.3. It generalizes Dwork’s congruences to the A-hypergeometric

setting.

At the end of this introduction, we would like to recall a detail from Part I that

will be also useful for us here. When there is a vertex b ∈ � such that the coefficient of

f at b is a unit in R, one can give the following description of our Cartier operator. By

expanding rational functions into formal power series supported in the cone C(� − b),

we embed �f into �formal = {∑k∈C(�−b) akxk | ak ∈ R}. The Cartier operation on formal

expansions is simply given by

Cp :
∑

k

akxk →
∑

k

apkxk

and Uf (μ) coincides with the submodule of formal derivatives �̂f (μ) ∩ d�formal, see [3,

Proposition 4.2].

2 Periods

In Part I, we introduced the Cartier operator as operator on infinite Laurent series.

However, the image of a rational function under the Cartier operator is again rational.

Consider the rational function ω = g(x)

f (x)k ∈ �f . We assert that the image of ω under Cp is

given by

1

pn

∑
y:yp=x

g(y)

f (y)k
,
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Dwork Crystals II 4431

where the summation is over all y = (ζ
r1
p x1/p

1 , . . . , ζ rn
p x1/p

n ) with 0 ≤ r1, . . . , rn < p, with

ζp a primitive p-th root of unity. This is again a rational function but with denominator∏
y:yp=x f (y)k. Choose a vertex b of the Newton polytope � of f and expand in a Laurent

series with respect to xb. The result is a Laurent series with support in the cone C(�−b).

Suppose it reads
∑

k akxk. Then application of Cp yields

Cp(ω) = 1

pn

∑
k

ak

⎛⎝ p−1∑
r1,...,rn=0

ζ r1k1+···+rnkn
p

⎞⎠ xk/p.

The summation over the integers r1, . . . , rn yields something non-zero if and only if p

divides ki for i = 1, . . . , n. The summation value then equals pn. Replacing k by pk then

yields

Cp(ω) =
∑

k

apkxk,

which is precisely the Cartier operator defined in Part I.

There are also other ways to produce Laurent series expansions of ω. This

happens in the case when R has another non-archimedean valuation, let us call it the

t-adic valuation, and one coefficient of f that dominates all the others t-adically. So let

us write f = ∑
w∈�Z

vwxw and suppose that there exists v such that vv is a unit in R

and |vv|t > |vw|t for all w �= v. We can then expand ω in a t-adically converging Laurent

series via

ω = g(x)(
vvxv + ∑

w�=v vwxw
)k

= g(x)x−kv

vk
v

(
1 + ∑

w �=v(vw/vv)xw−v
)k

(3)

= 1

vk
v

g(x)x−kv
∑
r≥0

(−k

r

) ⎛⎝∑
w�=v

(vw/vv)xw−v

⎞⎠r

. (4)

The series expansion is t-adically convergent, but when v is not a vertex of � we may

end up with a Laurent series in x whose support is not a cone. It could possibly be all of

Z
n. The coefficients are then in the completion of R with respect to |.|t. We denote this

completion by S and assume that vv ∈ S×. Suppose we get

ω =
∑

k∈Zn

ckxk, ck ∈ S.
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4432 F. Beukers and M. Vlasenko

Assuming that for v1, v2 ∈ R inequality |v1|t > |v2|t implies |σ(v1)|t > |σ(v2)|t, one can

do analogous expansion in �f σ . Then the same argument as above yields

Cp(ω) =
∑

k∈Zn

cpkxk.

Definition 2.1. Let v ∈ �
Z

be such that |vv|t > |vw|t for all w ∈ � distinct from v and

vv ∈ S×. Then define the period map pv : �f → S given by pv(ω) = c0, the constant term

in the Laurent series expansion of ω with respect to v.

For a differential ring S with a homomorphism R → S that extends the

derivations of R, a period map is an R-linear map p : �f → S that vanishes on d�f

and commutes with derivations of R. Values of a period map on elements of �f are

called periods. All period maps considered in this paper satisfy an extra condition of

vanishing on the submodule of formal derivatives Uf = �f ∩ d�formal.

It follows almost from the definition that pv vanishes on d�f . It is slightly less

trivial to see that pv vanishes on the formal derivatives.

Proposition 2.2. Let notation be as above. Then for all η ∈ Uf , we have pv(η) = 0.

