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METHODOLOGY

A high throughput method for quantifying 
number and size distribution of Arabidopsis 
seeds using large particle flow cytometry
Alejandro Morales1,2,3  , J. Teapal4, J. M. H. Ammerlaan2, X. Yin1, J. B. Evers1, N. P. R. Anten1, R. Sasidharan2*   
and M. van Zanten3* 

Abstract 

Background:  Seed size and number are important plant traits from an ecological and horticultural/agronomic per-
spective. However, in small-seeded species such as Arabidopsis thaliana, research on seed size and number is limited 
by the absence of suitable high throughput phenotyping methods.

Results:  We report on the development of a high throughput method for counting seeds and measuring individual 
seed sizes. The method uses a large-particle flow cytometer to count individual seeds and sort them according to size, 
allowing an average of 12,000 seeds/hour to be processed. To achieve this high throughput, post harvested seeds 
are first separated from remaining plant material (dust and chaff ) using a rapid sedimentation-based method. Then, 
classification algorithms are used to refine the separation process in silico. Accurate identification of all seeds in the 
samples was achieved, with relative errors below 2%.

Conclusion:  The tests performed reveal that there is no single classification algorithm that performs best for all sam-
ples, so the recommended strategy is to train and use multiple algorithms and use the median predictions of seed 
size and number across all algorithms. To facilitate the use of this method, an R package (SeedSorter) that implements 
the methodology has been developed and made freely available. The method was validated with seed samples from 
several natural accessions of Arabidopsis thaliana, but our analysis pipeline is applicable to any species with seed sizes 
smaller than 1.5 mm.
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thaliana

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Seed size is an important plant trait. Seed size affects 
dispersal and tolerance to abiotic stresses such as deep 
shade or drought [1]. In addition, seed size and number 
distributions (i.e. not just the mean values but also the 

variance around this mean) can be treated as proxies of 
plant fitness [2, 3] and hence are of interest in evolution-
ary and ecological studies. Seed size is also an important 
trait in the quality and market value of cereal grains [4, 5] 
and in the starting materials industry.

Arabidopsis thaliana is a commonly used model plant 
species due to its ease of cultivation, proliferate propaga-
tion, extensive natural variation and availability of genetic 
tools [6]. Therefore, Arabidopsis has often been used in 
seed biology, to study, for instance, the genetic regulation 
of seed quality aspects such as dormancy and longevity 
[7, 8], seed development and how seed size is determined 

Open Access

Plant Methods

*Correspondence:  r.sasidharan@uu.nl; m.vanzanten@uu.nl
2 Plant Ecophysiology, Institute of Environmental Biology, Utrecht 
University, Utrecht, The Netherlands
3 Molecular Plant Physiology, Institute of Environmental Biology, Utrecht 
University, Utrecht, The Netherlands
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6129-4570
http://orcid.org/0000-0002-6940-0657
http://orcid.org/0000-0002-2810-7374
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-020-00572-x&domain=pdf


Page 2 of 11Morales et al. Plant Methods           (2020) 16:27 

[4, 9]. However, such research is often hampered by the 
lack of high throughput phenotyping and sorting tech-
niques to quantify seed size distributions [10]. Current 
techniques often require laborious separation of seeds 
from other plant materials with the aid of (dissecting) 
microscopes, followed by the use of pictures or flatbed 
scanners to digitize the seeds and measure their size by 
digital image analysis [10–12]. A recent alternative is the 
phenoSeeder platform that allows measurement of the 3D 
volume and mass of individual seeds, but still requires 
manual separation of seeds from other plant materials 
[13].

Seeds of Arabidopsis are relatively small, with diame-
ters ranging from 250 μm to 600 μm [10–12], yet they are 
too large for conventional flow cytometry methods that 
are typically restricted to particles smaller than 100  μm 
[14]. Conventional flow cytometry is therefore limited 
to small biological entities, from the amount of nuclear 
DNA [15] to pollen grain morphometry [16]. However, 
with the recent development of large particle flow cytom-
etry (LPFC), the sortable range has increased to 1500 μm 
[14]. LPFC methodology thus has great potential for 
quantifying seed traits such as seed numbers and size 
with higher throughput and improved efficiency com-
pared to current techniques.

Despite the potential of high throughput sorting that 
can be achieved with LPFC on small seeds such as those 
of Arabidopsis, a naive use of LPFC will overestimate 
seed count, due to contamination from fragments of bro-
ken siliques/seed pods (chaff), dust particles, etc. This 
can be (partially) overcome by pre-processing samples 
to remove non-seed material. However, this can be quite 
laborious and time consuming, and small dust particles 
will usually remain. These contaminations will conse-
quently result in incorrect statistics (e.g. number of seeds 
or average seed size). Therefore, a post-sorting method is 
required to separate non-seed material detected by the 
flow cytometer from seeds.

