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A Theoretical Framework for Ratiometric Single Ion
Luminescent Thermometers—Thermodynamic and Kinetic
Guidelines for Optimized Performance
Markus Suta* and Andries Meijerink

Luminescence (nano)thermometry is an increasingly important field for
remote temperature sensing with high spatial resolution. Most typically,
ratiometric sensing of the luminescence emission intensities of two thermally
coupled emissive states based on a Boltzmann equilibrium is used to detect
the local temperature. Dependent on the temperature range and preferred
spectral window, various choices for potential candidates appear possible.
Despite extensive experimental research in the field, a universal theory
covering the basics of luminescence thermometry is virtually nonexistent. In
this manuscript, a general theoretical framework of single ion luminescent
thermometers is presented that offers simple, user-friendly guidelines for
both the choice of an appropriate emitter and respective embedding host
material for optimum temperature sensing. The results show that the
optimum performance (thermal response and sensitivity) around T0 is
realized for an energy gap ∆E21 between thermally coupled levels between
2kBT0 and 3.41kBT0. Analysis of the temperature-dependent excited state
kinetics shows that host lattices in which ∆E21 can be bridged by one or two
phonons are preferred over hosts in which higher order phonon processes are
required. Such a framework is relevant for both a fundamental understanding
of luminescent thermometers but also the targeted design of novel and
superior luminescent (nano)thermometers.

1. Introduction

Temperature is the most fundamental thermodynamic state
variable and still the most frequently measured quantity
in science.[1,2] The zeroth law of thermodynamics offers a
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very simple direct measurement prescrip-
tion of temperature that relies on the ther-
mal equilibrium between two systems that
are in contact to each other and thus, will
aspire to have the same temperature. The
importance of temperature is also stressed
by its role as the measure for one of
the seven base units of the international
system of units (SI = Système interna-
tional), which has been recently redefined
by the elevation of Boltzmann’s constant,
kB, to a fixed exact natural constant.[3,4]

In most practical temperature measure-
ments, the temperature is determined from
an ideally precisely known relation to
another physical quantity that is easily
measurable. This concept allows a direct
mapping to temperature after thorough cal-
ibration and is already well established.
However, the conventionally known ex-
amples of thermal expansion of a liq-
uid used in household thermometers or
temperature dependence of resistance are
spatially limited to only a few mm and
thus require macroscopic contact interac-
tion. Since the 1990s, various improve-
ments have been presented that allowed to

measure temperatures even at lower length scales. Many
examples were gathered in the extensive reviews by Childs
et al.[2] or Rai[5] and include detection of thermal expansion[6–8]

or a local thermoelectric voltage in, e.g., scanning thermal
microscopes.[9–13] Similarly well governing overviews on the ap-
propriate usage of noncontact pyrometry using black-body radia-
tion as the governing temperature calibration lawwere published
by Khan et al.[14,15] This has been complemented by a recently
presented concept on precision measurements of thermal emis-
sion even from opaque objects.[16] A short review on the history
of the development of phosphor thermometry was published by
Allison.[17]

Since the beginning of the twenty-first century, a revived in-
terest in optical thermometry can be noted.[5,18–23] Especially
the interest in luminescence thermometry has rapidly grown
due to the demand for remote temperature sensing with high
precision.[24–37] Moreover, its noninvasive nature and the high
temporal and spatial resolution below 10 µm make it suited
for many locally focused applications otherwise difficult to
achieve.[38,39] A variety of emitters has proven to be useful for op-
tical thermometry. A particularly impressive and advanced proof
of concept in this sense was illustrated for single NV− defects in
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nanodiamonds. The zero-field splitting of the triplet ground state
of these defects shows a very strong temperature dependence
with reported absolute temperature accuracies below 10 mK in
the vicinity of room temperature and high spatial resolution
(<100 nm).[40–46] A simple way of probing this zero-field splitting
is, e.g., detection of the decrease in the red fluorescence intensity
of the NV− centers upon sweeping with microwave radiation.
Another important class of potential luminescent thermome-

ters includes quantum dots (QDs). Their emission intensity in
the visible or near infrared range is very sensitive in a very
narrow temperature regime (10 °C–60 °C).[47–49] Their long emis-
sion wavelengths (red/near infrared regime) make them partic-
ularly suited for bioimaging[36,50–58] and resulted in the usage
of bright Ag2S QDs for that purpose,[59–61] which could be re-
cently upgraded to very bright “superdots” by protection with a
photochemically induced AgCl shell.[62] In line with QDs, semi-
conducting bulk halides also entered the stage as sensitive lumi-
nescence lifetime thermometers in the range between 0 °C and
100 °C based on their self-trapped exciton luminescence.[63] Fi-
nally, other currently attractive and sensitive (especially lifetime-
based) thermometers employ the luminescent 3d3 ionsCr3+ [64–70]

or Mn4+[71–76] in symmetric fluorides or oxides and are based on
a 2E → 4T2 (in cubically symmetric crystal fields) thermally in-
duced nonradiative crossover at higher temperatures that lead to
a strong decrease of the 2E-related luminescence decay time.[77]

The usage of thermal coupling between states of simultaneously
present transition metal ions with different oxidation states has
also been presented byMarciniak et al.[78,79] Recently, also the un-
usual ion Mn5+ has attracted attention for that purpose.[80]

Optical (nano)thermometry has shown high potential in the
experimental elucidation of several thermodynamic phenom-
ena at the nanoscale and its superiority over, e.g., thermo-
graphic methods, which can only measure surface temperatures.
Demonstrative examples include the experimentalmeasurement
of the Brownian velocity of nanocrystals in suspensions,[81] the
in vivo detection of the brain[55] or intracellular[28,82] tempera-
ture, direct measurements of (transient) heat transfer proper-
ties of a lipid bilayer,[83] temperature monitoring of liquid or gas
flows[23,84] or also detection of local temperature increases on
catalysts[85,86] due to exothermic reactions. In all cases, lumines-
cence thermometry particularly captivates by the simplicity of the
respective experimental setup consisting of a laser source, the lu-
minescent nanocrystals in contact with the medium to be char-
acterized and a fast processing detection system.
Among the various possibilities of temperature detection by

means of luminescence, the by far most widely employed type
is based on the detection of a luminescence intensity ratio (LIR)
between two emission lines or bands.[19,26,27] The acquisition of
a ratio allows for more accurate and precise temperature mea-
surements since the LIR as a relative quantity is not readily af-
fected by variations in absolute luminescence intensities.[35] If
the two probed emission bands stem from thermally coupled ex-
cited states within a single ion, the LIR should classically follow a
Boltzmann distribution at elevated temperatures due to the fact
that the luminescence intensity is proportional to the population
in the excited state.[19]

Lanthanides have proven to be particularly well suited for ra-
tiometric luminescence thermometry due to their high num-
ber of closely lying emissive energy states stemming from the

4fn configuration that allow for luminescence detection from
the ultraviolet (UV) over the visible to near infrared (NIR)
range.[31,35,37,87–91] The shielded nature of the 4f orbitals and the
resulting 4fn → 4fn-based narrow emission peaks at well-defined
wavelengths allow to accurately measure LIRs without substan-
tial spectral overlap.[87–91] If doped into thermally stable inor-
ganic nano- or microcrystalline hosts, lanthanides thus found
many promising applications such as Pr3+,[19,92–95] Nd3+ (often
sensitized with Yb3+)[33,96–121] or Tm3+[122–124] in the field of room
temperature sensing and thermal bioimaging. Er3+ and Yb3+ is
the traditional lanthanide couple for upconversion-based in vivo
imaging,[125–133] or in situ temperature monitoring of catalytic
reactions or flow reactions in microfluidic devices.[85,86,134–138]

Recently reported creative alternatives of the use of this up-
conversion couple were vacuum sensing[139] or photothermal
conversion.[140] Finally, Sm3+,[141,142] Eu3+,[135,143–146] Dy3+[147–153]

or Ho3+[154–157] show potential for thermometry far above room
temperature, as was also reviewed by Chambers and Clarke.[158]

In addition to LIR thermometry based on single ion emission
spectra, another strongly developed field involves energy transfer
thermometry. Especially Eu3+ and Tb3+ interacting with triplet
states of organic antennas have become a de facto standard with
high relative sensitivities at cryogenic temperatures.[159–166] More
recent attempts reveal that lanthanides in mesoporous materi-
als may be a promising addition to the field.[167–170] Usage of the
lanthanides as luminescent ions even allows the combination of
different functionalities such as luminescence thermometry and
single-ionmagnetism[171,172] or solid-state lighting.[173] Moreover,
creative ways for novel alternative thermometry concepts using
Boltzmann-based thermometry in the ground states have also
been presented, which have the potential to strongly enhance rel-
ative sensitivities.[174–178] Also anomalous thermal quenching ef-
fects often found in nanocrystals was demonstrated to be a suc-
cessful strategy to achieve high relative sensitivities.[118,179,180] For
the sake of completion, it is also noteworthy that divalent lan-
thanides such as Sm2+,[181–183] Eu2+,[184] Tm2+[185–188] and espe-
cially Yb2+[189–192] show potential for luminescence thermometry,
although their thermal behavior is often not governed by simple
Boltzmann statistics anymore, but more complex temperature-
dependent excited state dynamics involving a crossover to the
4fn -15d1 configuration.[193,194] Unlike the chemically more chal-
lenging examples of divalent lanthanides, Pr3+ has also recently
been introduced as an alternative, more stable luminescent ther-
mometer with the same underlying principle of a 4f2 –4f15d1

crossover (with eventual incorporation of thermal ionization into
the conduction band).[195–197] The presented overview is still by no
means complete and demonstrates the extremely rapid evolution
of the research field.
Usage of the Boltzmann distribution for temperature calibra-

tion with a LIR is only valid if the thermal exchange rate between
the two emissive states is much faster than any competing ra-
diative or nonradiative depopulation rate. The case of a failure
of Boltzmann equilibrium has been recently explicitly demon-
strated for Eu3+,[198] but is also known to occur for, e.g., Dy3+.[135]

The validity and sensitivity of the Boltzmann distribution for ther-
mometry is delicately dependent on the energy difference, ∆E21,
between the two emissive states with respect to the temperature
range to be probed.While this fact is readily clear for the case that
∆E21 ≫ kBT based on an inefficient thermal population of the
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higher excited state, the consequences of the opposite case ∆E21
≪ kBT are not as intuitively evident. Given the large number of
possible electronic 4fn microstates of lanthanides, the flexibility
in choice of a potential luminescent probe for luminescence ther-
mometry appears unlimited if ∆E21 is in the order of several kBT.
Any inappropriate choice of a lanthanide ion for luminescence
thermometry at a temperature of interest may in principle work,
but at the cost of a low temperature sensitivity and thus, high tem-
perature uncertainty. Critical reviews stressing the various exper-
imental difficulties in achieving high precision and accuracy in
luminescence thermometry have been recently published by the
group of Jaque,[199,200] Dramícanin’s book[201] and perspective[202]

or by Bednarkiewicz et al.[203]

Despite the enormous amount of experimental data available
in the literature of luminescence thermometry, a governing uni-
fying theory that allows for a systematically driven search towards
effective thermometers is still virtually non-existent. Only in the
last few years, some progress towards this direction is recordable,
which also resulted in the availability of applets and programs.
Besides the overview works by Brites et al. stressing the theoreti-
cal gap in luminescence thermometry,[35,37] (lifetime) thermome-
try models on Mn4+ or Cr3+ [64,74,77] have already been developed.
Moreover, Judd-Ofelt intensity calculations have resulted in the
open-source Java applet JOLIR (Judd-Ofelt luminescence inten-
sity ratio).[204] Another practical tool written inMATLAB is TeSen,
which allows an automated analysis of the sensitivities and per-
formance parameters of both Boltzmann-based and crossover-
based thermometers after input of the measured temperature-
dependent luminescence data.[205] Despite the development of
those programs and applets, a generalized theoretical framework
aiming at a basic understanding and simple guidelines on the
choice of any combination of host and luminescent ion to address
a temperature range of interest with optimized performance is
still surprisingly lacking up to now.
The overall goal of this work is thus a theory-based deriva-

tion of clear and user-friendly quantitative guidelines for both the
choice of the luminescent ion and the host material to achieve
optimized performance of a respective ratiometric single ion lu-
minescent thermometer. For that purpose, this work is divided
into three main parts. The first part deals with the thermody-
namic foundations of ratiometric luminescence thermometers
that are based on the Boltzmann distribution as governing tem-
perature calibration law. This part contains a derivation of opti-
mized thermodynamic conditions formost responsive and sensi-
tive temperature detection upon usage of two thermally coupled
excited states. Guidelines for both the choice of an optimized en-
ergy difference and the most suitable phonon energy to bridge
that gap are elucidated and allow for an optimized choice of a
lanthanide ion-host compound couple with respect to the desir-
able temperature range to be detected. The second part deals with
an account on the validity regime of a linearization of the Boltz-
mann distribution often applied in in vivo nanothermometry for
the sake of simpler calibration. A careful error analysis and guide-
lines for its usage are presented therein. The third part accounts
for the kinetics and the conditions for sustainment of the Boltz-
mann equilibrium over a wide temperature range. The impact
of the radiative decay rates on the Boltzmann equilibrium will
be quantitatively discussed in relation to nonradiative thermal-
ization processes and it is demonstrated under which conditions

Figure 1. Schematic representation of the conditions for the derivation of
the Boltzmann distribution from statistical physics. A large heat reservoir
2 is in thermal contact with a canonical ensemble1 in order to exchange
heat and reach thermal equilibrium. The whole system  = 1 + 2 is mi-
crocanonical and considered closed from the environment. Note that the
arrows are only supposed to indicate thermalization and do not illustrate
the direction of the heat flow since the second law of thermodynamics only
allows heat to flow from a hot to a cold object.

the additional pathway of radiative decay can lead to a failure of
the Boltzmann-based luminescent thermometer at sufficiently
low temperatures. A generalized excited state dynamics model
for all temperatures will be derived that inherently contains the
Boltzmann distribution and gives clear accounts for the rules
to tune a luminescence thermometer toward Boltzmann behav-
ior for widest temperature ranges possible. In conclusion, this
manuscript provides a general theoretical framework for narrow-
band emitting single ion luminescence thermometers with the
aim to provide fundamental understanding and explicit user-
friendly guidelines that allow for a more systematic approach to-
ward an optimum luminescence thermometer for any tempera-
ture range instead of a common trial-and-error strategy.

2. Thermodynamic Perspective—Optimization of
Thermometry with the Boltzmann Distribution

2.1. Derivation and Approximations of the Boltzmann
Distribution in Statistical Physics

For the following sections and assessment of the assumptions
for the validity of a Boltzmann distribution for thermometry, it is
insightful to review its derivation from statistical physics and get
an impression of the employed assumptions. For that purpose,
consider a canonical ensemble 1 that is in thermal contact with
a much larger heat reservoir 2, i.e., the ensembles are allowed
to exchange thermal energy but no particles. The whole system
 = 1 + 2 is microcanonical and thus, thermally isolated from
the environment (see Figure 1).
Moreover, it is assumed that  is a macroscopic system such

that the thermodynamic limit is valid, and both the total particle
number and volume may be safely regarded as constant. Finally,
it is necessary to rely on the fundamental postulate of statistical
physics stating that for a microcanonical ensemble in thermo-
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dynamic equilibrium, each of its microstates in phase space is
occupied with the same probability.
With all these preliminaries, we seek for the probability pm(T)

at a given fixed temperature T that the canonical ensemble 1 is
in an arbitrary gm-fold degenerate microstate |m⟩ in phase space
with potential energy Em.

