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Abstract. Observations and models agree that the Green-
land Ice Sheet (GrIS) surface mass balance (SMB) has de-
creased since the end of the 1990s due to an increase in
meltwater runoff and that this trend will accelerate in the
future. However, large uncertainties remain, partly due to
different approaches for modelling the GrIS SMB, which
have to weigh physical complexity or low computing time,
different spatial and temporal resolutions, different forcing
fields, and different ice sheet topographies and extents, which
collectively make an inter-comparison difficult. Our GrIS
SMB model intercomparison project (GrSMBMIP) aims to
refine these uncertainties by intercomparing 13 models of
four types which were forced with the same ERA-Interim
reanalysis forcing fields, except for two global models. We
interpolate all modelled SMB fields onto a common ice sheet
mask at 1 km horizontal resolution for the period 1980–2012
and score the outputs against (1) SMB estimates from a com-
bination of gravimetric remote sensing data from GRACE
and measured ice discharge; (2) ice cores, snow pits and in
situ SMB observations; and (3) remotely sensed bare ice ex-
tent from MODerate-resolution Imaging Spectroradiometer
(MODIS). Spatially, the largest spread among models can
be found around the margins of the ice sheet, highlighting
model deficiencies in an accurate representation of the GrIS
ablation zone extent and processes related to surface melt
and runoff. Overall, polar regional climate models (RCMs)
perform the best compared to observations, in particular for
simulating precipitation patterns. However, other simpler and
faster models have biases of the same order as RCMs com-
pared with observations and therefore remain useful tools for
long-term simulations or coupling with ice sheet models. Fi-
nally, it is interesting to note that the ensemble mean of the 13
models produces the best estimate of the present-day SMB
relative to observations, suggesting that biases are not sys-
tematic among models and that this ensemble estimate can
be used as a reference for current climate when carrying out
future model developments. However, a higher density of in
situ SMB observations is required, especially in the south-
east accumulation zone, where the model spread can reach
2 m w.e. yr−1 due to large discrepancies in modelled snow-
fall accumulation.

1 Introduction

Mass loss from the Greenland Ice Sheet (GrIS) has been ac-
celerating since the 1990s (Enderlin et al., 2014; Mouginot
et al., 2019; Hanna et al., 2020; IMBIE2, 2020). Over the pe-
riod 1992–2018, roughly 50 % of the total mass loss can be
ascribed to reduced GrIS surface mass balance (SMB) (IM-

BIE2, 2020):

SMB= P −RU−SU−ER+GS, (1)

which refers to the difference between the total precipi-
tation (rain and snow, P ), meltwater runoff (RU), subli-
mation/evaporation (SU), snow erosion by the wind (ER)
and glacier storage (GS). Since drifting snow erosion con-
tributes ∼ 1 Gt yr−1 (i.e. < 0.3 %) to the SMB, ER is ne-
glected in most models, although it can be important locally
(Lenaerts et al., 2012). Moreover, the glacial water storage
(supraglacial lakes, melt ponds, rivers) is neglected in this
intercomparison, as it is not simulated by any model con-
sidered here. However, the mass changes coming from GS
could be relevant when the SMB is integrated over the whole
ice sheet but have never been quantified until now.

Since the end of the 1990s, the models suggest that the sur-
face melt has almost doubled, reaching record melt volume in
the summers of 2012 and 2019, while the snowfall accumula-
tion has remained approximately constant (Noël et al., 2019;
Lenaerts et al., 2019; Tedesco and Fettweis, 2020). This re-
cent GrIS SMB decrease – largely driven by the increase in
meltwater runoff (Van den Broeke et al., 2016; Fettweis et al.,
2017; Lenaerts et al., 2019; IPCC, 2019) – has been caused
by Arctic amplification, a state change in the North Atlantic
Oscillation and increased Greenland Blocking events in sum-
mer (Fettweis et al., 2013b; Delhasse et al., 2018; Hanna et
al., 2018; Hahn et al., 2020), which raise the average temper-
atures (Screen and Simmonds, 2010), reduce the cloudiness
(Hofer et al., 2017) and enhance the melt–albedo feedback
(Box et al., 2012; Ryan et al., 2019; Noël et al., 2019). While
models agree well with satellite-based reconstructions, large
uncertainties and model discrepancies remain in the current
SMB evolution (IMBIE2, 2020). Additionally, SMB-related
processes are one of the main uncertainties in future projec-
tions of the GrIS contribution to sea level rise as the ice sheet
retreats in a warmer climate (Goelzer et al., 2013; van den
Broeke et al., 2017; Hofer et al., 2019).

Therefore, there is a pressing need to improve and re-
fine model estimates of recent SMB changes, for which we
have in situ measurements and satellite data sets, in order to
subsequently reduce the large model spread in future GrIS
SMB projections. With the aim of reducing uncertainties in
current modelled SMB estimates, we compare four types of
SMB model, using 13 models in total to (i) create an accu-
rate multi-models SMB reconstruction over current climate
and an associated uncertainty based on the ensemble of these
models and (ii) discuss the added values and drawbacks of
each of them. Prior to this study, only a few attempts were
made to compare the available models in terms of their abil-
ity to simulate the contemporary GrIS SMB (e.g. Vernon et
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al., 2013). These previous studies (i) evaluated SMB within a
subset of regional climate models (RCMs) (Rae et al., 2012),
(ii) compared positive degree day (PDD) models with energy
balance snowpack models (van de Wal, 1996; Bougamont et
al., 2007) or (iii) assessed the representation of specific phys-
ical sub-processes (Reijmer et al., 2012). Since these mod-
els implement different physical and statistical processes, are
run on different grids, use different forcing data, and/or cover
various temporal ranges, previous model comparison studies
suffer from limited inter-comparability.

In this study, we compare the SMB outputs of 13 state-
of-the-art (physical and statistical) climate models (1) over
a common time period (1980–2012), (2) using a common,
1 km spatial grid and (3) over a common ice-sheet mask us-
ing the contemporary GrIS extent. Moreover, 11 out of the
13 participating models are forced with ERA-Interim reanal-
ysis (Dee et al., 2011), although each model prescribes the
reanalysis forcing in a different manner.

Four kinds of models participate in our intercomparison:

– Positive degree day (PDD) models using near-surface
summer temperature to estimate melt and precipitation
from forcing. The melt parameterizations of these mod-
els are relatively simple and due to the underlying as-
sumptions they depend notably on the near-surface cli-
mate of their forcing (for precipitation in particular).
However, the computational costs are very low and
therefore they can be run at very high spatial resolutions
and over long timescales.

– Energy balance models (EBMs) compute the surface en-
ergy balance to estimate melt by deriving surface en-
ergy fluxes and precipitation from forcing. Although the
representation of surface melt is physically more robust
than PDDs and they are able to simulate feedbacks in-
cluding the melt–albedo feedback, they are also very
dependent on the near-surface climate from the forcing
data. However, similar to PDDs, EBMs are also com-
putationally efficient. Therefore, both PDDs and EBMs
are particularly useful to downscale large-scale fields
with the aim of forcing ice sheet models over long peri-
ods.

– Regional climate models (RCMs) coupled with energy-
balance-based snow models compute energy fluxes, pre-
cipitation and the near-surface climate at a high resolu-
tion over the ice sheet. RCMs are forced at their lateral
boundaries by global fields, mostly temperature, humid-
ity and general circulation. A priori, they provide the
best approach to represent the melt and precipitation
patterns, as well as to simulate the surface–atmosphere
interactions at a high resolution. It is for this reason
that the present SMB estimations of the Greenland Ice
Sheet are mainly based on RCMs forced by reanalyses
(IMBIE2, 2020). However, RCMs are computationally
very expensive, typically limiting their simulations to

100 years. Finally, their results remain dependent on the
biases in the forcing free-atmosphere fields above and
around Greenland (Fettweis et al., 2013a).

– General circulation models (GCMs) are global models
that, unlike RCMs, have no spatial boundary conditions.
Instead, they require a small set of time-dependent pri-
mary inputs, such as aerosol emissions, greenhouse con-
centrations and land use. Coupled with energy-balance-
based snow models, GCMs are capable of simulating
GrIS SMB, which is particularly useful to perform fu-
ture projections. However, to maintain reasonable com-
putational time, their spatial resolution remains low,
limiting their ability to explicitly simulate the snow–
atmosphere interactions in the narrow ablation zone or
the topography-induced precipitation. Coupled with an
ice sheet model, GCMs are the only tools that explicitly
represent changes in general circulation in ocean or at-
mosphere, resulting from thinning of the ice sheet and
other feedback processes.

