
Evaluation of an RTOS on top of a hosted virtual

machine system

Mehdi Aichouch, Jean-Christophe Prevotet, Fabienne Nouvel

To cite this version:

Mehdi Aichouch, Jean-Christophe Prevotet, Fabienne Nouvel. Evaluation of an RTOS on top
of a hosted virtual machine system. Design and Architectures for Signal and Image Processing
(DASIP), 2013 Conference on, Oct 2013, Cagliari, Italy. pp.290-297, 2013. <hal-00982172>

HAL Id: hal-00982172

https://hal.archives-ouvertes.fr/hal-00982172

Submitted on 23 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53002138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00982172

Evaluation of an RTOS on top of a Hosted Virtual Machine System

Mehdi Aichouch, Jean-Christophe Prévotet and Fabienne Nouvel

Institut d’Electronique et de Télécomunications de Rennes

INSA Rennes

Abstract

In this paper we evaluate a virtualized RTOS by detail-

ing its internal fine-grained overheads and latencies rather

than by providing more global results from an application

perspective, as it is usually the case. This approach is fun-

damental to analyze a mixed criticality real-time system

where applications with different levels of criticality must

share the same hardware with different operating systems.

This evaluation allows to observe how the RTOS behaves

when deployed on top of a virtual machine system and to

understand what are the key features of the RTOS which im-

pact the performance degradation.

1 Introduction

The availability of multicore system-on-chip equipped

with an instruction set architecture that support virtualiza-

tion offers an interesting solution to deploy multiple operat-

ing systems on the same hardware which reduce the number

of electronic devices in the case of an embedded system.

For example, in the domain of automotive systems, mul-

ticore systems offer the opportunity to dedicate real-time

operating systems to specific cores for real-time program-

ming, allowing remaining cores to be managed by general-

purpose OS to support in-vehicle infotainment system.

Running a real-time operating system inside a virtual

machine instead of a bare-metal hardware clearly impacts

the timing of the kernel. This new timing need to be quan-

tified in order to evaluate how it affects the execution of

real-time applications.

So far, many studies have evaluated the performance of

a virtualized RTOS. The majority of these studies usually

focus on measuring the interrupt latency by tracing the time

between a timer interrupt assertion and the instant an ob-

servable response occurs in a single user-space task that

runs on top of the virtualized RTOS.

The interrupt latency measurement in the virtualized

RTOS showed that, the virtualization technique adds a max-

imum value that ranges from several hundreds of microsec-

onds to some milliseconds to the interrupt latency in com-

parison to the same RTOS running natively on a real ma-

chine. From an application developer perspective, this is

a practical evaluation that gives a global overview of the

performance of a virtualized application. But from an OS

developer perspective, this evaluation lacks more detailed

metrics concerning the operating system kernel overheads

and latencies that are useful to observe the scalability of the

virtualization technique.

In our work, we measured a set of fine-grained overheads

and latencies of a virtualized RTOS. The analysis of the re-

sults allow to observe how these internal overheads and la-

tencies are impacted by the virtualization technique and to

understand the software and hardware mechanisms that are

involved in the performance degradation.

In the remainder of this paper, we provide an overview

of the virtualization concept in section 2, and explain the

hardware mechanisms required to build an efficient virtual

machine system. In section 3, we present an implementa-

tion of a hosted virtual machine system. In section 4, we

discuss some related work that evaluated the same platform

that we used in our experiments. We give a comprehensive

overview of the tools that were used to measure the over-

heads and latencies in section 5. Then, we analyze the re-

sults and explain the reasons for performance degradations

in section 6. Finally, we conclude and give the future direc-

tions of our work.

2 Virtualization Technique

In this section, we provide an introduction to the various

parts of a hardware platform, with a view to understanding

how virtualization can be achieved. Understanding the de-

sign of a system composed of virtual machines is necessary

to evaluate the impact that this mechanism could cause to a

virtualized real-time operating system.

2.1 System of Virtual Machines

Running multiple guest operating systems simultane-

ously on a single host hardware platform could be realized

by partitioning processor time, memory space, and the I/O

devices. The hardware resources allocated to a guest oper-

ating system constitutes a virtual machine (VM). The soft-

ware component that allocates the hardware resources to

each guest operating system is referred to as a virtual ma-

chine monitor (VMM).