[206] Em is presumed to be smaller than
the total conserved energy E of the macroscopic ensemble  . Out
of the initiallyΩ(E) available microstates of  , onlyΩ2(E− Er) are
left since1 inmicrostate |m⟩ is part of . The desired probability
pm is then

pm(T) = gm
Ω2(E − Em)

Ω(E)
(1)

Since Em ≪ E and due to the fact that Ω(E) and Ω2(E − Em) are
very large in the thermodynamic limit, it is reasonable to consider
the logarithmic value lnΩ2(E − Em) instead and expand it around
the small Em

lnΩ2(E − Em) = lnΩ2(E) −
𝜕 lnΩ2(E2)

𝜕E2

||||E2=EEm
+ 

(
E2m
E2

)
(2)

where E2 denotes the total potential energy of the residual system2. The quadratic order term is clearly negligible as Em ≪ E. The
logarithmic terms are reminiscent of Boltzmann’s statistical def-
inition of entropy, S := kB lnΩ, and thence, the derivative term
may be related to the macroscopic definition of temperature

(
𝜕S
𝜕E

)
N
=

(
𝜕
(
kB lnΩ

)
𝜕E

)
N

= 1
T

(3)

where the subscript N denotes constant particle number. Equa-
tion (3) may be easily derived from the first law of thermodynam-
ics using the fact that the internal energy does not change at a
given temperature T. In statistical physics and throughout this
work, it will occasionally prove convenient to employ the more
natural thermodynamic reciprocal temperature 𝛽,

𝛽 := 1
kBT

(4)

Usage of Equation (3) leads to

lnΩ2(E − Em) = lnΩ2(E) −
Em
kBT

(5)

Thus, Equation (1) evolves to the Boltzmann distribution func-
tion

pm(T) = gm
Ω2(E)
Ω(E)

exp
(
−
Em
kBT

)
:=

gm
Zc

exp
(
−
Em
kBT

)
(6)

with Zc as the canonical partition function,

Zc =
∑
m

gm exp
(
−
Em
kBT

)
(7)

ensuring that the probability is properly normalized to 1.
In the context of luminescence thermometry, the desirable

model system of choice is a luminescent entity with two well iso-
lated excited states that exchange heat with a macroscopic heat
reservoir and among each other. In the context of the ensembles,
the luminescent ions represent the canonical ensemble 1, while
the nanocrystals containing the luminescent ions can be consid-
ered as the heat reservoir 2. Equation (6) is valid for the descrip-
tion of the thermal population statistics between the two excited
states if the thermal exchange rate among the two excited states
is high enough such that thermodynamic equilibrium is always
sustained and all emissive ions can be considered as distinguish-
able and independent units. This readily implies that the radia-
tive decay rates from the excited states have to be much lower
than the respective nonradiative rates in order to govern a suffi-
ciently quick thermal equilibration. It is also noteworthy that the
assumptions for the validity of the Boltzmann equilibrium ex-
clude energy transfer-based luminescent thermometers as they
involve interacting ions. As long as it can be guaranteed that the
nonradiative transitions aremuch faster than the energy transfer,
an ensemble of several ions may also be considered as noninter-
acting.
Instead of the absolute thermal probabilities of finding the lu-

minescent ion in the excited state |1⟩ or |2⟩, respectively, it is
mostly of more practical interest to regard their relative popula-
tion. Suppose the states have the degeneracies g1 and g2, respec-
tively. For the effective predictions shown later within this work, it
will prove useful to normalize the populations to their degenera-
cies. These populations will be labeled with primes throughout
this work. Thus, the population ratio of the two states at a given
temperature is easily obtained from Equation (6),

N′
2

N′
1

=
N2∕g2
N1∕g1

=
p2(T)∕g2
p1(T)∕g1

= exp
(
−
E2 − E1
kBT

)

= exp
(
−
ΔE21
kBT

)
(8)

The relative net change in population at a temperature T is
assessed by

N1∕g1 − N2∕g2
N1∕g1 + N2∕g2

= ΔN′

N′
tot

= tanh
(
ΔE21
2kBT

)
(9)

defined such that it only takes values between 0 and 1. It is close
to 100% at very low temperatures since state |2⟩ is empty then. At
very high temperatures compared to the energy gap, the relative
change is close to 0 since states |1⟩ and |2⟩ reach thermodynamic
equilibrium and the populations are equal in that case.

2.2. Foundations of Single Ion Luminescence Thermometry

2.2.1. Proper Definition of the Measure of luminescence Intensity for
Thermometry

For practical luminescence thermometry, it is relevant to con-
sider all necessary conditions on the experimental setup and the
approximations that need to be fulfilled. In a typical lumines-
cence thermometry experiment, only low excitation powers are
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Figure 2. a) Simplified energy level diagram for the performance of a single ion luminescent thermometer. A higher lying auxiliary level |a⟩ is excited by
an external light source to sustain a steady state population density nssa in that level. The thermally coupled levels |1⟩ and |2⟩ are nonradiatively fed by|a⟩ (dashed arrows). Straight arrows indicate radiative transitions, curly arrows nonradiative transitions. b) A plot of the logarithmic LIR from the two
thermally coupled levels versus reciprocal temperature affords a straight line with slope -ΔE21/kB and intercept of ln C+ ln(g2/g1) in case of a Boltzmann
equilibrium.

employed such that no population inversion of the ground state
is induced. Thus, only spontaneous emission significantly con-
tributes to luminescence and only that limit is relevant for con-
ventional luminescence thermometry. Next, suppose that there is
a homogeneous doping fraction of x luminescent ions to be ex-
cited. A macroscopic volume V of a doped material is considered
to be composed out of s unit cells with volume Vuc each. Each
unit cell contains Z effective formula units of the composition
of the material with 𝜈 cations supposed to be substituted (e.g.,
𝜈 = 2 in a composition A2L3 with A being the cations). Then, the
average number of ions found in the volume is sZ𝜈x. It is desir-
able that the ions are in close contact with the heat reservoir in
order to avoid heat loss and temperature mismatch between the
real temperature of the object and the actually measured temper-
ature by means of luminescence thermometry. Thus, the lateral
distance between ion and heat source is supposed to be negligi-
bly small compared to the system dimensions. The external ex-
citation source emits light of a given photon energy ℏ𝜔0a, which
reaches the thermometric material with an incident irradiance
I0 (in W m−2). As long as the irradiated surface area of the lu-
minescent thermometers (e.g., nanocrystals or microcrystals) is
much lower than the incident beam area, it is an excellent ap-
proximation to neglect light loss due to, e.g., scattering within or
reflection from the medium until the photons reach the ions of
interest, i.e., I(rions) ≈ I0 with rions as the position of the ions. This
approximation is practically always met as typically only micro-
or nanocrystalline luminescent thermometers are employed.
Now suppose that the ions are excited from a ground level |0⟩

into an auxiliary level |a⟩ with absorption cross section 𝜎a. More-
over, it is assumed that the auxiliary level decays with an effective
rate K both radiatively to any ground level(s) and non-radiatively
to the thermally coupled excited levels |1⟩ and |2⟩ of interest (see
Figure 2a).[19] The steady-state population of ions in the excited
level |a⟩ then reads (see Supporting Information for a detailed
derivation)

Nss
a =

sZ𝜈x𝜎aI0
Kℏ𝜔0a

= VZ𝜈x
Vuc

𝜎aI0
Kℏ𝜔0a

= V ⋅
𝜌NA𝜈x
M

𝜎aI0
Kℏ𝜔0a

(10)

where 𝜌 is the mass density of the material, NA is Avogadro’s
constant and M is the molar mass. In practice, it is common
to consider the population density nssa = Nss

a /V instead. The
steady-state population densities n1 and n2 of the thus indirectly
fed levels |1⟩ and |2⟩, respectively, are both directly proportional
to the population density nssa (see Supporting Information).More-
over, it is important to realize that any thermometric experiment
has to be conducted by this indirect feeding via a higher ener-
getic auxiliary level |a⟩ since direct excitation into one of the
thermally addressed levels will drive the two excited levels out
of thermodynamic equilibrium by means of the direct feeding
by the constant external excitation.[19] For the sake of complete-
ness, it should be mentioned that a thermometry experiment can
also be performed with a pulsed excitation source if the integra-
tion time of spectral acquisition is higher than the pulse period
T′ = 1/f with f as pulse frequency (see Supporting Information
for more details), which is practically the case.
Now suppose that the levels |1⟩ and |2⟩ have total radiative de-

cay rates k2r and k1r, respectively. The radiative emission rate to a
selected ground level |j⟩ is governed by the Einstein coefficient for
spontaneous emission, Aij, and a branching ratio 𝛽 ij (i = {1, 2}),

Aij = 𝛽ijkir (11)

In the case of only one distinct ground level, it is 𝛽 ij = 1. The
radiant power Pir (in W) emitted by any of the two excited levels|i⟩, i = {1, 2} in the radiative transition |i⟩→ |j⟩ is then given by
Pir,0 = NiAijℏ𝜔ij (12)

with ℏ𝜔ij as the average emitted photon energy. This radiant
power is isotropically emitted from the luminescent thermome-
ters. At the distant light detector, only a portion of the totally radi-
ated power is actually detected (due to the attenuation, quadratic
with distance). In a ratiometric approach, however, this attenu-
ation does not affect the indirect measurement of temperature
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since both sample and detector are fixed, which makes calibra-
tion much simpler.
Conventional photon-counting detectors in luminescence

spectrometers such as photomultiplier tubes (PMTs) do not
measure incident radiant powers, but actually do single photon
counting. Thus, it is necessary to relate the corresponding physi-
cal quantities to the radiated power according to Equation (12).
One of the most immediately measured quantities in modern
spectrometers is the incident spectral photon flux per unit wave-
length, d𝜙∕d𝜆 (in photons s−1 nm−1). The photon flux 𝜙 (in pho-
tons s−1) is the incident number of photons impinging on a cross
section of the detection unit per unit time. It is connected to the
incident radiant power at the detection unit, Pdet, as follows

[18]

𝜙21 =
Pdet
ℏ𝜔21

= ∫
E2

E1

dE
d𝜙
dE

= ∫
E2

E1

dE d𝜆
dE

d𝜙
d𝜆

= −∫
𝜆1

𝜆2

d𝜆
d𝜙
d𝜆

(13)

where E1 = hc/𝜆1 and E2 = hc/𝜆2 are the integration boundaries
of the spectrum in the energy scale. Note that the areas and thus,
the photon flux remain unaffected by the change from energy to
wavelength scales. Only the representation of the spectral photon
flux per unit energy differs from that in a wavelength scale,

d𝜙
dE

=
|||| d𝜆dE |||| d𝜙d𝜆 =

||||−𝜆2

hc

|||| d𝜙d𝜆 = 𝜆2

hc
d𝜙
d𝜆

(14)

consistent with earlier reports.[37,207,208] The negative sign ac-
counts for the reversed integration direction in wavelength scales
(short/long wavelengths correspond to high/low energies) and
ensures that the integral photon flux 𝜙21 remains positive. It
should be noted that the spectrum d𝜙∕d𝜆 should be always cor-
rected for either constant background due to, e.g., dark current
in the PMT or a sloping background due to blackbody radiation.
Any background or incorrect background correction can severely
falsify the physically interpretable spectral data.
Finally, both the photomultiplier tube and also the disper-

sion grating in a spectrometer lead to additional photon loss,
which can be compiled in a wavelength-dependent efficiency fac-
tor 𝜂(𝜆) < 1. The actually measured average count rate ij of a
spectral transition (in counts s−1) is then

21 = ∫
𝜆1

𝜆2

d𝜆 𝜂(𝜆)
d𝜙 (𝜆)
d𝜆

∝ 𝜙21 (15)

with 𝜆2 < 𝜆1. From that quantity, the average number of counts⟨ ⟩ij(Δt) characterizing the radiative transition results from the
count rate dependent on the user-set integration time Δt in a
spectrum as ⟨ ⟩ij(Δt) = ijΔt. With all those preliminaries of
the detection process, it is possible to finally define the proper
LIR, R(T), from two thermally coupled emissive levels by di-
rectly relating it to the experimentally accessible luminescence
spectrum[37,207,208]

R(T) =
⟨ ⟩20⟨ ⟩10 =

20Δt2
10Δt1

=
∫ 𝜆21

𝜆22
d𝜆 𝜂(𝜆)

(
d𝜙(𝜆)

d𝜆
Δt2

)
∫ 𝜆11

𝜆12
d𝜆 𝜂(𝜆)

(
d𝜙(𝜆)

d𝜆
Δt1

)
=

A20

A10

N2

N1
=

𝛽20k2r
𝛽10k1r

g2
g1
exp

(
−
ΔE21
kBT

)

:= C
g2
g1
exp

(
−
ΔE21
kBT

)
(16)

where Equations (8) and (11)–(15) have been used. It is notewor-
thy that the pre-factor C only contains the emission branching
ratios 𝛽 i0 and the radiative decay rates kir (i = {1, 2}), which are
easily accessible by independent steady-state and time-resolved
luminescence experiments and allow an independent verification
of the physical reliability of the fitting parameters in a Boltzmann
fit of the temperature-dependent LIR data. More importantly, C
is not dependent on the emission energies ℏ𝜔i0 in the case of
single photon counting detection, in contrast to the convention-
ally found definition in the literature of luminescence thermom-
etry. That error mostly stems from an inaccurate definition of
measured luminescence intensity, which is nowadays the pho-
ton counting rate (see Equation (15)) or the average number of
counts dependent on the type of spectrometer. It should be noted
that C is generally checked very rarely for its physical reliability.
However, in many cases, the error in introduction of ℏ𝜔i0 was
barely noticed because of the very close energy range of the two
comparable radiative transitions (i.e., ℏ𝜔10 ≈ ℏ𝜔20), which gives
a ratio close to 1.
The definition according to Equation (16) offers an additional

advantage. As most emission bands are composed of different
subtransitions or are vibronically broadened, it is only possible to
define an average emission energy, ⟨ℏ𝜔ij⟩, that would have to be
elucidated by appropriate integration of the emission spectrum.
Thus, a comparison of the fitted value of C to the expected value
according to Equation (16) would be accompanied by an addi-
tional error introduced by determination of an expectation value
of the emission energy (due to a standard deviation dependent
on the quality of the spectral data).
Equation (16) can be simplified for practice in the case of

narrow-band emitters (with spectral widths Δ𝜆 < 10 nm) such
as the trivalent lanthanides. If the two emission transitions are
in a very similar wavelength range, the correction factor 𝜂(𝜆) can
be often disregarded since it will not differ much in such a nar-
row range and can be regarded as approximately wavelength-
independent quantity. The inclusion of the factor 𝜆2 according
to Equation (14) is necessary if the spectra are supposed to be
represented on an energy scale but is not relevant for the overall
area under the emission spectrum.[37]

The form of Equation (16) implies that the temperature de-
pendence is only contained in the exponential Boltzmann fac-
tor, while C is typically considered as temperature independent.
This is not fully correct. Two main mechanisms can give rise
to an additional temperature dependence of C. One possibility
arises from a general temperature dependence of the radiative
decay rate by means of strong electron–phonon coupling. This
situation is particularly important for any luminescent ion with
thermally coupled dn electronic levels such as Cr3+ [64–70,77] or
Mn4+.[71–76] In those cases, an increase in temperature can induce
an intensity redistribution from the zero-phonon transition to the
Stokes and anti-Stokes ranges (see Section 2.4 for more details).
Consequently, this leads to increasing radiative transition rates at
elevated temperatures, which can also affect C. It will be shown
in the Supporting Information under which circumstancesC can
be yet considered temperature independent.
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The other possibility is commonly encountered in trivalent lan-
thanides with shielded 4fn spin-orbit levels. These levels split into
different crystal field states in a crystalline host compound by
means of the Stark effect. At sufficiently low temperatures, if kBT
is around as large as the crystal field splitting ΔECF (in the or-
der of 100 cm−1) between the split states of a spin–orbit level, a
reorganization of the population among the crystal field states
has an effect on both the branching ratios and the radiative de-
cay rates from the different crystal field states. Thus, C could in
principle bear a temperature dependence for very low tempera-
tures (T < 150 K) in the case of trivalent lanthanides. As will be
shown in Sections 2.4 and 5.2, however, at those temperatures,
Boltzmann equilibrium between spin–orbit levels is typically not
sustained anymore. Only at sufficiently large temperatures, i.e.,
if kBT ≫ ΔECF, the population among the various crystal field
states is in thermodynamic equilibrium and the spin–orbit level
may be considered as an effective, thermally averaged single level
with an average radiative decay rate and branching ratio. In that
case, it is a valid approximation to consider the prefactor C as
a temperature-independent quantity. It is noteworthy that any
nonnegligible temperature dependence of C can have an impact
on the performance of a luminescent thermometer, as was also
pointed out by Brites et al. in their extensive review.[37] In essen-
tially all practically relevant cases, however, the temperature de-
pendence of C is much weaker than that of the Boltzmann factor
and can be neglected in the regarded temperature range. A finally
important remark is the fact that the definition of the constant C
based on Equation (16) only contains information about the ra-
diative decay rates, while any effects on the absolute intensities of
the two emission bands are actually encoded in the excited state
populations Nj. However, C (and also Equation (16) in general)
are not affected by neither thermal quenching nor thermal cou-
pling to higher excited states, which only have an influence of the
separate luminescence photon counts of the two emission bands
of interest but not on the radiative rates or the thermodynamic
equilibrium. Only if the thermal quenching rates dominate over
the thermalization rates, Boltzmann equilibrium cannot be sus-
tained at very high temperatures anymore.

2.2.2. Additional Remarks on Advisable Luminescence Intensities
and Doping Concentrations

If an average photon number ⟨ ⟩ is detected within a pre-set
integration time, the relative uncertainty is given from Poisson
statistics by

±
𝜎⟨ ⟩ = ± 1√⟨ ⟩ (17)

This is referred to as the shot noise limit. This detection princi-
ple makes it advisable to set photon counting rates as close to the
detector saturation as possible to minimize propagated errors in
temperature determinations due to variations in emitted average
photon counting numbers (see Section 2.3.2 for more details).
For example, a detected average photon number of ⟨ ⟩ = 106

already reduces the number fluctuations to only ±0.1%. This can
be either achieved by preset high count rates or, alternatively, long
integration times.