For both PDDs and EBMs, the models are forced by
the ERA-Interim near-surface climate extrapolated to the
model’s spatial resolution. In RCMs, the reanalysis data set
is prescribed at the ocean surface and at the lateral bound-
aries of their integration domain. Two types of GCM con-
figurations are used in this study, (i) one using an active
ocean component, i.e. a truly free-running set-up, and (ii) an
atmosphere-only configuration, where reconstructed histor-
ical sea surface temperatures and sea ice cover are used as
the boundary conditions over the ocean, possibly resulting in
a modelled climate more closely resembling the real world
(AMIP experiment; see Gates et al., 1998).

Sections 2 and 3 describe the 13 models used in the inter-
comparison (2 PDDs, 4 EBMs, 5 RCMs and 2 GCMs) and
the observational data sets used for the evaluation of these
models. The models are inter-compared in Sect. 4 by high-
lighting the main discrepancies between models and evalu-
ated in Sect. 5 with in situ observations and satellite data.
In Sect. 6, the discrepancies between models identified in
Sect. 4 are linked to biases highlighted in Sect. 5 to pro-
pose the best estimates of the mean SMB and SMB changes
over the current climate (1980–2012). Finally, conclusions
are drawn in Sect. 7. Note that this intercomparison exer-
cise aims to reduce uncertainty and identify regions with low
measurement density and large model discrepancies in order
to provide some insight into regional uncertainty; it is not the
purpose here to formally rank model performance.

2 Model data

A brief description of each of the 13 models used in this study
is provided in the following section and summarized in Ta-
ble 1.
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Table 1. List of the 13 models used in this study listing the type (energy balance model (EBM), regional climate model (RCM), general
circulation model (GCM), positive degree day (PDD) model), the forcing (the ERA-Interim or JRA-55 reanalysis), the native resolution, the
method eventually used afterwards to downscale the surface mass balance (SMB) at 1 km (when it is different than the one use to interpolate
all the outputs to 1 km; see Sect. 2.2) and the country where the main development takes place.

Native ERA-Int.
Name Type resolution forcing Downscaling method Resolution Main country

BESSI EBM 10 km yes 10 km Norway
BOX13 RCM ∼ 10 km yes interpolation 5 km Denmark
CESM GCM ∼ 100 km no elevation classes 1 km the Netherlands
dEBM EBM 1 km yes 1 km Germany
HIRHAM RCM 5.5 km yes 5.5 km Denmark
IMAU-ITM EBM 5 km yes 5 km the Netherlands
MAR RCM 15 km yes 15 km Belgium
MPI-ESM GCM ∼ 100 km no EBM 1km Germany
NHM-SMAP RCM 5 km yes (JRA-55) 5 km Japan
PDD1km PDD 1 km yes 1 km UK – Belgium
PDD5km PDD 5 km yes 5 km UK – Belgium
RACMO RCM 5 km yes statistical downscaling 1 km the Netherlands
SNOWMODEL EBM 5 km yes 5 km USA

2.1 Description of the participating models

2.1.1 BESSI (EBM – 10 km)

BESSI is a surface energy and mass balance model designed
for simulating long timescales (Born et al., 2019; Zolles and
Born, 2019). It is forced with ERA-Interim reanalysis fields
of temperature, humidity, longwave and shortwave radiation,
and precipitation (Dee et al., 2011). The temperature is the
only variable that is downscaled to the actual model topogra-
phy (ETOPO1, Amante and Eakins, 2009) using a lapse rate
of 0.0065 K m−1. Contrary to previously published model
versions, here we use incoming longwave radiation as a forc-
ing field rather than a temperature-based parameterization.
Energy fluxes are calculated with a time step of one day on a
10× 10 km2 grid.

The model uses an albedo scheme based on a linear rela-
tionship between temperature and a time decay rate (Aoki et
al., 2003). This decay is enhanced in the presence of liquid
water in the surface layer. The latent and sensible turbulent
heat fluxes are calculated based on the residual method (Rol-
stad and Oerlemans, 2005; Braithwaite, 2009) with constant
wind speed over the entire ice sheet. Refreezing and percola-
tion is instantaneous in every time step, with a maximum wa-
ter holding capacity of 10 % of the free pore volume (Greuell,
1992). Finally, the model parameters were optimized to fit
the GRACE mass balance data over the 2002–2018 period
(Born et al., 2019).

2.1.2 BOX13 (calibrated RCM – 5 km)

The basis of the BOX13 surface mass balance reconstruction
are linear regression parameters that describe relationships
between spatially discontinuous in situ records from meteo-

rological stations (i.e. monthly temperature after Vinther et
al., 2006; Cappelen et al., 2001, 2006; Cappelen, 2011) or
firn/ice cores and spatially continuous outputs from the ver-
sion 2.1 of the regional climate model RACMO (Ettema et
al., 2010), described in Sect. 2.1.12. Explanatory (indepen-
dent variable) data (air temperature and firn/ice core data)
span 1840 to 2012. A 43-year overlap period 1960–2012 with
RACMO2.1 is used to determine regression parameters on a
grid cell basis. A fundamental assumption is that the cali-
bration factors, regression slope and offset for the calibration
period 1960–2012 are stationary over time.

The RACMO2.1 data are resampled and reprojected from
a 0.1◦ (∼ 10 km) grid to a 5 km grid. See “part I” of Box et
al. (2013) for a description of the method, which includes
a formal approach to estimate uncertainty. The following
refinements are, however, made from the SMB reconstruc-
tion of Box et al. (2013) and Box (2013). The estimation
of values is made for a domain that includes not only ice
but land and sea. The physically based meltwater retention
scheme of Pfeffer et al. (1991) replaced the simpler approach
used by Box (2013). Multiple station records contribute to
the near-surface air temperature for each given year, month
and grid cell in the domain, while in Box (2013), only data
from the single highest correlating station yielded the recon-
structed value. These revised surface mass balance data end
with year 2012, while Box (2013) data end in 2010. Finally,
the annual accumulation rates from ice cores are dispersed
into a monthly temporal resolution by weighting the monthly
(based on the 1960–2012 RACMO2.1 data) fraction of the
annual total for each grid cell in the domain. The accumula-
tion reconstruction has been evaluated by Lewis et al. (2017,
2019).
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2.1.3 CESM2 (GCM – 1 km)

In this study, the CESM version 2.0 (CESM2) is used in
a configuration with a fixed ocean state. In particular, the
protocol for the Atmospheric Model Intercomparison Project
(AMIP, Gates et al., 1999) is used, with prescribed sea sur-
face temperatures and sea ice cover from Hurrell et al. (2008)
for the period 1979–2014. Global land cover usage is also
prescribed. The atmospheric and land components are the
Community Atmosphere Model version 6 (CAM6) and the
Community Land Model version 5 (CLM5), respectively,
both operating at a nominal resolution of 1◦. No ice dynam-
ics are considered; i.e. the geometry of the GrIS is static over
time. Initial conditions for CAM6 and CLM5 snow packs are
taken from a fully coupled CESM2 simulation. Sub-grid to-
pographic variability is partially accounted for by the use of
multiple elevation classes (ECs) in CLM5, with up to 10 ECs
per grid cell. Atmospheric forcing is downscaled to each EC,
with lapse rates used for temperature and downwelling long-
wave radiation and phase recomputation for precipitation (for
details, see Van Kampenhout et al., 2020). Output indexed
by EC is used for downscaling CESM2 SMB to the 1 km IS-
MIP6 grid (Nowicki et al., 2016) using linear interpolation in
the vertical and bilinear interpolation in the horizontal direc-
tion. A detailed evaluation of present-day GrIS climate and
SMB in CESM2 has been published in Van Kampenhout et
al. (2020).

2.1.4 dEBM (EBM – 1 km)

The diurnal Energy Balance Model (dEBM, Krebs-Kanzow
et al., 2020) is a surface mass balance scheme that incorpo-
rates both radiative and turbulent heat fluxes and captures di-
urnal variability in the melt–freeze cycles (Krebs-Kanzow et
al., 2018) and monthly variations in cloud cover. For forcing,
dEBM version employed here only requires monthly means
of shortwave radiation at the surface, near-surface air tem-
perature and precipitation. Monthly mean duration and in-
tensity of the diurnal melting and refreezing periods are de-
rived from the monthly mean surface radiation and from the
diurnal cycle of the top of atmosphere (TOA) shortwave radi-
ation. The latter is implicitly represented as a function of lati-
tude and month based on prescribed parameters of the Earth’s
orbit around the Sun. Monthly mean atmospheric transmis-
sivity and cloud cover are estimated from the ratio between
monthly mean shortwave radiation at the surface and at the
TOA (from forcing fields and from orbital parameters, re-
spectively). The scheme has a monthly time step and dis-
tinguishes albedo of bare ice and wet, dry and new snow
on the basis of precipitation, surface energy balance and the
previous month’s snow type and snow height. Additionally,
the scheme includes a residual heat flux R which is thought
to represent those energy fluxes which are not included in
the scheme, such as the heat flux to the subsurface or la-
tent heat fluxes at the surface. Here, R has been treated as a

tuning parameter and has been optimized to R =−5 W m−2

with respect to the surface mass balance measurements from
Machguth et al. (2016) over the ERA-Interim period (1979–
2016). To force the model, monthly mean ERA-Interim pre-
cipitation, surface insolation and near-surface air tempera-
tures have been interpolated to the 1 km ISMIP6 grid and
temperature fields have been additionally downscaled by ap-
plying a lapse rate correction of 0 =−0.007 K m−1.