Proof. First of all, notice that the constant term of η equals the constant term of C s
p(η)

for all s ≥ 0. Since η ∈ Uf , we also know that the C s
p(η) ≡ 0(mod ps). In particular, the

constant term of η is divisible by ps for all s ≥ 0, hence equals 0. We conclude that

pv(η) = 0. �

Theorem 2.3. Let μ ⊆ � be an open set and h = #μ
Z

. Consider the column vector

pv ∈ Sh with components pv(ωu) for u ∈ μ
Z

.

Assume that R is p-adically complete and the Hasse–Witt matrix βp(μ) is

invertible in R. For any Frobenius lift σ and any derivation δ of R, we have

pv = 
σ σ(pv) (5)

and

δ(pv) = Nδ pv. (6)

Proof. Consider the equality

Cp(ωu) =
∑

w∈μZ

λu,wωσ
w(mod Uf (μ)).
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Expand all terms in a Laurent series with respect to the vertex v and determine the

constant coefficient. Using the fact that the constant term of elements in Uf vanish

(Proposition 2.2), we get the 1st statement. In a similar vein, starting with

δ(ωu) ≡
∑

w∈μZ

νu,wωw(mod Uf (μ))

we get the 2nd statement again by taking the constant term of the Laurent series

expansions with respect to v. �

3 Example

Let g(x) be a Laurent polynomial in x1, . . . , xn with coefficients in Zp. Suppose that 0 is

the only lattice point in the interior of the Newton polytope � of g. We introduce another

variable t and define f (x) = 1 − tg(x). We apply Theorem 2.3 to f (x) with μ = �◦ and

u = v = 0. In this case, βm has only one entry, the constant coefficient of f (x)m−1. Let

R = Zp[t, βp(t)−1]̂ be the p-adic completion of Zp[t, βp(t)−1]. The t-adic closure of R is

S = Zp[[t]]. The period

q(t) := p0

(
1

f (x)

)
reads

∑
k≥0 bktk with bk equal to the constant term of g(x)k. Take the Frobenius lift given

by t → tp. Then we obtain as a consequence of Theorem 2.3.

Corollary 3.1. We have q(t)
q(tp)

= 
 where 
 ∈ Z[t, βp(t)−1]̂ is the (single entry) matrix of

the Cartier operation Cp : Qf (�
◦) → Qf σ (�◦).

One easily checks that

βm(t) =
m−1∑
k=0

(−1)k
(

m − 1

k

)
bktk.

Define

γm(t) =
m−1∑
k=0

bktk.

These can be interpreted as truncated version of the power series q(t). In [6], it is shown

that

Theorem 3.2 (Mellit–Vlasenko, 2016). For all s ≥ 1, we have q(t)
q(tp)

≡ γps (t)
γps−1 (tp)

(mod ps).
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4434 F. Beukers and M. Vlasenko

Note that Theorem 3.2 with γm replaced by βm is simply Corollary 3.1. We shall

prove Theorem 3.2 in the next section. It will follow from our proof that in fact

q(t)

q(tp)
≡ γm(t)

γm/p(tp)
(mod pordp(m)) (7)

with any m ≥ 1, and a similar congruence holds for the derivatives:

q′(t)
q(t)

≡ γ ′
m(t)

γm(t)
(mod pordp(m)).

It is a curious fact that when g(x) has coefficients in Z then the series q′(t)q(t)−1 ∈ Z[[t]]

is a p-adic analytic element for each p.

Remark 3.3. Theorem 3.2 is a generalization of the famous congruence of Dwork [4,

(12)]. The latter can be obtained using g(x) = 1
4 (x+1/x)(y+1/y). In “p-adic cycles” Dwork

also proved a generalization of his congruence for a class of hypergeometric functions

(see [5, §1, Corollary 2 and §2, Theorem 2]).

In that particular case, the constant term of g(x)k equals
( k
k/2

)2
4−k if k is even

and 0 if k is odd. Thus, we get

q(t) =
∑
k≥0

(
2k

k

)2

(t/4)2k = F(1/2, 1/2, 1|t2).

Application of Theorem 2.3 and Corollary 3.1 now shows that F(t2)/F(t2p), hence

F(t)/F(tp) is a p-adic analytic element. Here, F(t) is the hypergeometric function

F(1/2, 1/2, 1|t). One can put m = 2ps in (7) to obtain congruence (1) mentioned in the

Introduction.