The classic approach to system VM architecture is to

place the VMM on bare hardware whereas the virtual ma-

chine fits on top. The VMM runs in the most highly priv-

ileged mode, while all guest operating systems run with

lesser privileges, as shown in Figure 1.b. Then, in a com-

pletely transparent way, the VMM can intercept and imple-

ment all the guest OS’s actions that interact with the hard-

ware resources.

An alternative implementation builds the VMM on top

of an existing host operating system, resulting in what is

called a hosted VM as shown in Figure 1.c and 1.d. In this

configuration, the installation process is similar to installing

a typical application program.

Hardware Hardware Hardware Hardware

OS

Applications

VMM

Guest OS

Host OS

VMM

Host OS

VMM

Guest Apps

Guest Apps Guest Apps

Guest OS Guest OS

Non privileged
modes

Privileged
modes

a. Traditional
system

b. Native VM
system

c. User-mode
hosted VM
system

d. Hosted VM
system

Figure 1. Native and Hosted VM Systems.

From [16]

2.2 Resource Virtualization Processors

There are two ways of virtualizing a processor. The first

is emulation, and the second is direct native execution on

the host machine.

Emulation involves examining each guest instruction in

turn, and emulating on virtualized resources the exact ac-

tions that would have been performed on real resources.

Emulation is the only processor virtualization mechanism

available when the instruction set architecture (ISA) of the

guest is different from the ISA of the host.

The second processor virtualization method uses direct

native execution on the host machine. This method is pos-

sible only if the ISA of the host is similar to the ISA of

the guest and only under certain conditions. In this case,

the guest program will often run on a virtual machine at

about the same speed as on native hardware, unless there are

memory or I/O resource limitations. The overhead of em-

ulating any remaining instructions depends on several fac-

tors, including the actual number of instructions that must

be emulated, the complexity of discovering the instructions

that must be emulated and the data structures and algorithms

used for emulation.

2.2.1 Conditions for ISA Virtualization

In a virtual machine environment, an operating system

running on a guest virtual machine should not be allowed

to change hardware resources in a way that affects the other

virtual machines. Hence, even the operating system on a

virtual machine must execute in a mode that disables the

direct modifications of system resources such as the CPU

timer interval. Consequently, all of the guest operating

system software is forced to execute in user mode. This

represents a problem that prevents the construction of

efficient VMM. But before explaining the reason of this

problem we need to define two terms.

Sensitive instruction. A sensitive instruction is an instruc-

tion that attempts to read or change the resource-related reg-

isters and memory locations in the system, for example, the

physical memory assigned to a program or the mode of the

system. The POPF, Intel IA-32 instruction is an example.

This instruction pops a word from the top of a stack in mem-

ory, increments the stack pointer by 2, and stores the value

in the lower 16 bits of the EFLAGS register. One of the

bits in the EFLAGS register is IF, the interrupt-enable flag

that is not modified when POPF is executed in user mode.

The interrupt-enable flag can only be modified in privileged

mode.

Privileged instruction. A privileged instruction is defined

as one that traps if the machine is in user mode and does

not trap if the machine is in system mode.

The reason why a VMM could not be constructed effi-

ciently is due to the fact that if a sensitive instruction such

as POPF is executed by the guest operating system, and that

this guest OS is running in user mode, this instruction will

not trap. So the VMM could not take control of the ma-

chine and execute on behalf of the guest OS. The only way

to force the control back to the VMM, is the use of emu-

lation. It would be possible for a VMM to intercept POPF

and other sensitive instructions if all guest software were in-

tercepted instruction by instruction. The VMM could then

examine the action desired by the virtual machine that is-

sued the sensitive instruction and reformulate the request in

the context of the virtual machine system as a whole. The

use of interpretation clearly leads to inefficiency, in partic-

ular when the frequency of sensitive instructions requiring

interpretation is relatively high.

To avoid this problem, it is necessary for an ISA to be

efficiently virtualizable that all the sensitive instructions are

a subset of the privileged instructions. More precisely, if a

sensitive instruction is a privileged instruction, then it will

always trap when executed in user mode. All non-privileged

instructions can be executed natively on the host platform

and no emulation is required.

Direct

execution

of User

Requests

Figure 2. Intel ISA’s operation modes and
privilege levels.