On the other hand, the number of emitted photons from the
states |1⟩ and |2⟩ is both proportional to the population Na of the
auxiliary feeding state |a⟩, which in turn is proportional to the
number of available emitting ions sZ𝜈x (see Equation 10). For a
sufficiently high constant doping concentration and under the as-
sumption of homogeneous doping, one simple approach would
be an increase of the lateral dimensions to increase the number
of ions by increasing the number of unit cells s in the excited
volume. However, for high spatial resolutions below 10 µm in
the field of nanothermometry, smaller volumes are mandatory.
In those cases, higher doping concentrations are necessary to still
allow for appreciable absorption of the nanothermometers. Thus,
the concentration x must be chosen from a careful trade-off be-
tween high absorption strength, yet unperturbed luminescence
without undesired side effects such as mutual ion interaction or
concentration quenching as is often found in practice. Alterna-
tively, the quenching pathways need to be kinetically controlled
to yet allow for effective Boltzmann thermometry. Another op-
tion is the usage of high-power density excitation, which explains
the success of laser sources for luminescence nanothermometry.
However, local heating effects will then have to be avoided as, e.g.,
by usage of pulsed excitation sources with sufficiently low power
density per pulse.[209] The alternative approach to increase the
incident irradiance I0 (see Equation 10) for a higher excited state
population Na should be taken with caution since, dependent on
the size of the decay rate K, saturation of the excited states |a⟩ can
occur, which leads to diminished absorption. In the case of the
slowly decaying 4fn-related spin–orbit levels, too high incident ir-
radiances may also provoke undesired upconversion processes
that can affect the calibration procedure by interfering radiative
transitions from higher excited states. Finally, obvious (but by
no means trivial!) measures to improve the count rates without
negative side effects are optimizing the photon collection effi-
ciency and the luminescence quantum efficiency. Especially for
luminescent nanocrystals quantum yields can be low because of
surface-related quenching processes. Careful design and synthe-
sis of core–shell nanostructures are thus crucial in optimizing
the performance in nanothermometry.

2.3. Estimates of the Preconstant C by Judd-Ofelt
Theory—Computational Aid for Luminescence Thermometry
with Trivalent Lanthanides

For 4fn levels of the trivalent lanthanides, the prefactor C can
be also semiempirically calculated within the phenomenological
Judd-Ofelt theory,[210,211] as already indicated before.[37,204] This
framework allows an estimation of induced electric dipole and
magnetic dipole radiative transition rates between two spin–orbit
levels with quantum numbers J and J′, respectively, which is de-
noted by the Einstein coefficients for spontaneous emission,AJJ′,

AJJ′ =
4𝛼𝜔3

JJ′

3gJc2
[
n|𝜒 (n)|2SED + n3SMD

]
(18)

with 𝛼 = e2

4𝜋𝜀0ℏc
≈ 1

137
as the dimensionless electromagnetic fine

structure constant, c as the vacuum light velocity, gJ = 2J + 1 as
the degeneracy of the emitting spin–orbit level, n as the refractive
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index of the medium and |𝜒(n)|2 as a local electric field correc-
tion factor to account for photonic differences between vacuum
and the dielectric host medium that the lanthanide is embedded
in refs. [212–215]. Dependent on the wavelengths of the emission
transitions, the refractive index has to be estimated by, e.g., the
Sellmeier equation if the refractive index at other wavelengths is
already known. However, especially for emission transitions in
the NIR range, it is often a valid approximation to neglect disper-
sion of the refractive index and regard it as constant as long as
the host does not absorb in that region itself. SED and SMD are
the so-called line strengths (in cm2) of the induced electric dipole
andmagnetic dipole transition, respectively. Upon normalization
to e2 (contained in the fine structure constant in Equation (18)),
their definition in the framework of Judd-Ofelt theory is as fol-
lows

SED =
∑
t=2,4,6

Ωt|⟨4f n[𝛾LS]J||U(t)||4f n[𝛾 ′L′S′]J′⟩|2 (19)

and

SMD =
(𝜇B
ec

)2|⟨4f n[𝛾SL]J||L + gSS||4f n′ [𝛾 ′S′L′]J′⟩|2 (20)

The three quantities Ωt (t = 2, 4, 6) are the phenomenolog-
ical Judd-Ofelt intensity parameters (typically in the order of
10−20 cm2) that are dependent on the type and local symme-
try at the Ln3+ site in the host material. They were tabulated
for many hosts by Görller-Walrand and Binnemans.[216] U(t) rep-
resents the irreducible unit tensor forms that characterize the
electric dipole transition moment. The |4f n′ [𝛾SL]J⟩ mark the
spin–orbit states of the lanthanides in the intermediate coupling
scheme, as indicated by the squared brackets, while 𝛾 represents
all additional necessary quantum numbers. L + gSS with gS =
2.002… as the electron gS factor are the contributions of orbital
and spin angular momentum to the magnetic moment of a tran-
sition, quantized in units of Bohr’s magneton, 𝜇B = eℏ

2me
. The

overall matrix elements in both Equations (19) and (20) are the
so-called dimensionless reduced matrix elements evolving from
the Wigner-Eckart theorem. The electric dipole matrix elements
(Equation 19) are tabulated by, e.g., Carnall et al.,[217] while the
magnetic dipole matrix elements (Equation 20) have been gath-
ered by, e.g., Dodson and Zia.[218] Nowadays, both are easily ac-
cessible within the open-source software RELIC (Rare Earth State
and Intensity Calculation).[219] The applet JOES (Judd-Ofelt analy-
sis from Emission Spectra) provides an additional simple tool for
the immediate analysis of emission spectra for the special case of
Eu3+.[220]

Once the ED and MD line strengths for the two radiative tran-
sitions |2⟩→ |0⟩ and |1⟩→ |0⟩ of interest are known, usage of
Equations (11), (16), and (18) leads to a semi-empirical estimate
for the exponential prefactor C,

C
g2
g1

=
(
𝜔20

𝜔10

)3 n
(
𝜔20

)|||𝜒(n(𝜔20

))|||2SED,20 + n3
(
𝜔20

)
SMD,20

n
(
𝜔10

)|||𝜒(n(𝜔10

))|||2SED,10 + n3
(
𝜔10

)
SMD,10

(21)

with the transition line strengths as defined in Equations (19) and
(20). In many practical cases, Equation (21) is further simplified
due to the validity of additional approximations such as a negli-
gible electric or magnetic dipole character of at least one of the
considered emission transitions or similar refractive indices at
the energies ℏ𝜔10 and ℏ𝜔20. The recently developed applet JOLIR
(Judd-Ofelt Luminescence Intensity Ratio) has its foundations in
Equation (21) and provides an automated tool to predict this pre-
constant C by means of Judd-Ofelt theory.[204] Apart from these
recent developments, usage of Judd-Ofelt theory to estimate the
preconstant C was only occasionally reported.[221–223]

While Judd-Ofelt theory accounts for the electric dipole con-
tributions to the intensities of 4fn–4fn transitions, there are
also theoretical approaches to predict the general appearance of
lanthanide-based luminescence spectra. Despite the strong ex-
perimental progress in luminescence thermometry, knowledge
about the availability of those computational program packages
can help make lanthanide-based thermometry independently
theoretically accessible. Thus, we also draw the attention of the
interested reader to some of the currently existent, mostly open-
source packages. Besides the foundations laid by common ad-
vanced crystal field calculations (see, e.g., the works from Malta,
Burdick, Reid, Duan and Tanner),[217,224–227] there are also ad-
vances to make calculations as independent from experiment
as possible. Usage of wavefunction-based post-Hartree-Fock ap-
proaches resulted in LUMPAC (Luminescence Package)[228,229]

that employs semiempirical wavefunction methods and incorpo-
rates ORCA as a graphical user interface.[230,231] Recently, also
ab initio multiconfigurational embedded cluster methods with
a high level account of relativistic effects have been reported for
Eu3+ and Tb3+ in cubic symmetries by Joos et al.[232,233] Finally,
the different approach by the angular overlap framework of lig-
and field theory[234–236] led to the development of the currently
optimized program package BonnMag,[237–241] which allows
for simultaneous ligand field and intensity calculations of
lanthanide-based spectra even at lower symmetries than cubic
ones. All those packages have the potential to perform compu-
tational studies on novel thermometers and give predictive tools
at hand to facilitate experimental trial-and-error attempts and
support the development of next-generation luminescence ther-
mometers based on lanthanide dopants.

2.4. Optimum Conditions for the Performance of Single Ion
Two-State Luminescent Thermometers

2.4.1. Quantitative Guidelines for the Choice of an Optimized
Boltzmann Thermometer

After having reviewed the foundations of the Boltzmann distri-
bution for thermometry, we will now derive the conditions for an
optimally sensing thermometer in a desired temperature range.
A reasonable measure for the absolute sensitivity Sa(T) of a lumi-
nescent thermometer is the thermal response of the LIR, dR(T)
(see Equation 16), to an infinitesimally small change of tempera-
ture dT,

Sa(T) ≡ dR
dT

=
ΔE21
kBT2

⋅ C
g2
g1
exp

(
−
ΔE21
kBT

)
≡ Sr(T) ⋅ R(T) (22)
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where Sr(T) is commonly referred to as relative sensitivity (usu-
ally given in % K−1) of the luminescent thermometer. For a
Boltzmann-based thermometer (and only that!), the relative sen-
sitivity can be explicitly given as

Sr(T) =
ΔE21
kBT2

(23)

and is used as a figure of merit to allow comparisons between
different thermometers irrespective of their operational princi-
ple. Equations (22) and (23) are, strictly regarded, only correct
if the temperature dependence of the pre-factor C can be ne-
glected (see also Section 2.2.1). Otherwise, an additional term
of d lnC

dT
would have to be included for the relative sensitivity in

both Equations (22) and (23). The temperature variation of lnC
is, however, even weaker than that of C itself, which makes its
neglection clearly plausible.
It is the purpose of this section to derive simple guidelines for

optimized thermal response and relative sensitivity of any sin-
gle ion luminescent thermometer working with the principle of
the Boltzmann distribution. Amore profound derivation of those
guidelines from the concepts of statistical physics and Bayesian
estimation theory is given in the Supporting Information and
puts the following simple approach on a fundamental ground.
Within this work, we will focus on the main results. In practice,
most commonly the temperature range to be measured is pre-
defined from an applicational perspective, while the energy gap
between the two thermally coupled levels should be chosen such
that it maximizes the response of the luminescent thermometer.
From Equation (22), it can then be easily concluded that for a
given energy gap, the most responsively detected temperature is

Topt =
1
2
ΔE21
kB

(24)

in agreement with reported earlier findings.[112,204,242]

So far, Equation (24) is still very specific for a certain choice
of a luminescent ion, because it depends on the ion-related en-
ergy gapΔE21. In order to become independent from any specific
luminescent system and allow for general predictive guidelines,
both the thermal response Sa(T) and the relative sensitivity Sr(T)
can be normalized with respect to their values at Topt. This allows
for the definition of energy independent response and sensitivity
functions that are universally applicable to any single ion lumi-
nescent thermometer based on the Boltzmann distribution and
allow general conclusions. For that purpose, it will prove useful
to introduce the generalized variable r

r = 𝛽ΔE21 =
ΔE21
kBT

(25)

that accounts for a simultaneous discussion on variations of the
energy gap ΔE21 and the temperature T. It is noteworthy a sim-
ilar reparametrization (although not the same) was applied in
the classic paper by Collins et al. in order to compare differ-
ent luminescence-based thermometry techniques.[17] Given that

definition, the response function 𝜌(r) normalized to its optimum
ropt = 2 is defined as

𝜌(r) :=
Sa
(
T = 1

r

ΔE21
kB

)
Sa
(
T = Topt =

1
2

ΔE21
kB

) = 1
4
r2 exp(2 − r) (26)

while the respective normalized sensitivity function is given by

𝜎(r) :=
Sr
(
T = 1

r

ΔE21
kB

)
Sr
(
T = Topt =

1
2

ΔE21
kB

) = 1
4
r2 (27)

The graphs of both functions are plotted in Figure 3a. While
𝜌(r) goes through a globalmaximum at ropt = 2 (cf. Equation (24)),
𝜎(r) monotonically increases for any r > 0. The evolution of the
graphs of both the generalized response function 𝜌(r) and the
sensitivity function 𝜎(r) can be related to physical properties of
the Boltzmann distribution. Thus, their meaning is more funda-
mental than simply being figures of merit for a luminescent ther-
mometer. For low energy gaps and high temperatures (r < 2), the
probability for excitation of state |2⟩ becomes high according to
Equation (6) (see also Figure 3b). Correspondingly, a high inten-
sity of the emission from state |2⟩ should be expected. Nonethe-
less, the response 𝜌(r) is low in that regime because of the con-
comitantly decreasing remaining population in state |1⟩ neces-
sary to feed state |2⟩. In that regard, the Boltzmann thermometer
becomes thermodynamically saturated and the two states evolve
towards equal thermal population. The sensitivity 𝜎(r) in turn is
low because the relative net change in population tends to zero
(see red curve in Figure 3b) in that regime, which corresponds to
the thermodynamic equilibrium.
For r> 2, the energy gap is high and the temperature is low. Ex-

pectedly, the probability for a successful thermal excitation event
from state |1⟩ to |2⟩ is rather low (see blue curve in Figure 3b).
Consequently, the thermal response 𝜌(r) also decreases for high r.
In contrast, the relative sensitivity of a thermometer is very high
in that regime since any successful excitation event will result
in a large relative net change of the population distribution (see
red graph in Figure 3b). It is evident that the energy gap of any
practically useful luminescent thermometer should obey the con-
dition r ≥ 2 since otherwise both thermal response and relative
sensitivity are low. That means that the two excited states should
not be used at high temperatures for temperature sensing since
then their effective populationsN′

1 andN
′
2 become equal (see Fig-

ure 3b). This reflects the generally reported problem that relative
sensitivities are very low at high temperatures (as also suggested
by Equation 22). According to Equation (27), this limitation at
high temperatures can be overcome by choosing a larger energy
gap ΔE21 to increase the value of r.
The upper analysis indicates an additional problem. Both 𝜌(r)

and 𝜎(r) increase with r simultaneously up to the optimum ropt
= 2. If a desired relative sensitivity Sr0 is preset by the user, this
implies that any Boltzmann-based luminescent thermometer can
only perform at optimum conditions for temperatures up to

T0 ≤ 2
Sr0

(28)
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Figure 3. a) Graphs of the universally applicable normalized thermal response 𝜌(r) (blue) and thermal sensitivity 𝜎(r) (red), as given by Equations (26)
and (27). r represents the ratio between energy gap ΔE21 and thermal energies kBT. The statistically advisable operation window for optimized perfor-
mance of a Boltzmann-based single ion luminescence thermometer is also depicted. b) Evolution of the relative population p1(r)/g1 and p2(r)/g2 of
states |1⟩ (black) and |2⟩ (blue) according to Equation (6), respectively. The relative change in population (red) with r according to Equation (9) is also
depicted. The high temperature (low energy gap) and low temperature (high energy gap) asymptotes (dashed dotted lines) for the relative population
change exactly cross in the optimum ropt = 2.

Equation (28) immediately points at a fundamental limitation
of Boltzmann-based thermometers, which will be highlighted in
more detail below. If temperatures are supposed to be measured
with at least Sr0 = 1% K−1 relative sensitivity, the maximum tem-
perature at which this is still feasible is 200 K. Higher desirable
relative sensitivities (Sr0 > 1%K−1) will lower themaximummea-
surable temperature even more, in agreement with this condi-
tion. Thus, if higher temperatures than given by Equation (28)
are aimed to be measured with a luminescent thermometer, the
user will have to sacrifice either thermal response for the sake of
higher relative sensitivity or vice versa. In the following, we will
give a simple justification which strategy is more advantageous.
Again, the statistically profound derivation of this decision is il-
lustrated in the Supporting Information for the interested reader.
A simple decision criterion is the comparison of the changes

of 𝜌(r) and 𝜎(r) with r in the range r > 2. While the gain in relative
sensitivity is d𝜎

dr
≥ 1 for r ≥ 2, the maximum loss, − d𝜌

dr
, of 𝜌(r) is

found at the deflection position r = 2 +
√
2 ≈ 3.41 (− d𝜌

dr
|r=2+√2 ≈

0.294). Clearly, that value is still smaller than d𝜎
dr
in that range.