4 Truncations

In this section, we consider periods mod m which, in a number of relevant cases, turn

out to be truncations of the Laurent series solutions of a system of linear differential

equations. But first, we turn to general f (x) with coefficients in a p-adic ring R.

By a period map mod m, we mean an R-linear map ρ : �f → R such that

ρ(d�f ) ⊂ mR and ρ ◦ δ ≡ δ ◦ ρ(mod mR) for every derivation δ on R. All period maps

mod m considered in this paper will satisfy the condition ρ(Uf ) ⊂ mR of “vanishing” on

formal derivatives.
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Choose a vertex b ∈ � and consider Laurent series expansions with respect to b.

We assume its coefficient fb in f to be a unit in R. For an integer m ≥ 1 and a Laurent

polynomial g(x) ∈ R[x±
1 , . . . , x±

n ], the functional

ρm,g : ω → constant term of g(x)mω

is a period map mod m. It is clear that on formal derivatives, we also have ρm,g(Uf ) ⊂
mR. These properties follow easily if one observes that, modulo m, mth powers behave

like constants under derivations (see Part I, Lemma 5.1). In Part I, we already used two

particular instances of these period maps: τmv = ρm,x−vf (x) for v ∈ �
Z

and αmk = ρm,x−k

for k ∈ C(� − b)
Z

. We now describe their behaviour under the Cartier operator and

relevant congruences in this more general context:

Proposition 4.1. For a Laurent polynomial g = ∑
gwxw denote gσ = ∑

gσ
wxw. For any

m ≥ 1 divisible by p, we have ρm,g ≡ ρm/p,gσ ◦ Cp (mod pordp(m)).

Proof. Similar to the proof of Proposition 5.2 in Part I. �

Theorem 4.2. Let μ ⊆ � be an open set and h = #μ
Z

. For m ≥ 1 consider column

vectors ρm ∈ Rh with components ρm,g(ωu) for u ∈ μ
Z

. If R is p-adically complete and the

Hasse–Witt matrix βp(μ) is invertible, then for any Frobenius lift σ and any derivation

δ of R, we have

ρm ≡ 
σ σ(ρm/p) (mod pordp(m)) (8)

and

δ(ρm) ≡ Nδ ρm (mod pordp(m)) (9)

for all m ≥ 1.

Proof. Similar to the proof of Theorem 5.3 in Part I. �

Let us choose a tuple of elements φv ∈ R for v ∈ �
Z

and consider matrices of

periods mod m given by

(γm)u,v∈�Z
= constant term of

(
φm

v − (
φv − f (x)/xv)m

)
ωu. (10)

Observe that the entries of γm do not depend on the choice of b since they are constant

terms of Laurent polynomials that are independent of b. For a subset μ ⊂ �, we denote
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4436 F. Beukers and M. Vlasenko

by γm(μ) the submatrix given by (γm)u,v∈μZ
. We can rewrite these matrices via β-matrices

as

(γm)u,v =
m∑

k=1

(−1)k+1
(

m

k

)
φm−k

v (βk)u,v,

from which the following congruence follows trivially.

Lemma 4.3. We have βp(μ) ≡ γp(μ)(mod p). In particular, βp(μ) is invertible if and

only if this holds for γp(μ).

Application of Theorem 4.2 to the period map given by ρm,φv
minus ρm,φv−f /xv

yields the following.

Corollary 4.4. Let γm(μ) be as above and suppose γp(μ) is invertible. Then for any

Frobenius lift σ and any derivation δ of R, we have

γm(μ) ≡ 
σ σ
(
γm/p(μ)

)
(mod pordp(m)),

δ(γm(μ)) ≡ Nδ γm(μ) (mod pordp(m))

for all m ≥ 1.

As it follows from the 1st congruence in this corollary, we have

γps(μ) ≡ γp(μ) · σ
(
γp(μ)

)
· . . . · σ s−1

(
γp(μ)

)
(mod p).

Hence, all γps(μ) are invertible and we obtain p-adic limit formulas


σ ≡ γps(μ) · σ
(
γps−1(μ)

)−1
, Nδ ≡ δ(γps(μ)) · γps(μ)−1 (mod ps).