If tissue-specific fluorescence labelling can be used, 
then an accurate distinction between seed and non-seed 
is feasible with fluorescence detectors built in the LPFC 
[14]. However, fluorescence labelling is not always pos-
sible or desirable as they rely on e.g. a fluorescent DNA 
intercalating dye, or a transgenic modification to express 
fluorescence-tagged (GFP or RFP) proteins such as in the 
seeds. This limits the use to either transgenic lines and/
or may pose problems if the sorted seeds need to stay 
viable and undisturbed for follow-up procedures. Alter-
natively, one may identify the different types of particles 
in a sample by making use of the optical and geometri-
cal features measured by LPFC, including time-of-flight 
(TOF, proportional to seed size), optical density, natural 
auto-fluorescence and high resolution axial profiles of 

particle optical density [14]. Thus, even if the sample con-
tains dust particles and non-seed plant material, it would 
still be possible to exclude the non-seed particles in the 
analysis phase.

We describe here the development of an LPFC-based 
method to determine seed sizes in an accurate, efficient 
and high throughput manner. The method combines a 
coarse and quick sample cleaning procedure based on 
sedimentation to remove most of the dust and chaff, with 
LPFC sorting and machine learning classification algo-
rithms. Several machine learning algorithms are com-
pared in their predictive ability to classify seed particles 
correctly, including both supervised and unsupervised 
algorithms. To train and evaluate the performance of dif-
ferent algorithms, seeds from five natural Arabidopsis 
accessions (Col-0, Bay-0, Bur-0, An-1 and Lp2-6) as well 
as dust and chaff particles were manually separated and 
sorted. To facilitate the use of this method, all necessary 
computations have been implemented into an R package 
(SeedSorter) that is freely available online at https​://githu​
b.com/aleMo​rales​/SeedS​orter​.

Methods
Plant growth conditions
Seeds of natural Arabidopsis thaliana accessions Col-0 
(N1092), Bay-0 (N954), Bur-0 (N1028), An-1 (N944) and 
Lp2-6 (N22595) were used (Arabidopsis stock accession 
numbers between brackets, from www.arabi​dopsi​s.info). 
Plants were sown on moist Primasta soil (mixture of pot-
ting soil and perlite) and stratified in darkness at 4  °C 
for four days. After stratification, pots were placed in a 
climate-controlled room at 21  °C, 70% relative humid-
ity, 120 μmol m−2 s−1 light intensity (PAR) (measured at 
rosette height) and a photoperiod of 8 h. When seedlings 
produced two true leaves (ca. 16 days after sowing), they 
were transplanted to Jiffy 7c coco pellets (Jiffy Group) 
that had been previously soaked in lukewarm water and 
50  mL of Hoagland’s solution. Additional Hoagland’s 
solution was applied two, six and eight days after trans-
planting (10  mL, 20  mL and 10  mL, respectively). The 
pellets with plants were kept in trays that were watered 
every other day until the plants set seed and eventually 
senesced. From each accession, seeds of three individual 
plants were harvested and processed as described below.

Protocol overview
In order to avoid blocking the LPFC tubing system and 
to remove a significant portion of the non-seed particles, 
the harvested material is first subjected to a coarse sepa-
ration based on sieving and sedimentation (Fig. 1). This 
material is then loaded into the LPFC, which sorts all the 
particles according to their size and records additional 
optical and geometrical properties of the particles. The 
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output from the LPFC is then processed to extract the 
main features of each particle that will be used to clas-
sify it as either seed or non-seed particles (Fig. 1). Finally, 
a clustering technique (unsupervised classification 
method) or a supervised classification algorithm trained 
on samples containing manually separated seeds is used 
to classify each particle sorted by the LPFC as seed or 
non-seed.

Whereas the unsupervised methods can be applied 
directly, supervised methods require prior training on 
data where the user assigns which particles need to be 
considered as seeds and which not. In order to obtain 
adequate data for training the algorithms, some samples 
have to be further processed by manually separating the 
seeds, and the data from sorting these particles through 
LPFC is then further processed by a clustering method to 
separate the small dust particles (smaller than 200 μm), 
that e.g. remain on the surface of the seeds, from the 
seeds themselves (larger than 200  μm). These two steps 
result in datasets that per definition should only contain 
seeds. The classification algorithms can then be trained 
on the seed-only datasets combined with data from sam-
ples with only non-seed plant elements (Fig. 1).

Seed harvest from the mother plant
When plants started bolting, an Aracon system (Betat-
ech BVBA) was fitted around the plant and kept until 
the seeds were harvested. The base of the Aracon system 
collected the seeds that detached after siliques opened 
while the Aracon tube simultaneously prevented contam-
ination from neighbouring plants, as well as unwanted 
spreading of the seeds. When the plants were completely 

senesced, the inflorescence was cut at the base, and 
all seeds attached to the plant were removed and sepa-
rated from mother plant tissues, by gently squeezing the 
dried inflorescence on a sieve (Retsch Gmbh, mesh size: 
425 µM), together with the material that was collected in 
the Aracon base. The collected material was sieved twice 
thereafter to further clean the sample and then stored in 
a paper bag. Together, this procedure ensured that virtu-
ally all seeds produced by a single mother plant were col-
lected, yet a sizeable fraction of dust and chaff remained.