2.2.2 Hardware Virtualization Technology

To enhance the performance of virtual machine imple-

mentations, hardware manufacturers developed a dedicated

technology for their processors. The main feature is the

inclusion of a new processor operating mode. For exam-

ple, the Intel VT-x feature has added a new processor mode

called VMX. In this mode, the processor can be in either

VMX root operation or VMX non root operation. In both

cases, all four IA-32 privilege levels (rings) are available for

software. In addition to the usual four rings, VT-x, provides

four new less privileged rings of protection for the execution

of guest software, as shown in Figure 2.

The processor in the VMX root operation behaves sim-

ilarly to a normal processor without the VT-X technology.

The main difference relies in the addition of a set of new

VMX instructions.

The behavior of the processor in a non-root operation is

limited in some respects. The limitations are such that criti-

cal shared resources are kept under the control of a monitor

running in VMX root operation. This limitation of control

extends also to non-root operation in ring 0, which, in nor-

mal processors, is the most privileged level. Thus the in-

tention is for the VMM to work in VMX root operation,

while the virtual machine itself, including the guest oper-

ating system and application, work in VMX non-root oper-

ation. Because VMX non-root operation includes all four

IA-32 privilege levels (rings), guest software can run in the

rings in which it was originally intended to run, i.e, the guest

operating system kernel can run in ring 0 and guest applica-

tions can run in ring 3.

A key aspect of the VT-x technology that allows faster

virtual machine systems to be built is the elimination of

the need to run all guest code in the user mode, essentially

by providing a new mode of operation specifically for the

VMM. For code regions that do not contain instructions that

affect any critical shared resources, the hardware executes

as efficiently as it would have on a normal machine. It is

only in few cases where this is not possible that a certain de-

gree of emulation must be performed by the VMM. Thus,

once in the virtual machine, the exits back to the monitor

are far less frequent in the hardware case than in software

virtualization.

3 Linux Kernel Virtual Machine

In our experiments we used the Linux Kernel Virtual Ma-

chine (KVM) [14]. KVM is an example of a hosted VM.

Here the host is the Linux operating system and the vir-

tual machine monitor is composed of two components, the

Kernel Virtual Machine is the privileged component and the

Qemu is the unprivileged component. Figure 3 illustrates

the KVM and Qemu architecture.

The KVM virtualizes the processor by creating a virtual

machine data structure to hold the virtual CPU registers. It

also virtualizes the memory by configuring the MMU hard-

ware to translate the guest virtual addresses to host physical

addresses if the architecture supports the two-dimensional

paging. Otherwise it uses shadow page table to emulate a

hardware MMU. KVM traps the I/O instructions and for-

wards them to Qemu which feeds them into a device model

in order to emulate their behavior, and possibly triggers real

I/O such as transmitting a network packet.

3.1 Qemu

Qemu is a computer emulator software [6]. Usually, it is

used to emulate a hardware architecture on another different

architecture, for example emulating a Power-PC ISA using

an IA-32 ISA.

When Qemu is executed with the -enable-kvm op-

tion, the CPU emulation mechanism of Qemu is disabled.

The Qemu software invokes the services provided by KVM

to execute the code of the guest operating system natively

on the hardware. This operation is only possible when the

guest OS is targeted for the same architecture of the host

processor. For example, the guest OS is an x86 version of

Linux and the host processor is an x86.

Qemu is used by KVM to emulate I/O devices. When

a guest I/O instruction is encountered, it traps to the KVM

code that forwards it to Qemu. If the requested device is

supported by the Linux host OS, the request is converted

into a Linux host OS call. The KVM, through Qemu, now

acts as a user application under Linux. When the applica-

tion returns from this system call, the control gets back to

the KVM and then into the guest OS running on the virtual

machine.

3.2 Virtual Machine Process

Starting a virtual machine under KVM could be done

by starting a Qemu user process. When the Qemu pro-

cess starts executing, it requests the creation of the virtual

machine. The KVM creates a virtual machine data struc-

ture and associates it to the Qemu process. Then, when the

Qemu process is scheduled by the Linux kernel, it requests

the launch of the virtual machine. After that, the proces-

sor starts executing the guest OS code until it encounters

an I/O instruction, or until the occurrence of an interrupt.

The Linux operating system schedules this virtual machine

process as it schedules the other regular processes.