Proof of Theorem 3.2. We apply Corollary 4.4 in the case f (x) = 1 − tg(x), φ = 1 and

μ = �◦. Then γm(μ) is the polynomial
∑m−1

k=0 bktk. It follows from Corollary 4.4 with

σ(t) = tp that γps(t) ≡ 
γps−1(tp)(mod ps) for all s ≥ 1. Theorem 3.2 then follows from

Corollary 3.1 that says that 
 = q(t)/q(tp). �

Remark 4.5. Here is a small variation on the proof of Theorem 3.2. We take t0 ∈ Zp

and consider f (x) = 1 − t0g(x) ∈ Zp[x±1
1 , . . . , x±1

n ]. Choose again μ = �◦ and suppose that

γp(t0) ∈ Z
×
p . Then we find that lims→∞ γps(t0)/γps−1(t0) equals the unit root of the zeta-

function of f = 0 (by the results in the Appendix to Part I). In the Dwork example, see
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Remark 3.3, this means that Fps(t0)/Fps−1(t0) tends to the unit root of the zeta function

of the corresponding elliptic curve. This deviates from what one usually sees in the

literature where one takes the limit Fps(t0)/Fps−1(t
p
0) and t0 a Teichmüller lift, see for

example [5, (6.29)]. In the 1st limit, we can take any t0 in its residue class and the limit

will not depend on it.

5 A-Hypergeometric Periods

We continue the calculation of periods following the idea in Section 2. Let f (x) =∑N
i=1 vix

ai , where the vi are independent variables. This is the A-hypergeometric setting.

Let � ⊂ R
n be the Newton polytope of f (x), which is now the convex hull of the set

{a1, . . . , aN} ⊂ Z
n. Pick some integer exponent vector u ∈ k�, expand xuf (x)−k with

respect to ai ∈ �
Z

, and take the constant term. We get

pai

(
xuf (x)−k

)
:= constant term of

xu−kai

vk
i

∑
d≥0

(−k

d

)⎛⎝∑
r �=i

vr

vi
xar−ai

⎞⎠d

. (11)

Before we proceed, we like to make a remark that considerably simplifies our calcula-

tion. Denote by ãr ∈ Z
n+1, the exponent vector ar preceded by an extra component 1. We

call the set A = {̃a1, . . . , ãN} ⊂ Z
n+1 saturated when

⎛⎝ N∑
j=1

R≥0 ãj

⎞⎠ ∩ Z
n+1 =

N∑
j=1

Z≥0 ãj.

When A is saturated, the following Proposition can be applied to any exponent

vector u:

Proposition 5.1. For an integral point u ∈ k�, we denote ũ = (k, u). Assume that

there exist α1, . . . , αN ∈ Z≥0 such that
∑N

r=1 αrãr = ũ. Then pai
(xuf (x)−k) is equal to the

application of the differential operator (−1)k−1

(k−1)!

∏N
r=1 ∂

αr
r where ∂r = ∂

∂vr
to the universal

series

pai
(log f ) := constant term of

⎛⎜⎝log vi +
∑
d≥1

(−1)d−1

d

⎛⎝∑
r �=i

vr

vi
xar−ai

⎞⎠d
⎞⎟⎠ .

The proof is straightforward with induction on k.
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We proceed with the calculation of pai
(log f ) and get

log vi +
∑

�

(−1)�1+···∨···+�N−1

�1 + · · · ∨ · · · + �N

(
�1 + · · · ∨ · · · + �N

�1, . . . , ∨, . . . , �N

) ∏
r �=i

(vr/vi)
�r ,

where the sum is over all non-negative �1, . . . ∨ . . . �N , not all zero, such that
∑

r �=i �r(ar −
ai) = 0. Here, the ∨ in the summation range and the sum itself means that �i is to be

omitted. Introduce �i = −∑
r �=i �r. Recall our notation ãr = (1, ar). Then the definition

of �i sees to it that the support of the resulting Laurent series (aside from the constant

log vi) is contained in the set

Li :=
{

� = (�1, . . . , �N) ∈ Z
N
∣∣∣∣ N∑

r=1

�rãr = 0, �r ≥ 0 if r �= i

}
.

