Dwork Crystals II

Frits Beukers ${ }^{1, *}$ and Masha Vlasenko ${ }^{2}$

${ }^{1}$ Utrecht University, Department of Mathematics, P.O.Box 80.010, 3508 TA Utrecht, Netherlands and ${ }^{2}$ Institute of Mathematics of the Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland
*Correspondence to be sent to: e-mail: f.beukers@uu.nl

We give a generalization of p-adic congruences for truncated period functions that were originally discovered for a class of hypergeometric functions by Bernard Dwork.

1 Introduction

This paper is a continuation of [3], which we will refer to as Part I.
In Part I, we considered p-adic limit formulas to matrices of the so-called Cartier action. As an example, consider the elliptic curve $f(x, y)=y^{2}-x(x-1)(x-z)=0$. Let $G_{m}(z)$ be the coefficient of $(x y)^{m-1}$ in $f(x, y)^{m-1}$. Let $z_{0} \in \mathbb{Z}_{p}$ and we denote its residue modulo p by $\bar{z}_{0} \in \mathbb{F}_{p}$. Then it was shown in Part I that, if $G_{p}\left(\bar{z}_{0}\right) \neq 0$, the quotients $G_{p^{s}}\left(z_{0}\right) / G_{p^{s-1}}\left(z_{0}\right)$ form a p-adic Cauchy sequence tending to the unit root $\lambda\left(\bar{z}_{0}\right) \in \mathbb{Z}_{p}^{\times}$of the zeta function of $y^{2}=x(x-1)\left(x-\bar{z}_{0}\right)$ as $s \rightarrow \infty$. Furthermore, when z is a variable, the quotients $G_{p^{s}}(z) / G_{p^{s-1}}\left(z^{p}\right)$ form a p-adic Cauchy sequence as $s \rightarrow \infty$. The limit of this sequence can be identified as $(-1)^{\frac{p-1}{2}} F(z) / F\left(z^{p}\right)$, where $F(z)$ denotes the hypergeometric function $F(1 / 2,1 / 2,1 \mid z)=\sum_{k=0}^{\infty} \frac{(1 / 2)_{k}^{2}}{k!^{2}} z^{k}$. This computation was done in Example 5.5 of Part I. It then follows from the results in Part I that the ratio $F(z) / F\left(z^{p}\right) \in \mathbb{Z}_{p} \llbracket z \rrbracket$ can be approximated p-adically by rational functions whose denominators are powers of $G_{p}(z)$. This property was observed earlier by Bernard Dwork, who used a different kind
of p-adic approximation [4,5]. In this particular case, we can show (Remark 3.3) that

$$
\begin{equation*}
F(z) / F\left(z^{p}\right) \equiv F_{p^{s}}(z) / F_{p^{s-1}}\left(z^{p}\right)\left(\bmod p^{s}\right), \tag{1}
\end{equation*}
$$

where $F_{m}(z)=\sum_{k=0}^{m-1} \frac{(1 / 2)_{k}^{2}}{k!^{2}} z^{k}$ are truncations of $F(z)$. This congruence is a version of [4, (12)].

Here, $F_{p}(z) \equiv G_{p}(z)(\bmod p)$. We will also see that if $z_{0} \in \mathbb{Z}_{p}$ and $G_{p}\left(\bar{z}_{0}\right) \neq 0$, the sequence $(-1)^{\frac{p-1}{2}} F_{p^{s}}\left(z_{0}\right) / F_{p^{s-1}}\left(z_{0}\right)$ tends to the unit root $\lambda\left(\bar{z}_{0}\right)$. This is clarified in Remark 4.5.

In this paper, we will give a vast generalization and explain the underlying mechanism of congruences of the above type. For a generic Laurent polynomial f, it turns out that the corresponding generalization of $F(z), F_{m}(z)$ is given by Ahypergeometric series and their truncations.

We now recall the notations and definitions from Part I.
Let p be a prime and R a p-adically complete characteristic zero domain such that $\cap_{s} p^{s} R=\{0\}$. Let $f \in R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ be a Laurent polynomial and $\Delta \subset \mathbb{R}^{n}$ be its Newton polytope. A subset $\mu \subset \Delta$ is said to be open if its complement $\Delta \backslash \mu$ is a union of faces of any dimensions. For such a subset, we consider the R-module of rational functions

$$
\Omega_{f}(\mu)=\left\{\left.(k-1)!\frac{g(\mathbf{x})}{f(\mathbf{x})^{k}} \right\rvert\, k \geq 1, g \in R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], \operatorname{supp}(g) \subset k \mu\right\}
$$

When $\mu=\Delta$ we tend to omit it from the notation, for example, $\Omega_{f}(\Delta)$ is simply Ω_{f}. The submodule of derivatives $d \Omega_{f} \subset \Omega_{f}$ is defined as the R-span of all $x_{i} \frac{\partial}{\partial x_{i}} \omega$ with $\omega \in \Omega_{f}$ and $1 \leq i \leq n$. In Part I we constructed, for every Frobenius lift σ on R, an R-linear Cartier operator on the p-adic completions

$$
\mathscr{C}_{p}: \widehat{\Omega}_{f}(\mu) \rightarrow \widehat{\Omega}_{f^{\sigma}}(\mu)
$$

This operator commutes with the derivations of R and satisfies $\mathscr{C}_{p} \circ x_{i} \frac{\partial}{\partial x_{i}}=p x_{i} \frac{\partial}{\partial x_{i}} \circ \mathscr{C}_{p}$ for $1 \leq i \leq n$. It is then immediate that the Cartier operator preserves $d \Omega_{f}$. We consider submodules

$$
U_{f}(\mu)=\left\{\omega \in \widehat{\Omega}_{f}(\mu) \mid \mathscr{C}_{p}^{s}(\omega) \equiv 0\left(\bmod p^{s} \widehat{\Omega}_{f^{\sigma}}(\mu)\right) \text { for all } s \geq 1\right\}
$$

It follows from the above-mentioned commutation relations that $d \Omega_{f} \cap \Omega_{f}(\mu) \subset U_{f}(\mu)$. Denote by $\mu_{\mathbb{Z}}=\mu \cap \mathbb{Z}^{n}$ the set of integral points in μ. The main result of Part I states that if the Hasse-Witt matrix

$$
\beta_{p}(\mu)=\left(\text { coefficient of } \mathbf{x}^{p \mathbf{v}-\mathbf{u}} \text { in } f(\mathbf{x})^{p-1}\right)_{\mathbf{u}, \mathbf{v} \in \mu_{\mathbb{Z}}}
$$

is invertible then the quotient

$$
Q_{f}(\mu)=\widehat{\Omega}_{f}(\mu) / U_{f}(\mu)
$$

is a free R-module of rank $h=\# \mu_{\mathbb{Z}}$ where the images of

$$
\omega_{\mathbf{u}}=\frac{\mathbf{x}^{\mathbf{u}}}{f(\mathbf{x})}, \quad \mathbf{u} \in \mu_{\mathbb{Z}}
$$

can be taken as a basis. In this case, for every Frobenius lift σ and every derivation δ on R, we define matrices $\Lambda_{\sigma}, N_{\delta} \in R^{h \times h}$ by the conditions

$$
\begin{aligned}
\mathscr{C}_{p}\left(\omega_{\mathbf{u}}\right) & \equiv \sum_{\mathbf{v} \in \mu_{\mathbb{Z}}}\left(\Lambda_{\sigma}\right)_{\mathbf{u}, \mathbf{v}} \omega_{\mathbf{v}}^{\sigma}\left(\bmod U_{f^{\sigma}}(\mu)\right) \\
\delta\left(\omega_{\mathbf{u}}\right) & \equiv \sum_{\mathbf{v} \in \mu_{\mathbb{Z}}}\left(N_{\delta}\right)_{\mathbf{u}, \mathbf{v}} \omega_{\mathbf{v}}\left(\bmod U_{f}(\mu)\right)
\end{aligned}
$$

One has $\Lambda_{\sigma} \equiv \beta_{p}(\mu)(\bmod p)$, and hence $\mathscr{C}_{p}: Q_{f}(\mu) \rightarrow Q_{f^{\sigma}}(\mu)$ is invertible. In this paper, we shall give explicit formulas for the matrices $\Lambda_{\sigma}, N_{\delta}$ in a number of situations. One p-adic approximation was already given in Part I:

$$
\begin{align*}
& \Lambda_{\sigma} \equiv \beta_{p^{s}}(\mu) \cdot \sigma\left(\beta_{p^{s-1}}(\mu)\right)^{-1}\left(\bmod p^{s}\right) \tag{2}\\
& N_{\delta} \equiv \delta\left(\beta_{p^{s}}(\mu)\right) \cdot \beta_{p^{s}}(\mu)^{-1}\left(\bmod p^{s}\right)
\end{align*}
$$

where $\beta_{m}(\mu) \in R^{h \times h}$ is given by the same formula as the above Hasse-Witt matrix with p replaced by a positive integer m.