Coarse seed separation
A coarse separation protocol was designed to remove 
most dust and chaff particles that were larger and/or 
less dense than seeds. The largest elements were first 
removed with a fine sieve and the remaining material was 
then transferred to a 50 ml tube with ca. 30 ml of ethanol 
(96% v/v). Fast sinking seeds were directly collected with 
a 5 ml Gilson pipette, while less dense particles (dust and 
chaff) remained floating in the supernatant. Collected 
seeds were then air-dried on filter paper, and the super-
natant ethanol was decanted over a filter paper, folded in 
a funnel on top of a 500 ml flask. The latter served two 
purposes. The dust/plant particles in the supernatant 
became trapped on the filter paper and were collected, 
dried and used for training and testing the algorithms, 
while the costly flow-through ethanol could be reused 
again for subsequent separations. Dried coarse-cleaned 
seed samples were finally weighed using an ultra-balance.

Fig. 1  Scheme of the procedure for seed sorting and classification using supervised and unsupervised classification methods. The supervised 
method requires training of a classification algorithm, for which manual separation of seed samples under a (dissecting) microscope and dust 
classification via clustering is required. In the unsupervised method, the clustering algorithm is applied directly without prior training (and thus no 
manually-separated samples are required). Coarse separation involves sieving, sedimentation and drying prior to subsequent sorting performed 
by the large-particle flow cytometer. Feature extraction calculates indices summarizing the shape of each particle from the high-resolution axial 
profiles. All the steps after sorting are implemented in the SeedSorter R package



Page 4 of 11Morales et al. Plant Methods           (2020) 16:27 

Manual seed separation
Seeds were manually separated from chaff on ethanol-
drenched filter paper, using a dissecting microscope and 
preparation needles. The separated seeds were thereafter 
collected in an Eppendorf tube and allowed to air dry, 
and finally, when all samples were collected, were com-
pletely dried with a SpeedVac concentrator for 30  min. 
These samples are referred to as ‘manually-cleaned’ in the 
text and were used for training and performance evalua-
tion of the different classification algorithms.

As the manual separation of seeds could not guar-
antee the total absence of the smallest dust particles on 
for instance the surface of the seeds, the particles were 
further separated after LPFC sorting into two groups by 
using a K-means clustering technique [17]. Very similar 
results were obtained by simply defining dust particles 
as all those particles smaller than 200 μm, as the clusters 
were clearly separated on either side of this threshold 
(Additional file 1: Fig. S1).

A limitation of using manually-cleaned seeds is that 
dust particles may not have the same characteristics as 
the non-seed particles that result from the coarse clean-
ing procedure. Therefore, in order to adequately train 
the supervised classification algorithms, the data from 
the manually-cleaned samples processed with clustering, 
was mixed in silico with output from the LPFC for a sam-
ple composed of exclusively non-seed particles after the 
same coarse-cleaning method as for normal samples (see 
Fig. 1). Thus, the algorithms were trained on samples that 
resembled in characteristics the coarse-cleaning samples 
but where all particles were assigned as either seed or 
non-seed.

Sorting with large‑particle flow cytometer
The BioSorter Large Particle Flow Cytometer (Union Bio-
metrica, Holliston, MA) of the Utrecht University Biol-
ogy dept. Sorter Facility (https​://www.uu.nl/en/resea​
rch/devel​opmen​tal-biolo​gy/sorte​r-facil​ity) was used for 
the sorting step. The BioSorter uses easily exchangeable 
fluidics modules (FOCA) optimized for a particular size 
range. We used the FOCA 1000 that is optimal for the 
range of 200− 700  μm. The BioSorter ran on the Flow-
Pilot software (Union Biometrica, Holliston, MA) with 
the following settings: sample cup pressure: 0.3, diverter 
pressure: 2.3 and extinction gain: 1. The particles (seeds 
and non-seeds) were diluted in water and introduced into 
the system via the sample cup. Between consecutive sam-
ples the system was cleaned with water, to avoid cross-
sample contamination.

The BioSorter is based on the same working princi-
ple as a traditional flow cytometer but with lower pres-
sure and slower flow rates to avoid large shear forces. 
An air diverter is utilized to dispense samples in a fluid 

drop into multi-well plates, tubes or stationary recepta-
cles. The heart of the BioSorter, the Fluidics and Optics 
Core Assemblies (FOCA), is exchangeable in order to 
analyze, sort and dispense a large size range of samples 
(from 10 to 1500 µm). The sample travels into a flow cell, 
where it is surrounded by sheath fluid to focus the sam-
ple into the center of the stream. Here, an axial light-loss 
detector measures the relative axial size of the particle. 
The larger a particle is, the longer it requires to pass the 
detector, resulting in the so-called time of flight. With 
the use of beads of known size, it is possible to calibrate 
the Biosorter to measure particle sizes. From the total 
integrated signal of light that is blocked by a particle, 
the optical density can be determined. A setup of up to 
three different lasers allow a simultaneous measurement 
of fluorescence emitted by the particles at three different 
wavelengths.