In order to have a more compact notation, let us rewrite the multinomial

coefficient as

(−1)�1+···∨···+�N−1

�1 + · · · ∨ · · · + �N

(
�1 + · · · ∨ · · · + �N

�1, . . . , ∨, . . . , �N

)
=

N∏
r=1

1

�∗(�r + 1)
,

where �∗(n) with n ∈ Z is defined as (n − 1)! if n ≥ 1 and (−1)n/|n|! if n ≤ 0. Notice that

the modified �∗ satisfies �∗(n + 1) = n�∗(n) for all integers n �= 0. One also checks that

�∗(n)�∗(1 − n) = sign(n)(−1)n−1 for all integers n. Here, sign(n) = −1 if n ≤ 0 and 1 if

n ≥ 1. The period now takes the shape

pai

(
xu

f (x)k

)
= (−1)k−1

�(k)

N∏
r=1

∂αr
r

⎛⎝log vi +
∑
�∈L∗

i

N∏
r=1

v�r
r

�∗(�r + 1)

⎞⎠ , (12)

where L∗
i = Li \ {0}. Although we do not need this in the rest of this paper, we like to

notice that this period is a Laurent series solution of the A-hypergeometric system of

equations with A-matrix the matrix with columns ã1, . . . , ãN and parameter vector −ũ.

When we vary the different periods over i, we see that the supports of the

Laurent series also vary. Fortunately, it turns out that their union also lies in a regular

cone. The following result, as well as its proof, is taken from [1, Proposition 2.9]. We use

a different formulation however.

Lemma 5.2. Let Li(R) be the real positive cone generated by Li and define L◦(R) =∑N
i=1 Li(R). Then L◦(R) is a finitely generated cone with 0 as a vertex.
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Proof. It suffices to show the following assertion. Let �(i) ∈ Li for i = 1, . . . , N. Then∑N
i=1 �(i) = 0 implies that �(i) = 0 for each i.

Denote the coordinates of �(i) by l(i)k . Suppose that �(i) �= 0. Then l(i)i < 0 and

l(i)k ≥ 0 for all k �= i. In particular,

ãi =
∑
k �=i

− l(i)k

l(i)i

ãk,

so we see that ãi is a (real) positive linear combination of some other ãk. Define the set

C =
{
ãk|there exists j such that l(j)k �= 0

}
.

So C is the set of ãk that are non-trivially involved in some relation �(j). Suppose C is not

empty. Let ãk be a vertex of the convex hull of C. Suppose that l(k)

k < 0. Then ãk, being

a positive linear combination of other ãj ∈ C cannot be a vertex of the convex hull of

C. So l(k)

k ≥ 0 and fortiori, l(j)k ≥ 0 for all j. Their sum should be zero, contradicting the

fact that l(j)k �= 0 for some values of j. Hence, we conclude that C is empty. In particular,

�(j) = 0 for all j. �

Due to Lemma 5.2, the set of formal power series supported in L◦ = L◦(R)∩Z
N is

a ring. Let us denote this ring by

R =
{∑

�∈L◦
b�v

�|b� ∈ Z

}
.

We will also consider the bigger ring

S = R
[
v±1

1 , . . . , v±1
N

]
.

Elements of S are power series supported in a finite number of integral translations

of the cone L◦. It follows from Proposition 5.1 and formula (12) that pai
(xuf (x)−k) ∈

(
∏N

r=1 v−αr
r )R ⊂ S. Note that when A is saturated, this argument can be applied with

any k ≥ 1 and u ∈ k�. With a bit more effort, one can also show that pai
(xuf (x)−k) ∈ S

for any integral u ∈ k� without the assumption. In what follows, we shall not assume

that A is a saturated set.

We shall be interested in the N × N matrix � with entries

�ji = pai
(ωaj

) = v−1
j

⎛⎝δij +
∑
�∈L∗

i

�j

N∏
r=1

v�r
r

�∗(�r + 1)

⎞⎠ . (13)
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4440 F. Beukers and M. Vlasenko

This formula follows from (12) with u = aj and k = 1. It will be convenient to work with

the renormalized series �̃ji := vj�ji ∈ R. Let us now consider their truncated versions.

Define for any m ≥ 1 the N × N-matrix ψm with entries

(ψm)ji = constant term of
(

1 −
(

1 − f (x)

vix
ai

)m)
ωaj

.

A straightforward calculation shows that this is equal to the series development (11)

with k = 1, u = aj summed over d = 0, 1, 2, . . . , m−1. Further calculation along the same

lines as earlier shows that we get

vj(ψm)ji = δij +
∑

�∈Li(m)∗
�j

N∏
k=1

v�k
k

�∗(�k + 1)
, (14)

where

Li(m) =
{

� ∈ Z
N
∣∣∣∣ N∑

k=1

�kãk = 0, �k ≥ 0 for all k �= i and �i > −m

}
.