2.1.5 HIRHAM (RCM – 5.5 km)

The HIRHAM regional climate model has been developed
to include a full surface energy and mass balance model us-
ing an original code developed from physical schemes used
in the ECHAM5 global model and dynamical schemes from
the HIRLAM numerical weather prediction model. It has 31
vertical levels and is forced on 6-hourly intervals on the lat-
eral boundaries. The RCM has a simple five-layer snowpack
model to a depth of 10 m over glacier surfaces, incorporating
the same parameterizations used in an offline version that has
32 layers. The offline version assimilates MODIS MOD10A
albedo data to get a closer fit between modelled and observed
albedos. Langen et al. (2017) describe the snowpack model
in detail and show that the inclusion of MODIS data signifi-
cantly improves the modelled SMB.

2.1.6 IMAU-ITM (EBM – 5 km)

IMAU-ITM is an insolation- and temperature-based SMB
model. This simplified EBM is used in the ANICE ice-sheet
model for paleoclimate simulations (de Boer et al., 2014;
Berends et al., 2018). Monthly precipitation from the ERA-
Interim reanalysis is downscaled to actual model topogra-
phy (in this case, the BedMachine v3 data set; Morlighem
et al., 2017) using the wind-orography-based parameteri-
zation by Roe and Lindzen (2001) and Roe (2002). The
resulting downscaled precipitation is partitioned into rain
and snow based on the temperature parameterization by
Ohmura (1999). The depth of the accumulated snow layer is
tracked, with a maximum value of 10 m; any additional firn
is assumed to be compressed into ice. The surface albedo is
calculated as a weighted average of the albedos of fresh snow
and bare ice, based on the thickness of the snow layer and the
amount of melt that occurred during the previous year. Melt
is determined using the insolation-temperature parameteriza-
tion by Bintanja et al. (2002), which uses prescribed values
for insolation at the top of the atmosphere, and which was
developed especially for paleoglaciological applications. Re-
freezing is calculated following the approach by Huybrechts
and de Wolde (1999) and Janssens and Huybrechts (2000),
based on the available liquid water (the sum of rain and melt)
and the refreezing potential, integrated over the entire year to
account for the retention of summer melt which is refrozen
in winter. For this study, the parameters in the refreezing
and snowmelt parameterizations were calibrated to obtain the
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closest match (i.e. highest value of linear correlation coeffi-
cient divided by RMSE) to the RACMO2.3 values over the
1979–2017 period on the 1 km grid.

2.1.7 MAR (RCM – 15 km)

The version 3.9.6 from MAR is used here with a resolu-
tion of 15 km. MAR was forced at its lateral boundaries by
ERA-Interim at a 6-hourly time step. The boundary forcing
files include information about the temperature, u and v wind
components, specific humidity, and sea level pressure as well
as the sea surface temperature and sea ice cover over ocean.
It is the same model configuration which is used in the Ice
Sheet Model Intercomparison Project for CMIP6 (ISMIP6)
for future projections over the GrIS (Nowicki et al., 2016).
With respect to the version 3.5.2 of MAR used in Fettweis et
al. (2017) and Hofer et al. (2017), the main improvements are
as follows: (1) an increase in the cloud lifetime with the aim
of correcting the biases of solar and infrared radiation high-
lighted in Fettweis et al. (2017), (2) adjustments in the bare
ice albedo representation for a better comparison with in situ
measurements, (3) a larger independence of model results to
the time step used and (4) a better dynamical stability with
an increased spatial filtering for a computing time divided
by a factor of 2 compared to version 3.5.2. Additionally, we
also dealt with minor bug corrections and small updates for
enhanced computing efficiency and comparison with in situ
automatic weather data (Delhasse et al., 2020).

2.1.8 MPI-ESM (GCM – 1 km)

The historical simulation underlying the SMB calculations
by the Max Planck Institute (MPI) is simulated with a higher-
resolution version of the latest version of the MPI Earth
System Model (MPI-ESM1.2-HR). In this version the at-
mospheric model ECHAM6.3, with a spectral resolution of
T127 (∼ 100 km), is coupled to the ocean model MPIOM
version 1.6.2, with a nominal 0.4◦ resolution and a tripo-
lar grid. A thorough description of this model set-up can be
found in Müller et al. (2018).

An EBM approach is used to calculate the SMB from
one ensemble member of the historical MPI-ESM1.2-HR
simulations (Mauritsen et al., 2019) and downscale it from
∼ 100 km to the 1 km ISMIP6 topography. The offline EBM
scheme is similar to the one presented in Vizcaíno et
al. (2010); despite technical changes and the introduction of
elevation classes it was mainly the albedo parameterization
that was updated. The EBM calculates melt and accumula-
tion rates from hourly atmospheric fields of the historical
MPI-ESM1.2-HR simulation on its native grid. The atmo-
spheric fields are bi-linearly interpolated onto 24 fixed el-
evation classes, ranging from 0 to 8000 m. To account for
height differences between each elevation class and the sur-
face elevation of the atmospheric model a height correc-
tion is applied to near-surface air temperature, humidity, dew

point temperature, precipitation, downward longwave radi-
ation and near-surface density fields. The downward short-
wave radiation is kept constant, as it is largely affected by
atmospheric properties that are independent of elevation dif-
ferences (e.g. ozone concentration, aerosol thickness) (Yang
et al., 2006). To obtain melt rates, the EBM computes the
energy balance at the atmosphere–snow interface as the sum
over the radiative and turbulent as well as rain-induced and
conductive heat fluxes. The albedo parameterization used
here is based on the parameterization by Oerlemans and
Knap (1998) and considers snow ageing, snow depth and the
influence of cloud coverage. The obtained 3-D fields of sur-
face melt, accumulation and SMB are then vertically and hor-
izontally interpolated onto the 1 km ISMIP6 topography used
as reference topography in this study.

2.1.9 NHM-SMAP (RCM – 5 km)

The latest version of the polar RCM NHM-SMAP, with
a horizontal resolution of 5 km, developed by Niwano et
al. (2018), was used in this study. The same version was re-
cently utilized to assess cloud radiative effects on the Green-
land Ice Sheet surface melt (Niwano et al., 2019). The at-
mospheric part of NHM-SMAP is the Japan Meteorological
Agency Non-Hydrostatic atmospheric Model (JMA-NHM)
developed by Saito et al. (2006), which employs flux form
equations in spherical curvilinear orthogonal coordinates as
the governing basic equations. We pay close attention to the
cloud microphysics processes; therefore, the version of JMA-
NHM utilized for NHM-SMAP (Hashimoto et al., 2017) em-
ploys a double-moment bulk cloud microphysics scheme to
predict both the mixing ratio and the concentration of solid
hydrometeors (cloud ice, snow and graupel), and a single-
moment scheme to predict the mixing ratio of liquid hydrom-
eteors (cloud water and rain). For the simulation of snow
and ice physical conditions, the multilayered physical snow-
pack model SMAP is utilized (Niwano et al., 2012, 2014).
The SMAP model calculates snow albedo using the detailed
physically based snow albedo model developed by Aoki et
al. (2011) considering the effects of snow grain size evo-
lution explicitly. Although the model can also consider the
effects of light-absorbing impurities on snow albedo, we as-
sumed the pure snow condition here. On the other hand, bare
ice albedo is calculated by using a simple parameterization
as a function of density. To estimate realistic runoff from the
ice sheet, a detailed vertical water movement scheme based
on the Richards equation (Yamaguchi et al., 2012) is used.
To force NHM-SMAP (dynamical downscaling), we used
not the ERA-Interim reanalysis but the JRA-55 reanalysis
(Kobayashi et al., 2015) due to the lack of enough compu-
tational resources. However, it should be noted that the qual-
ity of the arctic atmospheric physical conditions from both
reanalysis data sets during the study period were almost the
same level as reported by Simmons and Poli (2015) and Fet-

The Cryosphere, 14, 3935–3958, 2020 https://doi.org/10.5194/tc-14-3935-2020



X. Fettweis et al.: GrSMBMIP 3941

tweis et al. (2017), who showed no significant difference be-
tween MAR forced by ERA-Interim and JRA-55.