Let us say that a formal series $q(t)=\sum_{k \geq 0} b_{k} t^{k} \in \mathbb{Z}_{p}[[t]]$ with $b_{0}=1$ satisfies Dwork's congruences if one has

$$
\frac{q(t)}{q\left(t^{p}\right)} \equiv \frac{\sum_{k=0}^{p^{s}-1} b_{k} t^{k}}{\sum_{k=0}^{p^{s-1}-1} b_{k} t^{p k}} \bmod p^{s} \mathbb{Z}_{p}[[t]]
$$

for every $s \geq 1$. In [5], Dwork proved this congruence for a class of hypergeometric series. His result was generalized in [6] for the generating series of sequences

$$
b_{k}=\text { constant term of } g(\mathbf{x})^{k},
$$

where $g(\mathbf{x})$ is a multivariable Laurent polynomial such that its Newton polytope Δ contains $\mathbf{0}$ as its only internal integral point. In Sections 2, 3, and 4, we shall apply our methods to give an alternative proof of the main result of [6]. Namely, with $f(\mathbf{x})=$ $1-\operatorname{tg}(\mathbf{x})$ and $\mu=\Delta^{\circ}$, the module $Q_{f}(\mu)$ has rank 1 and we will see that $\Lambda_{\sigma}=q(t) / q\left(t^{p}\right)$. Dwork's congruence then follows from a p-adic approximation similar to (2), where $\beta_{p^{s}}=$ $\sum_{k=0}^{p^{s}-1}(-1)^{k}\binom{p_{k}^{s}-1}{k} b_{k} t^{k}$ are substituted with the truncations $\gamma_{p^{s}}=\sum_{k=0}^{p^{s}-1} b_{k} t^{k}$. In Section 4, we explore the relation between truncations and periods modulo m used in Part I; this relation is the key fact in our proof of Dwork's congruences. The main result of this paper is Theorem 5.3. It generalizes Dwork's congruences to the A-hypergeometric setting.

At the end of this introduction, we would like to recall a detail from Part I that will be also useful for us here. When there is a vertex $\mathbf{b} \in \Delta$ such that the coefficient of f at \mathbf{b} is a unit in R, one can give the following description of our Cartier operator. By expanding rational functions into formal power series supported in the cone $C(\Delta-\mathbf{b})$, we embed Ω_{f} into $\Omega_{\text {formal }}=\left\{\sum_{\mathbf{k} \in C(\Delta-\mathbf{b})} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \mid a_{\mathbf{k}} \in R\right\}$. The Cartier operation on formal expansions is simply given by

$$
\mathscr{C}_{p}: \sum_{\mathbf{k}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \mapsto \sum_{\mathbf{k}} a_{p \mathbf{k}} \mathbf{x}^{\mathbf{k}}
$$

and $U_{f}(\mu)$ coincides with the submodule of formal derivatives $\widehat{\Omega}_{f}(\mu) \cap d \Omega_{\text {formal }}$, see [3, Proposition 4.2].

2 Periods

In Part I, we introduced the Cartier operator as operator on infinite Laurent series. However, the image of a rational function under the Cartier operator is again rational. Consider the rational function $\omega=\frac{g(\mathbf{x})}{f(\mathbf{x})^{k}} \in \Omega_{f}$. We assert that the image of ω under \mathscr{C}_{p} is given by

$$
\frac{1}{p^{n}} \sum_{\mathrm{y}: \mathrm{y}^{p}=\mathrm{x}} \frac{g(\mathrm{y})}{f(\mathrm{y})^{k}}
$$

 ζ_{p} a primitive p-th root of unity. This is again a rational function but with denominator $\prod_{\mathrm{y}: \mathrm{y}^{p}=\mathrm{x}} f(\mathrm{y})^{k}$. Choose a vertex \mathbf{b} of the Newton polytope Δ of f and expand in a Laurent series with respect to $\mathbf{x}^{\mathbf{b}}$. The result is a Laurent series with support in the cone $C(\Delta-\mathbf{b})$. Suppose it reads $\sum_{\mathbf{k}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$. Then application of \mathscr{C}_{p} yields

$$
\mathscr{C}_{p}(\omega)=\frac{1}{p^{n}} \sum_{\mathbf{k}} a_{\mathbf{k}}\left(\sum_{r_{1}, \ldots, r_{n}=0}^{p-1} \zeta_{p}^{r_{1} k_{1}+\cdots+r_{n} k_{n}}\right) \mathbf{x}^{\mathbf{k} / p}
$$

The summation over the integers r_{1}, \ldots, r_{n} yields something non-zero if and only if p divides k_{i} for $i=1, \ldots, n$. The summation value then equals p^{n}. Replacing \mathbf{k} by $p \mathbf{k}$ then yields

$$
\mathscr{C}_{p}(\omega)=\sum_{\mathbf{k}} a_{p \mathbf{k}} \mathbf{x}^{\mathbf{k}}
$$

which is precisely the Cartier operator defined in Part I.
There are also other ways to produce Laurent series expansions of ω. This happens in the case when R has another non-archimedean valuation, let us call it the t-adic valuation, and one coefficient of f that dominates all the others t-adically. So let us write $f=\sum_{\mathbf{w} \in \Delta_{\mathbb{Z}}} V_{\mathbf{w}} \mathbf{x}^{\mathbf{w}}$ and suppose that there exists \mathbf{v} such that $v_{\mathbf{v}}$ is a unit in R and $\left|v_{\mathbf{v}}\right|_{t}>\left|v_{\mathbf{w}}\right|_{t}$ for all $\mathbf{w} \neq \mathbf{v}$. We can then expand ω in a t-adically converging Laurent series via

$$
\begin{align*}
\omega & =\frac{g(\mathbf{x})}{\left(v_{\mathbf{v}} \mathbf{x}^{\mathbf{v}}+\sum_{\mathbf{w} \neq \mathbf{v}} v_{\mathbf{w}} \mathbf{x}^{\mathbf{w}}\right)^{k}}=\frac{g(\mathbf{x}) \mathbf{x}^{-k \mathbf{v}}}{v_{\mathbf{v}}^{k}\left(1+\sum_{\mathbf{w} \neq \mathbf{v}}\left(v_{\mathbf{w}} / v_{\mathbf{v}}\right) \mathbf{x}^{\mathbf{w}-\mathbf{v}}\right)^{k}} \tag{3}\\
& =\frac{1}{v_{\mathbf{v}}^{k}} g(\mathbf{x}) \mathbf{x}^{-k \mathbf{v}} \sum_{r \geq 0}\binom{-k}{r}\left(\sum_{\mathbf{w} \neq \mathbf{v}}\left(v_{\mathbf{w}} / v_{\mathbf{v}}\right) \mathbf{x}^{\mathbf{w}-\mathbf{v}}\right)^{r} . \tag{4}
\end{align*}
$$