Consequently, it is advisable to yet increase the energy gap ΔE21
and move to higher r with the sacrifice for a slight loss in ther-
mal response 𝜌(r) (and thus, thermally excited intensity I20 of
state |2⟩) to realize a higher gain in relative sensitivity. In num-
bers, the thermal response at r = 2 +

√
2 has only dropped to

𝜌(2 +
√
2) ≈ 0.71 of the globally maximum value, while the rel-

ative sensitivity increases by a factor of 𝜎(2 +
√
2) ≈ 2.91. The

deflection position r = 2 +
√
2 is also the statistically most advis-

able value for a maximum sacrifice in thermal response for the
sake of higher relative sensitivity (see Supporting Information).
Any higher value for r still further increases the relative sen-

sitivity, but the thermal probability for population of state |2⟩
becomes already so low (see Figure 3b) that any corresponding
thermally excited luminescence intensity I20 will be hardly de-
tectable. This is practically undesirable as the shot noise will limit
precise temperature measurements (see Equation 17).
The previous arguments can be translated to a simple deci-

sion flowchart that allows for an optimization of any single ion

luminescent thermometer operating with the Boltzmann distri-
bution. It is depicted in Figure 4. This flowchart provides the ba-
sis for the choice of an optimum luminescent ion for thermom-
etry at any temperature range of interest. In practice, typically a
desirable relative threshold sensitivity Sr0 and the highest temper-
ature T0 to be measured are set. Then, the corresponding thresh-
old value for r0 is simply

r0 = Sr0T0 (29)

If r0 < 2 (ΔE21 < 2kBT0), it may be easily increased to the op-
timum value of ropt = 2 (ΔE21 = 2kBT0), and both Sr(T0) > Sr0
and Sa(T0) will be optimized, as both 𝜌(r) and 𝜎(r) simultaneously
strictly monotonically increase in that range.
If, however, r0 > 2, it is statistically wise to increase r to

2 +
√
2 ≈ 3.414 (ΔE21 = 3.414kBT0) since the gain in relative sen-

sitivity supersedes the loss in thermal response. The flowchart in
Figure 4 illustrates the optimization strategy for single ion lumi-
nescent thermometers schematically.
The described strategy also suggests that for any r0 > 2 +

√
2,

Boltzmann thermometry is not advisable with the predefined
conditions anymore. This occurs either at too high temperatures
(T > T0) or too ambitiously predefined relative sensitivities Sr0. It
is then required to release the desired conditions (e.g., by allow-
ing a lower threshold relative sensitivity). Specifically, the anal-
ysis shows that each Boltzmann-based single-ion luminescent
thermometer with a fixed energy gap of ΔE21 between the two
thermally coupled states of interest is only suited for a limited
temperature range such that r ∈ [2, 2 +

√
2]. Moreover, the pre-

viously presented simple guidelines restrict the number of appar-
ently potential activators for luminescence thermometry already
by fundamental properties derivable from the statistical nature
of the Boltzmann distribution and allow a selection of the ion
and the two excited states of interest in order to make the energy
gap ΔE21 match the required temperatures to be measured. A
way to overcome this limitation of two thermally coupled excited
levels is the extension to more excited levels with successively
larger energy gaps to the lowest excited emissive state, as has al-
ready been found experimentally earlier.[101,243,244] In that case, it
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Figure 4. Decision flowchart for the choice of an optimized Boltzmann-based luminescence thermometer for a predefined desirable relative sensitivity

Sr0 and highest temperature T0 to be measured. If r0 exceeds the value 2 +
√
2, the preset relative sensitivity Sr0 or maximum temperature T0 have to

be reduced, respectively. For more explanations, see text.

is possible to retain optimum conditions at successively higher
temperatures.
A numerical example illustrates the working principle of the

developed flowchart. Suppose a user wants to measure temper-
atures close to T0 = 300 K with a relative sensitivity of at least
Sr0 ≥ 1% K−1. With these values, it follows r0 = 3.0, which is
larger than the optimum value at r = 2. Thus, the flowchart sug-
gests choosing a luminescent ion with yet a larger energy gap
ΔE21 such that r = 2 +

√
2. At T0 = 300 K, this gives an en-

ergy gap of ΔE21 = 712 cm−1. Although a bit of thermal response
has been sacrificed, the relative sensitivity is slightly increased to
Sr = (2 +

√
2)/T0 100% = 1.1% K−1. Both the energy gap and the

optimized relative sensitivity are typical values of the 2H11/2–
4S3/2

energy gap of Er3+. Thus, the developed flowchart easily explains
why Er3+ is still one of the most effective single ion luminescent
Boltzmann thermometers for temperatures around room tem-
perature. Another conclusion that can be made is, however, that
above 342 K, it will not be possible to retain a relative sensitivity
Sr0 ≥ 1% K−1 even with Er3+ under the suggested optimum con-
ditions for good thermometry performance. The user will have
to accept a lower relative sensitivity for still accurately detectable
luminescence intensities from both excited levels. This exam-
ple points at the previously mentioned fundamental limitation
of Boltzmann thermometers.
Another well-known example is Nd3+. Its excited 4F3/2 spin–

orbit level splits into two Kramers’ doublet states R1 and
R2 with an energy difference of around ΔE21 = 100 cm−1,
which are sufficiently well isolated from other disturbing energy
levels.[99,104,114,117,120,245] Also, the two Kramers’ doublets of the ex-
cited 2E term of Cr3+ or Mn4+ in strong cubic crystal fields fall
into this category (although with typically even lower energy gaps
< 100 cm−1).[65–70] The flowchart can also be used to demonstrate
for which temperature range a specific energy gap is most use-
ful for. Suppose it is desirable to use it at the optimum, i.e., r = 2.

For an energy gap of 100 cm−1, the optimum temperature is then
given by Equation (24), i.e., Topt ≈ 72 K, with a relative sensitivity
of Sr ≈ 2.8% K−1. Thus, the R1 − R2 gap of Nd

3+ is most suited
for measurements around liquid N2 temperatures. It can be even
used to measure lower temperatures thereby moving to r = 2 +√
2. The minimum advisable temperature to use this energy gap

for Boltzmann thermometry is thus T ≈ 42 K, connected to an
almost tripled relative sensitivity of around Sr = 8.1% K−1. For
temperature above 72 K, however, the user successively shifts the
thermal response and relative sensitivities to r< 2, clearly outside
the optimum conditions of a Boltzmann thermometer. There-
fore, room temperature sensing with the R1 − R2 gap already
performs so close to the limit of equal excited state populations
that a significant loss of relative sensitivity and thermal response
are expected. At T = 300 K, it is r = 0.48 and the expected rela-
tive sensitivity of this energy gap is thus Sr ≈ 0.2% K−1, exactly in
the range of reported values.[99,105,114,117] The numerical examples
give a clear impression how to optimize Boltzmann thermome-
ters. Room temperature sensing using the Boltzmann distribu-
tion requires larger energy gaps, in the range of the spin–orbit
splitting among 4fn levels. Temperature sensing with the differ-
ent crystal field states of a given spin-orbit level in lanthanides is
meaningful for cryogenic temperatures only.

2.4.2. Guidelines for an Optimum Electronic Preconstant C

The previous thermodynamic guidelines for an optimized per-
formance of a Boltzmann thermometer explicitly stated that it is
advisable to use two excited states far from the limit of effectively
equal excited state populations (p1/g1 = p2/g2 = 0.5 for r→ 0). An
immediate consequence of an optimized performance, as also
depicted in Figure 3b, is a sacrifice in population of the higher
excited state |2⟩. Despite higher relative sensitivity, this will lead
to a lower emission intensity I20 and thereby increase the relative
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uncertainty in the intensity measurement. The estimated tem-
perature change dT connected to single-ion luminescence ther-
mometry follows from Equation (22)

dT = ± 1
Sr

dR
R

(30)

One of the most commonly found arguments in the literature
of luminescence thermometry is to tailor the relative sensitivitySr
to a very high value in order to keep the temperature uncertainty
low. However, this argument only holds as long as the relative
uncertainty in the LIR, 𝜎R/R, is also sufficiently low.[37,246] In that
regard, the temperature uncertainty is also determined by the rel-
ative error in themeasured separate photon counts ⟨ ⟩10(T) and⟨ ⟩20(T). It is assumed that the measurement of the two lumi-
nescence intensities is uncorrelated, i.e., ⟨ ⟩10(T) and ⟨ ⟩20(T)
can be measured independently from each other.
In a spectral acquisition, luminescence counts or count rates

(see Equation (16)) are measured and connected to a relative un-
certainty according to Poissonian statistics of photon detection
(see Equation (17)). The actual relative uncertainty of the LIR,
𝜎R/R, is then given by

𝜎R

R
= ±

√(
𝜎10⟨ ⟩10

)2

+
(

𝜎20⟨ ⟩20
)2

= ±

√
1⟨ ⟩10 + 1⟨ ⟩20

(31)

with ⟨ ⟩10 and ⟨ ⟩20 as the average count numbers of the radia-
tive transitions |1⟩ → |0⟩ and |2⟩ → |0⟩. Consequently, the tem-
perature uncertainty is

𝜎T = ± 1
Sr

√
1⟨ ⟩10 + 1⟨ ⟩20 (32)

which can be transformed to a relative uncertainty by Equa-
tions (23) and (25)

𝜎T

T
= ±1

r

√
1⟨ ⟩10 + 1⟨ ⟩20 (33)

If the LIR obeys Boltzmann’s law (16), it is

𝜎T

T
= ± 1

r
√⟨ ⟩10

√
1 + 1

C
g1
g2
exp(r) (34)

Besides the previously indicated condition for high average
photon count numbers ⟨ ⟩10 (also compare to the shot noise
limit, Equation (17), Equation (34) also suggests that there is
an advisable value for the pre-constant C. It is determined
by the fact that both luminescence intensities are mutually as
similar as possible resulting in a LIR of around 1 at a given
temperature T0 (a given r0). However, the requirement for a
LIR ≈ 1 appears incompatible to the statistical guidelines for
fundamentally optimum performance of a Boltzmann-based lu-
minescent thermometer (see Section 2.2). It turns out that the
relative temperature uncertainty as given by Equation (34) can

be minimized. The respective value rmin is given by the im-
plicit equation (see Supporting Information for a more detailed
discussion)

1
2

(
rmin − 2

)
exp

(
rmin

)
= C

g2
g1

(35)

and depends on the value of C.
The possibility to minimize the relative temperature uncer-

tainty is understandable by the previously mentioned competi-
tion of high relative sensitivity at low temperatures T (high val-
ues of r) and appreciable thermal population of state |2⟩ at high
temperatures T (low values of r). With Equation (35) and knowl-
edge on the optimum range of r, it is possible to derive an op-
timized pre-factor C for r > 2. At r = rmin = 2 +

√
2, it follows

from Equation (35) that the corresponding optimum value for

C is given by C g2
g1

= e2+
√
2√
2

≈ 21.5. For higher values for C (see

Figure 5a), the minimum expectedly shifts towards higher values
of r (lower temperatures T) asC intrinsically increases the photon
count number ⟨ ⟩20. However, too high values for C are also not
beneficial as then the relative sensitivity dominates the behavior
of the relative temperature uncertainty (see increase of the blue
curve in optimum window with decreasing r in Figure 5a) and⟨ ⟩10 also tends to decrease in turn.
Another interesting conclusion from Equation (35) is that the

temperature uncertainty cannot be globally minimized at r = ropt
= 2, as a corresponding value of C = 0 is physically not possible.
This arises from the fact that every excited state has a non-zero de-
cay rate by virtue of Heisenberg’s uncertainty relation. The inter-
pretation of this case is that at the optimum of r = 2, the change
in thermal population from state |1⟩ to |2⟩ is maximum irrespec-
tive of the value of C. The relative temperature uncertainty can
then only be additionally lowered by a respective increase in the
photon count number ⟨ ⟩10 (see Figure 5b). The photon count
number ⟨ ⟩20 will then be already sufficiently high due to ther-
mal population from state |1⟩. To overall comply with the previ-
ously derived optimum range for r and minimized temperature
uncertainty, a value ofC g2

g1
in the range of 20 ismost reasonable as

follows fromEquation (35). Then, the LIR is also guaranteed to be
close to 1, which appears meaningful for optimum thermometer
performance.
Equation (35) provides additional design rules of the host ma-

terial in the case of lanthanide ions based on the discussion
in Section 2.3. The Judd-Ofelt intensity parameters are host-
and symmetry-dependent and influence the values of the spon-
taneous decay rates A20 and A10. By the same argument, the
Judd-Ofelt parameters also affect the emission branching ratios.
Overall, the upper optimum condition on C allows to at least par-
tially design the host material towards desirable LIRs. In the op-
timum window this implies a higher radiative decay from the
much less populated higher energy level. Enhancing the weaker
emission intensity also reduces the uncertainty in the (lower)
count rate which contributes more strongly to the temperature
uncertainty.
An instructive example is again Er3+ with the two thermally

coupled 2H11/2 and
4S3/2 spin-orbit levels. Both time-resolved lu-

minescence studies and Judd-Ofelt calculations in, e.g., YVO4
[247]

or 𝛽-NaGdF4
[248] revealed that the 2H11/2 level has a five to tenfold
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Figure 5. Evolution of the relative temperature uncertainty in relation to r = ΔE21/kBT with a) varying pre-factor C (at a given ⟨ ⟩10) or b) count number
of the lower energetic emission (at a given C). The locus depicted in a) is the connecting curve of all minimum points (see Supporting Information for
more details).

higher radiative decay rate compared to the ground level than the
4S3/2 level. Together with g(2H11/2) = g2 = 12 and g(4S3/2) = g1
= 4, this affords a value of C g2

g1
in the order of 15–30. Within the

range, this value agrees with the recommendable optimum value
C g2

g1
= 21.5 at according to Equation (35). This again illustrates

why Er3+ is a successfully applied Boltzmann-based luminescent
thermometer for room temperature sensing.
It is insightful to compare the impact of an optimization of the

preconstant C on the required emission photon count number⟨ ⟩10 from the lower energetic emission for a desired temper-
ature uncertainty. Suppose that the desired relative temperature
uncertainty is in the range of ±0.1%, i.e., the luminescent ther-
mometer is expected to detect temperatures statistically reliably
with an uncertainty of, e.g., less than ±0.3 K at 300 K. Moreover,
the energy gap ΔE21 is assumed to match the optimum perfor-
mance range, i.e., r = 2 to 2 +

√
2. If C = g1/g2, Equation (34)

implies that the minimum required photon count number of the
emission from the lower lying state |1⟩ has to be in the order of⟨ ⟩10 ≈ 106 counts (see Figure 5b). If, however, C is optimized
and in the range of the desirable value of C = 21.5 g1/g2 accord-
ing to Equation (35), the necessary photon count number can be
lowered by one order of magnitude, ⟨ ⟩10 ≈ 105 counts to still
obtain a relative temperature uncertainty of around 0.1%. This
does not only offer the possibility to acquire luminescence spec-
tra in shorter time, but also releases demands on, e.g., high dop-
ing concentrations (see Section 2.2.2) that could causemutual ion
interactions and thus disturb the performance of a Boltzmann
thermometer. Moreover, an optimization of C by means of Judd-
Ofelt theory for the lanthanides is worth considering in the field
of nanothermometry, since attached surface ligands can lead to
additional surface-related quenching of luminescence of dopants
in nanocrystals. Low photon count rates are thus more common
for nanocrystals.

2.5. Temperature Dependence of Radiative and Nonradiative
Transition Rates

As already laid down in the derivation in Section 2.1, the valid-
ity of the Boltzmann distribution as the underlying model for
luminescence thermometry critically depends on the fact that

thermal equilibrium is sustained. This is the case if the non-
radiative multiphonon transition rates between the coupled ex-
cited states are substantially higher than the radiative and other
competitive relaxation rates. For trivalent lanthanides, the radia-
tive decay rates kr are typically in the order of 102–104 s−1 and
temperature-independent for most host materials (see also be-
low). Moreover, they are experimentally accessible by lumines-
cence decay measurements at cryogenic temperatures (T ≤ 10 K)
if the absolute quantum yield of a corresponding emissive tran-
sition is close to unity at these temperatures (see Section 4.1 for
more details). Radiative decay rates can be basically calculated
from time-dependent perturbation theory or, in the case of triva-
lent lanthanides, within the framework of the phenomenological
Judd-Ofelt theory (see Section 2.2). The previouslymentioned ap-
plets or program packages RELIC,[219] LUMPAC,[228] or, for the
special case of Eu3+, JOES[220] are useful for an automated deter-
mination of Judd-Ofelt parameters from experimental 4fn ↔ 4fn

absorption and emission spectra. Equation (18) then allows
to calculate the radiative rate from the spontaneous emission
coefficients.
The nonradiative rate, knr, in turn, shows both a prominent

temperature-dependence and is strongly determined by the ra-
tio between the energy difference ∆E21 and effective energy ℏ𝜔eff
of the optical phonons of an embedding host material. Thus, for
a desirable kinetic control of Boltzmann equilibrium in a spe-
cific luminescent thermometer, it is mandatory to know the ra-
tio between the radiative and nonradiative transition rates for
a selected electronic transition at a given temperature. While
Section 4 is fully devoted to the detailed kinetic analysis deter-
mining the performance of luminescent thermometers, this sub-
section will be focused on the temperature dependence of the
non-radiative transition rates thus building the bridge between
thermodynamics and kinetics. Moreover, here we will restrict
ourselves on the sole case of multiphonon relaxation and neglect
concentration-dependent effects such as energy transfer or cross
relaxation, as they specifically depend on the considered ion cou-
ple and the respective excited states of interest.
From a theoretical point of view, nonradiative decay rates of

lanthanide ions are quite often, if at all, only phenomenolog-
ically considered, which is related to difficulties in calculating
this quantity accurately for 4fn ↔ 4fn transitions due to the
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correspondingly low configurational coordinate offsets between
the electronic states. Contrarily, for transitions with a correspond-
ing offset, the Manneback recursion method by Fonger and
Struck works very well.[249,250] This technique has been recently
analyzed in detail for the temperature dependence of decay times
of Mn4+ in inorganic hosts.[76] We will present an alternative, in-
tuitive access to intrinsic nonradiative transition rates by means
of an energy transfer interpretation in Section 2.5.
In contrast to the difficulties in prediction of the precisemagni-

tude of the non-radiative rate knr(0) itself (see Section 2.5 for that),
all multi-phonon relaxation theories of intraconfigurational elec-
tronic states are consistent in their prediction of the temperature
dependence of knr. For that, consider that the lanthanide ion is
embedded in a crystalline host compound and coordinated by an-
ionic ormolecular ligands (this theory can, however, be also easily
generalized to, e.g., single complexes). The thermal average oc-
cupation number of any phonon mode with quasi-momentum
ℏk in the host is given by the Planck formula,