Feature extraction
For each sorted particle, the LPFC measured optical 
density along the main axis of the particle (Fig. 2), fluo-
rescence emission in three different wavebands and the 
relative axial length of the particle measured as TOF. 
From these data, a series of features were derived and 
used by the classification algorithms (Table 1).

Performance evaluation of different algorithms
The following supervised classification algorithms were 
compared in the analysis: linear discriminant analysis 
[18], quadratic discriminant analysis [18], logistic regres-
sion with regularization via elastic net [19], naive Bayes 
classifier [20], weighted K-nearest neighbours [21], sup-
port vector machine [22], extreme gradient boosting [23], 
and random forest [24]. In addition, an ad-hoc algorithm 

Fig. 2  Schematic representation of the profile of a sorted particle. P is 
the maximum optical density registered by the sensor, Px is the time 
at which P occurs, relative to the total time-of-flight of the particle (L) 
and C is the circularity index calculated by comparing the area under 
the actual profile and the area of the closest elliptical profile

https://www.uu.nl/en/research/developmental-biology/sorter-facility
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was created that classified seeds according to a single 
feature (Extinction, see above) by calculating an optimal 
threshold that minimized balanced error (see below) 
using Brent’s method [25]. Furthermore, the K-means 
clustering algorithm [17] was used as unsupervised clas-
sification method to divide the seed sample into two clus-
ters (and the average particle size and number of particles 
was used to determine which cluster corresponded to 
seeds).

Three types of performance evaluations were per-
formed on each algorithm:

1.	 Predictive performance within the seed sample 
(IntraPlant): The algorithms were trained on a sub-
set of each seed sample and their performance tested 
on the remaining data from the same seed sample 
(a sample corresponds to one harvested plant). The 
subsets were selected randomly using a stratified 
five-fold cross-validation scheme [26]. This evalua-
tion measures the best performance an algorithm can 
reach in this methodology as training and predictions 
are performed on seeds from the same plant.

2.	 Predictive performance within genotypes (IntraGen-
otype): The algorithms were trained on each seed 
sample and predictions were performed on seed from 
different plants of the same accession (genotype) as 
the one used for training. This evaluation measures 
the performance of an algorithm when extrapolating 
across plants and therefore represents the most com-
mon scenario in application of the methodology (i.e. 
predictions are made for plants of the same geno-
types and grown under the same conditions).

3.	 Predictive performance across genotypes (InterGen-
otype): The algorithms were trained on each seed 
sample and predictions were performed on seeds 
from different plants and different accessions from 
the one used for training. This evaluation meas-
ures the performance of the algorithms in situations 
where predictions are made on plants that may have 

different seed traits (e.g. different size and optical 
density), compared to the ones used for training the 
algorithms.

The datasets used for training and evaluation of the 
performance of the algorithms did not have the same 
amount of seeds and non-seed particles. This imbalance 
between the two classes of particles can lead to subop-
timal predictive performance, as the algorithms will 
emphasize correct classification of the majority class, at 
the expense of the minority class (which was always the 
class containing seeds in the training datasets). To avoid 
this problem, random oversampling (i.e. random sam-
pling without replacement) of the minority class by a 
factor of ten (which was the average ratio of class sizes) 
was applied to each sample used for training. In addition, 
specific algorithms required further processing of the raw 
data as well as tuning of hyperparameters (see Additional 
file 1).

As performance criteria to rank the algorithms, the 
‘balanced error rate’ (BER, average of the mis-classifi-
cation error for seed and non-seed particles, where the 
misclassification error is calculated as the fraction of par-
ticles that are not classified correctly in each class), was 
used. The use of BER allows avoidance of over-optimistic 
estimates as false positives and false negatives contribute 
equally to the error, even when the two classes are highly 
imbalanced, whereas a single mis-classification error will 
be biased towards the class that is more abundant in the 
sample.