The series expansion is t-adically convergent, but when \mathbf{v} is not a vertex of Δ we may end up with a Laurent series in \mathbf{x} whose support is not a cone. It could possibly be all of \mathbb{Z}^{n}. The coefficients are then in the completion of R with respect to $\left.|\cdot|\right|_{t}$. We denote this completion by S and assume that $v_{\mathbf{v}} \in S^{\times}$. Suppose we get

$$
\omega=\sum_{\mathbf{k} \in \mathbb{Z}^{n}} c_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}, \quad c_{\mathbf{k}} \in S
$$

Assuming that for $v_{1}, v_{2} \in R$ inequality $\left|v_{1}\right|_{t}>\left|v_{2}\right|_{t}$ implies $\left|\sigma\left(v_{1}\right)\right|_{t}>\left|\sigma\left(v_{2}\right)\right|_{t}$, one can do analogous expansion in $\Omega_{f^{\sigma}}$. Then the same argument as above yields

$$
\mathscr{C}_{p}(\omega)=\sum_{\mathbf{k} \in \mathbb{Z}^{n}} c_{p \mathbf{k}} \mathbf{x}^{\mathbf{k}}
$$

Definition 2.1. Let $\mathbf{v} \in \Delta_{\mathbb{Z}}$ be such that $\left|v_{\mathbf{v}}\right|_{t}>\left|v_{\mathbf{w}}\right|_{t}$ for all $\mathbf{w} \in \Delta$ distinct from \mathbf{v} and $v_{\mathbf{v}} \in S^{\times}$. Then define the period map $p_{\mathrm{v}}: \Omega_{f} \rightarrow S$ given by $p_{\mathrm{v}}(\omega)=c_{0}$, the constant term in the Laurent series expansion of ω with respect to \mathbf{v}.

For a differential ring S with a homomorphism $R \rightarrow S$ that extends the derivations of R, a period map is an R-linear map $p: \Omega_{f} \rightarrow S$ that vanishes on $d \Omega_{f}$ and commutes with derivations of R. Values of a period map on elements of Ω_{f} are called periods. All period maps considered in this paper satisfy an extra condition of vanishing on the submodule of formal derivatives $U_{f}=\Omega_{f} \cap d \Omega_{\text {formal }}$.

It follows almost from the definition that p_{v} vanishes on $d \Omega_{f}$. It is slightly less trivial to see that p_{v} vanishes on the formal derivatives.

Proposition 2.2. Let notation be as above. Then for all $\eta \in U_{f}$, we have $p_{\mathrm{v}}(\eta)=0$.
Proof. First of all, notice that the constant term of η equals the constant term of $\mathscr{C}_{p}^{s}(\eta)$ for all $s \geq 0$. Since $\eta \in U_{f}$, we also know that the $\mathscr{C}_{p}^{s}(\eta) \equiv 0\left(\bmod p^{s}\right)$. In particular, the constant term of η is divisible by p^{s} for all $s \geq 0$, hence equals 0 . We conclude that $p_{\mathrm{v}}(\eta)=0$.

Theorem 2.3. Let $\mu \subseteq \Delta$ be an open set and $h=\# \mu_{\mathbb{Z}}$. Consider the column vector $\mathbf{p}_{\mathbf{v}} \in S^{h}$ with components $p_{\mathbf{v}}\left(\omega_{\mathbf{u}}\right)$ for $\mathbf{u} \in \mu_{\mathbb{Z}}$.

Assume that R is p-adically complete and the Hasse-Witt matrix $\beta_{p}(\mu)$ is invertible in R. For any Frobenius lift σ and any derivation δ of R, we have

$$
\begin{equation*}
\mathbf{p}_{\mathbf{v}}=\Lambda_{\sigma} \sigma\left(\mathbf{p}_{\mathbf{v}}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta\left(\mathbf{p}_{\mathbf{v}}\right)=N_{\delta} \mathbf{p}_{\mathbf{v}} \tag{6}
\end{equation*}
$$

Proof. Consider the equality

$$
\mathscr{C}_{p}\left(\omega_{\mathbf{u}}\right)=\sum_{\mathbf{w} \in \mu_{\mathbb{Z}}} \lambda_{\mathbf{u}, \mathbf{w}} \omega_{\mathbf{w}}^{\sigma}\left(\bmod U_{f}(\mu)\right) .
$$

Expand all terms in a Laurent series with respect to the vertex \mathbf{v} and determine the constant coefficient. Using the fact that the constant term of elements in U_{f} vanish (Proposition 2.2), we get the 1st statement. In a similar vein, starting with

$$
\delta\left(\omega_{\mathbf{u}}\right) \equiv \sum_{\mathbf{w} \in \mu_{\mathbb{Z}}} \nu_{\mathbf{u}, \mathbf{w}} \omega_{\mathbf{w}}\left(\bmod U_{f}(\mu)\right)
$$

we get the 2nd statement again by taking the constant term of the Laurent series expansions with respect to \mathbf{v}.

3 Example

Let $g(\mathbf{x})$ be a Laurent polynomial in x_{1}, \ldots, x_{n} with coefficients in \mathbb{Z}_{p}. Suppose that $\mathbf{0}$ is the only lattice point in the interior of the Newton polytope Δ of g. We introduce another variable t and define $f(\mathbf{x})=1-\operatorname{tg}(\mathbf{x})$. We apply Theorem 2.3 to $f(\mathbf{x})$ with $\mu=\Delta^{\circ}$ and $\mathbf{u}=\mathbf{v}=\mathbf{0}$. In this case, β_{m} has only one entry, the constant coefficient of $f(\mathbf{x})^{m-1}$. Let $R=\mathbb{Z}_{p}\left[t, \beta_{p}(t)^{-1}\right]^{-}$be the p-adic completion of $\mathbb{Z}_{p}\left[t, \beta_{p}(t)^{-1}\right]$. The t-adic closure of R is $S=\mathbb{Z}_{p}[[t]]$. The period

$$
q(t):=p_{0}\left(\frac{1}{f(\mathbf{x})}\right)
$$

reads $\sum_{k \geq 0} b_{k} t^{k}$ with b_{k} equal to the constant term of $g(\mathbf{x})^{k}$. Take the Frobenius lift given by $t \mapsto t^{p}$. Then we obtain as a consequence of Theorem 2.3.

Corollary 3.1. We have $\frac{q(t)}{q(t p)}=\Lambda$ where $\Lambda \in \mathbb{Z}\left[t, \beta_{p}(t)^{-1}\right]^{\wedge}$ is the (single entry) matrix of the Cartier operation $\mathscr{C}_{p}: Q_{f}\left(\Delta^{\circ}\right) \rightarrow Q_{f^{\sigma}}\left(\Delta^{\circ}\right)$.

One easily checks that

$$
\beta_{m}(t)=\sum_{k=0}^{m-1}(-1)^{k}\binom{m-1}{k} b_{k} t^{k}
$$

Define

$$
\gamma_{m}(t)=\sum_{k=0}^{m-1} b_{k} t^{k}
$$

These can be interpreted as truncated version of the power series $q(t)$. In [6], it is shown that

Theorem 3.2 (Mellit-Vlasenko, 2016). For all $s \geq 1$, we have $\frac{q(t)}{q\left(t^{p}\right)} \equiv \frac{\gamma_{p^{s}}(t)}{\gamma_{p^{s-1}}\left(t^{p}\right)}\left(\bmod p^{s}\right)$.

Note that Theorem 3.2 with γ_{m} replaced by β_{m} is simply Corollary 3.1. We shall prove Theorem 3.2 in the next section. It will follow from our proof that in fact

$$
\begin{equation*}
\frac{q(t)}{q\left(t^{p}\right)} \equiv \frac{\gamma_{m}(t)}{\gamma_{m / p}\left(t^{p}\right)}\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \tag{7}
\end{equation*}
$$

with any $m \geq 1$, and a similar congruence holds for the derivatives:

$$
\frac{q^{\prime}(t)}{q(t)} \equiv \frac{\gamma_{m}^{\prime}(t)}{\gamma_{m}(t)}\left(\bmod p^{\operatorname{ord}_{p}(m)}\right)
$$

It is a curious fact that when $g(\mathbf{x})$ has coefficients in \mathbb{Z} then the series $q^{\prime}(t) q(t)^{-1} \in \mathbb{Z}[[t]]$ is a p-adic analytic element for each p.