2.1.10 PDD5km (PDD – 5 km)

European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim (Dee et al., 2011) 2 m surface air
temperature, precipitation and surface latent heat flux reanal-
ysis data were downscaled from their native 0.75◦ resolution
to 5× 5 km2 using bilinear interpolation, a high-resolution
digital elevation model (DEM) (Ekholm, 1996) and empiri-
cally derived ice-sheet surface lapse rates to correct surface
air temperature, as described in full in Hanna et al. (2005,
2011). Downscaled surface air temperature was validated us-
ing independent in situ observational automatic weather sta-
tion data from the Greenland Climate Network (Steffen and
Box, 2001), showing very good agreement between down-
scaled/modelled and observed temperatures. Net solid pre-
cipitation (snowfall minus evaporation and sublimation) was
spatially calibrated against the Bales et al. (2009) kriged
map of snow accumulation based on ice-core and coastal
precipitation gauges. Evaporation and sublimation were cal-
culated from surface latent heat flux. The resulting down-
scaled Greenland climate gridded data were used to drive a
runoff/retention model (Janssens and Huybrechts, 2000) that
produced surface melt, runoff, evaporation and SMB at a
monthly time resolution, while net precipitation was taken
from the ERA-I data set and downscaled, calibrated and ad-
justed as above. Ice-sheet averaged annual SMB since 1958
was shown to correlate strongly between this method and
RACMO2.1 but significant differences in absolute values be-
tween the respective methods were considered to be mainly
due to poorly constrained modelled accumulation (Hanna et
al., 2011).

2.1.11 PDD1km (PDD – 1 km)

The modelling method is essentially the same as described in
Sect. 2.1.10. However, here a higher-resolution DEM (Bam-
ber et al., 2013) was used to downscale ERA-Interim reanal-
ysis data to 1× 1 km2 resolution, producing monthly output
for 1979–2012 (Wilton et al., 2017). In addition, variable
“sigma” values – standard deviation of 6-hourly tempera-
tures, computed for each month – were incorporated into the
PDD method, based on earlier work by Jowett et al. (2015).
The resulting high-resolution PDD model output was evalu-
ated using PROMICE observations (Machguth et al., 2016),
showing generally robust correlations (Wilton et al., 2017)
which were broadly comparable, though not quite as good,
as the polar RCMs. Finally, this method is particularly use-
ful for long centennial/pre-satellite timescales for which rela-
tively few reliable meteorological fields are available (Wilton
et al., 2017).

2.1.12 RACMO2.3 (RCM – 1 km)

The polar (p) version of the Regional Atmospheric Climate
Model (RACMO2.3p2) is run at 5.5 km horizontal resolu-
tion for the period 1958–2018 (Noël et al., 2019). The model
incorporates the dynamical core of the High-Resolution
Limited Area Model (HIRLAM; Undèn et al., 2002) and
the physics from the European Centre for Medium-range
Weather Forecasts-Integrated Forecast System (ECMWF-
IFS cycle CY33r1; ECMWF-IFS, 2008). RACMO2.3p2 in-
cludes a multi-layer snow module that simulates melt, water
percolation and retention in snow, refreezing and runoff (Et-
tema et al., 2010). The model also accounts for dry snow
densification (Ligtenberg et al., 2018) and drifting snow ero-
sion and sublimation (Lenaerts et al., 2012). Snow albedo is
calculated based on snow grain size, cloud optical thickness,
solar zenith angle and impurity concentration in snow (Van
Angelen et al., 2012). Bare ice albedo is prescribed from the
500 m MODIS 16 d albedo product (MCD43A3), as the low-
est 5 % of the surface albedo records for the period 2000–
2015, minimized at 0.30 for dark bare ice and maximized
at 0.55 for bright ice under perennial firn. Glacier outlines
and surface topography are prescribed from a down-sampled
version of the 90 m Greenland Ice Mapping Project (GIMP)
DEM (Howat et al., 2014). RACMO2.3p2 is forced at its
lateral boundaries by ERA-40 (1958–1978) (Uppala et al.,
2005) and ERA-Interim (1979–2018) (Dee et al., 2011) re-
analyses on a 6-hourly basis within a relaxation zone that
is 24 grid cells wide. The forcing consists of temperature,
specific humidity, pressure, wind speed and direction being
prescribed at each of the 40 vertical atmosphere model lev-
els. Upper atmosphere relaxation (nudging) is also imple-
mented in RACMO2.3p2 (Van de Berg and Medley, 2016).
The model has 40 active snow layers that are initialized
in September 1957 using temperature and density profiles
derived from the offline IMAU Firn Densification Model
(IMAU-FDM) (Ligtenberg et al., 2018). Detailed descrip-
tion of the model and recent updates are discussed in Noël
et al. (2018, 2019).

The 5.5 km product is further statistically downscaled onto
a 1 km grid to resolve the steep SMB gradients over nar-
row glaciers and confined ablation zones at the rugged ice
sheet margins. Statistical downscaling corrects runoff for bi-
ases in elevation and bare ice albedo using a down-sampled
version of the GIMP DEM (topography and ice mask) and
a MODIS albedo product at 1 km resolution. This allows
the high runoff rates observed at the GrIS margins to be ac-
curately represented, significantly improving the agreement
with SMB measurements. A detailed description of the sta-
tistical downscaling procedure is given in Noël et al. (2016).

2.1.13 SnowModel (EBM – 5 km)

SnowModel was forced with ERA-Interim (ERA-I) reanal-
ysis products on a 0.75◦ longitude × 0.75◦ latitude grid
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from the European Centre for Medium-Range Weather Fore-
casts (ECMWF; Dee et al., 2011), where the 6 h (precipi-
tation at 12 h) temporal resolution ERA-I data were down-
scaled to 3-hourly values and a 5 km grid. SnowModel (Lis-
ton and Elder, 2006a) contains six sub-models, where five
of the models were used here to quantify spatio-temporal
variations in atmospheric forcing, GrIS surface snow proper-
ties (including refreezing and retention), sublimation, evap-
oration, runoff and SMB. The sub-model MicroMet (Lis-
ton and Elder, 2006b; Mernild et al., 2006) downscaled and
distributed the spatio-temporal atmospheric fields using the
Barnes objective interpolation scheme, where the interpo-
lated fields were also adjusted using known meteorological
algorithms, e.g. temperature–elevation, wind–topography,
humidity–cloudiness and radiation–cloud–topography rela-
tionships (Liston and Elder, 2006b). Enbal (Liston, 1995;
Liston et al., 1999) simulated a full surface energy bal-
ance considering the influence of cloud cover, sun angle,
topographic slope and aspect on incoming solar radiation,
and moisture exchanges, e.g. multilayer heat- and mass-
transfer processes within the snow (Liston and Mernild,
2012). SnowTran-3D (Liston and Sturm, 1998, 2002; Liston
et al., 2007) accounted for the snow (re)distribution by wind.
SnowPack-ML (Liston and Mernild, 2012) simulated multi-
layer snow depths, temperatures and water-equivalent evolu-
tions. HydroFlow (Liston and Mernild, 2012) simulated wa-
tershed divides, routing network, flow residence time, runoff
routing (configurations based on the hypothetical gridded to-
pography and ocean-mask data sets) and discharge hydro-
graphs for each grid cell including from catchment outlets.
These sub-models have been tested against independent ob-
servations with success in Greenland, the Arctic, high moun-
tain regions and on the Antarctic Ice Sheet with acceptable
results (e.g. Liston and Hiemstra, 2011; Mernild and Liston,
2012; Mernild et al., 2015; Beamer et al., 2016).

2.2 Interpolation on a common grid

One of the key issues raised by the first SMB model inter-
comparison performed by Vernon et al. (2013) was the high
dependency of modelled integrated SMB values to the ice
sheet mask used. To mitigate this problem, we interpolate all
model outputs to the same 1 km grid used in the Ice Sheet
Model Intercomparison Project for CMIP6 (ISMIP6). This
resolution is chosen because the highest resolution model
outputs (e.g. RACMO2.3p2) are available at 1 km and choos-
ing a coarser resolution could compromise their quality. A
common grid also allows a comparison on two common ice
sheet masks: the contiguous Greenland Ice Sheet, which is
common to all the models and the Greenland Ice Sheet plus
peripheral ice caps and mountain glaciers, common to all the
models except the two PDD models. Unless otherwise indi-
cated, the SMB components have been interpolated to 1 km
using a simple linear interpolation metric of the four near-
est inverse-distance-weighted model grid cells. Moreover, as

done in Le clec’h et al. (2019), the interpolated 1 km SMB
and runoff fields have been corrected for elevation differ-
ences between the model native topography and the GIMP
250 m topography (upscaled to 1 km here), using time- and
space-varying SMB–elevation gradients, similar to Franco
et al. (2012) and Noël et al. (2016). No correction was ap-
plied to precipitation after interpolation to 1 km. Finally, the
ensemble mean is based on the average of the 13 modelled
monthly outputs interpolated onto the common 1 km grid.