⟨nk⟩ = (exp(ℏ𝜔k

kBT

)
− 1

)−1

(36)

If the offset between the representative harmonic potentials of
the vibronic states |1n⟩ =|1⟩⊗ |n⟩ and |2m⟩ =|2⟩⊗ |m⟩ is close
to zero, which is represented by a small Huang-Rhys-Pekar factor
S < 0.5,[251] the multiphonon emission rate is simply governed
by[252–257]

kemnr (T) = g1knr(0)
∏
k

(
1 + ⟨nk⟩) (37)

where the additional term of 1 accounts for the spontaneous
emission contribution of the effective vibrational modes and
knr(0) denotes the limiting spontaneous non-radiative rate at 0 K.
The corresponding absorption rate reads[252–257]

kabsnr (T) = g2knr(0)
∏
k

⟨nk⟩ (38)

Correspondingly, the nonradiative absorption rate is reduced
by a factor

kabsnr (T)

kemnr (T)
=

g2
g1

∏
k

⟨nk⟩(
1 + ⟨nk⟩) =

g2
g1
exp

(
−
∑

k ℏ𝜔k

kBT

)

=
g2
g1
exp

(
−
ΔE21
kBT

)
(39)

compared to the emission rate, which is just the Boltzmann fac-
tor and themicroscopic physical foundation for ratiometric lumi-
nescence thermometry. Alongside, Equation (39) demonstrates
that Boltzmann-based thermometry is valid for the case of multi-
phonon emitters only.
The Born-Oppenheimer potentials in a solid do not strongly

deviate from harmonic behavior. Thus, electron–phonon cou-
pling is typically dominated by the interaction with one effective
vibrationalmode of energy ℏ𝜔eff below the cutoff energy ℏ𝜔max of
the phonon density of states. The number p of necessary phonons

to bridge the electronic energy gap ∆E21 is the next smallest in-
teger, i.e.

p :=
⌊
ΔE21
ℏ𝜔eff

≥ ΔE21
ℏ𝜔max

⌋
(40)

with ⌊x⌋ as the Gaussian floor function ensuring that p is an inte-
ger. For a reasonable elucidation of guidelines for luminescence
thermometry, it will be assumed that both considered electronic
states |1⟩ or |2⟩ couple to the same effective mode. kemnr (T) and
kabsnr (T) from Equation (37) and (38) can then be simplified to

kemnr (T) = g1knr(0)
(
1 + ⟨neff ⟩)p (41)

and

kabsnr (T) = g2knr(0)⟨neff ⟩p (42)

respectively.
As already mentioned earlier, the radiative decay rate kr(T) can

also have a weak temperature dependence. That is particularly
prominent for electronic states with electric dipole-forbidden ra-
diative transitions. If those states couple more strongly to local
odd-parity vibrational modes or phonons, the transition can be-
come vibronically allowed. A very prominent example for that is
the excited 2E state (in cubically symmetric fields) of the 3d3 con-
figuration like in Mn4+ or Cr3+,[64–77] but also the lowest excited
(dominantly) triplet states 3T2u and

3Eu of the 4f
135d1 configura-

tion of Yb2+.[189]

For T > 0, vibronic coupling leads to an increase in the inten-
sity of the Stokes (phonon emission, contribution of 1 + ⟨neff ⟩)
and anti-Stokes sidebands (phonon absorption, contribution of⟨neff ⟩). Thus, kr(T) can gain an additional temperature-dependent
contribution that increases by a factor of 2⟨neff ⟩ + 1,

kr(T) = kr(0)
[
1 + 𝜅

(
1 + 2⟨neff ⟩)]

= kr(0)
[
1 + 𝜅 coth

(
ℏ𝜔eff

2kBT

)]
(43)

𝜅 represents the relative strength between the zero-phonon and
vibronic side transitions. A theoretically very profound account
on 𝜅 was elaborated by Grinberg.[71,77] Given its definition, 𝜅 also
scales with the electron-phonon coupling constant. For trivalent
lanthanides, the value of 𝜅 is typically very small (𝜅 ≈ 0.01–0.05)
due to the shielded nature of the 4fn orbitals and is therefore neg-
ligible then.[258,259] The temperature dependence is the founda-
tion of the lifetime-based thermometric performance of Mn4+-
or Cr3+-activated phosphors at cryogenic temperatures due to the
stronger electron-phonon coupling in d orbitals.[63,70,72–75] Since
coth(x) → 1 for x ≫ 1 (ℏ𝜔eff ≫ kBT), while coth(x) ≫ 1 for x ≪

1 (ℏ𝜔eff ≪ kBT), the radiative decay rate becomes faster at low
temperatures already.

2.6. Nonradiative Transitions as Energy Transfer Rates to
Vibrational (Over)Tones—Unification of Electric and Magnetic
Dipole-Type Transitions

While the temperature-dependence of multiphonon transitions
is well understood, the intrinsic nonradiative transition rate
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knr(0) is more difficult to estimate. A very intuitive approach to
non-radiative transitions was originally proposed by Ermolaev
and Sveshnikova.[260,261] They embedded nonradiative decay pro-
cesses in the context of an energy transfer interaction between the
dipole moment governing the nonradiative transition and a local
vibrational fundamental mode or overtone in resonance to the
energy gap ΔE21 bridged by the nonradiative transition. This in-
terpretation of nonradiative transitions is particularly insightful
since it does not only allow their description by the same theory
as radiative rates, but also unifies electric and magnetic dipole-
type transitions as will be shown below. This model resulted in
both qualitatively and quantitatively correct predictions in coordi-
nation compounds[260,261] and lanthanide-doped nanocrystals dis-
persed in organic or aqueous solutions.[262,263]

The most common form of nonradiative transitions includes
an energy transfer between the electric transition dipole mo-
ment of the electronic transition and the corresponding vibra-
tional dipole moment in the sense of a Förster-type energy trans-
fer. It is the purpose of this section to illustrate the advantage
of this interpretation to unify the two main types of underlying
electron–phonon coupling into the explanation and how to con-
trol the magnitude of non-radiative transition rates. The starting
point is Fermi’s Golden Rule

knr(0) =
2𝜋
ℏ
||⟨int⟩||2𝜌 (Ef ) (44)

In there, |⟨int⟩|2 is the squared modulus of the Hamiltonian
interaction matrix element while 𝜌(Ef) denotes the available den-
sity of final phonon energy states and ensures the resonance con-
dition for the energy transfer. An alternative view on 𝜌(Ef) known
from physics is that it defines the available phase space for the
energy transfer: The higher 𝜌(Ef), the higher is the probability
for a non-radiative transition. This explains why usually optical
phonon modes of matching energy are coupled to. Their typi-
cally flat dispersion in reciprocal space leads to a high density of
states.
The electronic transition between the two excited states sepa-

rated by the energy gap ΔE21 gives rise to an electric or magnetic
transition dipole moment. In turn, the local vibrations or optical
phonons can be interpreted to induce electromagnetic fields due
to the movement of the surrounding ligands. The corresponding
electric andmagnetic field components are then derived from the
Liénard-Wiechert potentials known from electrodynamics.[264]

Those potentials are typically familiar to a wider audience as the
foundation for synchrotron radiation. It is noteworthy that the
following mechanism does not apply to acoustic phonons since
they cannot induce electromagnetic fields. The wavelength of the
vibrations (≈10−5 m) is much longer than the activator-ligand
bond lengths (≈nm) and especially longer than the vibrational
amplitudes. Thus, it is a very good approximation to consider the
induced electromagnetic fields in the near-field limit, i.e., close
to the luminescent center.
Let kvib = 2𝜋∕𝜆vib be the vibrational wavevector and R =|r − rvib| the distance between the activator and vibrating entity.

Since it is kvibR ≈ 10−4 – 10−3 ≪ 1, the near-field limit is a very
accurate approximation. For the simplest case of a single point

charge oscillating along the activator-ligand bond, the induced
electromagnetic field components explicitly read as follows,

Eind (r, t) =
1

4𝜋𝜀0𝜀r

3r̂
(
r̂ ⋅ 𝝁vib (t)

)
− 𝝁vib (t)

R3
(45)

Bind (r, t) =
𝜇0𝜇r

4𝜋
𝝁̇vib (t)

R2
× r̂ (46)

where 𝜖0 and 𝜖r are the dielectric constants in vacuum and the
relativemedium permittivity, respectively, while 𝜇0 and 𝜇r are the
magnetic vacuum andmedium permeability, respectively. r̂ is the
unit position vector,

r̂ =
r − rvib||r − rvib|| = r − rvib

R
(47)

and 𝝁vib(t) and 𝝁̇vib(t) are the vibrational transition dipole
moment and its time derivative, respectively. Formally, Equa-
tions (45) and (46) have to be summed over several coordina-
tion spheres in order to capture the total contribution to the elec-
tromagnetic field components in the near-field regime. In that
limit, the induced electric field component dominates despite
the stronger R−3 distance dependence (see also below). How-
ever, Equation (46) also states that the magnetic field compo-
nent is expected to scale proportionally to the phonon frequency
(by means of 𝝁̇vib(t) assuming a harmonically oscillating dipole
moment). This can be envisioned as a realization of the Biot-
Savart law since a vibrating activator-ligand bond formally in-
duces a current that in turn leads to a perpendicular magnetic
field.[264] The induced magnetic field should become stronger for
strong activator-ligand bonds containing light ligands, which vi-
brate with higher frequency.
Equations (45) and (46) also indicate that coupling is only

possible to longitudinally polarized optical phonons since the
induced field components will vanish otherwise. Moreover, in
agreement to expectation, the magnetic field component is
perpendicular to the electric field component. Finally, both
Eind(r, t) and Bind(r, t) decrease if vibrational overtones or mul-
tiple phonons are created. This stems from a corresponding de-
crease in amplitude of the vibrational dipole moment 𝝁vib(t). It
is a consequence of the real anharmonicity of the bonds.[265–271]

The weakening of the amplitude of the vibrational dipole mo-
ment roughly scales exponentially with the number of required
phonons p,[268–272]

||𝝁vib(0)||2 ∝ exp (−𝛾p) (48)

with a host-dependent constant 𝛾 in the order of 1. Equa-
tion (48) is the well-known energy gap law predicting an expo-
nential decrease in non-radiative multi-phonon relaxation rates
with the number of phonons involved. Several more elaborate
modifications from higher-order perturbation theory such as
the approaches by van Dijk and Schuurmans,[273] Hagston and
Lowther,[274] Pukhov and Sakun or others[275–279] exist that allow
for better agreement with experimental results, but consistently
predict the exponential scaling according to Equation (48). In a
solid, however, the rigidity of the crystal structure does not allow
as anharmonic bonds as in a freemolecule, whichmeans that the
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energy gap law (48) will only be valid for rather low phonon num-
bers (p ≤ 4). For higher phonon numbers, the nonradiative tran-
sition rate between two levels is expected to be negligibly small in
a solid. This is consistent with the experimentally established fact
that radiative decay is usually expected from energy levels sepa-
rated by a gap of 5 or more phonons from the next lower level.
With those preliminaries, the energy transfer interpretation

of non-radiative rates between two electronic states can be sim-
ply understood as a coupling between transition dipole moment
and vibrationally induced electromagnetic field. Let  represent
any of the electromagnetic field components, = {E(r, t);B(r, t)}.
The interaction matrix element then reads

||⟨int⟩||2 = ||⟨𝝁 ⋅ ⟩||2 (49)

with 𝝁 as the electric or magnetic transition dipole moment
at the luminescent center that couples to the corresponding
field component  , respectively. Equations (45)–(49) imply that
any magnetic dipole-type nonradiative transition leads to much
lower nonradiative transition rates than any corresponding elec-
tric dipole-type transition. Their relative magnitude can be esti-
mated by

kMD
nr (0)

kEDnr (0)
=
|||⟨𝝁mag ⋅ Bind⟩|||2||⟨𝝁el ⋅ Eind⟩||2 ≈ n4

16
𝛼2
(
kvibR

)2 ∼ 10−8 − 10−9 (50)

with n2 =
√
𝜀r𝜇r as the refractive index and 𝛼 as the elec-

tromagnetic fine structure constant. The results from this
interpretation of nonradiative transitions are in excellent
agreement with the original estimates by Dexter on magnetic
dipole-electric dipole-type energy transfer mechanisms.[280] The
magnetic dipole-electric dipole-type energy transfer additionally
underlies specific symmetry selection rules in order to occur at
all and may be inhibited in cubic symmetries.[281] Moreover, this
general derivation predicts a clear difference in the dependence
on the activator-ligand dependence for electric-dipole type (≈R−6)
and magnetic-dipole type (≈R−4) transitions. The estimate from
Equation (50) easily explains that magnetic-dipole type nonradia-
tive transitions can become as slow as the radiative decay of 4fn

levels even if a resonant phonon can bridge the energy gap be-
tween the two coupled excited levels. It should be noted, however,
that in the case of the lanthanides, electric dipole-type transitions
are not pure but actually of induced nature in the framework of
Judd-Ofelt theory. Thus, they are connected to much lower oscil-
lator strengths find ED than 1 (typically in the order of 10−6) and
consequently, the weakening of magnetic dipole-type transitions
as given in Equation (50) in the case of the J→ J′ transitions be-
tween spin-orbit levels of the lanthanides is not as severe,

kMD
nr (0)

kind ED
nr (0)

=
fED

find ED

|||⟨𝝁mag ⋅ Bind⟩|||2||⟨𝝁el ⋅ Eind⟩||2
≈ 1
10−6

⋅
n4

16
𝛼2
(
kvibR

)2 ≈ 10−2 − 10−3 (51)

This estimate demonstrates that magnetic dipole-type nonra-
diative transitions are, however, still inherently slow compared to
any transitions with an electric dipole type character.

The biggest advantage of non-radiative transitions in the
framework of coupling between a transition dipole and a vi-
brationally induced field component is the employment of the
well-established compendium on selection rules of radiative
transitions to easily identify a certain type of nonradiative transi-
tions among two excited states. Thus, not only does this mecha-
nism unify magnetic and electric dipole type nonradiative transi-
tions being two consequences of the same coupling mechanism,
but it also asserts a direct relation between non-radiative tran-
sition rates and radiative ones. At least in the context of elec-
tric dipole-type transitions, this is analogous to the established
theories of, e.g., Pukhov et al.,[275,278] Strek[282] or van Dijk and
Schuurmans,[273] which describe non-radiative transition rates
for lanthanides in a similar framework to Judd-Ofelt-based radia-
tive decay rates. Thus, simple inspection of the reduced matrix
elements (see Equations (20) and (21)) in Carnall’s tables[217] or
with programs such as RELIC[219] do also allow to at least qualita-
tively judge whether an intrinsic nonradiative transition rate be-
tween two excited levels is expectedly of (induced) electric dipole
or magnetic dipole nature.