Comparing (14) and (13), one sees that (ψ̃m)ji := vj(ψm)ji ∈ R is the truncation of the

element �̃ji = vj�ji ∈ R. Let us consider the function | · | : L◦ → Z≥0 given by

|�| :=
∑

k:�k>0

�k = −
∑

k:�k<0

�k for � ∈ L◦

and define truncations of elements of R by

r =
∑
�∈L◦

b�v
� � r(m) :=

∑
|�|≤m

b�v
�

for all m ≥ 0. With this notation, the above computation shows that �̃(m) = ψ̃m. Note

that the constant term of �̃ is the identity matrix, and hence �̃ and all its truncations

ψ̃m are invertible over R.

Theorem 5.3. Let μ ⊆ � be an open set and denote h = #μ
Z

. Assume that h ≥ 1 and

#{j : aj ∈ μ} = h. Consider the h × h submatrices with entries in R given by

�̃ = (�̃ji)aj,ai∈μ,

where �̃ji = vj�ji are renormalized series (13). Let ψ̃m = �̃(m) for m ≥ 1 be the respective

truncations. For the Frobenius lift σ : R → R that sends vj to vp
j for each 1 ≤ j ≤ N and
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any of the derivations δ = vi
∂

∂vi
: R → R, one has congruences

�̃ · σ(�̃)−1 ≡ ψ̃m · σ(ψ̃m/p)−1 (mod pordp(m)) (15)

and

δ(�̃) · �̃−1 ≡ δ(ψ̃m) · ψ̃−1
m (mod pordp(m)) (16)

for all m ≥ 1.

Let V be the h × h diagonal matrix with the entries vj for aj ∈ μ. Note that

substituting �̃ = V� and ψ̃m = Vψm into (15) and (16) shows that these congruences are

equivalent to

� · σ(�)−1 ≡ ψm · σ(ψm/p)−1 (mod pordp(m)),

δ(�) · �−1 ≡ δ(ψm) · ψ−1
m (mod pordp(m)).

Matrices in the latter congruences have entries in the bigger ring S. We preferred to

state our theorem for the normalized matrices because truncations are more naturally

defined on elements of R rather than S.

Proof. Consider the matrices of periods mod m given by (10) with φai
= vi:

(γm)j,i = constant term of (vm
i − (vi − f (x)/xai)m)

xaj

f (x)
= vm

i (ψm)ji. (17)

Their entries are in Z[v1, . . . , vN ], and we have γm = V−1ψ̃mVm. In particular, the

coefficient of the monomial (
∏

aj∈μ vj)
p−1 in det(γp) is 1. Let R be the p-adic completion

of Z[v±1
1 , . . . , v±1

N , det(γp)−1]. Since det(γp) is not divisible by p, this ring satisfies our

assumption ∩s≥1psR = {0} and hence one can apply Corollary 4.4. It follows that there

are matrices 
σ , Nδ ∈ Rh×h such that

γm ≡ 
σ σ(γm/p) and δ(γm) ≡ Nδγm (mod pordp(m)). (18)

Observe that all matrices γm are invertible over S because

det(γm) =
⎛⎝ ∏

aj∈μ

vj

⎞⎠m−1

det(ψ̃m) ∈
⎛⎝ ∏

aj∈μ

vj

⎞⎠m−1

R× ⊂ S×.
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4442 F. Beukers and M. Vlasenko

One of the consequences of this fact is that R is a subring of the p-adic completion

S := Ŝ ⊂ Zp

[[
v±1

1 , . . . , v±1
N

]]
.

Working in the big ring S, we can invert matrices in (18) and conclude that

γm · σ(γm/p)−1 ≡ 
σ and δ(γm) · γ −1
m ≡ Nδ (mod pordp(m)).

Substituting γm = V−1ψ̃mVm in the left-hand sides yields

ψ̃m · σ(ψ̃m/p)−1 ≡ V
σ V−p (mod pordp(m))

δ(ψ̃m) · ψ̃−1
m ≡ VNδV

−1 + δ(V)V−1 (mod pordp(m)).
(19)

One particular consequence of these congruences is that the matrices in their right-hand

sides have entries in R. Secondly, they must coincide with the limits of the left-hand

sides which, using the fact that ψ̃m is a truncation of �̃, immediately implies that

V
σ V−p = �̃ · σ(�̃)−1 and VNδV
−1 + δ(V)V−1 = δ(�̃) · �̃−1. (20)