Classification of coarse‑cleaned samples
To illustrate the use of the method on coarse-cleaned 
samples, additional plants for each accession (grown 
under the same conditions as the plants use for training 
and performance evaluation) were harvested and sub-
jected only to the coarse-cleaning procedure. Then, the 
supervised algorithms trained on each accession using 
all the manually-cleaned data available were used to 

Table 1  Features calculated for each sorted particle using measurements by the large particle flow cytometer

Feature Description

Extinction Integral optical density of the particle

Size Calculated from Time-of-flight (TOF) using a calibration curve constructed with standard beads (size = 0.18 TOF + 38.32)

rF510 Fluorescence emission in the waveband 497–523 nm relative to average fluorescence emission across all wavebands

rF543 Fluorescence emission in the waveband 531–555 nm relative to average fluorescence emission across all wavebands

rF615 Fluorescence emission in the waveband 602–628 nm relative to average fluorescence emission across all wavebands

P Maximum optical density in the optical density profile (Fig. 2)

Px Location within the optical density profile where the maximum occurs (Fig. 2)

C Circularity index calculated from the optical density profile (Fig. 2)
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classify the sorted particles in the coarse-cleaned sam-
ples. For each sample, the number of seeds and median 
seed size was calculated. The variation in predictions 
of these quantities across all algorithms was quantified 
as relative changes with respect to the median values 
across algorithms. Also, the variation across acces-
sions in median seed size and the relationship between 
sample weight and number of seeds was analysed using 
median predictions across all algorithms.

SeedSorter package
All the analysis was performed in the R programming 
language [27] and the machine learning pipelines were 
constructed with the mlr package [28]. To facilitate 
the application of this approach to new datasets, an R 
package (SeedSorter) was developed that implements 
the machine learning pipelines and all the data pre-
processing tasks. All the supervised and unsupervised 
classification algorithms were included in the package 
as well as functions to evaluate the performance of the 
algorithms on different seed samples.

The R package SeedSorter is available online at https​
://githu​b.com/aleMo​rales​/SeedS​orter​. The results pre-
sented in this paper were all obtained using this R pack-
age. The R scripts and data required to reproduce these 
results can be obtained at https​://githu​b.com/aleMo​
rales​/SeedS​orter​Paper​. An introductory tutorial to the 
use of the SeedSorter package is provided as Additional 
file 1.

Results
Manually‑cleaned samples
Despite the manual separation, the clustering on man-
ually-cleaned samples identified between 16.6% (acces-
sion Lp2-6) and 39.1% (accession An-1) of the detected 
particles as non-seed (dust). The samples were also pro-
cessed by assuming that all particles larger than 200 μm 
were seeds and the smaller particles were dust. Both 
approaches (clustering and separation by a fixed thresh-
old) agreed fairly well and the fraction of particles where 
the two approaches did not agree ranged from 0.7% (Lp2-
6) to 4.1% (An-1). The larger discrepancy for An-1 can be 
explained by the smaller seed size as compared to Lp2-6, 
which resulted in a relatively larger overlap between the 
seed and non-seed classes (Additional file 1: Fig. S2). The 
training of the classification algorithms was performed 
with the datasets processed by the clustering technique.

After clustering the manually-cleaned samples, an 
average of 1420 seeds per sample were identified, with a 
median seed size of 363  μm and 95% of the seeds hav-
ing a size between 255  μm and 665  μm (Fig.  3). Most 

accessions had similar seed size distributions (medians 
between 306 μm for An-1 and 359 μm for Bay-0), except 
for Bur-0 that a had a median seed size of 451 μm.

Performance evaluation of algorithms
The samples used for training the algorithm had, on aver-
age, 9800 non-seed particles per sample, with a median 
size of 84.2  μm, but about 10% of these particles were 
larger than 200 μm (Fig. 3). This implies that, unlike the 
manually-cleaned samples that were only contaminated 
with small-particle dust, a significant portion of the 
non-seed particles that were not removed by the coarse 
cleaning were of similar size to the seeds, justifying the 
inclusion of additional features to distinguish between 
seeds and non-seeds.

When the predictive performance of algorithms was 
tested with data obtained from the same plant as used for 
training (IntraPlant), the best performing algorithm was 
Extreme Gradient Boosting (Fig. 4), with a median BER 
of 1%, while the worst performance was by the Extinction 
threshold algorithm with a median BER of 1.7%.

When algorithms were evaluated with data from other 
plants, from the same (Fig.  4; IntraGenotype) or differ-
ent accessions (Fig. 4; InterGenotype), the BER increased 
for all the algorithms, being worst when classifying seeds 
from a different accession to the one used for training. 
Thus, the median BER for predictions within and across 

Fig. 3  Distribution of particle sizes of the manually-cleaned seed 
samples after clustering was applied to remove the dust particles. 
Coloured solid lines indicate seeds of different accessions; black 
dashed lines indicate added non-seed particles (i.e. dust)

https://github.com/aleMorales/SeedSorter
https://github.com/aleMorales/SeedSorter
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accessions increased to 1.5% and 1.9%, respectively. Some 
algorithms (e.g., random forest, support vector machine 
and extreme gradient boosting) were particularly affected 
by the use of data from different accessions for training 
and performance evaluation (InterGenotype), whereas 
others (e.g. logistic regression, linear discriminant analy-
sis) were more robust. Performance was relatively low 
when making predictions for Bur-0, when the algorithm 
had been trained on a different accession (Fig.  1; Addi-
tional file 1: Fig. S3), which is likely due to the different 
seed characteristics of this accession as compared to the 
other four accessions (Fig. 3). In most cases, the highest 
BER for predictions across accessions were above 10% 
and reached as high as 32% (Fig. 4), whereas predictions 
within accessions always had a BER below 12%.