3 Observational data

3.1 Ice core and SMB measurements

Similar to Fettweis et al. (2017), we compare modelled SMB
with in situ observations from the following:

1. Ice core measurements in the accumulation zone (Bales
et al., 2001, 2009; Ohmura et al., 1999). The model out-
puts are averaged over the overlapping measurements
period. We use the annual mean over 1980–2012 when
the measurements period is not specified or not included
into the period 1980–2012, to increase the number of
available ice core measurements for model evaluation,
as the snowfall accumulation has remained approxi-
mately constant over recent decades (Fettweis et al.,
2017). The modelled SMB values are compared to ice
cores by interpolating the four nearest inverse-distance-
weighted grid cells to the common 1 km ISMIP6 grid.

2. Airborne radar transects in the accumulation zone from
Karlsson et al. (2016, 2020). For all of these measure-
ments, the annual mean over 1980–2012 is used as com-
parison, and as for the ice cores, outputs are interpo-
lated using the four nearest inverse-distance-weighted
grid cells to the common 1 km ISMIP6 grid.

3. The SMB database (Machguth et al., 2016) compiled
under the auspice of PROMICE and available through
the PROMICE web portal (http://www.promice.dk, last
access: 27 October 2020). This data set mainly cov-
ers the ablation zone of the GrIS and includes mea-
surements over some peripheral ice caps (as shown in
Fig. 1). Measurements not included in the 1980–2012
period and records shorter than 3 months or located
outside the common 1 km ice mask are discarded from
the comparison. In a similar fashion as in Wilton et
al. (2017), monthly model outputs are weighted by the
length of the observed month, e.g. if the record starts
in the middle of a month. Daily outputs, available for
some models, are not used here, and as for the ice cores,
outputs are interpolated using the four nearest inverse-
distance-weighted grid cells onto the ISMIP6 ice mask.

4. The unpublished database of snow pits (Jason Box,
personal communication, 2019) incorporating observa-
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Figure 1. Mean SMB (in mm w.e. yr−1) over 1980-2012 simulated by the 13 models as well as the ensemble model mean and the spread
around this mean. The SMB measurements (ice cores + PROMICE) used to evaluate the models are represented as white circles. The areas
listed in Table 4 where SMB disagree with the satellite-derived bare ice area are shown in a hatched area. Finally, it is important to note that
for better visibility, the scale is not linear as it uses a step of 100 for absolute values lower than 500 mm w.e. yr−1 and a step of 500 above.

tions of winter accumulation over previously exposed
bare ice or firn. Snow pits were monitored at the end
of the following winter accumulation period (usually in
May). As only the date when the snow pits were dug
is known (May), we assume, for the comparison with
the models, that each record started on 1 September.
However, for some years and locations, the winter ac-
cumulation may have started slightly later in October or
November, after some late-season melt events. That is
why we have accumulated modelled SMB values from

September to May when the monthly modelled SMB is
positive.

3.2 GRACE estimation

The GRACE-based product, coupled with an estimate of
monthly ice discharge from all (n > 200) large outlet glaciers
(King et al., 2018), is used here to evaluate the trend of
the 2003–2012 modelled SMB. These quantities are inte-
grated over the six basins defined in King et al. (2018) and
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Table 2. Mean, interannual variability (standard deviation of the annual means) and linear trend of the main ice sheet SMB, snowfall and
runoff in (Gt yr−1) over 1980–2012 simulated by the 13 models.

SMB Snowfall Runoff

Mean SD Trend Mean SD Trend Mean SD Trend

BESSI 387 80 −4.1 566 54 0.3 134 52 4.2
BOX13 426 99 −6.5 718 61 −0.3 508 118 9.1
CESM 421 87 −3.1 668 59 0.1 276 66 4.0
dEBM 359 121 −8.1 604 59 −0.1 280 108 8.6
HIRHAM 398 109 −7.3 701 63 −1.5 491 123 8.2
IMAU-ITM 281 129 −8.7 638 62 0.4 382 122 9.5
MAR 372 122 −7.8 640 55 −0.5 302 107 8.0
MPI-ESM 284 101 −3.5 558 59 0.5 336 70 4.0
NHM-SMAP 429 99 −4.3 807 81 1.3 260 79 6.1
PDD1km 332 101 −6.3 519 55 0.2 230 87 7.0
PDD5km 285 111 −6.8 534 56 0.3 278 97 7.5
RACMO 357 115 −7.2 667 59 −0.7 306 90 6.7
SNOWMODEL 96 179 −12.9 665 65 0.3 469 171 13.4
ENSEMBLE 338 111 −7.3 642 59 0.0 331 102 8.0

based on basin configurations from Sasgen et al. (2012). The
correction for glacial isostatic adjustment is based on the
model of Khan et al. (2016). Finally, in King et al. (2018),
monthly glacier discharge estimates were combined with
RACMO2.3p2-based SMB and compared to the resulting to-
tal mass balance estimate from the GRACE product as will
be done in this study for each model.

3.3 Bare ice extent

The MODIS-based bare ice monthly product was used to
evaluate the mean extent of the ablation zone (i.e. where the
mean annual SMB is negative) simulated by the models over
2000–2012 (Ryan et al., 2019). The daily classified bare ice
maps were used to calculate a summer (June, July and Au-
gust) bare ice presence index (or exposure frequency). The
bare ice presence index varies between 0 and 1 in any given
summer and is defined as the number of times a pixel is clas-
sified as bare ice divided by the total number of valid obser-
vations of that pixel (i.e. when not cloud obscured) between
1 June and 31 August. Finally, a 1×1 km2 pixel was consid-
ered within the ablation zone if it was detected as bare ice in
at least 50 % of the summers in 2000–2012.

4 Model intercomparison

Integrated over the common main ice sheet mask (see
Table 2), the average total GrIS SMB over 1980–2012
ranges from 96 Gt yr−1 (SnowModel) to 429 Gt yr−1 (NHM-
SMAP), with a mean value of ∼ 340± 110 Gt yr−1. Com-
paring the two largest SMB components (i.e. snowfall and
runoff), we can see large discrepancies between models. For
some models, SMB falls within the range of the other mod-
els only due to compensating effects of over- or underes-

timating both snowfall and runoff (see Fig. S1). For ex-
ample, the snowfall and runoff from BESSI and the PDD
models are very low compared to other models but yield
similar integrated SMB values. In addition, the SMB of
NHM-SMAP (SnowModel) is substantially higher (lower)
than that of other models, due to larger snowfall accumula-
tion (meltwater runoff) than other models. Except for Snow-
Model (which suggests a SMB trend close to −12.9 Gt yr−2)
and both GCMs, all models suggest that the SMB of the
GrIS has decreased at a rate of ∼ 7 Gt yr−2 over the period
1980–2012, primarily due to an increase in meltwater runoff
(∼+8 Gt yr−2). It is also interesting to note that the melt-
water runoff increase is about 2 times lower in the GCMs,
probably because a recent increase in atmospheric blocking
events in summer, increasing surface runoff, is not captured
by the GCMs (Hanna et al., 2018). Finally, while Bougamont
et al. (2007) concluded that PDDs are more sensitive to cli-
mate warming than the EBMs, it is not the case here as the
PDD-based melt rates are fully included in the EBM-based
spread, including over the extreme summers (e.g. 2012).

If we compare each model to the ensemble mean (see
Figs. 1 and 2), we can see that BESSI, NHM-SMAP and
PDD1km generally simulate lower runoff in the ablation
zone compared to the other models (Fig. 3). In contrast,
SnowModel, HIRHAM and BOX13 simulate larger runoff
than the ensemble mean. These differences largely explain
the SMB anomaly in the ablation zone shown in Fig. 2 with
respect to the ensemble mean. Finally, IMAU-ITM, BESSI
and SnowModel are drier in the interior of the ice sheet
(Fig. 4), even though they use identical ERA-Interim precip-
itation forcing as the other PDD and EBM models.