2.7. Guidelines on Phonon Energies ℏ𝝎eff for Optimum
Thermometry Performance

So far, only the optimized range for feasible energy gapsΔE21 was
specified, which offers guidelines for themost suitable choice of a
luminescent ion. It is also possible to establish a similar decision
flowchart for the optimumeffective host phonon energy to bridge
an energy gap ΔE21. This provides an additional guideline for a
thermodynamically optimized choice of host besides the guide-
line on the preconstant C to match the other condition for opti-
mized photon count rates (see Equation (35)). According to the
previous section, nonradiative rates can be interpreted as to arise
from an interaction between a transition dipole moment and vi-
brationally induced electromagnetic field. This interpretation is
only possible for optical phonons. Since the density of phonon
states is very high for optical phonons all over the first Brillouin
zone (for acoustic phonons, that is only the case at the zone
boundary), luminescence thermometry is dominated by coupling
to longitudinal optical phonons. Thus, we will restrict ourselves
to this case only and disregard coupling to acoustic phonons,
which is more relevant for thermal coupling among crystal field
states with very low energy gaps. Optical phonon energies of typi-
cal inorganic host compounds for dopants cover a range between
around 150 cm−1 (heavy halides) to around 1300 cm−1 (borates).
Both the number of phonons p and the phonon energy ℏ𝜔eff en-
ter the non-radiative transition rates kemnr (T) and k

abs
nr (T) due to the

energy gap law (Equation (48) and the Planck factor (Equations 41
and 42). It is insightful to compare the one-phonon non-radiative
transition rates, kemnr (T, p = 1) or kabsnr (T, p = 1), to the respective p-
phonon transition rates, kemnr (T, p > 1) or kabsnr (T, p > 1).
With higher required phonon numbers p, the intrinsic non-

radiative transition rate knr(0) exponentially decreases according
to Equation (48). The ratios can be defined with respect to the
previously introduced variable r = ΔE21/kBT,

kemnr (r, p = 1)

kemnr (r, p > 1)
=

kabsnr
(r, p = 1)

kabsnr (r, p > 1)
∝ exp (p − 1)

[
exp(r) − 1

][
exp (r∕p) − 1

]p (52)
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Figure 6. Ratios of the nonradiative transition rates involving one phonon
to bridge an energy gap ΔE21 to the corresponding rate for a p-phonon
transition (see Equation 52). The functions are parametrized in r =
ΔE21/kBT.

and are depicted in Figure 6 for selected phonon numbers p.
From the evolution of these ratios, the most advisable number of
involved phonon modes to bridge the energy gap ΔE21 at a given
temperature T can be deduced.
At the optimum r = 2, it is visible that a two-phonon nonra-

diative transition rate is almost as large as that for a one-phonon
process. Those involving three and four phonons are even higher
than the transition rate for a one-phonon process. This is un-
derstandable since r = 2 is already in a range of rather low en-
ergy gaps or elevated temperatures. In that regime, stimulated
phonon absorption and emission can take place for sufficiently
low phonon energies, which then accelerate nonradiative transi-
tions between two electronic levels separated by the energy gap
ΔE21. Two shortcomings of the idealization of one effective mode
become apparent here. At those high temperatures, also stim-
ulated emission from lower energetic phonon modes will con-
tribute, which still effectively increase the one-phonon nonradia-
tive relaxation rate. This is not readily captured in a one-effective
mode model. Moreover, it has been discussed in Section 2.3
that for practically desired relative sensitivities Sr0 > 1% K−1,
the optimum performance of a Boltzmann thermometer at r =
2 (ΔE21 = 2kBT) is only feasible at temperatures below 200 K or
energy gaps below around 300 cm−1. The requiredmaximum op-
tical phonon energies to allow three- or four-phonon processes
are thus below 100 cm−1, below the minimum cut-off optical
phonon energies known for inorganic hosts. Overall, for r = 2,
only one- or two-phonon processes are practically accessible with
cut-off optical phonons. The non-radiative transition rates for the
one- or two-phonon transitions are almost equal at r= 2 (see black
curve in Figure 6). In Section 4.3, an additional kinetic argument
for the restriction tomaximum two phonons for Boltzmann ther-
mometry will be given.
The choice of a host material that favors either a one- or two-

phonon non-radiative transition rate is dependent on the prac-
tical conditions (see Figure 7a). The already low energy gap of
maximum ΔE21 = 300 cm−1 for optimum performance of the
thermometer with sufficiently high relative sensitivity (Sr0 > 1%

K−1) requires a host with an effective optical phonon mode at
150 cm−1. This is typically encountered for heavy halides only,
which are, however, difficult to chemically prepare completely
anhydrous and nanocrystalline form. Thus, from a practical per-
spective, a one-phonon transition appears more compatible with
the optimum conditions on a Boltzmann thermometer with high
relative sensitivities. On the other hand, if the relative sensitivity
is granted to be lower, both the eligible temperature and energy
gaps are higher. For those cases, a two-phonon transition is a rea-
sonable alternative to avoid non-radiative luminescence quench-
ing to an energetically lower quenching state |q⟩.
At r = 2 +

√
2 ≈ 3.41, the one-phonon nonradiative transition

rate is dominant (see Figure 6). If compared to a two-phonon
rate (see black curve in Figure 6), a one-phonon transition in that
range of r is almost twice as fast, which clearly favors the choice of
a host that allows for resonant one-phonon transitions to bridge
the energy gap ΔE21.
Especially if the nonradiative transition is magnetic dipole

type, this can already be a crucial benefit. Thus, inherently slow
magnetic dipole-type nonradiative transitions are not expected to
perform well for Boltzmann thermometry at higher energy gaps
or lower temperatures if more than one phonon is required to
bridge ΔE21. Electric dipole-type transitions are in turn expected
to be more flexible towards a release of that restriction since they
are inherently fast. This is particularly important if a lower ener-
getic quenching state |q⟩ is present. It is self-explanatory that for
a reasonably performing luminescent thermometer |q⟩ should
be separated by a larger energy gap ΔE1q from the emissive state|1⟩ than the thermally addressed energy gap ΔE21. The quench-
ing rate exponentially decreases with the number of required
phonons according to Equation (48). Thus, for a sufficiently high
energy gap ΔE1q (rule of thumb: ≥ 5 ΔE21), this precautionary
choice of a host with lower phonon energy is not necessary and
a host allowing for a one-phonon non-radiative transition can
be chosen. If ΔE1q is, however, only slightly larger than ΔE21, it
may be more reasonable to choose a host with lower maximum
phonon energy and favor a two-phonon process. Although the
corresponding nonradiative transition rates connecting states |1⟩
and |2⟩ for a two-phonon process are lowered by a factor of 2, the
number of phonons consumed in the quenching process are also
doubled, which reduces the quenching rate by a factor of e2 ≈

7.39. Also these overall guidelines can be implemented in a sim-
ilar decision flowchart (Figure 7b) towards an optimum effective
phonon energy that allows for a specific choice of a suited host
material for luminescence thermometry.

3. Assessment on the Linearization of the
Boltzmann Distribution

Particularly in in vivo thermometry, only small temperature
ranges are probed. In that special situation, the intensity ratio
R(T) may show an approximately linear correlation to the tem-
perature, and would allow for an even simpler calibration of
temperatures than with the Boltzmann distribution itself (see
Equation 16).[36,55,123] However, dependent on the type of appli-
cation, temperature precision is very important. Especially in
those cases, it is mandatory to assess the errors introduced by
such a simplification appropriately. Very often, a linearization of
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Figure 7. Decision flowcharts for the choice of the optimized effective phonon energy for a Boltzmann-based luminescence thermometer performing at

a) r0 = ΔE21/kBT = 2 or b) r0 = ΔE21/kBT = 2 +
√
2. For further explanations on the flowcharts, see text.

the Boltzmann distribution and calibration with a linear least-
squares fit is done without any justification. The purpose of this
section is to provide the validity regime for such a linearization
of Boltzmann’s law. Moreover, it is also desirable to know which
calibration method (linearized or Boltzmann-type plot) is more
robust towards introduced systematic experimental errors such
as those stemming from photon count fluctuations. Suppose a
small temperature range ΔT around a desired central tempera-
ture T0 ≫ ΔT is measured. If kBT = kB(T0 ± ΔT) > ΔE21, it is
valid to expand the Boltzmann distribution (16) around T0 and
truncate the series after linear order,

R(T) = C
g2
g1
exp

(
−
ΔE21
kBT

)

= C
g2
g1
exp

(
−r0

) [(
1 − r0

)
+ r0

T
T0

]
+ 

((
ΔT
T0

)2
)

(53)

with r0 = ΔE21∕kBT0. Both the Boltzmann distribution and the
linear expansion are depicted in Figure 8a. In particular, Equa-
tion (53) predicts a positive slope for a plotting the intensity ratio
directly versus temperature, in perfect agreement with reported
findings in literature.[35,54,120]

The approximation of the Boltzmann distribution law by a lin-
ear expansion introduces an additional relative bias

Δ(T)
R(T)

=
|||||1 −

[(
1 − r0

)
+ r0

T
T0

]
exp

[
−r0

(
1 −

T0
T

)]||||| (54)

It is plotted for selected values of r0 in terms of T/T0 in
Figure 8b. Two important aspects can be noted. First, the rela-
tive errors are generally smaller over a wider temperature range
if r0 < 1 or, alternatively, if ΔE21 < kBT in perfect agreement with
the stated precondition above. Second, the relative error becomes
even minimized if r0 = 2, which is a consequence of the thermal
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Figure 8. a) Illustration of the linearization (red, dashed-dotted) of a Boltzmann-type evolution (black, solid) of the LIR in a narrow temperature regime
around central temperature T0. b) Relative errors of the linear expansion of Boltzmann’s law (see Equation 54) for different values of r0 being an alternative
representative of the energy gap ΔE21.

response becoming maximized at that point (see Equation 24).
For r0 > 2, it quickly grows for small deviations from T0. Thus,
a strategy aiming at a minimum relative error for a linearization
of the Boltzmann distribution would formally suggest to remain
with the optimum condition (24). On the other hand, the valid-
ity of the expansion (53) is critically dependent on the magnitude
of r0 itself. An alternative, practically relevant condition on the
decision for a linearization of the Boltzmann distribution is the
robustness of the relative errors towards relative uncertainties of
the measurable intensity ratio if a Boltzmann plot is employed
for temperature calibration

||||d lnR(T)lnR(T)

|||| = 1||lnR(T)||
||||dR(T)R(T)

|||| (55)

The relative error, | dR(T)
R(T)

|, in a linearized plot is only smaller

than the relative error in a Boltzmann plot if |lnR(T)| < 1. This
is clearly the case for ΔE21 < kBT0 or, alternatively, if r0 < 1, as
mentioned above. Thus, a linearization of the Boltzmann distri-
bution is in fact even practically only justified for low energy gaps
as given between, e.g., the crystal field states of 4fn spin–orbit lev-
els of trivalent lanthanide ions. Indeed, for Boltzmann thermom-
etry relying on emission from the two crystal field components
of the 4F3/2 level of Nd

3+ (ΔE21 ≈ 100 cm−1), linearized calibra-
tion procedures have been successfully used around room tem-
perature, consistent with the present findings.[105,114,120,245] How-
ever, linearization does not comply with the previously described
optimization strategy toward an energy gap of at least 2kBT for
optimum performance and high relative sensitivities and is only
of meaningful use for lower energy gaps and sufficiently narrow
temperature ranges.

4. Kinetic Perspective—Control over Boltzmann’s
Law and Generalized Kinetics of Two Thermally
Coupled Excited States

4.1. Analysis of the Excited State Dynamics—Experimental
Determination of Radiative and Nonradiative Decay Rates of the
Excited Two-State System

The validity of the Boltzmann distribution as the governing tem-
perature calibration law for luminescence thermometry will crit-

ically depend on a balance between radiative decay and non-
radiative transition rates. Only if nonradiative relaxation rates be-
tween thermally coupled levels are faster than radiative decay can
Boltzmann equilibrium be kinetically realized. Besides advanced
theoretical tools to predict those rates, still one of the simplest and
most straightforward approaches to gain insight in the balance
between radiative and nonradiative decay rates are luminescence
decay experiments. For that purpose, it is insightful to consider
the kinetics of an excited two-state system. It can be described by
the following coupled system of rate equations,(

Ṅ1 (t, T)
Ṅ2 (t, T)

)

=
(
−
(
k1r(T) + kabsnr (T)

)
kemnr (T)

kabsnr (T) −
(
k2r(T) + kemnr (T)

))(N1 (t, T)
N2 (t, T)

)
(56)

whereNj(t, T) denotes the time- and temperature-dependent pop-
ulation in the excited state |j⟩ = {|1⟩, |2⟩}. Equation (56) is valid
under the assumption that the considered excited states are ener-
getically sufficiently well separated from other excited states such
that competing quenching or thermalization effects are negligi-
ble. Equation (56) can be in principle analytically solved for both
N1(t, T) and N2(t, T) (see Supporting Information for the full so-
lution and discussion of some limiting cases), which are both de-
scribed by biexponential functions. The exact solutions are not
very insightful for a detailed interpretation, however, since the
resulting decay rates are complicated combinations of the rates
in Equation (56).
The analysis is considerably simplified at sufficiently low tem-

peratures (the lower boundary temperature will be given below)
since it is then a valid approximation to set kabsnr (T) ≈ 0 by Equa-
tion (42). All decay rates will then take their limiting values at T
→ 0. Upon excitation into the lower excited state |1⟩, the decay
functions are given by (see Figure 9)(
N1 (t, 0)
N2 (t, 0)

)
= N1 (0, 0)

(
exp

(
−k1r(0)t

)
0

)
(57)

allowing a determination of k1r(0). As expected, the neglected
nonradiative absorption rate leads to sole population of the lower
excited state |1⟩. Excitation into the higher excited state |2⟩ is
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Figure 9. Theoretically expected luminescence decay curves (semilog
scale) of an idealized excited two-state system at low doping concentra-
tions and cryogenic temperatures. Dashed-dotted curves indicate excita-
tion into state |1⟩ while solid curves indicate excitation into state |2⟩. tmax
is also indicated. For further explanations, see text.

reflected in the initial condition N2(0, 0) ≠ 0 and gives (see
Figure 9)(
N1 (t, 0)
N2 (t, 0)

)
= N2 (0, 0)(

kemnr (0)

k2r(0)+kemnr (0)−k1r(0)

{
exp

(
−k1r(0)t

)
− exp

[
−
(
k2r(0) + kemnr (0)

)
t
]}

exp
[
−
(
k2r(0) + kemnr (0)

)
t
] )

(58)

It is typically k1r < k2r + kemnr , i.e., state |2⟩will decay faster than
state |1⟩, especially due to the additional nonradiative decay. The
luminescence decay curve of state |1⟩ shows an initial exponen-
tial rise based on the non-radiative feeding from state |2⟩ and
decays with a rate of k1r(T) at the longer delay time tail.
The time tmax at which the decay curve goes through a global

maximum is dependent on the ratio between k1r(0) and k2r(0) +
kemnr (0),

tmax =
1

k2r(0) + kemnr (0) − k1r(0)
ln
(k2r(0) + kemnr (0)

k1r(0)

)
(59)

Since logarithmic growth is weaker than linear growth, tmax
overall decreases with increasing kemnr (0), which is also reason-
able since feeding of state |1⟩ proceeds faster then. Thus, tmax in-
creases with decreasing phonon energy at low temperatures due
to the energy gap law (48). Moreover, tmax converges to the maxi-
mum possible value of k−11r (0) = (k2r(0) + kemnr (0))

−1 in the limiting
case of k1r(0) = k2r(0) + kemnr (0). tmax is the time at which steady
state conditions are present in the excited states despite pulsed ex-
citation and the limit of equal rates ( k1r = k2r + kemnr ) corresponds
to the extreme case of continuous steady state conditions. Section
5.2 will deal with the consequences of that extreme case for gen-
eralized ratiometric luminescence thermometry. Figure 9 illus-
trates the previously described appearance of the luminescence
decay curves of both excited states at low temperatures, where
kabsnr (T) ≈ 0.

For accurate values of all decay rates, very low doping concen-
trations (≈ 0.01%–0.1%) are advisable in order to avoid side ef-
fects from energy transfer, cross relaxation or energy migration
processes, which provide additional decay channels and severely
complicate the analysis. Moreover, in time-resolved experiments,
in which photons are detected by time-correlated single photon
counting (TCSPC) techniques, the phosphor powder or colloidal
solutions should be best diluted with non-absorbing powders or
transparent dispersing solvents in the spectral range of interest,
such as BaSO4 or n-hexane.

[263] This avoids reabsorption effects
among luminescent centers in the same or different crystallites
or nanoparticles, which would produce artificial lengthening ef-
fects on the measured radiative decay times. Also, saturation of
the photon-counting detector should be avoided as that can also
lead to artificial lengthening of measured decay times.
In order to extract the intrinsic nonradiative decay rate knr(0)

(see Equations (41) and (42) for the definition), it is necessary to
acquire a separate photoluminescence spectrum upon selective
excitation into state |2⟩. Given that the emission intensities are
measured in photon count numbers ⟨ ⟩, the relative quantum
yields of the two states at sufficiently low temperatures can be
assessed by the photon count numbers[189]

𝜙1(0) =
kemnr (0)

k2r(0) + kemnr (0)
=

𝛽20⟨ ⟩10(0)
𝛽20⟨ ⟩10(0) + 𝛽10⟨ ⟩20(0)

= 1 − 𝜙2(0) (60)

with 𝛽10 and 𝛽20 as the respective emission branching ratios into
the ground state |0⟩. Thus,
knr(0) =

𝜙1(0)
g1𝜏2(0)

= 1
g1𝜏2(0)

𝛽20⟨ ⟩10(0)
𝛽20⟨ ⟩10(0) + 𝛽10⟨ ⟩20(0) (61)

and

k2r(0) =
𝜙2(0)
𝜏2(0)

= 1
𝜏2(0)

𝛽10⟨ ⟩20(0)
𝛽20⟨ ⟩10(0) + 𝛽10⟨ ⟩20(0)

= 𝜏−12 (0) − g1knr(0) (62)

while the decay time 𝜏2(0) can be obtained from the single expo-
nential decay curve of the higher energetic emission upon exci-
tation into state |2⟩
𝜏2(0) =

∫ ∞
0 dt t⟨ ⟩20 (t, 0)
∫ ∞
0 dt ⟨ ⟩20 (t, 0) (63)

It is noteworthy that Equations (61) and (62) also account for
the limiting cases that the decay from state |2⟩ can be either
purely radiative or non-radiative, respectively. This case is trans-
lated to the presence of only one observable radiative transition
in the luminescence spectrum. Accordingly, the relative errors on
the experimental determination of knr(0) or k2r(0), respectively,
are dependent on the relative uncertainties of the luminescence
intensities, represented by ⟨ ⟩10(0) and ⟨ ⟩20(0), respectively.
Once all intrinsic decay rates have been established with aid

of Equations (57)–(63), it is in principle possible to predict the
rates at arbitrarily higher temperatures by Equations (41)–(43)
if the effective vibrational energy ℏ𝜔eff is known. In particular,
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Figure 10. Plot of the Planck factor ⟨neff ⟩ versus temperature. The critical
temperature Tc at which the graph of ⟨neff ⟩ has its maximum curvature is
indicated.