Hardware

Linux kvm driver

Qemu

KVM

Guest OS

Applications

Host Applications
User mode

Privileged
mode

Virtual Machine

Figure 3. Linux Kernel Virtual Machine and

Qemu.

4 Related Work

A recent state-of-the-art survey [12] regarding the real-

time issues in virtualization has presented a complete

overview of virtualization solutions. Here we discuss the

evaluation of the virtual machine system based on KVM.

Multiple experiments [7, 11, 13, 15, 17, 18] have eval-

uated the real-time virtualization performance of KVM.

To measure the performance of KVM, a real-time operat-

ing system was executed inside a virtual machine and the

cyclictest benchmark [3] was executed on top of the

guest RTOS for a limited period of time, for example one

hour. The cyclictest is a simple benchmark to measure

the accuracy of OS sleep() primitives and part of the “rt-

tests” benchmark suite developed primarily to evaluate the

PREEMPT RT real-time Linux kernel patch. To obtain ac-

curate results, the cyclictest was executed at highest

real-time priority. The wakeup time measured is considered

as an approximation of the timer interrupt latency in the vir-

tualized RTOS.

The results of the evaluation showed that a

cyclictest executed on a virtualized RTOS pro-

duced a maximum timer interrupt latency higher than a

cyclictest executed on a native RTOS by several

hundreds of microseconds. This comparison helps to

estimate the performance of a virtualized RTOS from an

application perspective. Nevertheless, it does not help to

understand the reasons that caused this higher overhead.

Moreover, in the case of a system that is subject to hard

real time constraints, this approach only allows to assert

that during the first hour of operation the maximum latency

did not cause a failure. However, in general, even if later

execution times are less than observed during the first hour,

this does not preclude a deadline miss at a later time.

In contrast, our approach, by detailing the distribution of

the global additional overhead in terms of scheduling execu-

tion cost, context-switch cost, release overhead, and event

release latency allows to investigate the functionalities of

the kernel that are the most involved in the performance

degradation. Moreover, by conducting proper schedulabil-

ity analysis [10] based on estimated execution costs, a much

stronger guarantee regarding the temporal correctness of the

application could be asserted.

5 Experiments

In this section we present our evaluation of the virtual-

ized RTOS. First, we define the overheads and latencies that

are of interest. Second, we describe the hardware platform

and the RTOS that we used in our experiments. Then, we

present the synthetic workloads used to measure the over-

heads and latencies.

5.1 Overheads and Latencies

• Scheduling overhead is the time taken to perform a

process selection.

• Context-switch overhead is the time required to per-

form a context switching.

• Event Latency is the delay from the raising of the

interrupt signal by the hardware device until the start

of execution of the associated interrupt service routine

(ISR).

• Release Overhead is the delay to execute the release

ISR. The release ISR determines that a job Ji has been

released and updates the process implementing a task

Ti to reflect the parameters of the newly-released job.

5.2 Test platform

In the first configuration, we tested the native RTOS, and

we used a dual-core Intel 1.86-Ghz as a hardware platform.

The real-time operating system we used is LITMUSˆRT [9]

configured with the partitioned-fixed priority (P-FP) sched-

uler and dedicated to one core of the machine.

In the second configuration, we used the Linux

KVM/Qemu as a hosted VM system. We configured the

host Linux kernel with the PREEMPT RT real-time patch

to improve its real-time capability. We installed the LIT-

MUSˆRT real-time operating system inside a virtual ma-

chine.

While the tested hardware platform is not a typical plat-

form for small embedded system, we used it due to its simi-

larities in terms of CPU clock frequency, cache memory and

virtualization extension, with the platform that the automo-

tive manufacturers [4] would like to deploy in upcoming

automotive SoC.

5.3 RTOS: LITMUSˆRT

LITMUSˆRT is a real-time Linux patch. Its main prop-

erty consists in extending the Linux kernel with multipro-

cessor real-time scheduling policies and locking protocols.

The particularity of the LITMUSˆRT kernel resides in the

fact that its code is instrumented to measure independently

the duration of each scheduling decision, context switch,

event latency, release, and inter-processor interrupt. In LIT-

MUSˆRT, the Feather-Trace [8] infrastructure was used for

this purpose. Feather-Trace is a light-weight event tracing

toolkit. Its main characteristic is the low level overhead that

it introduces, which is an important feature in our case be-

cause it ensures that the measurements trace does not influ-

ence the results.