Remark 3.3. Theorem 3.2 is a generalization of the famous congruence of Dwork [4, (12)]. The latter can be obtained using $g(\mathbf{x})=\frac{1}{4}(x+1 / x)(y+1 / y)$. In " p-adic cycles" Dwork also proved a generalization of his congruence for a class of hypergeometric functions (see [5, §1, Corollary 2 and §2, Theorem 2]).

In that particular case, the constant term of $g(\mathbf{x})^{k}$ equals $\binom{k}{k / 2}^{2} 4^{-k}$ if k is even and 0 if k is odd. Thus, we get

$$
q(t)=\sum_{k \geq 0}\binom{2 k}{k}^{2}(t / 4)^{2 k}=F\left(1 / 2,1 / 2,1 \mid t^{2}\right)
$$

Application of Theorem 2.3 and Corollary 3.1 now shows that $F\left(t^{2}\right) / F\left(t^{2 p}\right)$, hence $F(t) / F\left(t^{p}\right)$ is a p-adic analytic element. Here, $F(t)$ is the hypergeometric function $F(1 / 2,1 / 2,1 \mid t)$. One can put $m=2 p^{s}$ in (7) to obtain congruence (1) mentioned in the Introduction.

4 Truncations

In this section, we consider periods mod m which, in a number of relevant cases, turn out to be truncations of the Laurent series solutions of a system of linear differential equations. But first, we turn to general $f(\mathbf{x})$ with coefficients in a p-adic ring R.

By a period map mod m, we mean an R-linear map $\rho: \Omega_{f} \rightarrow R$ such that $\rho\left(d \Omega_{f}\right) \subset m R$ and $\rho \circ \delta \equiv \delta \circ \rho(\bmod m R)$ for every derivation δ on R. All period maps $\bmod m$ considered in this paper will satisfy the condition $\rho\left(U_{f}\right) \subset m R$ of "vanishing" on formal derivatives.

Choose a vertex $\mathbf{b} \in \Delta$ and consider Laurent series expansions with respect to \mathbf{b}. We assume its coefficient f_{b} in f to be a unit in R. For an integer $m \geq 1$ and a Laurent polynomial $g(\mathbf{x}) \in R\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$, the functional

$$
\rho_{m, g}: \omega \mapsto \text { constant term of } g(\mathbf{x})^{m} \omega
$$

is a period map mod m. It is clear that on formal derivatives, we also have $\rho_{m, g}\left(U_{f}\right) \subset$ $m R$. These properties follow easily if one observes that, modulo m, m th powers behave like constants under derivations (see Part I, Lemma 5.1). In Part I, we already used two particular instances of these period maps: $\tau_{m \mathbf{v}}=\rho_{m, \mathbf{x}^{-\mathbf{v}} f(\mathbf{x})}$ for $\mathbf{v} \in \Delta_{\mathbb{Z}}$ and $\alpha_{m \mathbf{k}}=\rho_{m, \mathbf{x}^{-\mathbf{k}}}$ for $\mathbf{k} \in C(\Delta-\mathbf{b})_{\mathbb{Z}}$. We now describe their behaviour under the Cartier operator and relevant congruences in this more general context:

Proposition 4.1. For a Laurent polynomial $g=\sum g_{\mathbf{w}} \mathbf{x}^{\mathbf{w}}$ denote $g^{\sigma}=\sum g_{\mathbf{w}}^{\sigma} \mathbf{x}^{\mathbf{w}}$. For any $m \geq 1$ divisible by p, we have $\rho_{m, g} \equiv \rho_{m / p, g^{\sigma}} \circ \mathscr{C}_{p}\left(\bmod p^{\operatorname{ord}_{p}(m)}\right)$.

Proof. Similar to the proof of Proposition 5.2 in Part I.

Theorem 4.2. Let $\mu \subseteq \Delta$ be an open set and $h=\# \mu_{\mathbb{Z}}$. For $m \geq 1$ consider column vectors $\rho_{m} \in R^{h}$ with components $\rho_{m, g}\left(\omega_{\mathbf{u}}\right)$ for $\mathbf{u} \in \mu_{\mathbb{Z}}$. If R is p-adically complete and the Hasse-Witt matrix $\beta_{p}(\mu)$ is invertible, then for any Frobenius lift σ and any derivation δ of R, we have

$$
\begin{equation*}
\boldsymbol{\rho}_{m} \equiv \Lambda_{\sigma} \sigma\left(\boldsymbol{\rho}_{m / p}\right) \quad\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta\left(\boldsymbol{\rho}_{m}\right) \equiv N_{\delta} \boldsymbol{\rho}_{m} \quad\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \tag{9}
\end{equation*}
$$

for all $m \geq 1$.

Proof. Similar to the proof of Theorem 5.3 in Part I.

Let us choose a tuple of elements $\phi_{\mathbf{v}} \in R$ for $\mathbf{v} \in \Delta_{\mathbb{Z}}$ and consider matrices of periods mod m given by

$$
\begin{equation*}
\left(\gamma_{m}\right)_{\mathbf{u}, \mathbf{v} \in \Delta_{\mathbb{Z}}}=\text { constant term of }\left(\phi_{\mathbf{v}}^{m}-\left(\phi_{\mathbf{v}}-f(\mathbf{x}) / \mathbf{x}^{\mathbf{v}}\right)^{m}\right) \omega_{\mathbf{u}} \tag{10}
\end{equation*}
$$

Observe that the entries of γ_{m} do not depend on the choice of \mathbf{b} since they are constant terms of Laurent polynomials that are independent of \mathbf{b}. For a subset $\mu \subset \Delta$, we denote
by $\gamma_{m}(\mu)$ the submatrix given by $\left(\gamma_{m}\right)_{\mathbf{u}, \mathbf{v} \in \mu_{\mathbb{Z}}}$. We can rewrite these matrices via β-matrices as

$$
\left(\gamma_{m}\right)_{\mathbf{u}, \mathbf{v}}=\sum_{k=1}^{m}(-1)^{k+1}\binom{m}{k} \phi_{\mathbf{v}}^{m-k}\left(\beta_{k}\right)_{\mathbf{u}, \mathbf{v}}
$$

from which the following congruence follows trivially.

Lemma 4.3. We have $\beta_{p}(\mu) \equiv \gamma_{p}(\mu)(\bmod p)$. In particular, $\beta_{p}(\mu)$ is invertible if and only if this holds for $\gamma_{p}(\mu)$.

Application of Theorem 4.2 to the period map given by $\rho_{m, \phi_{\mathrm{v}}}$ minus $\rho_{m, \phi_{\mathrm{v}}-f / \mathbf{x}^{\mathrm{v}}}$ yields the following.

Corollary 4.4. Let $\gamma_{m}(\mu)$ be as above and suppose $\gamma_{p}(\mu)$ is invertible. Then for any Frobenius lift σ and any derivation δ of R, we have

$$
\begin{aligned}
& \gamma_{m}(\mu) \equiv \Lambda_{\sigma} \sigma\left(\gamma_{m / p}(\mu)\right)\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \\
& \delta\left(\gamma_{m}(\mu)\right) \equiv N_{\delta} \gamma_{m}(\mu)\left(\bmod p^{\operatorname{ord}_{p}(m)}\right)
\end{aligned}
$$

for all $m \geq 1$.