it is even possible to assess the not straightforwardly measur-
able non-radiative absorption rate kabsnr (T) by means of knr(0) with
aid of Equation (42). Independently, the presented analysis is
also extendable to any higher temperature if the approximation
kabsnr (T) ≈ 0 is valid. The temperature at which breakdown of that
approximation occurs can be experimentally verified by different
means. One of the most straightforward proofs is the measure-
ment of a luminescence spectrum upon direct excitation into the
lower energetic excited state |1⟩. Any observation of a higher en-
ergetic emission band arising from thermal population of state|2⟩ indicates that kabsnr (T) ≠ 0. The appearance of the correspond-
ing luminescence decay curves will then deviate from the ideal
shape as depicted in Figure 9.
The suitability range of the approximation kabsnr (T) ≈ 0 may be

at least roughly predicted by definition of that critical tempera-
ture Tc at which both ⟨neff ⟩ and 1 + ⟨neff ⟩ show their maximum
curvature. The corresponding temperature is governed by the nu-
merical solution of the following equation (see Supporting Infor-
mation for the derivation)

√
3
(

ℏ𝜔eff

2kBTc
coth

(
ℏ𝜔eff

2kBTc

)
− 1

)
−

ℏ𝜔eff

2kBTc
= 0 (64)

which yields the upper bound

T ≤ Tc ≈ 0.2227
ℏ𝜔eff

kB
(65)

and may serve as an estimate for the temperature validity regime
of kabsnr (T) ≈ 0. For T > Tc, ⟨neff ⟩ starts to increase more rapidly
until it grows linearly with T (see Figure 10). In that case, the
nonradiative absorption rate cannot be neglected anymore and
the two excited states |1⟩ and |2⟩ start becoming thermally cou-
pled. As expected, the threshold temperature Tc increases with
increasing effective vibrational energy. Except for heavy halides or
chalcogenides with smallest optical phonon energies of around
150 cm−1, in which the lowest threshold temperature is around
50 K, the decay analysis in most inorganic hosts can be al-
ready verified at liquid N2 temperatures (≈70–80 K). This tem-

perature range is typically sufficient to fulfill the approximation
kabsnr (T) ≈ 0.
Equation (65) can be easily generalized to the case of multi-

phonon processes. If the energy gapΔE21 is bridged by p phonons
of energy ℏ𝜔eff , the corresponding threshold temperature for ap-
preciable thermal excitation of the phonon modes increases to
pTc (see Supporting Information for a proof). Thus, typically for
p > 4 and a phonon energy ℏ𝜔eff ≫ kBT, the non-radiative tran-
sition rates knr(T) can become so small that they become neg-
ligible compared to the radiative decay rates. The coupled rate
equation system (56) is diagonalized in that case and the two ex-
cited states are not thermally coupled anymore. Both states |1⟩
and |2⟩ then decay purely radiatively and can be treated as two
thermally isolated states (see Figure 11a). Thus, for any Boltz-
mann thermometer, the energy gap ΔE21, the phonon energy
ℏ𝜔eff and the thermal energy kBT must be of similar order of
magnitude. While the previously described elucidation of the
different radiative and nonradiative rates is best performed if
ΔE21 ≳ ℏ𝜔eff ≫ kBT (see Figure 11b), Boltzmann thermometry
is best performed at the condition ΔE21 ≳ ℏ𝜔eff ≫ kBT (see Fig-
ure 11c). This again demonstrates that Boltzmann thermometers
generally only perform well in a limited temperature range. It is
noteworthy that at very high temperatures, Boltzmann thermom-
etry is practically disturbed by the gradual shift of thermal black-
body radiation background into the visible range that can pose
problems to an accurate determination of the luminescence in-
tensities of interest. Moreover, thermalization with higher lying
states will also occur. In that regard, the excited two state system
is only an idealized model system and Boltzmann thermometry
will have practical limitations also for high temperatures.

4.2. Temperature-Dependent Steady State Dynamics of Two
Excited States–Generalization and Conditions for Failure of
Boltzmann Thermometry

4.2.1. General Excited State Dynamics Model for Two Thermally
Coupled Excited States

An immediate consequence from the kinetic analysis of the pre-
vious section is that at temperatures below Tc, the Boltzmann
distribution may not be sustained anymore since the nonradia-
tive absorption rate from the excited state |1⟩ to |2⟩ then be-
comes negligible. According to Equation (50), this is especially
serious if the nonradiative transition rate has a MD-type charac-
ter since the intrinsic nonradiative rate knr(0) is not sufficiently
high to compensate the effect from the very small Planck factor⟨neff ⟩ then. Overall, any ion luminescent thermometer based on
Boltzmann equilibrium among the excited states will fail at suf-
ficiently low temperatures once the nonradiative transition rates
kabsnr (T) and kemnr (T) become comparable to the radiative rates k1r
and k2r. According to Section 2.6, this is especially a problem for
luminescent ions with two excited states thermalizing via a mag-
netic dipole-type nonradiative transition. Knowledge about these
limitations does not only provide a mechanistically more elabo-
rate picture of the performance of a luminescent thermometer
over a very wide temperature range, it also offers guidelines for
the kinetic control of a Boltzmann-based single ion luminescent
thermometer.
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Figure 11. Different scenarios of excited state dynamics of a single ion luminescent thermometer dependent on the relative sizes of the energy gap
ΔE21, ℏ𝜔eff and kBT. a) If ΔE21 ≳ ℏ𝜔eff ≫ kBT, the excited two states are thermally isolated and even spontaneous nonradiative emission from |2⟩ to|1⟩ is not favorable. The two states only decay radiatively and are isolated. b) If ΔE21 ≳ ℏ𝜔eff ≫ kBT, spontaneous non-radiative emission from |2⟩ to|1⟩ occurs additionally. This is the situation to be met for the elucidation of all intrinsic decay rates. c) If ΔE21 ≳ ℏ𝜔eff ≫ kBT, the two states |2⟩ and|1⟩ both populate each other non-radiatively. If the non-radiative rates supersede the radiative rates, thermodynamic equilibrium is achieved. This is the
most desirable situation for a Boltzmann-based luminescence thermometer.

Reported examples for the observation of a kinetically induced
failure of the Boltzmann distribution for thermometry are the lu-
minescent 5D1 → 7FJ and

5D0 → 7FJ transitions of Eu
3+ (∆E21

≈ 1700 cm−1)[135,198] or the 4I15/2 → 6H15/2 and
4F9/2 → 6H15/2

transitions of Dy3+ (∆E21 ≈ 1000 cm−1)[135] at temperatures be-
low around 550 and 400 K, respectively. In those cases, the tem-
perature dependence of the intensity ratio is no longer governed
by Boltzmann’s law but must be accounted for by careful con-
sideration of the generalized excited state dynamics instead. A
generalized model for the steady-state kinetics of a two excited-
state system has been recently presented and discussed in the
case of Eu3+ by Geitenbeek et al.[198] A similar problem involv-
ing thermal coupling of the 5DJ (J = 0, 1, 2) states of Sm2+ upon
excitation into the excited 4f55d1 configuration was also investi-
gated in very much detail by Shen and Bray[181] and in the case of
different non-offset 4f125d1 states of Tm2+ by Güdel et al.[186] In
contrast to the indicated very specific cases, however, we will now
derive a general excited state dynamical model that contains all
those cases and allows for the elucidation of general guidelines.
The conditions for a ratiometric thermometry experiment

were outlined in Section 2.2.1. Suppose that the previously
introduced auxiliary state |a⟩ is populated with population Na
from all present, non-interacting luminescent ions. Given that
state |a⟩ does not show any radiative emission, the relaxation

rates from |a⟩ to the states |2⟩ and |1⟩ can be approximated as
𝛼ajK (j = 1, 2), respectively with the effective non-radiative decay
rate K as introduced in Equation (10). The 𝛼aj denote so-called
feeding ratios. Very often, it is 𝛼a2 > 𝛼a1 > 0 due to the smaller
energy gap between state |a⟩ and |2⟩ (compare to Equation (48)),
although that specifically depends on the selection rules govern-
ing the non-radiative transitions |a⟩→ |2⟩ and |a⟩→ |1⟩ (see Sec-
tion 2.5). If the thermally probed states are also energetically suf-
ficiently separated from other lower lying electronic states and
no intermediate states between |a⟩ and |2⟩ are present, it is even
𝛼a1 + 𝛼a2 = 1. Finally, we explicitly neglect any additional cross-
relaxation effects among different spatially close ions (achievable
by low doping concentrations), although they can be formally eas-
ily incorporated into the coupled rate equation system (56).[192]

However, the additionally introduced parameters would distract
from the main properties of the single ion luminescent ther-
mometer, which is the focus of this work.
The steady-state conditions under the previously described

preliminaries applied on the rate equation system (56) for the
populations in the excited states |1⟩ and |2⟩ read
(
𝛼a1KNa
𝛼a2KNa

)
=
(
k1r(T) + kabsnr (T) −kemnr (T)

−kabsnr (T) k2r(T) + kemnr (T)

)(
N1(T)
N2(T)

)
(66)
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This system can be explicitly rearranged for a population ratio
and by introduction of all temperature dependences (see Equa-
tions (41)–(43)), the generalized formula for the modified LIR is
given by

R(T) = C
N2

N1
= C

𝛼a2k1r(T) +
(
𝛼a1 + 𝛼a2

)
kabsnr (T)

𝛼a1k2r(T) +
(
𝛼a1 + 𝛼a2

)
kemnr (T)

= C
𝛼a2k1r(0)

[
1 + 𝜅

(
2⟨neff ⟩ + 1

)]
+
(
𝛼a1 + 𝛼a2

)
g2knr(0)⟨neff ⟩p

𝛼a1k2r(0)
[
1 + 𝜅

(
2⟨neff ⟩ + 1

)]
+
(
𝛼a1 + 𝛼a2

)
g1knr(0)

(
1 + ⟨neff ⟩)p (67)

with C as defined in Equation (16), 𝛼a1 and 𝛼a2 as the previously
defined feeding ratios from the auxiliary state |a⟩ and 𝜅 as a mea-
sure for the strength of the electron-phonon coupling. An anal-
ogous formula has already been reported by Geitenbeek et al.
earlier.[198]

It is instructive to analyze the meaning and limits of the gen-
eralized LIR according to Equation (67). It correctly contains the
limit of the conventional Boltzmann distribution if the nonradia-
tive transition rates are much larger than the radiative rates (i.e.,
if k1r(T), k2r(T)≪ knr(T)). If T > Tc (see Equation 65), the Planck
factors start becoming the dominant terms in Equation (67). Fac-
torization of ⟨neff ⟩ from the nominator and ⟨neff ⟩ + 1 from the de-
nominator then allows tomake the terms containing the radiative
rates k1r(0) and k2r(0) safely negligible, respectively. Finally, with
Equation (39) and the remaining Planck factors from the non-
radiative contributions in Equation (67), it is straightforward to
recover the Boltzmann distribution as the limit of dominant non-
radiative rates (knr(T)≫ kjr(T) with j = 1, 2),

R(T) → C exp
(
−
ℏ𝜔eff

kBT

)
g2
g1
exp

(
−
(p − 1)ℏ𝜔eff

kBT

)

= C
g2
g1
exp

(
−
ΔE21
kBT

)
(68)

However, this analysis also demonstrates that the Boltzmann
distribution is only expected above the threshold temperature Tc
for a one-phonon or pTc for a p-phonon transition, respectively
(see Equation 65). At low temperatures, the validity of the Boltz-
mann distribution will critically depend on the relative size of
the intrinsic transition rates. Only if k1r(0) ≪ g2knr(0) and k2r(0)
≪ g1knr(0), Boltzmann equilibrium is kinetically sustained down
to lowest temperatures. This indicates that Boltzmann behavior
can be controlled by appropriate engineering of the intrinsic non-
radiative transition rate.
For the discussion of the generalized LIR irrespective of the

specific luminescent ion, it is again helpful to reparametrize
Equation (67) in terms of the variable r (see Equation 25). After
some straightforward rearrangements, it follows

R(r) = C
g2
g1

𝛼a2

𝛼a1
⋅

k1r(0)

g2knr(0)

[
1 + 𝜅 coth

(
r
2p

)]
+
(
1 + 𝛼a1

𝛼a2

) [
1
2

(
coth

(
r
2p

)
− 1

)]p
k2r(0)

g1knr(0)

[
1 + 𝜅 coth

(
r
2p

)]
+
(
1 + 𝛼a2

𝛼a1

) [
1
2

(
coth

(
r
2p

)
+ 1

)]p (69)

where Equation (36) was used for the Planck factors. This func-
tion is plotted for different phonon numbers p and conse-
quently varying parameters knr(0) (by the energy gap law, Equa-

tion 48) and 𝛼a1 and 𝛼a2 in Figure 12. Both the cases of negli-
gible electron-phonon coupling (𝜅 ∼ 0, typical for trivalent lan-
thanides) and stronger electron–phonon coupling (𝜅 > 1, typ-
ical for Cr3+, Mn4+, divalent lanthanides) are depicted in Fig-
ure 12. It is clearly observed that the Boltzmann regime gen-
erally shifts to successively lower values of r (i.e., into the
regime of higher temperatures T > pTc) for higher phonon
numbers p. This is expected as the intrinsic non-radiative
rate exponentially decreases with p and the radiative rates be-
come dominant instead. Once the Planck factors become non-
negligible (if T > pTc), the nonradiative transition rate quickly
increases, and Boltzmann equilibrium can be kinetically sus-
tained. In the case of strong electron–phonon coupling (Fig-
ure 12b), breakdown of the Boltzmann equilibrium is even more
severe since the radiative rate also increases with increasing. This
result demonstrates the potential that trivalent lanthanides have
for the field of single ion luminescence thermometry besides
their practically beneficial property of narrow line luminescence
with weakly overlapping transitions.
The critical dependence on the number of phonons p in or-

der to bridge the gap confirms the findings from Section 2.6 and
clearly suggests choosing hosts with sufficiently high phonon
energies such that the energy gap ΔE21 is best bridged by only
one or two phonons. For high phonon numbers, the tempera-
ture range, in which Boltzmann equilibrium is sustained, can
even shift above the optimum temperature range. This occurs
for ions with large energy gaps ΔE21 between the two thermally
coupled excited states if they are additionally doped into host
compounds with low phonon energies. A representative example
for that is the 5D1–

5D0 gap of Eu
3+ in hosts such as 𝛽-NaYF4 or

Y2O3.
[135,198] An immediate conclusion is that Eu3+ is rather use-

ful for ratiometric luminescence thermometry at high tempera-
tures if doped in high energy phonon hosts such as phosphates or
borates.
For successively higher phonon numbers p, the LIR R(r) goes

through a minimum before Boltzmann behavior evolves at low r
or high temperatures T (see Figure 12). This apparently strange
behavior is a consequence of the early onset of stimulated phonon
emission for low phonon energies. With gradually decreasing r
(or, alternatively, increasing temperatures), stimulated phonon
emission from state |2⟩ to |1⟩ may set in above Tc, which is
lower for successively lower phonon energies ℏ𝜔eff . According
to Equation (65), the corresponding rc is given by rc = 1/0.2227
≈ 4.491. In that case, the LIR decreases because of the quickly
increasing stimulated phonon emission rate that populates state|1⟩. In the range of the temperature pTc (or at rc/p ≈ 4.491/p),
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Figure 12. a) Generalized universal plots of the LIR, R(r), in terms of the variable r = ΔE21/kBT upon explicit inclusion of radiative decay (see Equa-
tion 69). The following cases are depicted: a) induced electric dipole-type nonradiative transitions without electron-phonon coupling (𝜅 = 0), b) induced
electric dipole-type non-radiative transitions with stronger electron-phonon coupling (𝜅 = 5), c) magnetic dipole-type nonradiative transitions without
electron–phonon coupling (𝜅 = 0), and d) magnetic dipole-type nonradiative transitions with stronger electron-phonon coupling (𝜅 = 5). The exemplary
parameters are denoted in the graph and varied with p to produce physically meaningful plots. The threshold value rc for the onset of the Planck factors
(see Equation 65) is also specified.

a minimum LIR is observed and stimulated phonon absorption
from state |1⟩ to |2⟩ becomes competitive, while at temperatures
above pTc, Boltzmann equilibrium is sustained (see Figure 12).
Although not exact, the value of pTc or, alternatively, rc/p gives a
very good estimate for the onset temperature or onset value of r,
above which Boltzmann equilibrium is kinetically favored. The
value pTc is a rather precise estimate for magnetic dipole-type
nonradiative transitions with low intrinsic transition rates knr(0),
while it typically overestimates the onset temperature for Boltz-
mann behavior for (induced) electric dipole-type transitions with
higher intrinsic nonradiative transition rates knr(0) (see Equa-
tions (50) and (51) and also Figure 12a,c). This is understandable
since for magnetic dipole-type nonradiative transitions, the mag-
nitude of the transition rate is dominated by the Planck factor
while for electric dipole-type transitions, the intrinsic transition
rate knr(0) is already high and thus, also dominates the overall

nonradiative transition rate even at temperatures below activa-
tion of the Planck factor at pTc.