5.4 Synthetic Workloads

The experimental methodology we used in our evalua-

tion is inspired by the methodology used to evaluate the

LITMUSˆRT kernel [10]. To measure the overheads and

latencies we used a synthetic task sets system. Each task set

has a size n = m ∗ k, where m is the number of proces-

sors, and k is the number of tasks per processor and ranges

from one to twenty. For each value of n, five task sets sys-

tems were generated and each task set within a system was

executed for 60 seconds.

The task sets were generated by randomly choosing their

CPU utilization of each included task until the CPU uti-

lization capacity was reached. The utilization of each task

was randomly generated using one of the following dis-

tributions: light uniform, light bimodal, light exponential,

medium uniform, and medium bimodal, as proposed by

Baker [5]. The task periods were generated using a uni-

form distribution within a [10ms, 100ms] range. Then, the

utilization and the period values were used to compute the

execution time of each task.

These distributions are well known to stress specific

sources of algorithmic and overhead-related capacity loss.

For example, using light utilization distributions produces

task sets with many tasks where each task has a low CPU

utilization which results in a large number of interrupt

sources and long ready queues. Using medium utilization

distribution produces tasks’ set with a mix of low and high

CPU utilization tasks.

In addition to real-time workload, m background tasks

were launched that create memory and cache contention by

repeatedly accessing large arrays. This avoids the underes-

timation of the worst-case overheads.

The measurements of overheads and latencies results in

a large log events records. From this large log events,

we extract the measurement for each overhead and latency.

Then, for each overhead and latency the average-case and

the worst-case statistics are distilled.

6 Results

In total, the overhead experiments resulted in 1 GB of

events records, which contained more than 500 thousands

valid overhead samples. Figure 4, 6, 8, and 10 show the

average-case and the worst-case trends of all the overheads

and latencies from the virtualized RTOS, and Figure 5, 7,

9, and 11 show the similar measurements from the native

RTOS. The values of overheads and latencies in the graphs

are given in microsecond and plotted as a function of the

number of tasks per processor.

In the average case, the overall overheads and latencies

of the virtualized RTOS are roughly comparable to simi-

lar measurements from native RTOS. This similarity is ex-

plained by the fact that in most cases the guest code is exe-

cuted natively on the machine, thus it runs at the same speed

as the native code.

A key observation from Figure 4 and 5 is that the

scheduling average-case trend under either configuration

does not appear to be correlated to the task set size.

This is due the fact that in LITMUSˆRT, the partitioned

fixed-priority scheduler is efficiently implemented using a

bitfield-based ready queues to enable fast lookup of ready

processes. As a result, the runtime complexity of find-

ing the next highest-priority job does not depend on the

number of ready tasks. Another contributing factor is that

task sets with high task counts also have a high utiliza-

tion, which means that the background processes that create

memory contention execute less frequently and results in an

increased cache hit rate.

However, Figure 8 and 9 show a difference in the

average-case between the virtualized and native RTOS. We

see a slight increase of the event latency of the virtualized

RTOS in comparison to the native RTOS. This difference is

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e

rh
e

a
d

 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks per processor

measured scheduling overhead under P-FP scheduling

maximum
average

std. deviation

Figure 4. Scheduling overhead.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e

rh
e

a
d

 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks per processor

measured scheduling overhead under P-FP scheduling

maximum
average

std. deviation

Figure 5. Scheduling overhead (native).

due to the fact that the event latency is related to the emula-

tion of the I/O interrupt as explained in the next section.

In contrast, the worst-case trend present much more ir-

regularity compared to the average-case trend. This irregu-

larity could be explained by multiple reasons.

Some high-overhead value could be explained by the ac-

tual occurrence of rare, high-overhead events. For example,

in Figure 9 most of the worst-case event latency are under

20µs. However, the high-overhead values at n = 15 and

n = 19, are approximately equal to 42µs, that we explain

by the occurrence of an interrupt. Since our system was

frequently servicing long-running ISRs related to disk and

network I/O during overhead tracing. We suspect that the

measurement was certainly disturbed by an inopportune in-

terrupt. As we can see in Figure 7 at n = 8 and n = 13

where the worst-case overhead samples appear to be differ-

ent from the overall trend.