As it follows from the 1st congruence in this corollary, we have

$$
\gamma_{p^{s}}(\mu) \equiv \gamma_{p}(\mu) \cdot \sigma\left(\gamma_{p}(\mu)\right) \cdot \ldots \cdot \sigma^{s-1}\left(\gamma_{p}(\mu)\right)(\bmod p)
$$

Hence, all $\gamma_{p^{s}}(\mu)$ are invertible and we obtain p-adic limit formulas

$$
\Lambda_{\sigma} \equiv \gamma_{p^{s}}(\mu) \cdot \sigma\left(\gamma_{p^{s-1}}(\mu)\right)^{-1}, \quad N_{\delta} \equiv \delta\left(\gamma_{p^{s}}(\mu)\right) \cdot \gamma_{p^{s}}(\mu)^{-1}\left(\bmod p^{s}\right)
$$

Proof of Theorem 3.2. We apply Corollary 4.4 in the case $f(\mathbf{x})=1-\operatorname{tg}(\mathbf{x}), \phi=1$ and $\mu=\Delta^{\circ}$. Then $\gamma_{m}(\mu)$ is the polynomial $\sum_{k=0}^{m-1} b_{k} t^{k}$. It follows from Corollary 4.4 with $\sigma(t)=t^{p}$ that $\gamma_{p^{s}}(t) \equiv \Lambda \gamma_{p^{s-1}}\left(t^{p}\right)\left(\bmod p^{s}\right)$ for all $s \geq 1$. Theorem 3.2 then follows from Corollary 3.1 that says that $\Lambda=q(t) / q\left(t^{p}\right)$.

Remark 4.5. Here is a small variation on the proof of Theorem 3.2. We take $t_{0} \in \mathbb{Z}_{p}$ and consider $f(\mathbf{x})=1-t_{0} g(\mathbf{x}) \in \mathbb{Z}_{p}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Choose again $\mu=\Delta^{\circ}$ and suppose that $\gamma_{p}\left(t_{0}\right) \in \mathbb{Z}_{p}^{\times}$. Then we find that $\lim _{s \rightarrow \infty} \gamma_{p^{s}}\left(t_{0}\right) / \gamma_{p^{s-1}}\left(t_{0}\right)$ equals the unit root of the zetafunction of $f=0$ (by the results in the Appendix to Part I). In the Dwork example, see

Remark 3.3, this means that $F_{p^{s}}\left(t_{0}\right) / F_{p^{s-1}}\left(t_{0}\right)$ tends to the unit root of the zeta function of the corresponding elliptic curve. This deviates from what one usually sees in the literature where one takes the limit $F_{p^{s}}\left(t_{0}\right) / F_{p^{s-1}}\left(t_{0}^{p}\right)$ and t_{0} a Teichmüller lift, see for example [5, (6.29)]. In the 1 st limit, we can take any t_{0} in its residue class and the limit will not depend on it.

5 A-Hypergeometric Periods

We continue the calculation of periods following the idea in Section 2. Let $f(\mathbf{x})=$ $\sum_{i=1}^{N} v_{i} \mathbf{x}^{\mathbf{a}_{i}}$, where the v_{i} are independent variables. This is the A-hypergeometric setting. Let $\Delta \subset \mathbb{R}^{n}$ be the Newton polytope of $f(\mathbf{x})$, which is now the convex hull of the set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\} \subset \mathbb{Z}^{n}$. Pick some integer exponent vector $\mathbf{u} \in k \Delta$, expand $\mathbf{x}^{\mathbf{u}} f(\mathbf{x})^{-k}$ with respect to $\mathbf{a}_{i} \in \Delta_{\mathbb{Z}}$, and take the constant term. We get

$$
\begin{equation*}
p_{\mathbf{a}_{i}}\left(\mathbf{x}^{\mathbf{u}} f(\mathbf{x})^{-k}\right):=\text { constant term of } \frac{\mathbf{x}^{\mathbf{u}-k \mathbf{a}_{i}}}{v_{i}^{k}} \sum_{d \geq 0}\binom{-k}{d}\left(\sum_{r \neq i} \frac{v_{r}}{v_{i}} \mathbf{x}^{\mathbf{a}_{r}-\mathbf{a}_{i}}\right)^{d} \tag{11}
\end{equation*}
$$

Before we proceed, we like to make a remark that considerably simplifies our calculation. Denote by $\tilde{\mathbf{a}}_{r} \in \mathbb{Z}^{n+1}$, the exponent vector \mathbf{a}_{r} preceded by an extra component 1 . We call the set $A=\left\{\widetilde{\mathbf{a}}_{1}, \ldots, \widetilde{\mathbf{a}}_{N}\right\} \subset \mathbb{Z}^{n+1}$ saturated when

$$
\left(\sum_{j=1}^{N} \mathbb{R}_{\geq 0} \widetilde{\mathbf{a}}_{j}\right) \cap \mathbb{Z}^{n+1}=\sum_{j=1}^{N} \mathbb{Z}_{\geq 0} \widetilde{\mathbf{a}}_{j}
$$

When A is saturated, the following Proposition can be applied to any exponent vector \mathbf{u} :

Proposition 5.1. For an integral point $\mathbf{u} \in k \Delta$, we denote $\tilde{\mathbf{u}}=(k, \mathbf{u})$. Assume that there exist $\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{Z}_{\geq 0}$ such that $\sum_{r=1}^{N} \alpha_{r} \tilde{\mathbf{a}}_{r}=\tilde{\mathbf{u}}$. Then $p_{\mathbf{a}_{i}}\left(\mathbf{x}^{\mathbf{u}} f(\mathbf{x})^{-k}\right)$ is equal to the application of the differential operator $\frac{(-1)^{k-1}}{(k-1)!} \prod_{r=1}^{N} \partial_{r}^{\alpha_{r}}$ where $\partial_{r}=\frac{\partial}{\partial V_{r}}$ to the universal series

$$
p_{\mathbf{a}_{i}}(\log f):=\text { constant term of }\left(\log v_{i}+\sum_{d \geq 1} \frac{(-1)^{d-1}}{d}\left(\sum_{r \neq i} \frac{v_{r}}{v_{i}} \mathbf{x}^{\mathbf{a}_{r}-\mathbf{a}_{i}}\right)^{d}\right)
$$

The proof is straightforward with induction on k.

We proceed with the calculation of $p_{\mathrm{a}_{i}}(\log f)$ and get

$$
\log v_{i}+\sum_{\ell} \frac{(-1)^{\ell_{1}+\cdots v \cdots+\ell_{N}-1}}{\ell_{1}+\cdots v \cdots+\ell_{N}}\binom{\ell_{1}+\cdots v \cdots+\ell_{N}}{\ell_{1}, \cdots, v, \ldots, \ell_{N}} \prod_{r \neq i}\left(v_{r} / v_{i}\right)^{\ell_{r}}
$$

where the sum is over all non-negative $\ell_{1}, \ldots \vee \ldots \ell_{N}$, not all zero, such that $\sum_{r \neq i} \ell_{r}\left(\mathbf{a}_{r}-\right.$ $\left.\mathbf{a}_{i}\right)=\mathbf{0}$. Here, the \vee in the summation range and the sum itself means that ℓ_{i} is to be omitted. Introduce $\ell_{i}=-\sum_{r \neq i} \ell_{r}$. Recall our notation $\tilde{\mathbf{a}}_{r}=\left(1, \mathbf{a}_{r}\right)$. Then the definition of ℓ_{i} sees to it that the support of the resulting Laurent series (aside from the constant $\log v_{i}$) is contained in the set

$$
L_{i}:=\left\{\ell=\left(\ell_{1}, \ldots, \ell_{N}\right) \in \mathbb{Z}^{N} \mid \sum_{r=1}^{N} \ell_{r} \tilde{\mathbf{a}}_{r}=\mathbf{0}, \ell_{r} \geq 0 \text { if } r \neq i\right\} .
$$