Substituting these values back into (19) proves our theorem. �

The above proof is based on the ideas from Section 4. By Lemma 4.3, the

Hasse–Witt matrix βp(μ) is congruent modulo p to the matrix γp given in (17). (In

the special case μ = �◦ this was observed in [1, Proposition 3.8].) Using this fact, we

can conclude from the above proof that under the assumptions of Theorem 5.3 the

determinant of the Hasse–Witt matrix is a polynomial not divisible by p and there exist

the respective matrices 
σ , Nδ ∈ Rh×h, where R is the p-adic completion of the ring

Z[v±1
1 , . . . , v±1

N , det(βp(μ))−1]. These are the same ring R and the same matrices that were

used in the proof. In particular, R is a subring of the p-adic completion S = Ŝ and we

have

Corollary 5.4. 
σ = � · σ(�)−1, Nδ = δ(�) · �−1.

Proof. Substitute �̃ = V� into (20). �

A special consequence of this corollary is that the matrices V
σ V−p and

VNδV
−1 + δ(V)V−1 have their entries in R. Furthermore, it turns out that Nδ and, in

a lesser way, 
σ , are independent of the choice of p.

Finally, we remark that in fact there are well-defined period maps

pai
: �̂f → S.
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As we explained in Section 2, these period maps are invariant under the Cartier operator

(we have pai
= pσ

ai
◦Cp where pσ

ai
denotes the respective period map �̂f σ → S ) and vanish

on formal derivatives. Corollary 5.4 is then a direct consequence of Theorem 2.3.

Let us also mention the main result of [2], Theorem 1.4. It states that in the A-

hypergeometric setting with the assumption that � has a0 as its unique interior lattice

point the series �(v)/�(vp), where �(v) = �00(v0, . . . , vN) is the unique entry of our

matrix � for μ = �◦, is a p-adic analytic element with the set of poles determined by

the Hasse invariant βp(�◦). Hence, [2, Theorem 1.4] follows from Corollary 5.4.

6 Example

We continue the example from Part I, Section 7 with

f (x, y) = v1y2 + v2x + v3x3 + v4x2 + v5xy.

We determine the entries of the matrix �̃. The vectors ãk are given by the columns of

⎛⎜⎜⎝
1 1 1 1 1

0 1 3 2 1

2 0 0 0 1

⎞⎟⎟⎠ .

The supports Li lie in the null space of this matrix that can be written as

(r + 2s, s, s, r, −2r − 4s), r, s ∈ Z.

In L1, we have the inequalities s, r, −2r − 4s ≥ 0. This is only possible when r = s = 0.

The only non-trivial series �j,1 is v1�1,1 = 1.

In L2, we have the inequalities r + 2s, s, r, −2r − 4s ≥ 0 and we find v2�2,2 = 1 as

non-trivial series.

In L3, we again get v3�3,3 as only non-trivial �j,3.

In L4, we have the inequalities r + 2s, s, −2r − 4s ≥ 0. Hence r = −2s, s ≥ 0. So

we get

vj�j,4 = δj,4 −
∑
s≥1

mj(s)
(2s − 1)!

s! s!
(v2v3/v2

4)s,

where mj(s) is the j-th component of (0, s, s, −2s, 0). The m-truncated version has the

extra condition m4(s) = −2s > −m, hence s < m/2.
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4444 F. Beukers and M. Vlasenko

In L5, we have the inequalities r + 2s, s, r ≥ 0. So we get

vj�j,5 = δj,5 −
∑

r,s≥0

mj(r, s)
(2r + 4s − 1)!

(r + 2s)! s! s! r!
(v1v4/v2

5)r(v2
1v2v3/v4

5)s,

where mj(r, s) is the j-th component of (r + 2s, s, s, r, −2r − 4s). The m-truncated version

has the extra condition m5(r, s) = −2r − 4s > −m, hence r + 2s < m/2.

If we restrict our matrix to the index set �◦
Z

, a computation shows that we get

the 1 × 1-matrix with element

v5�5,5 =
∑

r,s≥0

(2r + 4s)!

(r + 2s)! s! s! r!
xrys = 1√

1 − 4x
F

(
1/4, 3/4, 1

∣∣∣∣ 64y

(1 − 4x)2

)
,

where x = v1v4/v2
5, y = v2

1v2v3/v4
5. The other components vj�j,5 are not so easy to

express in terms of one-variable hypergeometric functions, if possible at all.
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