In the accumulation zone of South Greenland, CESM sim-
ulates larger snowfall rates while MPI-ESM simulates small
ones in addition to larger runoff than the ensemble mean. Fi-
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Figure 2. Same as Fig. 1 but for the modelled SMB vs. the ensemble model mean over 1980–2012 (shown in the last two plots). As in Fig.
1, the areas listed in Table 4 where SMB disagrees with the MODIS-derived bare ice area are shown in a hatched area.

nally, for all the RCMs, the snowfall accumulation does not
show similar and systematic deviations over a large extent
from the ensemble mean. This better representation of the
spatial variability in precipitation in the RCMs is likely due
to the fact that the precipitation is resolved at higher reso-
lution than in both the GCMs and the ERA-Interim reanal-
ysis, the latter of which is used to force the PDD and EBM
models. This highlights the advantage of simulating precipi-
tation at high spatial resolution in order to represent the inter-
action between the atmospheric flow and (ice-sheet) topog-
raphy. The south-east coast of Greenland shows the largest
discrepancy between models, reaching 2 m w.e. yr−1 locally,

and this is where most RCMs simulate higher precipitation
than other types of models. Unfortunately, in situ data cov-
erage along the south-eastern coast is very sparse, making
it hard to prove whether high accumulation rates in RCMs,
locally exceeding 3 m w.e. yr−1, are actually realistic. This
highlights the need for a higher density of in situ measure-
ments in south-east Greenland where the models simulate the
maximum precipitation. Shallow ice radar or remote sensing
(elevation changes) could also help to evaluate the accumu-
lation rates in this area.
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Figure 3. Same as Fig. 2 but for the modelled runoff. The ensemble mean and model spread around the mean are also shown in mm w.e. yr−1

in the two last plots. Finally it is important to note that only the area where the runoff of the ensemble mean is higher than 100 mm w.e. yr−1

is shown here.

5 Evaluation of models

5.1 Comparison with in situ SMB measurements

In comparison with SMB derived from ice cores (location
shown in Fig. 5), both PDD models perform the best (see Ta-
ble 3). However, the same ice core data set has been used to
correct ERA-Interim precipitation as that used to force both
of these models, and therefore they are not completely in-
dependent. Furthermore, the RCMs MAR, NHM-SMAP and
RACMO2.3 generally agree better with observations than the

other models that use ERA-Interim precipitation as forcing
or GCM-based precipitation computed at lower spatial res-
olution. Except for the two PDD models, the RMSE of the
models is generally larger than the standard deviation of the
ice core measurements, meaning that the model biases are
statistically significant.

In comparison with airborne radar transects, all the mod-
els compare very well and biases are not significant but these
transects are representative of only a small part of the dry
snow zone, already covered by some ice core measurements.
Finally, as for the ice cores, the best comparison occurs for
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Table 3. Statistics (in m w.e.) of models vs. SMB databases described in Sect. 3. The number of measurements as well as the mean value and
the standard deviation around this mean value for each data set is listed in the titles of the table. Finally, except for both PDD models, the
statistics of models vs. the SMB PROMICE database over the main ice sheet or the peripheral ice caps from the common ice sheet mask are
given in Table S1 in the Supplement.

Ice cores Air-borne radar
(no. 260; 0.33± 0.08 m w.e.) (no. 9043; 0.17± 0.13 m w.e.)

Bias RMSE Correlation Bias RMSE Correlation

BESSI (EBM) −0.07 0.11 0.87 −0.08 0.08 0.94
BOX13 (RCM) 0.10 0.19 0.87 −0.04 0.04 0.94
CESM (GCM) 0.05 0.14 0.80 0.02 0.02 0.90
dEBM (EBM) −0.01 0.08 0.90 −0.04 0.04 0.96
HIRHAM (RCM) 0.02 0.13 0.83 −0.01 0.02 0.96
IMAU-ITM (EBM) 0.00 0.10 0.88 −0.06 0.06 0.94
MAR (RCM) 0.01 0.08 0.93 −0.01 0.02 0.99
MPI-ESM (GCM) 0.01 0.12 0.76 0.00 0.04 0.82
NHM-SMAP (RCM) 0.01 0.09 0.93 −0.02 0.02 0.96
PDD1km −0.01 0.04 0.97 0.00 0.01 0.96
PDD5km −0.01 0.04 0.96 0.00 0.01 0.96
RACMO (RCM) −0.02 0.08 0.88 −0.01 0.01 0.96
SNOWMODEL (EBM) −0.05 0.12 0.87 −0.09 0.09 0.95
ENSEMBLE 0.00 0.06 0.95 −0.03 0.03 0.98

Snow pits PROMICE – main ice sheet
(no. 130; 0.41± 0.34 m w.e.) (no. 1438; −0.92± 0.62 m w.e.)

BESSI (EBM) −0.11 0.38 0.72 0.45 0.89 0.81
BOX13 (RCM) −0.03 0.33 0.73 0.23 0.86 0.78
CESM (GCM) −0.16 0.41 0.67 0.11 0.61 0.89
dEBM (EBM) −0.12 0.44 0.43 −0.03 0.66 0.87
HIRHAM (RCM) −0.10 0.38 0.66 0.09 0.57 0.91
IMAU-ITM (EBM) 0.12 0.53 0.16 0.03 0.58 0.89
MAR (RCM) −0.08 0.37 0.68 0.10 0.48 0.93
MPI-ESM (GCM) −0.08 0.35 0.75 −0.05 0.69 0.85
NHM-SMAP (RCM) −0.10 0.30 0.81 0.39 0.78 0.88
PDD1km −0.09 0.44 0.40 −0.18 0.69 0.89
PDD5km −0.09 0.46 0.27 −0.17 0.72 0.86
RACMO (RCM) −0.12 0.36 0.78 −0.05 0.63 0.90
SNOWMODEL (EBM) −0.17 0.47 0.33 −0.32 0.61 0.92
ENSEMBLE −0.09 0.39 0.60 0.05 0.46 0.94

the PDD models. We can also note that the correlations are
lower for both GCMs as a result of a coarser spatial reso-
lution in GCMs, disallowing the representation of the spatial
variability of SMB. However, the RMSE from GCMs is com-
parable to the other models.

All the models show a worse agreement with the 130 snow
pits than with the ice core measurements (Table 3). How-
ever, a large part of these discrepancies can likely be ascribed
to the use of monthly outputs, with the knowledge that the
starting date of the snow pit records (i.e. when the winter
accumulation actually started) is uncertain. With respect to
the PROMICE SMB data set, the model RMSE varies be-
tween 0.48 m w.e. (for MAR) and 0.89 m w.e. (for BESSI)
over the main ice sheet. For most of the models, the RMSE
is close to the temporal standard deviation (0.62 m w.e.) of

the PROMICE data set, suggesting that the modelled biases
are not statistically significant. Finally, it is interesting to note
that the best statistics are performed with the ensemble mean
of the 13 models (see Fig. S1 in supplementary), which will
be used hereafter as the SMB reference field. This also sug-
gests that biases of each model are of different signs and are
compensated when the 13 model-based estimates are aver-
aged.

In Fig. 5, we can see that all models underestimate most
of the few measurements that we have above 1 m w.e. and
underestimate ablation rates greater than 3 m w.e., except
RACMO2.3 and the two PDD models. Between 0 and
2 m w.e., most of the models rather overestimate ablation. Fi-
nally, BESSI, BOX13 and NHM-SMAP systematically un-
derestimate the ablation rates over the whole range of ob-
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Figure 4. Same as Fig. 2 but for the modelled snowfall (linearly interpolated on the 1 km common grid but without any elevation correction)
vs. the ensemble model mean over 1980–2012 as a percentage of the ensemble model mean of snowfall accumulation. The ensemble mean
and model spread around the mean are also shown in mm w.e. yr−1 in the two last plots.

servations, explaining their unfavourable statistics in Table 3
relative to other models.

In brief, it is interesting to note that all types of model gen-
erally show similar performance (see Fig. S2). Computation-
ally expensive models (i.e. the RCMs) give the best agree-
ment with observations: MAR and RACMO2.3 perform very
well on average compared to SMB observations GrIS-wide,
while NHM-SMAP and HIRHAM perform better at repre-
senting SMB in the accumulation zone and ablation zone, re-
spectively. However, the evaluation statistics from the more
simple models (PDDs and EBMs) and from GCMs are gener-

ally similar to those of polar RCMs. It is nevertheless impor-
tant to note that RCMs were used to calibrate some of these
models, partly explaining their general good performance.