In order to have a more compact notation, let us rewrite the multinomial coefficient as

$$
\frac{(-1)^{\ell_{1}+\cdots \vee \cdots+\ell_{N}-1}}{\ell_{1}+\cdots \vee \cdots+\ell_{N}}\binom{\ell_{1}+\cdots \vee \cdots+\ell_{N}}{\ell_{1}, \cdots, \vee, \ldots, \ell_{N}}=\prod_{r=1}^{N} \frac{1}{\Gamma^{*}\left(\ell_{r}+1\right)},
$$

where $\Gamma^{*}(n)$ with $n \in \mathbb{Z}$ is defined as $(n-1)$! if $n \geq 1$ and $(-1)^{n} /|n|!$ if $n \leq 0$. Notice that the modified Γ^{*} satisfies $\Gamma^{*}(n+1)=n \Gamma^{*}(n)$ for all integers $n \neq 0$. One also checks that $\Gamma^{*}(n) \Gamma^{*}(1-n)=\operatorname{sign}(n)(-1)^{n-1}$ for all integers n. Here, $\operatorname{sign}(n)=-1$ if $n \leq 0$ and 1 if $n \geq 1$. The period now takes the shape

$$
\begin{equation*}
p_{\mathbf{a}_{i}}\left(\frac{\mathbf{x}^{\mathbf{u}}}{f(\mathbf{x})^{k}}\right)=\frac{(-1)^{k-1}}{\Gamma(k)} \prod_{r=1}^{N} \partial_{r}^{\alpha_{r}}\left(\log v_{i}+\sum_{\ell \in L_{i}^{*}} \prod_{r=1}^{N} \frac{V_{r}^{\ell_{r}}}{\Gamma^{*}\left(\ell_{r}+1\right)}\right) \tag{12}
\end{equation*}
$$

where $L_{i}^{*}=L_{i} \backslash\{0\}$. Although we do not need this in the rest of this paper, we like to notice that this period is a Laurent series solution of the A-hypergeometric system of equations with A-matrix the matrix with columns $\tilde{\mathbf{a}}_{1}, \ldots, \tilde{\mathbf{a}}_{N}$ and parameter vector $-\tilde{\mathbf{u}}$.

When we vary the different periods over i, we see that the supports of the Laurent series also vary. Fortunately, it turns out that their union also lies in a regular cone. The following result, as well as its proof, is taken from [1, Proposition 2.9]. We use a different formulation however.

Lemma 5.2. Let $L_{i}(\mathbb{R})$ be the real positive cone generated by L_{i} and define $L^{\circ}(\mathbb{R})=$ $\sum_{i=1}^{N} L_{i}(\mathbb{R})$. Then $L^{\circ}(\mathbb{R})$ is a finitely generated cone with 0 as a vertex.

Proof. It suffices to show the following assertion. Let $\ell^{(i)} \in L_{i}$ for $i=1, \ldots, N$. Then $\sum_{i=1}^{N} \ell^{(i)}=0$ implies that $\ell^{(i)}=0$ for each i.

Denote the coordinates of $\ell^{(i)}$ by $l_{k}^{(i)}$. Suppose that $\ell^{(i)} \neq 0$. Then $l_{i}^{(i)}<0$ and $l_{k}^{(i)} \geq 0$ for all $k \neq i$. In particular,

$$
\tilde{\mathbf{a}}_{i}=\sum_{k \neq i}-\frac{l_{k}^{(i)}}{l_{i}^{(i)}} \tilde{\mathbf{a}}_{k}
$$

so we see that $\tilde{\mathbf{a}}_{i}$ is a (real) positive linear combination of some other $\tilde{\mathbf{a}}_{k}$. Define the set

$$
C=\left\{\tilde{\mathbf{a}}_{k} \mid \text { there exists } j \text { such that } l_{k}^{(j)} \neq 0\right\}
$$

So C is the set of $\tilde{\mathbf{a}}_{k}$ that are non-trivially involved in some relation $\ell^{(j)}$. Suppose C is not empty. Let $\tilde{\mathbf{a}}_{k}$ be a vertex of the convex hull of C. Suppose that $l_{k}^{(k)}<0$. Then $\tilde{\mathbf{a}}_{k}$, being a positive linear combination of other $\tilde{a}_{j} \in C$ cannot be a vertex of the convex hull of C. So $l_{k}^{(k)} \geq 0$ and fortiori, $l_{k}^{(j)} \geq 0$ for all j. Their sum should be zero, contradicting the fact that $l_{k}^{(j)} \neq 0$ for some values of j. Hence, we conclude that C is empty. In particular, $\ell^{(j)}=\mathbf{0}$ for all j.

Due to Lemma 5.2, the set of formal power series supported in $L^{\circ}=L^{\circ}(\mathbb{R}) \cap \mathbb{Z}^{N}$ is a ring. Let us denote this ring by

$$
\mathcal{R}=\left\{\sum_{\ell \in L^{\circ}} b_{\ell} \mathbf{v}^{\ell} \mid b_{\ell} \in \mathbb{Z}\right\}
$$

We will also consider the bigger ring

$$
\mathcal{S}=\mathcal{R}\left[v_{1}^{ \pm 1}, \ldots, v_{N}^{ \pm 1}\right]
$$

Elements of \mathcal{S} are power series supported in a finite number of integral translations of the cone L°. It follows from Proposition 5.1 and formula (12) that $p_{\mathbf{a}_{i}}\left(\mathbf{x}^{\mathbf{u}} f(\mathbf{x})^{-k}\right) \in$ $\left(\prod_{r=1}^{N} V_{r}^{-\alpha_{r}}\right) \mathcal{R} \subset \mathcal{S}$. Note that when A is saturated, this argument can be applied with any $k \geq 1$ and $\mathbf{u} \in k \Delta$. With a bit more effort, one can also show that $p_{\mathbf{a}_{i}}\left(\mathbf{x}^{\mathbf{u}} f(\mathbf{x})^{-k}\right) \in \mathcal{S}$ for any integral $\mathbf{u} \in k \Delta$ without the assumption. In what follows, we shall not assume that A is a saturated set.

We shall be interested in the $N \times N$ matrix Ψ with entries

$$
\begin{equation*}
\Psi_{j i}=p_{\mathbf{a}_{i}}\left(\omega_{\mathrm{a}_{j}}\right)=v_{j}^{-1}\left(\delta_{i j}+\sum_{\ell \in L_{i}^{*}} \ell_{j} \prod_{r=1}^{N} \frac{v_{r}^{\ell_{r}}}{\Gamma^{*}\left(\ell_{r}+1\right)}\right) \tag{13}
\end{equation*}
$$

This formula follows from (12) with $\mathbf{u}=\mathbf{a}_{j}$ and $k=1$. It will be convenient to work with the renormalized series $\tilde{\Psi}_{j i}:=v_{j} \Psi_{j i} \in \mathcal{R}$. Let us now consider their truncated versions. Define for any $m \geq 1$ the $N \times N$-matrix ψ_{m} with entries

$$
\left(\psi_{m}\right)_{j i}=\text { constant term of }\left(1-\left(1-\frac{f(\mathbf{x})}{V_{i} \mathbf{x}^{\mathrm{a}_{i}}}\right)^{m}\right) \omega_{\mathrm{a}_{j}}
$$

A straightforward calculation shows that this is equal to the series development (11) with $k=1, \mathbf{u}=\mathbf{a}_{j}$ summed over $d=0,1,2, \ldots, m-1$. Further calculation along the same lines as earlier shows that we get

$$
\begin{equation*}
v_{j}\left(\psi_{m}\right)_{j i}=\delta_{i j}+\sum_{\ell \in L_{i}(m)^{*}} \ell_{j} \prod_{k=1}^{N} \frac{v_{k}^{\ell_{k}}}{\Gamma^{*}\left(\ell_{k}+1\right)}, \tag{14}
\end{equation*}
$$

where

$$
L_{i}(m)=\left\{\ell \in \mathbb{Z}^{N} \mid \sum_{k=1}^{N} \ell_{k} \tilde{\mathbf{a}}_{k}=\mathbf{0}, \ell_{k} \geq 0 \text { for all } k \neq i \text { and } \ell_{i}>-m\right\}
$$