In addition, other high-overhead values could be caused

by measurement error. In fact, in repeated measurements

of some overhead, a small number of samples may be ”out-

liers”, that is some samples appear to not match the over-

all trend. While outliers typically do not significantly af-

fect average-case estimates (due the large number of correct

samples), large outliers can dramatically alter the estimated

maximum.

In our case study, we observed outliers in data sets from

overhead sources that can be disturbed by interrupts. In fact,

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e

rh
e

a
d

 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks per processor

measured context-switch overhead under P-FP scheduling

maximum
average

std. deviation

Figure 6. Context-switch overhead.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e

rh
e

a
d

 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks per processor

measured context-switch overhead under P-FP scheduling

maximum
average

std. deviation

Figure 7. Context-switch overhead (native).

outliers occurred frequently in measurements of event la-

tency and context-switch overhead, which are strongly af-

fected by interrupt delivery. In contrast, outliers occurred

rarely in the measurements of scheduling overhead since

interrupt delivery is disabled throughout most parts of the

measured scheduling code path. This is confirmed by the

standard deviation of the measured values, where we can

see that the probability of occurrence of high-overhead

worst-case values is very low.

Figure 11 shows the measurement of the release over-

head in the native case. It is the measurment of the delay

to execute the release ISR. This function is executed while

the interrupts are disabled, therefore we did not observed a

high variation in the worst-case values. Which confirms the

analysis we presented in the previous paragraph. However,

Figure 10 presents the same measurement from the virtual-

ized RTOS. But in this case, we can see that the worst-case

is very high in comparison with the average-case. We ex-

plain this by the fact that, even if the release ISR is executed

while interrupts are disabled in guest the operating system,

it does not mean that the guest operating system could not

be preempted by the virtual machine monitor. This is due

to the fact that the guest OS is not authorized to disable the

interrupt in the system, and therefore it is subject to per-

turbation from other workload happening in the host. This

preemption of the guest operating system could delay the

response time of the primitives currentlty executing by the

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e

rh
e

a
d

 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks per processor

measured event latency under P-FP scheduling

maximum
average

std. deviation

Figure 8. Event latency.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e

rh
e

a
d

 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks per processor

measured event latency under P-FP scheduling

maximum
average

std. deviation

Figure 9. Event latency (native).

guest OS.

In general, the worst-case values of the virtualized

RTOS are higher than the native RTOS. Nevertheless,

it is difficult to draw a conclusion from the comparison

of the worst-case measured values. The reasons of this

performance degradation is explained in more details in the

next section.

Reasons for Performance Degradation:

Virtual machines can improve the utilization of hard-

ware by sharing resources among multiple guest operating

systems, each guest is given the illusion of owning all

the machine resources. Unfortunately, this also raises the

expectations of guest OS, which now requires performance

on its workload similar to that provided by a complete

machine. Performance measurements presented in the

previous section indicated in the worst-case, it was difficult

to achieve a guest performance that is similar to a native

performance.

Interrupt handling. When an interrupt is raised by a phys-

ical device, it is intercepted by the virtual machine monitor,

converted to a virtual interrupt, and injected into the vir-

tual machine. The time to emulate the access to the virtual

device and to acknowledge the interrupt must be added to

the time during which the interrupt is pending, and until it

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e

rh
e

a
d

 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks per processor

measured release interrupt overhead under P-FP scheduling

maximum
average

std. deviation

Figure 10. Release overhead.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o
v
e

rh
e

a
d

 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks per processor

measured release interrupt overhead under P-FP scheduling

maximum
average

std. deviation

Figure 11. Release overhead (native).

is accepted by the guest operating system and transferred

to the appropriate ISR. As a result, the event latency in the

virtualized RTOS is higher than in the native RTOS.

To avoid this overhead, hardware manufacturers added a

new feature to their processors to enable the virtualization

of interrupts. For example, the Intel VT-d [1] feature

enables the virtualization of the Advanced Programmable

Interrupt Controller (APIC). When this feature is used, the

processor will emulate many accesses to the APIC, track

the state of the virtual APIC, and deliver virtual interrupts,

all in VMX non root operation without any exit from the

virtual machine to the virtual machine monitor. Currently, a

patch [2] is being developed to support this feature in KVM.