5.2 Comparison with GRACE measurements

To enable comparison with GRACE mass change, we esti-
mate total mass balance for each model in 6 basins (see Fig. 6
and Table 4) by subtracting observed ice discharge D (King
et al., 2018) from modelled SMB for the 13 models, as King
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Figure 5. (a) Scatter plot of modelled vs. measured SMB in m w.e.. To increase the visibility of this figure, a running mean of 200 samples
has been applied here after having sorted the samples (observation, model) on the observations. The numbers in blue on the x axis indicate
the number of observations with SMB values within each interval of the x axis. (b) Locations of the in situ measurements: ice cores in dark
blue, airborne radar transects in light blue, snow pits in green and PROMICE in red.

et al. (2018) originally did using the RACMO-based SMB:

MB= SMB−D. (2)

The GRACE signal variability is mainly a combination
of the (i) seasonal cycle (accumulation in winter and melt
in summer), (ii) interannual variability in this seasonal cy-
cle and, (iii) long-term climate variability (linked in part to
global warming) induced mass loss, which we assume here
to be the linear trend over the considered period (2003–
2012). Over Basin 1 and 2, IMAU-ITM and SnowModel
overestimate and CESM2 and MPI-ESM underestimate the
mass loss in the GRACE signal (i.e. the linear trend) over
2003–2012. Over Basin 3, all the models underestimate the
mass change. Additionally, some of the models (in particu-
lar MAR) do not simulate mass variations in Basin 3, despite
GRACE data suggesting a mass loss of 450 Gt over 2003–
2012. In south Greenland (Basin 4), the two PDD models
show the most favourable statistics but all the models (ex-
cept MPI-ESM) underestimate mass loss. Along the west
coast (Basin 5 and Basin 6), MAR and RACMO2.3 are most
closely aligned with the observations, while SnowModel sys-
tematically overestimates and NHM-SMAP systematically
underestimates the mass loss. For the other models, the bias
in Basin 5 and 6 varies in sign. Finally, an EBM (dEBM), a
GCM (MPI-ESM), a PDD (PDD1km) and two RCMs (MAR
and RACMO2.3) compare the closest to the GRACE-derived
GrIS-integrated mass loss over 2003–2012. These favourable
statistics are due to error compensation as none of the mod-
els matches well with the GRACE-derived regional mass loss
integrated over individual basins.

For a total surface mass loss over 2003–2012 of∼ 3000 Gt
as suggested by the GRACE data set, the models range
from −1066 to −6034 Gt, with an ensemble mean of
−2611± 1253 Gt suggesting a large discrepancy between
models and therefore a large uncertainty in the modelled
SMB trends over the current climate. It is nevertheless in-
teresting to note that, for most of the models, the sign of the
bias when compared to the PROMICE data (see Table 3) is
highly correlated to the sign of the trend bias with respect
to the GRACE-based product. For example, as the 2003–
2012 changes in SMB were driven by an increase in melt,
those models underestimating surface ablation also under-
estimate these recent changes (the signal coming from dis-
charge change is the same for all the models). However, we
need to mention that all of our modelled total mass balance
estimations use the same discharge estimates from King et
al. (2018) and do not take into account changes in mass over
tundra, over small ice caps (not included in the common ice
sheet mask) and in glacial storages (e.g. meltwater lakes,
water tables): this partly explains why the discrepancies be-
tween models and GRACE could be very high in some areas.

Finally, by removing the linear trend in both time series
(i.e. the signal mainly coming from the surface melt increase
over 2003–2012 as no change in snowfall accumulation is
suggested by the models) we are able to evaluate the sea-
sonal and inter-annual variability gauged here by the RMSE
and the correlation listed in Table 4. We find that the five
RCMs simulate the seasonal cycle of SMB much better than
other types of models (see Fig. S3), although the linear trend
over 2003–2012 (Fig. 6) is significantly underestimated, in
HIRHAM and NHM-SMAP for example. The two GCMs
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Table 4. Statistics of models (in which the signal coming from the ice discharge has been subtracted from SMB) vs. GRACE for each basin
and the whole ice sheet. The trend (in Gt yr−1) shows the linear trend that must be applied to match GRACE estimates. So negative numbers
mean that the downward trend is underestimated compared to GRACE. RMSE (root-mean-square error) and correlation are computed after
having applied this trend to the modelled time series.

Basin 1 Basin 2 Basin 3 Basin 4

RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend

BESSI 10.4 0.95 3.1 18.9 0.87 −4.9 20.4 0.97 −35.4 32.6 0.98 −62.8
BOX13 10.7 0.94 7.4 18.9 0.87 13 22.1 0.96 −35.8 32.1 0.98 −88.6
CESM 13.7 0.91 −5.4 23.6 0.79 −31.2 44 0.87 −38.8 41.2 0.97 −57.7
dEBM 10.7 0.94 13.1 17.5 0.88 10.8 18.5 0.97 −31.1 33.9 0.98 −36.1
HIRHAM 8.8 0.96 −7.4 17.7 0.89 4 15.6 0.98 −24.4 24.5 0.98 −48.9
IMAU−ITM 18.2 0.86 39.1 21.6 0.86 38.1 14.8 0.98 −29.6 28.8 0.98 −19.9
MAR 9.3 0.96 12.3 16.5 0.9 4.7 16.4 0.98 −40.1 26 0.98 −39.3
MPI−ESM 15.9 0.88 −9.2 30.7 0.64 −21 27 0.95 −16.3 56.4 0.94 4.5
NHM−SMAP 9.5 0.95 6 18.5 0.87 3.6 15.8 0.98 −19.1 25.5 0.98 −75.3
PDD1km 11.9 0.93 −5.8 17.6 0.88 −14.6 19.1 0.97 −12.7 30.5 0.98 0
PDD5km 11.8 0.93 8.5 15.2 0.91 2.3 19.6 0.97 −14.2 30.4 0.98 −5.3
RACMO 9.8 0.95 12 17.3 0.89 12.8 16.3 0.98 −18.2 26.3 0.98 −38.9
SNOWMODEL 18.7 0.86 66 27.2 0.81 89.7 13.8 0.98 −8.4 23.8 0.99 −17.8
ENSEMBLE 10.5 0.95 10.5 16.7 0.89 12.3 16.8 0.98 −23.5 27.7 0.98 −40.3

Basin 5 Basin 6 Ice Sheet

RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend

BESSI 45.2 0.94 −41.4 17 0.99 16.2 95.5 0.98 −113.7
BOX13 39.4 0.96 2.7 15 0.99 −14.5 84 0.99 −103.1
CESM 51.4 0.93 −41.4 21.5 0.98 −8.9 95.7 0.98 −165.9
dEBM 43.5 0.95 0.1 19.1 0.99 20.6 94.5 0.98 −9.9
HIRHAM 26 0.98 −1.1 14.5 0.99 −21.5 54.2 0.99 −87.3
IMAU−ITM 43.7 0.95 2.7 26.5 0.98 30.7 101.2 0.98 71.6
MAR 26.8 0.98 6.7 14.2 0.99 −1 51.7 0.99 −42.4
MPI−ESM 90.3 0.8 31 39.9 0.96 −29.8 193.6 0.94 −28.3
NHM−SMAP 32.7 0.97 −52.6 17 0.99 −29.7 71.3 0.99 −153.4
PDD1km 42.7 0.95 −19.9 18.7 0.99 11.4 93.5 0.98 −28
PDD5km 40.6 0.95 −6.4 19.6 0.99 27.7 83.5 0.99 26.1
RACMO 26.9 0.98 −4.5 14.6 0.99 −9.4 56.7 0.99 −34.3
SNOWMODEL 43.3 0.95 85.8 23.7 0.98 79.2 93.3 0.98 304.2
ENSEMBLE 35.1 0.96 −3.6 16.2 0.99 9.6 73.2 0.99 −22.3

have a larger RMSE mainly because they are not forced by
ERA-Interim, and hence years with high (low) snowfall ac-
cumulation (melt) do not necessarily take place at the same
time in the GCMs as in the real climate; still, the linear trend
over 2003–2012 compares very well with GRACE (e.g. for
MPI-ESM).

5.3 Comparison with bare ice extent

We can reasonably assume that the mean SMB should be
negative in the bare ice area and positive above the snow
line. However, the equilibrium line altitude varies each year.
Therefore, we have chosen to only use SMB values that fall
within 0 mm w.e. yr−1 plus (minus) half of the SMB interan-
nual variability to detect the modelled accumulation (abla-
tion) zone. Apart from BESSI, all models are able to develop

a large enough bare ice area, although most of them over-
estimate the ablation zone extent, in particular IMAU-ITM
and SnowModel (see Table 5). In Fig. 1, the hatched areas
outline the regions where the models overestimate or under-
estimate (only for BESSI) the bare ice area. We can see that
BESSI fails to represent the extent of the south-western ab-
lation zone. Conversely, IMAU-ITM, BOX13, PDD5km and
SnowModel overestimate the extent of the ablation area in
north-east Greenland, where the SMB from the other models
is also very low but remains positive. Finally, it is interesting
to note that both GCMs (CESM2 and MPI-ESM), despite
their coarse native resolution in the atmosphere, are able to
accurately model the mean snow line, which is attributed to
their sub-grid downscaling module.
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Figure 6. Time series of the mass balance (MB) changes from GRACE over 2003–2013 as well as from the 13 models in which the signal
from ice discharge (King et al., 2018) has been subtracted from the modelled SMB. Times series are shown for six basins as well as over the
whole ice sheet. Except for both PDD models, the ice caps from the common ice sheet mask are included and the tundra areas are discarded.
Finally, the legend is sorted in the order of the mass balance changes estimated over the whole ice sheet.