Comparing (14) and (13), one sees that $\left(\tilde{\psi}_{m}\right)_{j i}:=v_{j}\left(\psi_{m}\right)_{j i} \in \mathcal{R}$ is the truncation of the element $\tilde{\Psi}_{j i}=v_{j} \Psi_{j i} \in \mathcal{R}$. Let us consider the function $|\cdot|: L^{\circ} \rightarrow \mathbb{Z}_{\geq 0}$ given by

$$
|\ell|:=\sum_{k: \ell_{k}>0} \ell_{k}=-\sum_{k: \ell_{k}<0} \ell_{k} \text { for } \ell \in L^{\circ}
$$

and define truncations of elements of \mathcal{R} by

$$
r=\sum_{\ell \in L^{\circ}} b_{\ell} \mathbf{v}^{\ell} \rightsquigarrow r(m):=\sum_{|\ell| \leq m} b_{\ell} \mathbf{v}^{\ell}
$$

for all $m \geq 0$. With this notation, the above computation shows that $\tilde{\Psi}(m)=\tilde{\psi}_{m}$. Note that the constant term of $\tilde{\Psi}$ is the identity matrix, and hence $\tilde{\Psi}$ and all its truncations $\tilde{\psi}_{m}$ are invertible over \mathcal{R}.

Theorem 5.3. Let $\mu \subseteq \Delta$ be an open set and denote $h=\# \mu_{\mathbb{Z}}$. Assume that $h \geq 1$ and $\#\left\{j: \mathbf{a}_{j} \in \mu\right\}=h$. Consider the $h \times h$ submatrices with entries in \mathcal{R} given by

$$
\tilde{\Psi}=\left(\tilde{\Psi}_{j i}\right)_{\mathbf{a}_{j}, \mathbf{a}_{i} \in \mu}
$$

where $\tilde{\Psi}_{j i}=v_{j} \Psi_{j i}$ are renormalized series (13). Let $\tilde{\psi}_{m}=\tilde{\Psi}(m)$ for $m \geq 1$ be the respective truncations. For the Frobenius lift $\sigma: \mathcal{R} \rightarrow \mathcal{R}$ that sends v_{j} to v_{j}^{p} for each $1 \leq j \leq N$ and
any of the derivations $\delta=v_{i} \frac{\partial}{\partial v_{i}}: \mathcal{R} \rightarrow \mathcal{R}$, one has congruences

$$
\begin{equation*}
\tilde{\Psi} \cdot \sigma(\tilde{\Psi})^{-1} \equiv \tilde{\psi}_{m} \cdot \sigma\left(\tilde{\psi}_{m / p}\right)^{-1}\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta(\tilde{\Psi}) \cdot \tilde{\Psi}^{-1} \equiv \delta\left(\tilde{\psi}_{m}\right) \cdot \tilde{\psi}_{m}^{-1} \quad\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \tag{16}
\end{equation*}
$$

for all $m \geq 1$.

Let V be the $h \times h$ diagonal matrix with the entries v_{j} for $\mathbf{a}_{j} \in \mu$. Note that substituting $\tilde{\Psi}=V \Psi$ and $\tilde{\psi}_{m}=V \psi_{m}$ into (15) and (16) shows that these congruences are equivalent to

$$
\begin{aligned}
& \Psi \cdot \sigma(\Psi)^{-1} \equiv \psi_{m} \cdot \sigma\left(\psi_{m / p}\right)^{-1}\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \\
& \delta(\Psi) \cdot \Psi^{-1} \equiv \delta\left(\psi_{m}\right) \cdot \psi_{m}^{-1} \quad\left(\bmod p^{\operatorname{ord}_{p}(m)}\right)
\end{aligned}
$$

Matrices in the latter congruences have entries in the bigger ring \mathcal{S}. We preferred to state our theorem for the normalized matrices because truncations are more naturally defined on elements of \mathcal{R} rather than \mathcal{S}.

Proof. Consider the matrices of periods mod m given by (10) with $\phi_{\mathbf{a}_{i}}=v_{i}$:

$$
\begin{equation*}
\left(\gamma_{m}\right)_{j, i}=\text { constant term of }\left(v_{i}^{m}-\left(v_{i}-f(\mathbf{x}) / \mathbf{x}^{\mathbf{a}_{i}}\right)^{m}\right) \frac{\mathbf{x}^{\mathbf{a}_{j}}}{f(\mathbf{x})}=v_{i}^{m}\left(\psi_{m}\right)_{j i} \tag{17}
\end{equation*}
$$

Their entries are in $\mathbb{Z}\left[v_{1}, \ldots, v_{N}\right]$, and we have $\gamma_{m}=V^{-1} \tilde{\psi}_{m} V^{m}$. In particular, the coefficient of the monomial $\left(\prod_{\mathbf{a}_{j} \in \mu} V_{j}\right)^{p-1}$ in $\operatorname{det}\left(\gamma_{p}\right)$ is 1 . Let R be the p-adic completion of $\mathbb{Z}\left[v_{1}^{ \pm 1}, \ldots, v_{N}^{ \pm 1}, \operatorname{det}\left(\gamma_{p}\right)^{-1}\right]$. Since $\operatorname{det}\left(\gamma_{p}\right)$ is not divisible by p, this ring satisfies our assumption $\cap_{s \geq 1} p^{s} R=\{0\}$ and hence one can apply Corollary 4.4. It follows that there are matrices $\Lambda_{\sigma}, N_{\delta} \in R^{h \times h}$ such that

$$
\begin{equation*}
\gamma_{m} \equiv \Lambda_{\sigma} \sigma\left(\gamma_{m / p}\right) \quad \text { and } \quad \delta\left(\gamma_{m}\right) \equiv N_{\delta} \gamma_{m} \quad\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \tag{18}
\end{equation*}
$$

Observe that all matrices γ_{m} are invertible over \mathcal{S} because

$$
\operatorname{det}\left(\gamma_{m}\right)=\left(\prod_{\mathbf{a}_{j} \in \mu} v_{j}\right)^{m-1} \operatorname{det}\left(\tilde{\psi}_{m}\right) \in\left(\prod_{\mathbf{a}_{j} \in \mu} v_{j}\right)^{m-1} \mathcal{R}^{\times} \subset \mathcal{S}^{\times}
$$

One of the consequences of this fact is that R is a subring of the p-adic completion

$$
S:=\widehat{\mathcal{S}} \subset \mathbb{Z}_{p}\left[\left[v_{1}^{ \pm 1}, \ldots, v_{N}^{ \pm 1}\right]\right]
$$

Working in the big ring S, we can invert matrices in (18) and conclude that

$$
\gamma_{m} \cdot \sigma\left(\gamma_{m / p}\right)^{-1} \equiv \Lambda_{\sigma} \quad \text { and } \quad \delta\left(\gamma_{m}\right) \cdot \gamma_{m}^{-1} \equiv N_{\delta} \quad\left(\bmod p^{\operatorname{ord}_{p}(m)}\right)
$$

Substituting $\gamma_{m}=V^{-1} \tilde{\psi}_{m} V^{m}$ in the left-hand sides yields

$$
\begin{align*}
\tilde{\psi}_{m} \cdot \sigma\left(\tilde{\psi}_{m / p}\right)^{-1} & \equiv V \Lambda_{\sigma} V^{-p}\left(\bmod p^{\operatorname{ord}_{p}(m)}\right) \tag{19}\\
\delta\left(\tilde{\psi}_{m}\right) \cdot \tilde{\psi}_{m}^{-1} & \equiv V N_{\delta} V^{-1}+\delta(V) V^{-1}\left(\bmod p^{\operatorname{ord}_{p}(m)}\right)
\end{align*}
$$

One particular consequence of these congruences is that the matrices in their right-hand sides have entries in \mathcal{R}. Secondly, they must coincide with the limits of the left-hand sides which, using the fact that $\tilde{\psi}_{m}$ is a truncation of $\tilde{\Psi}$, immediately implies that

$$
\begin{equation*}
V \Lambda_{\sigma} V^{-p}=\tilde{\Psi} \cdot \sigma(\tilde{\Psi})^{-1} \quad \text { and } \quad V N_{\delta} V^{-1}+\delta(V) V^{-1}=\delta(\tilde{\Psi}) \cdot \tilde{\Psi}^{-1} \tag{20}
\end{equation*}
$$

Substituting these values back into (19) proves our theorem.