7. Conclusions

Running a real-time operating system along side Linux

on the same shared hardware could be achieved using a mul-

ticore system that support virtualization.

In our evaluation, we measured the order-of-magnitude

of the fine-grained overheads and latencies of a virtualized

RTOS. We identified that in the average-case, all the over-

heads and the latencies commensurate with those measured

in the native RTOS which do not influence the schedulabil-

ity tests of soft real-time applications. However, based on

the worst-case measurements it is difficult to draw a conclu-

sion regarding the impact of virtualization on the schedula-

bility tests of hard real-time applications.

We hope that these measurements will help the commu-

nity to understand the impact of virtualization on a guest

real-time operating system and observe what are the possi-

ble performance enhancements.

In a future work, we will continue our experimentation

by considering the effect of activities going on other VMs

while the real-time VM is executing. And we will also inte-

grate our carefully estimated parameters into a schedulabil-

ity analysis in order to derive a more strong and conditional

guarantee regarding the temporal correctness of a real-time

application.

References

[1] Intel 64 and IA-32 Architectures Software Developer’s Man-

ual. Intel Corporation.

[2] KVM: x86: CPU isolation and direct interrupts handling by

guests. https://lkml.org/lkml/2012/6/28/30.

[3] PREEMPT RT: the Linux kernel real-time patch.

https://rt.wiki.kernel.org/index.php/RT PREEMPT HOWTO.

[4] Renesas R-Car H2 SoC targets infotainment.

http://johndayautomotivelectronics.com/?p=13641.

[5] T. P. Baker. A comparison of global and partitioned edf

schedulability tests for multiprocessors. Technical report,

In International Conf. on Real-Time and Network Systems,

2005.

[6] F. Bellard. QEMU, a fast and portable dynamic translator.

Translator, pages 41–46, 2005.

[7] Z. Bing. Scheduling Policy Optimization in Kernel-based

Virtual Machine. Computational Intelligence and Soft-

ware Engineering (CiSE), 2010 International Conference

on, 2010.

[8] B. Brandenburg and J. Anderson. Feather-Trace: A

lightweight event tracing toolkit. Proceedings of the Third

International Workshop on Operating Systems Platforms for

Embedded Real-Time Applications, pages 19–28, 2007.

[9] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leon-

tyev, and J. Anderson. LITMUSˆRT: A Status Report. Pro-

ceedings of the 9th Real-Time Linux Workshop, pages 107–

123, 2007.

[10] B. B. Brandenburg. Scheduling and Locking in Multiproces-

sor Real-Time Operating Systems. PhD thesis, The Univer-

sity of North Carolina at Chapel Hill, 2011.

[11] N. Forsberg. Evaluation of Real-Time Performance in Vir-

tualized Environment. Technical report, 2011.

[12] Z. Gu. A State-of-the-Art Survey on Real-Time Issues in

Embedded Systems Virtualization. Journal of Software En-

gineering and Applications, 05(04):277–290, 2012.

[13] J. Kiszka. Towards Linux as a Real-Time Hypervisor. Pro-

ceedings of the 11th Real-Time Linux Workshop, 2010.

[14] A. Kivity, Y. Kamay, D. Laor, and U. Lublin. kvm: the

Linux Virtual Machine Monitor. Proceedings of the Linux

Symposium, 2007.

[15] M. Ramachandran. Challenges in Virtualizing Real-Time

Systems Using KVM / QEMU Solution. Proceedings of the

14th Real-Time Linux Workshop.

[16] J. E. Smith and R. Nair. Virtual Machines Versatile Plat-

forms for Systems and Processes. Elsevier MORGAN

KAUFMANN, 2005.

[17] J. Zhang, K. Chen, B. Zuo, R. Ma, Y. Dong, and H. Guan.

Performance analysis towards a KVM-Based embedded

real-time virtualization architecture. 5th International Con-

ference on Computer Sciences and Convergence Informa-

tion Technology, pages 421–426, Nov. 2010.

[18] B. Zuo, K. Chen, A. Liang, H. Guan, J. Zhang, R. Ma, and

H. Yang. Performance Tuning Towards a KVM-Based Low

Latency Virtualization System. 2010 2nd International Con-

ference on Information Engineering and Computer Science,

pages 1–4, Dec. 2010.