The variation across datasets in predictive performance 
was particularly large for random forest, support vector 
machine and extreme gradient boosting, when making 
predictions across accessions (InterGenotype; 7.7%, 1.8 
and 4.0%, respectively). This led to large errors in some 
cases (e.g. the largest BER was 34% with a support vector 
machine trained on data from Lp2-6 and making predic-
tions for Bur-0).

The unsupervised classification algorithm (K-means 
clustering, Fig.  4) performed worse than all supervised 
classification algorithms, when these were evaluated with 

data from the same plant or accession, with a median 
BER of 2.5%. It only performed better than some algo-
rithms when predictions were made for plants from other 
accessions than the one used for training. On the other 
hand, the largest BER for the K-means clustering algo-
rithm was only 3.8%, smaller than the maximum error 
rates for any other algorithm in the comparison.

Seed classification for coarse‑cleaned samples
The different algorithms made, on average, similar pre-
dictions of number of seeds and median seed size for the 
coarse-cleaned samples (Additional file  1: Fig. S4). For 
most algorithms and samples, the relative difference in 
number of seeds and median seed size with respect to the 
overall median across algorithms was smaller than 10% 
and 2% respectively (Additional file 1: Fig. S4). The algo-
rithms that deviated the most from the overall trend were 
the support vector machine, random forest, extreme gra-
dient boosting and the Extinction threshold algorithm 
(Additional file  1: Fig. S4). However, in all cases there 
were worst-case scenarios where relative differences with 
respect to the median across all algorithms exceeded 
10% (for the median seed size) or 50% (for the number of 
seeds).

As expected, the overall weight of the samples (i.e. all 
seeds derived from one plant, after coarse-cleaning) was 

Fig. 4  Balanced error rate (BER) of predictions within plant (IntraPlant), across plants from the same accession (IntraGenotype) and across plants 
from different accessions (InterGenotype) for the different algorithms compared in this study. The solid circles indicate the median of all predictions 
for a given algorithm and type of comparison. The error bars indicate the interquartile range (i.e. between percentiles 25% and 75%) of these 
predictions. The crosses beyond the error bars indicate the BER achieved for each algorithm and type of comparison. As K-means clustering is an 
unsupervised classification method, only IntraPlant predictions are shown for this method. Supervised classification algorithms are sorted according 
to their median performance across accessions (InterGenotype), from worst to best. Dashed vertical lines represent the median BER across all 
predictions by all supervised classification algorithms for each type of comparison. Three plants were used for each accession for a total of 15 plants
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highly correlated with the predicted number of seeds for 
the same plant (Fig.  5). The predicted average particle 
weights (calculated as the slope of the linear regression 
between sample weight and number of seeds, Fig. 5) var-
ied from 13.9 ± 3.3  μg (Lp2-6) to 28.3 ± 9.8  μg (Bay-0), 
with an average of 19.2 ± 3.3 μg. On average, each plant 
had about 3000 seeds, although there was a wide range of 
values within and across accessions (Fig. 5). The median 
seed size was predicted to be fairly conserved with the 
largest value for Bur-0 and the lowest for Lp2-6 (Fig. 6), 
in agreement with results from the manually cleaned 
samples (Fig. 3).

The discrepancy between median size and average 
particle weight (especially in the case of Bur-0 and Lp2-
6) may be the result of different levels of contamina-
tion by non-seed particles or by different seed densities. 
However, the strong linear relationship between sample 
weights and seed number (Fig. 5) suggests that the con-
tribution of non-seed particles to the overall sample 
weight is likely small.

Discussion
The applicability of the method
In this study, we present a high throughput LPFC-based 
method to count seeds and quantify morphological fea-
tures such as individual seed sizes. The method relies on 

classification algorithms to distinguish between seeds 
and non-seed particles sorted by large particle flow 
cytometry (LPFC). The performance of different algo-
rithms was compared for different scenarios that emulate 
the different contexts in which the method is likely to be 
used in practice.

In our laboratory, the average time required for 
coarse-cleaning of the seeds harvested per plant was 
approximately 5  min, whereas the time required to sort 
the sample through the LPFC was 10  min. This means 
an average throughput of 4 plants/hour. Assuming an 
average of 3000 seeds per plant (Fig. 5), this results in a 
throughput of 12,000 seeds/hour. Using the SeedSorter R 
package, the training of an algorithm can take from sec-
onds to minutes (depending on the algorithm used and 
computational power available), but the time needed to 
make a prediction in our laboratory was in the scale of 
seconds or less. Therefore, the computational component 
does not add much time to the overall procedure.