The above proof is based on the ideas from Section 4. By Lemma 4.3, the Hasse-Witt matrix $\beta_{p}(\mu)$ is congruent modulo p to the matrix γ_{p} given in (17). (In the special case $\mu=\Delta^{\circ}$ this was observed in [1, Proposition 3.8].) Using this fact, we can conclude from the above proof that under the assumptions of Theorem 5.3 the determinant of the Hasse-Witt matrix is a polynomial not divisible by p and there exist the respective matrices $\Lambda_{\sigma}, N_{\delta} \in R^{h \times h}$, where R is the p-adic completion of the ring $\mathbb{Z}\left[v_{1}^{ \pm 1}, \ldots, v_{N}^{ \pm 1}, \operatorname{det}\left(\beta_{p}(\mu)\right)^{-1}\right]$. These are the same ring R and the same matrices that were used in the proof. In particular, R is a subring of the p-adic completion $S=\widehat{\mathcal{S}}$ and we have

Corollary 5.4. $\quad \Lambda_{\sigma}=\Psi \cdot \sigma(\Psi)^{-1}, N_{\delta}=\delta(\Psi) \cdot \Psi^{-1}$.
Proof. Substitute $\tilde{\Psi}=V \Psi$ into (20).

A special consequence of this corollary is that the matrices $V \Lambda_{\sigma} V^{-p}$ and $V N_{\delta} V^{-1}+\delta(V) V^{-1}$ have their entries in \mathcal{R}. Furthermore, it turns out that N_{δ} and, in a lesser way, Λ_{σ}, are independent of the choice of p.

Finally, we remark that in fact there are well-defined period maps

$$
p_{\mathbf{a}_{i}}: \widehat{\Omega}_{f} \rightarrow S
$$

As we explained in Section 2, these period maps are invariant under the Cartier operator (we have $p_{\mathbf{a}_{i}}=p_{\mathbf{a}_{i}}^{\sigma} \circ \mathscr{C}_{p}$ where $p_{\mathbf{a}_{i}}^{\sigma}$ denotes the respective period map $\widehat{\Omega}_{f^{\sigma}} \rightarrow S$) and vanish on formal derivatives. Corollary 5.4 is then a direct consequence of Theorem 2.3.

Let us also mention the main result of [2], Theorem 1.4. It states that in the Ahypergeometric setting with the assumption that Δ has \mathbf{a}_{0} as its unique interior lattice point the series $\Phi(\mathbf{v}) / \Phi\left(\mathbf{v}^{p}\right)$, where $\Phi(\mathbf{v})=\Psi_{00}\left(v_{0}, \ldots, v_{N}\right)$ is the unique entry of our matrix Ψ for $\mu=\Delta^{\circ}$, is a p-adic analytic element with the set of poles determined by the Hasse invariant $\beta_{p}\left(\Delta^{\circ}\right)$. Hence, [2, Theorem 1.4] follows from Corollary 5.4.

6 Example

We continue the example from Part I, Section 7 with

$$
f(x, y)=v_{1} y^{2}+v_{2} x+v_{3} x^{3}+v_{4} x^{2}+v_{5} x y
$$

We determine the entries of the matrix $\tilde{\Psi}$. The vectors $\tilde{\mathbf{a}}_{k}$ are given by the columns of

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 2 & 1 \\
2 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The supports L_{i} lie in the null space of this matrix that can be written as

$$
(r+2 s, s, s, r,-2 r-4 s), \quad r, s \in \mathbb{Z}
$$

In L_{1}, we have the inequalities $s, r,-2 r-4 s \geq 0$. This is only possible when $r=s=0$. The only non-trivial series $\Psi_{j, 1}$ is $V_{1} \Psi_{1,1}=1$.

In L_{2}, we have the inequalities $r+2 s, s, r,-2 r-4 s \geq 0$ and we find $v_{2} \Psi_{2,2}=1$ as non-trivial series.

In L_{3}, we again get $v_{3} \Psi_{3,3}$ as only non-trivial $\Psi_{j, 3}$.
In L_{4}, we have the inequalities $r+2 s, s,-2 r-4 s \geq 0$. Hence $r=-2 s, s \geq 0$. So we get

$$
V_{j} \Psi_{j, 4}=\delta_{j, 4}-\sum_{s \geq 1} m_{j}(s) \frac{(2 s-1)!}{s!s!}\left(v_{2} V_{3} / v_{4}^{2}\right)^{s}
$$

where $m_{j}(s)$ is the j-th component of $(0, s, s,-2 s, 0)$. The m-truncated version has the extra condition $m_{4}(s)=-2 s>-m$, hence $s<m / 2$.

In L_{5}, we have the inequalities $r+2 s, s, r \geq 0$. So we get

$$
v_{j} \Psi_{j, 5}=\delta_{j, 5}-\sum_{r, s \geq 0} m_{j}(r, s) \frac{(2 r+4 s-1)!}{(r+2 s)!s!s!r!}\left(v_{1} v_{4} / v_{5}^{2}\right)^{r}\left(v_{1}^{2} v_{2} v_{3} / v_{5}^{4}\right)^{s}
$$

where $m_{j}(r, s)$ is the j-th component of $(r+2 s, s, s, r,-2 r-4 s)$. The m-truncated version has the extra condition $m_{5}(r, s)=-2 r-4 s>-m$, hence $r+2 s<m / 2$.

If we restrict our matrix to the index set $\Delta_{\mathbb{Z}}^{\circ}$, a computation shows that we get the 1×1-matrix with element

$$
v_{5} \Psi_{5,5}=\sum_{r, s \geq 0} \frac{(2 r+4 s)!}{(r+2 s)!s!s!r!} x^{r} y^{s}=\frac{1}{\sqrt{1-4 x}} F\left(1 / 4,3 / 4,1 \left\lvert\, \frac{64 y}{(1-4 x)^{2}}\right.\right)
$$

where $x=v_{1} v_{4} / v_{5}^{2}, y=v_{1}^{2} v_{2} v_{3} / v_{5}^{4}$. The other components $v_{j} \Psi_{j, 5}$ are not so easy to express in terms of one-variable hypergeometric functions, if possible at all.

Funding

This work was supported by the Netherlands Organisation for Scientific Research [grant TOP1EW.15.313 to F.B.] and the National Science Centre of Poland [grant UMO-2016/21/B/ST1/ 03084 to M.V.].

References

[1] Adolphson, A. and S. Sperber. "A-hypergeometric series and the Hasse-Witt matrix of a hypersurface." Finite Fields Appl. 41 (2016): 55-63.
[2] Adolphson, A. and S. Sperber. "A-hypergeometric series associated to a lattice polytope with a unique interior lattice point." arXiv:1308.4439 [math.AG].
[3] Beukers, F. and M. Vlasenko. "Dwork crystals I." Int. Math. Res. Not. IMRN to appear. doi: 10.1093/imrn/rnaal19.
[4] Dwork, B. "A Deformation Theory for the Zeta function of a Hypersurface." In Proceedings of the International Congress of Mathematicians, Stockholm, 247-59. Djursholm: Inst. Mittag-Leffler, 1963.
[5] Dwork, B. "p-Adic cycles." Publ. Math. Inst. Hautes Études Sci. 37 (1969): 27-115.
[6] Mellit, A. and M. Vlasenko. "Dwork's congruences for the constant terms of powers of a Laurent polynomial." Int. J. Number Theory 12 (2016): 313-21.