4.2.2. Practical use of the Generalized Excited State Dynamics
Model of the LIR

The generalized LIR,R(T), as given in Equation (67) is not readily
practical for use as a non-linear fitting model to simple lumines-
cence thermometry data as any lack of knowledge on the transi-
tion rates requires many fitting parameters to be fitted. Conver-
gence to a global minimum of the non-linear fit with physically
meaningful values seems almost impossible then. Section 4.1 de-
scribes the necessary prescriptions to determine and fix many of
the physical parameters in Equation (67) beforehand by very sim-
ple luminescence experiments. We thus aimed at a user-friendly
version of the generalized excited state dynamics model with as
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few fitting parameters as possible to make the non-linear fit sta-
ble. If the LIR is measured as prescribed in Equation (16), Equa-
tion (67) can be rearranged to

R(T) = C
g2
g1

𝛼a2

𝛼a1

⋅

𝛽20

𝛽10C

(
1

𝜙1(0)
− 1

) [
1 + 𝜅

(
2⟨neff ⟩ + 1

)]
+
(
1 + 𝛼a1

𝛼a2

) ⟨neff ⟩p(
1

𝜙1(0)
− 1

) [
1 + 𝜅

(
2⟨neff ⟩ + 1

)]
+
(
1 + 𝛼a2

𝛼a1

) (
1 + ⟨neff ⟩)p

(70)

where the Planck factors are defined in Equation (36). 𝜙1(0) is the
relative quantum yield of the lower energetic radiative transition
upon selective excitation into state |2⟩ as defined in Equation (60)
and can be obtained from a conventional luminescence spectrum
at the temperatureT<Tc (i.e., if r> rc = 4.491). 𝛽10 and 𝛽20 are the
luminescence branching ratios of the radiative transitions of in-
terest also obtainable from a luminescence spectrum over a wide
wavelength range that captures all radiative transitions from the
excited states |1⟩ or |2⟩ to lower energy levels, respectively. Al-
ternatively, they are also accessible from Judd-Ofelt calculations
in the case of trivalent lanthanides. The phonon number p is re-
stricted to integer values only and is typically known preliminar-
ily, since the energy gap ΔE21 is also spectroscopically accessible
from an absorption or photoluminescence excitation spectrum.
Thus, the number of independent fitting parameters reduces to
two or three: The pre-factor C, the ratio 𝛼a2/𝛼a1 and the electron-
phonon coupling strength 𝜅. For trivalent lanthanides, it is even
possible to neglect 𝜅 such that only two independent fitting pa-
rameters are present. In the case of strong electron-phonon cou-
pling, a good estimate on 𝜅 is obtained from the ratio of photon
counts of the zero-phonon line compared to the vibronic side-
bands in the emission spectra.
The preconstant C can be fixed by independent luminescence

decay experiments at temperatures below Tc. In the special case
of trivalent lanthanides, both C and the emission branching ra-
tios can alternatively be determined by Judd-Ofelt theory with,
e.g., the packages RELIC,[219] JOES,[220] LUMPAC[228,229] or, in
principle also BonnMag[237–241] (see Equation 21). On the other
hand, C can be independently obtained from the intercept of a
Boltzmann plot in the validity regime of the Boltzmann equilib-
rium (see Figure 12), since

lim
T→∞

R(T) = lim
r→0

R(r) = C
g2
g1

=
g2𝛽20k2r(0)
g1𝛽10k1r(0)

(71)

Another commonly encountered practical problem is a very
low luminescence intensity of the radiative transition |2⟩→ |0⟩ at
low temperatures, i.e., if the relative quantum yield for the lower
energetic emission, 𝜙1(0), is close to 1. This can pose a problem
in the experimental determination of the decay time 𝜏2(0) and the
radiative decay rate k2r(0). By knowledge of the pre-factor C and
the easily obtainable radiative decay rate k1r(0) of the lower excited
state |1⟩, it is possible to independently determine k2r(0), which
in turn allows the determination of knr(0) by Equations (61) and
(62). Thus, luminescence thermometry also helps elucidate the

different transition rates governing the kinetics of the two excited
states of interest.
A final problem is the determination of the ratio of the non-

radiative feeding parameters, 𝛼a2/𝛼a1. Dependent on the relative
size of the two separate feeding ratios, this parameter can vary
from very small to very large numbers, which makes the judg-
ment of the obtained fitting value difficult in practice. However,
an alternative check is possible from a measurement of the LIR
at temperatures T < Tc, at which the LIR evolves into a constant
plateau (high values of r in Figure 12). In the limit T → 0, ⟨neff ⟩
expectedly becomes 0. Thus, it is

lim
T→0

R(T) = lim
r→∞

R(r) =
g2𝛽20
g1𝛽10

⋅
𝛼a2

𝛼a1

⋅

(
1

𝜙1(0)
− 1

)
(1 + 𝜅)(

1
𝜙1(0)

− 1
)
(1 + 𝜅) +

(
1 + 𝛼a2

𝛼a1

) := R(0) (72)

which can be rearranged for the ratio 𝛼a2/𝛼a1,

𝛼a2

𝛼a1
=

[
1 +

(
1

𝜙1(0)
− 1

)
(1 + 𝜅)

]
R(0)

g2𝛽20
g1𝛽10

(
1

𝜙1(0)
− 1

)
(1 + 𝜅) − R(0)

(73)

Both Equations (71) and (73) offer the possibility of indepen-
dent verification of the obtained fitting parameters C and 𝛼a2/𝛼a1
or, if the respective luminescence spectra are acquired, even the
potential to fully simulate the whole temperature evolution of the
LIR, as was already demonstrated in the case of Eu3+.[198]

4.3. Guidelines to Sustain Boltzmann Behavior over a Wide
Temperature Range

The kinetic analysis of a single ion luminescent thermometer al-
lows to set up additional guidelines for a desirable control of the
Boltzmann equilibrium over a possibly wide temperature range,
but in particular within the optimum window according to the
previous thermodynamic analysis (see Section 2.3). A first simple
conclusion arises from the general onset of the Boltzmann behav-
ior above temperatures of pTc or, alternatively, rc/pwith rc ≈ 4.41.
In order to ensure that Boltzmann behavior is clearly present in
the optimum window r ∈ [2, 2 +

√
2], it is necessary that rc/p is

larger than the two boundaries. This puts a kinetic restriction on
the advisable phonon number to bridge the energy gap ΔE21. For
the higher boundary, it follows

phigh ≤
⌊

rc

2 +
√
2

⌋
≈ ⌊1.32⌋ = 1 (74)

while the lower boundary affords

plow ≤ ⌊ rc
2

⌋
≈ ⌊2.25⌋ = 2 (75)

with ⌊x⌋ as the Gaussian floor function rounding off to the next
lower integer. These rules exactly agree with the findings of Sec-
tion 2.6. From a kinetic perspective, nonradiative transitions over
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ΔE21 involving more than two phonons should be clearly avoided
since otherwise a thermodynamically optimum performance of
a Boltzmann thermometer cannot be guaranteed anymore (see
also Figure 12).
It was indicated in Section 2.6 that a two-phonon nonradiative

transition should yet be favored in the case that the quenching
state |q⟩ is energetically close to the lower energetic excited state|1⟩ in order to lower probability for multi-phonon relaxation to|q⟩. A possibility to release restriction (74) is an increase of the
intrinsic non-radiative transition rate knr(0) itself. According to
the estimate (50), this is only possible for an (induced) electric
dipole-type nonradiative transition since then pTc is an overes-
timate of the onset of Boltzmann behavior of the LIR (see Fig-
ure 12a). A well-known example for that underlying principle is
the 2H11/2–

4S3/2 energy gap of Er
3+ (ΔE21 ≈ 700 cm−1). The most

conventionally used host material for Er3+ is 𝛽-NaYF4 with a cut-
off phonon energy of around 450 cm−1,[283], i.e., the 2H11/2–

4S3/2
energy gap of Er3+ can only be bridged by two phonons in that
host compound. A low energy phonon host is mandatory since
otherwise efficient non-radiative relaxation to the next lower red-
emitting 4F9/2 level (ΔE1q ≈ 3100 cm−1) takes place, which would
destroy the efficient thermometric performance of 2H11/2–

4S3/2
energy gap of Er3+. Boltzmann behavior of the LIR of the two
green 2H11/2 → 4I15/2 and

4S3/2 → 4I15/2 transitions is formally
expected only to set in above pTc ≈ 230 K. However, it was re-
ported that thermalization between the 2H11/2 and

4S3/2 levels
can be even observed down to T ≈ 130–140 K in the case of
YVO4:Er

3+ having a higher phonon energy.[247] This specialty can
be understood from the high value of the reduced electric dipole
matrix element ⟨‖U(4)‖⟩2 = 0.2002 dominating the non-radiative
transition dipole moment of the 2H11/2 ↔ 4S3/2 transition.

[217] 𝛽-
NaYF4 gives rise to a sufficiently high Ω4 Judd-Ofelt parameter
(Ω4 ≈ 1.16 × 10−20 cm2)[248] and thus favors an efficient electric
dipole-type non-radiative transition among those two spin-orbit
levels. This is the underlying mechanistic reason for the success
of 𝛽-NaYF4:Er

3+, Yb3+ as a sensitive luminescence thermometer
even below room temperature despite a nonradiative transition
requiring two phonon modes that would naively be expected to
lead to a kinetically induced failure of the Boltzmann equilib-
rium at temperatures below 230 K. Overall, electric dipole-type
non-radiative transitions are generally beneficial for a good per-
formance of any Boltzmann thermometer. In the case of mag-
netic dipole-type nonradiative transitions connecting the ther-
mally coupled excited levels (as suggested by strong reduced ma-
trix elements ⟨‖L + gSS‖⟩2 for the respective transition,[218] see
Equation (20)), the restrictions (74) and (75) should be followed
seriously and one-phonon non-radiative transitions are strongly
recommendable for temperature measurements above 200 K, as
also suggested by the flowcharts in Figure 7b.

5. Conclusions

Luminescence thermometry is a quickly emerging application
sector for remote and sensitive temperature sensing. Despite ex-
tensive and vibrant experimental research, the theoretical foun-
dations and design principles for optimum performance of
luminescent thermometers are virtually nonexistent. Herein, a
general theoretical framework for ratiometric single ion lumines-
cence thermometers is elucidated that is applicable to any lumi-

nescent ion showingmultiphonon nonradiative transitions. Typi-
cal representatives are the trivalent lanthanides with their 4fn–4fn

transitions, Cr3+ or Mn4+ with intraconfigurational 3d3–3d3 non-
radiative transitions or divalent lanthanides with either intracon-
figurational 4fn–4fn or 4fn -15d1–4fn-15d1 nonradiative transitions.
Starting from a fundamental derivation of the proper defini-

tion of a LIR obtained in modern luminescence spectrometers,
three main conclusions can be drawn from the developed the-
oretical framework and are shown to result in design rules for
optimized performance of single ion luminescence thermome-
ters. By straightforward mathematics, it was possible to derive
that any Boltzmann thermometer with energy gapΔE21 shows its
optimum thermal response at the temperature Topt = ΔE21/2kB.
Together with a desirable high relative sensitivity Sr, it could be
elucidated that Boltzmann thermometers can only perform un-
der optimum conditions up to a temperature T0 < 2/Sr. Above,
it is advisable to sacrifice a bit of thermal response to achieve a
higher gain in relative sensitivity by increasing the energy gap
to ΔE21 = 3.41kBT0. In turn, every single ion Boltzmann-based
thermometer is best suited for a limited temperature range only,
which depends on the chosen energy gap between the two ther-
mally coupled excited states. The optimization strategy is based
on the principle that it is not only the relative sensitivity Sr that
should be high, but there should be a balance between signal-
measurable changes in the LIR and the relative sensitivity. This
simple concept results in user-friendly guidelines on both an ad-
visable energy gap ΔE21 and the exponential pre-factor C govern-
ing the electronic properties of the two excited states. For temper-
ature measurements at ΔE21 = 3.41kBT0, it was elucidated that
the most recommendable value for the pre-factor is given as C g2

g1
= 21.5 to compensate for the thermally low emission intensity of
the higher excited energy state |2⟩ and relax the requirement on
a high emission intensity. In the case of the lanthanides, such an
optimization is possible by a Judd-Ofelt analysis of the embed-
ding host material. It is particularly recommendable in the field
of nanothermometry, in which low quantum efficiencies and the
impact of the surface-attached ligands generally lower the observ-
able emission intensities.
The second part dealt with a critical verification of the validity

of the linearization of the Boltzmann distribution for narrow tem-
perature regimes for the sake of simpler calibration. This is espe-
cially employed in the field of in vivo thermometry without jus-
tification. A general formula for the linearized version of Boltz-
mann’s law was derived and it was assessed that it is only accom-
panied with minimum relative errors in the regime ΔE21 < kBT
such as for the crystal field states of 4fn spin-orbit levels of the
trivalent lanthanides. In fact, a linearized plot is then even advis-
able since the LIR is thenmore robust towards a statistical uncer-
tainty of the LIR than the conventional (and actual) exponential
temperature dependence of the Boltzmann distribution. The va-
lidity regime for a linearization of the Boltzmann distribution is,
however, incompatible with the more important requirement for
optimum performance of the luminescent thermometer at ΔE21
= 2kBT − 3.41kBT.
In the third part, the excited state kinetics of a Boltzmann

thermometer was analyzed. Boltzmann equilibrium is only sus-
tained if the nonradiative transitions are much faster than
the radiative decay pathways. Thus, in order to guarantee a
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Boltzmann behavior of the LIR over a wide temperature range,
it is necessary to understand the parameters that govern non-
radiative transition rates. It was derived that Boltzmann ther-
mometry is only meaningful if the energy gap ΔE21 is bridged
by one or two phonons, while a requirement of more than three
phonons kinetically inhibits thermal coupling over a wide tem-
perature range. A generalized description of the temperature
evolution of the LIR including both the non-radiative and ra-
diative decay pathways was derived that is applicable for single-
ion luminescent thermometers and at all temperatures (with
or without Boltzmann equilibrium). It could be shown that
the temperature-dependent part of the nonradiative transition
rates sets in above a threshold temperature Tc ≈ 0.2227∙ℏ𝜔eff /kB
with ℏ𝜔eff as the effective host phonon energy that is absorbed
or emitted during the non-radiative transition. For p necessary
phonons to bridge ΔE21, Boltzmann behavior is expected to set
in above a temperature of pTc, which clearly favors one- or two-
phonon transitions among the thermally coupled excited states.
This kinetically motivated concept provides a clear guideline for
the maximum phonon energy in a suitable host material for
a luminescent ion of interest for the purpose of luminescence
thermometry.
Nonradiative rates can be interpreted in terms of a coupling

between an electronic transition dipole moment connecting the
two excited levels of interest and the induced electromagnetic
field components arising from the vibration of the surrounding
ligands of the luminescent activator in a host. This interpreta-
tion does not only give rise to electric dipole-type, but also mag-
netic dipole-type nonradiative transitions and allows to use the
conventionally known quantum mechanical selection rules for
radiative transitions in order to qualitatively assert the expected
non-radiative transition rates. In particular, it was demonstrated
that magnetic dipole-type transitions are two to three orders of
magnitude lower than induced electric dipole-type transitions
such that the former easily become comparable to radiative decay
rates. Thus, an alternative to realize Boltzmann behavior at lower
temperatures than pTc is to select levels with intrinsic (induced)
electric dipole-type non-radiative transition rates, such as the
well-known 2H11/2–

4S3/2 levels of Er
3+. In case of electric dipole-

type non-radiative transitions, also two-phonon processes (in-
stead of one-phonon) are capable to still give rise to Boltz-
mann behavior over a wider temperature range. The lower max-
imum phonon energy helps reduce quenching of the lumines-
cence by multi-phonon relaxation to lower energetic quenching
states.
In summary, a comprehensive and universal theoretical frame-

work of single ion luminescence thermometers was established.
Not only provides it justification for many experimentally ob-
served properties of Boltzmann thermometers, it also offers a
full set of basic, user-friendly guidelines for an optimized per-
formance of a Boltzmann thermometer. This helps avoid time-
consuming trial and error attempts and rather allows specific de-
sign of luminescent thermometers dependent on the desired rel-
ative sensitivity and temperature range to be covered.
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203106.

[127] X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong,
J. Feng, H. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 20813.

[128] T. Li, C. Guo, S. Zhou, C. Duan, M. Yin, J. Am. Ceram. Soc. 2015, 98,
2812.

[129] S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, L. D.
Carlos, J. Phys. Chem. C 2017, 121, 13962.

[130] L. Marciniak, K. Prorok, A. Bednarkiewicz, J. Mater. Chem. C 2017,
5, 7890.

[131] D. Ananias, F. A. Almeida Paz, L. D. Carlos, J. Rocha, Chem. - Eur. J.
2018, 24, 11926.

[132] M. Runowski, N. Stopikowska, D. Szeremeta, S. Goderski, M.
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[220] A. Ćiríc, S. Stojadinovíc, M. Sekulíc, M. D. Dramícanin, J. Lumin.
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