We want to emphasize that the procedure described in 
this study does not only apply to Arabidopsis but can be 
of interest for the study of many plant species with seeds 
in the range of 100 μm to 1500 μm (e.g. tobacco, onion, 
carrot, rapeseed, orchids, Rumex spp etc.) as well as meg-
aspores from lycopods and ferns [29, 30]. Westoby et al. 
[31] reported that 10–20% of the plant species in five 

Fig. 5  Weight of each sample (weight of all seeds from a single plant 
including non-seed particles that remain after coarse cleaning) versus 
the number of particles classified as seeds in the sample, based on 
the median prediction across all algorithms for different Arabidopsis 
accessions

Fig. 6  Boxplots of median seed size (calculated from time-of-flight) 
in the coarse-cleaned samples for each of the five accessions (same 
data as for Fig. 5). For each sample and supervised classification 
algorithm, the median size of the particles classified as seeds 
was calculated, and then the median of these medians across all 
algorithms for each plant was then computed and used to construct 
the boxplots
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different ecosystems had seed weights lower than 100 μg/
seed (which are likely to be smaller than 1500 μm), so our 
methodology may also be useful for evolutionary/ecolog-
ical studies. The lowest size for which our methodology is 
useful is determined by the ability to reliably distinguish 
seeds from dust particles (though some distinction may 
be possible with optical density), whereas the largest size 
is limited by the LPFC technology used.

Performance evaluation of algorithms
Despite that manual separation of seeds could not 
exclude all non-seed particles, because of the presence of 
dust in the samples, the dust particles were easily identi-
fied either by clustering or by applying a threshold based 
on particle size. We are confident in this separation, as 
non-seed particles that are larger than 200  μm would 
have been undoubtedly recognized during the manual 
cleaning process otherwise. Moreover, seeds of Arabi-
dopsis are unlikely to be smaller than 200  μm [10–12]. 
Also, the range of seed sizes predicted agrees with previ-
ous reports for Arabidopsis [10–12].

The manual separation led to similar seed size distribu-
tions for all accessions except for Bur-0, that had larger 
seeds. This is in agreement with previous research on 
natural variation in seed size in Arabidopsis [32]. These 
results were confirmed with the coarse-cleaned samples, 
with Bur-0 also having larger seed sizes, although the 
variation in the other accessions was larger than in the 
manually-cleaned samples (Fig. 6).

Interestingly, the differences in median seed size across 
accessions (Fig.  1) were not proportional to differences 
in average particle weight (Fig.  1), although our calcu-
lated average particle weights and the number of seeds 
per plant were quite similar to previously reported seed 
weights and number in Arabidopsis [33, 34]. The strong 
correlation between sample weights and seed number 
(Fig. 5) indicated that this discrepancy was not caused by 
the contribution of non-seed particles. Potential explana-
tions would include differences in seed shape resulting in 
different seed volumes for the same seed axial length or a 
different seed density (i.e. mass/volume) due to changes 
in seed composition. Seed shape in Arabidopsis is known 
to be regulated by the phytohormones brassinosteroid 
[11] and ethylene [35] and different mutations can break 
the relationship between seed weight and length by vary-
ing the length/width ratio [11], so there likely is natural 
variation in seed shape in Arabidopsis. Regarding possi-
ble changes in seed density, Janhke et al. [13] measured 
the mass and volumes of individual seeds of Arabidopsis 
and reported a variation of 10% in seed density across 
three natural accessions.

Our results indicate that the optimal algorithm depends 
on whether or not one has access to manually-cleaned 

samples for the same accession and growth conditions 
as the samples of interest. For this decision, the perfor-
mance in the IntraPlant scenario is not relevant, as one 
does not need to make predictions for a plant for which 
manual separation has already been performed on the 
whole harvest. Rather it represents the maximum per-
formance that can be achieved given the features avail-
able per particle and the uncertainty associated with the 
identification of dust particles in the manually-cleaned 
samples.

All algorithms performed worse when making predic-
tions across accessions compared to within accessions 
(Fig.  3, Additional file  1: Fig. S2), but some algorithms 
were particularly sensitive (especially random forest, sup-
port vector machine, and the extreme gradient boosting). 
Interestingly, the extreme gradient boosting had the best 
performance when making predictions for data coming 
from the same plant or same accession but was the third 
worst performing algorithm in making predictions across 
accessions. This pattern reveals that these algorithms 
were capable of capturing subtle relationships among 
features that are very specific to a particular plant or 
accession but are not necessarily conserved across acces-
sions. On the other hand, other algorithms that may be 
less efficient at capturing these subtle relationships (e.g. 
regularized logistic regression, linear discriminant anal-
ysis, naive Bayes or the Extinction threshold algorithm) 
are more robust against changes in the underlying pat-
terns and are therefore more accurate when extrapolating 
to other accessions. The ability to capture subtle differ-
ences between accessions could potentially open ways to 
develop protocols for efficient screening of (natural) vari-
ation in seed traits e.g. seed quality or uniformness traits.