6 Discussion

After having inter-compared the models in Sect. 4 and evalu-
ated them with in situ and satellite observations in Sect. 5,
this section aims to link the results discussed in the two
previous sections. In Fig. 7, we can see that the deviation
with the GRACE trend is roughly a linear function of the
annual mean GrIS SMB over 1980–2012 and of this trend.
The models under- or over-estimating meltwater runoff with
respect to the ensemble mean (which compares well with
GRACE)systematically under- or over-estimate the GRACE-
derived mass loss, largely driven by the increase in meltwa-
ter runoff in agreement with the past assessments of SMB
seasonal variability using GRACE (Velicogna et al., 2014;
Alexander et al., 2016; Schlegel et al., 2016). As the sen-

sitivity of the runoff to temperature increase is not linear
(Fettweis et al., 2013a), the runoff increase is smaller and
larger for the models under- and over-estimating the melt-
water runoff, respectively. With respect to GRACE, the best
comparisons occur for mean SMB rates between ∼ 280 and
∼ 380 GT yr−1 over 1980–2012 and SMB trends between
∼−9 and ∼−6 GT yr−2 over 1980–2012. With respect to
the PROMICE data set, the best comparisons occur for mean
SMB rates and SMB trends, which are between ∼ 280 and
∼ 380 GT yr−1 and between ∼−9 and ∼−7 GT yr−2, re-
spectively, over 1980–2012 in agreement with GRACE. Ac-
cording to the linear regression line in Fig. 7, the best
mean SMB and SMB trend estimates are ∼ 320 GT yr−1 and
∼−7.2 GT yr−2, which are very close to the values of the
ensemble mean of the 13 models. This suggests that the en-
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Table 5. Percentage of the main ice sheet area showing the presence
of bare ice area detected in MODIS on average over 2000–2012 and
where the modelled mean SMB is significantly positive, i.e. where
annual SMB is larger than half of the interannual variability (gauged
here by the standard deviation). The same is shown for the presence
(or lack thereof) of bare ice and where SMB is significantly negative
(middle column). The percentage of agreement between modelled
ablation zone and bare ice area from MODIS is shown in the right
column.

Bare ice area and Bare ice area and
SMB > SD / 2 SMB <−SD / 2 Agreement

BESSI 3.5 1.1 95.5
BOX13 0.9 5.0 94.0
CESM 1.9 1.6 96.4
dEBM 0.6 2.9 96.4
HIRHAM 0.6 2.4 97.0
IMAU-ITM 0.5 9.2 90.4
MAR 0.4 3.6 96.0
MPI-ESM 0.8 2.3 96.9
NHM-SMAP 0.6 3.7 95.8
PDD1km 1.4 2.3 96.3
PDD5km 1.0 5.3 93.7
RACMO 0.7 3.0 96.3
SNOWMODEL 0.3 14.1 85.6
ENSEMBLE 0.4 4.2 95.3

semble mean can be reliably chosen as the best reference to
represent the mean SMB and its variability over 1980–2012
for any validation of future model developments.

Except for the two GCMs that underestimate the recent
surface mass loss trend mainly because they do not have
the same general circulation variability as the ERA-Interim
climate, the runoff anomaly expressed in percentage of the
ensemble mean remains mainly constant over time, includ-
ing the extreme summer of 2012. This first confirms that the
modelled runoff overestimation and underestimation are sys-
tematic over time, independent of the physics used in the
model. This also suggests that a runoff bias over the cur-
rent climate should increase in absolute value for warmer
climates in the same proportion as runoff, justifying the im-
portance of representing the current mean climate and trend
well before performing future projections.

Finally, for 95 %, 90 % and 99 % of the 10 767 in situ mea-
surements (see Fig. 1) over the main ice sheet, the mean
bias between the ensemble mean and the measurements rep-
resents 72 %, 70 % and 75 % of the model spread around
this ensemble mean, respectively; it also corresponds to 16 %
(resp. 15 % and 18 %) of the observed values. Therefore, we
can reasonably estimate three-quarters of the model spread
around the ensemble mean as the uncertainty of this en-
semble mean-based SMB reconstruction, which gives mean
SMB and SMB trend estimates of 338± 68 Gt yr−1 and
−7.3± 2 Gt yr−2 respectively over 1980–2012.

Figure 7. (a) Scatter plots of the deviation from GRACE trend (in
GT yr−1) vs. mean SMB over 1980–2012 (in GT yr−1), listed in
Table 4 and Table 2, respectively. (b) Same as left but with the SMB
trend over 1980–2012 (in GT yr−2). In both plots, the background
colour indicates the RMSE with the PROMICE SMB database (see
Table 3).

7 Conclusion

This paper describes the methodology and results of the GrIS
SMB Model Intercomparison Project (GrSMBMIP): a novel
effort that intercompares GrIS SMB fields produced using
five RCMs, four EBMs, two PDDs and two GCMs. Model
evaluation using ice core data highlights that polar RCMs
(in particular MAR and RACMO2.3) have the most accu-
rate representation of SMB in both the GrIS accumulation
and ablation zones, but they are also the only ones to have
been calibrated to simulate snowfall and melt individually.
Biases of other models are nevertheless of the same order of
magnitude as those of polar RCMs, which are often used to
calibrate these more simple but faster models. The ensemble
mean of the 13 inter-compared models best compares with
in situ SMB observations and is among the best modelled
estimates to represent the GRACE-derived mass loss trend
between 2003 and 2012. Our results reveal that the mean
GrIS SMB of all 13 models has been positive between 1980
and 2012 with an average of 338± 68 Gt yr−1 but has de-
creased at an average rate of−7.3± 2 Gt yr−2, mainly driven
by an increase of 8.0± 2 Gt yr−2 in meltwater runoff. The
uncertainty has been evaluated to be three-quarters of the
model spread around the ensemble mean with respect to the
in situ SMB measurements. The good performance of the
PDD models in the ablation zone suggests that estimating
melt from temperature remains valid under the current cli-
mate conditions and that the use of more sophisticated en-
ergy balance melt schemes can generate larger biases, despite
better a priori physics. Finally, the mean (runoff) bias in the
ablation zone mostly explains the large discrepancy between
models and GRACE-derived mass loss trend in 2003–2012.
Moreover, meltwater runoff biases that operate under current
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climate could strongly impact the models’ ability to simulate
future melt acceleration as the present-day runoff bias should
increase in absolute value in the same proportion as runoff
under warmer climates, independently of the physics used in
the models. This suggests for example that a model overesti-
mating the runoff during the extreme 2012 summer by a fac-
tor of 2 should a priori overestimate the future sea level rise
coming from the Greenland Ice Sheet by roughly the same
amount, as future SMB changes will mainly be driven by the
surface melt increase (Fettweis et al., 2013a).

RCMs have the advantage that they resolve near-surface
climate and dynamically downscale the precipitation to
higher spatial resolution with respect to their forcing, while
PDD and EBM models are fully driven by the near-surface
climate of their low-resolution forcing fields. Although the
two GCMs used in this study are not (or are only weakly)
forced by historical weather, they simulate the melt reason-
ably well, which can probably be ascribed to sub-grid eleva-
tion corrections applied in MPI-ESM and CESM2. However,
for precipitation, the native GCM resolution remains too
coarse to resolve the spatial variability simulated by RCMs.
The spatial variability of precipitation in RCMs is partic-
ularly high along the south-east coast of Greenland. How-
ever, the paucity of observations prevents us from confirm-
ing whether the local high precipitation rates simulated by
RCMs, and not captured by lower resolution models, are real-
istic. Finally, while RCMs are useful tools for evaluating the
melt–elevation feedback since they explicitly compute pre-
cipitation and melt changes at high resolution on a different
ice sheet topography when coupled with an ice sheet model
(Le clec’h et al., 2019), running RCMs at a high spatial reso-
lution becomes computationally expensive on timescales be-
yond one century. This suggests that the PDD-, EBM- and
GCM-based approaches may be more suitable for questions
that require long simulations (where a coupling with an ice
sheet model may be desirable as well), if they well simulate
the current climate (in particular melt runoff).
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