The performance of the different algorithms was also 
reflected in the predictions for coarse-cleaned sam-
ples (Additional file  1: Fig S4). Algorithms that had 
high predictive power (within accessions) made similar 
predictions, whereas random forests and support vec-
tor machines deviated more strongly from the average 
behaviour. In general, there was better agreement among 
algorithms in predicting the median seed size than in the 
number of seeds. However, in both cases, there were sig-
nificant outliers where an algorithm will deviate strongly 
from the predictions made by most other algorithms 
(Additional file 1: Fig. S4), in a similar fashion to the out-
liers detected in the evaluation of performance (Fig.  4). 
Therefore, to avoid introducing significant biases in the 
predictions for particular samples, we recommend using 
multiple algorithms and calculate the median prediction 
for each quantity across all algorithms as we did in this 
study (Figs. 5, 6).
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Recommendations based on performance evaluation
We recommend that when manually-cleaned samples 
are not available for the same accession and treatment 
as the samples of interest, and when the median perfor-
mance is used as criterion for selection, the relatively 
simpler algorithms such as regularized logistic regres-
sion, linear discriminant analysis, K-nearest neighbours, 
naive Bayes or the Extinction threshold algorithm should 
be used. The performance of these algorithms is similar, 
and they are computationally efficient. When manually-
cleaned samples of the same accession and treatment are 
available for training, then extreme gradient boosting is 
also a good choice (in addition to the algorithms above). 
Finally, our analyses suggest not to use quadratic discri-
minant analysis (as the linear version always performed 
better) or random forest or support vector machine, as 
these algorithms are both computationally intensive and 
do not perform as well as the other algorithms.

Although the recommendations above are based on the 
median predictive performance, the distribution of error 
rates was highly skewed and, especially when making 
predictions across accessions, maximum error rates were 
much higher than the median (Fig. 4). These worst-case 
scenarios represent situations where the patterns in the 
data differ substantially between datasets for training and 
performance evaluation, leading to biased prediction by 
specific combinations of algorithms and samples.

In the absence of manually-cleaned samples, predic-
tions can be obtained by using the unsupervised clas-
sification algorithm (i.e. K-means  clustering). Another 
advantage of this method is that its error rates are con-
strained within a relatively narrow range (Fig.  4). The 
reason why clustering will perform relatively well in any 
case is that the prediction is always based on the data 
being classified, meaning the algorithm did not learn 
any particular pattern from other data. Of course, the 
trade-off is that the BER will be, on average, higher than 
for supervised methods. Whether a 2.5% error (Fig. 4) is 
acceptable or not depends on the specific context of the 
analysis (i.e. other sources of experimental error, num-
ber of replicates, size of effect being quantified, etc.), so a 
general recommendation cannot be given in this context. 
Another limitation to the direct application of clustering 
is that one must make assumptions regarding which of 
the two resulting clusters corresponds to seeds.

Conclusions
We conclude that it is not possible to define a single opti-
mal algorithm for all possible scenarios. Furthermore, it 
is probable that the algorithms will perform differently 
with different species or growth conditions and that dif-
ferent choices should be made. For that reason, the Seed-
Sorter R package includes interfaces that aid future users 

in comparing the different algorithms, calculating the 
error rates and visualizing the results (i.e. producing fig-
ures like Fig. 3 or Additional file 1: Fig. S2) on new data, 
without requiring any expertise on machine learning. 
Furthermore, the source code supporting this study (see 
section “Methods”) can be used as template for future 
analysis of new experimental data, and the raw data is 
also provided to facilitate reproduction and comparison.

The system could be adapted to classify other types of 
particles depending on whether the features captured by 
the flow cytometer are sufficient to distinguish among 
the different classes of particles and, while currently the 
SeedSorter package only performs binary classification, 
most of the algorithms it relies on can be extended to 
multiclass classification.

Although the BioSorter is capable of dispensing sam-
ples into multi-well plates, tubes or stationary receptacles 
by an air diverter, the here-proposed methods are explic-
itly meant as post-sorting analytical tool to be employed 
after the physical processing of the seeds by the machine. 
To our knowledge, implementing the classification algo-
rithms in the decision making algorithms of the Biosorter 
is currently not possible.

The methodology proposed in this study was able to 
identify accurately the seeds in the different samples, 
with relative errors below 2% for most classification algo-
rithms. There was not one algorithm that performed best 
for all samples, so the recommended strategy is to train 
and use multiple algorithms and use median predictions 
of seed size and number. To enable and facilitate the use 
of this method, an R package (SeedSorter) that imple-
ments the methodology has been developed and made 
freely available in an online repository located at https​://
githu​b.com/aleMo​rales​/SeedS​orter​. The proposed meth-
odology is useful for quantitative studies on seed size and 
number in small-seeded species.
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