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The context of this work is the online characterization of anomalies in large scale systems. In particular, we address

the following question: Given two successive configurations of the system, can we distinguish massive anomalies from

isolated ones, the former ones impacting a large number of nodes while the second ones affect solely a small number

of them, or even a single one? The rationale of this question is twofold. First, from a theoretical point of view, we

characterize anomalies with respect to their neighborhood, and we show that there are anomaly scenarios for which

isolated and massive anomalies are indistinguishable from an omniscient observer point of view. We then relax this

problem by introducing unresolved configurations, and exhibit necessary and sufficient conditions that allow any node

to determine the type of anomaly it has been impacted by. This condition only depends on the close neighborhood

of each node and thus is locally computable. From a practical point of view, distinguishing isolated anomalies from

massive ones is of utmost importance for networks providers. For instance, Internet service providers (ISPs) would be

interested to deploy procedures that allow gateways to self distinguish whether their dysfunction is caused by network-

level anomalies or by their own hardware or software, and to notify the ISP only in the latter case.

Keywords: Network monitoring, anomaly detection, diagnosis.

We study the online monitoring problem in large scale distributed systems. This problem deals with

the capability of collecting and analyzing relevant information provided by monitored devices so as to

make the monitoring application continuously aware of the state of the system. Actually, standardized

procedures exist at devices level to autonomously trigger investigations in presence of errors or networks

events. However, these procedures are never used for practical reasons. Indeed if the cause of a QoS (quality

of service) variation lies in the network itself – due to routing loops, router dysfunctions, or configuration

errors – this may impact a very large number of devices (more precisely, impact services consumed by

these devices), and thus letting thousands of impacted devices reporting the problem to the operator may

quickly become a disaster. It is thus of utmost importance to minimize the overall pressure put on the

service operator, by giving each device the capability to locally detect whether the local QoS degradation

is also observed at many other devices or not, so that only isolated errors or events are reported on the fly

by the devices experiencing them. In both cases, the key point is to provide each monitored device a way

to estimate the impact on other devices of a locally perceived QoS degradation. The approach we propose

boils down for a device to locally detect the presence of similarity features in the abnormal behavior of other

devices. This is achieved by modeling the QoS of the different services accessed by a device by a point in

a QoS space E, and the temporal evolution of its QoS by a trajectory in E. A trajectory is abnormal if the

predicted values of the QoS differ from the observed ones. The problem we tackle amounts for a device to

locally identify all the abnormal trajectories that are close to its own one, to determine how dense they are,

to finally decide whether its services have been impacted by an isolated event or a network one.
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1 System Model

We consider a set of n monitored devices, such that each one consumes d services s1, . . . ,sd . At any

discrete time k, the QoS of each service si at device j is locally measured with an end-to-end performance

measurement function qi,k( j), whose range of values is [0,1]. Measurement functions reflect errors (or

failures) occurring on the chain of equipments and network links from the providers of consumed services

to the monitored devices. We model the QoS of monitored devices at discrete time k as a set Sk of n points

in a space E = [0,1]d , with d ≥ 1, called the QoS space. The position of device j at time k is represented by

point pk( j) = (q1,k( j), . . . ,qd,k( j)). The state Sk of the system at discrete time k is Sk = (pk(1), . . . , pk(n)).

Definition 1 (r-consistent motion) For any r ∈ [0,1/4), a subset B ⊆ J1,nK has an r-consistent motion in

the time interval [k− 1,k] if ∀(i, j) ∈ B2,‖pk(i)− pk( j)‖ ≤ 2r and ‖pk−1(i)− pk−1( j)‖ ≤ 2r. Moreover, a

subset B ⊆ J1,nK has a maximal r-consistent motion in the time interval [k− 1,k] if B has an r-consistent

motion in the time interval [k−1,k] and ∀ j ∈ J1,nK\B,B∪{ j} does not have an r-consistent motion in the

time interval [k−1,k] .

Note that if B has an r-consistent motion in the time interval [k−1,k] , either B has a maximal r-consistent

motion or there exists B′ ⊆ J1,nK,B ⊆ B′ such that B′ has a maximal r-consistent motion.

Each device j consumes d services, and for each of them, periodically computes an end-to-end quality

of service which is used to feed an error detection function ak( j). If the variation of quality is considered as

abnormal, this function returns true. The set of devices having an abnormal trajectory in the time interval

[k−1,k] is denoted by Ak = { j ∈ J1,nK | ak( j) = true}.

Given the position of each device in the QoS space E at each time k, one can construct several plausible

scenarios of errors that would explain the trajectories of each device. For instance if a group of points follow

the same abnormal trajectories at different observations, it should be caused by the same error. Similarly, if

some point shows an abnormal trajectory that moves it away from its previous neighbors it should be due

to some isolated error. On the other hand, there are scenario of errors that cannot be captured by periodic

snapshots, as for example the fact that some device has been hit by simultaneous or temporally close errors

between two successive snapshots. We encapsulate these indistinguishable scenarios of errors by imposing

the following restrictions on the impact of errors on devices QoS. First, in the time interval [k− 1,k] , the

abnormal trajectory of each device j ∈ Ak is due to a single error (R1). An error has a similar effect on

the abnormal trajectories of all impacted devices. In particular if a set of devices that are at no more than

2r from each other in E at time k− 1 are impacted by a given error in the time interval [k− 1,k] then all

these devices will undergo the same abnormal trajectories and thus by Definition 1 will follow the same r-

consistent motion in [k−1,k] (R2). Finally, if at least τ devices have suffered from isolated errors (possibly

different ones) then they cannot form a consistent motion (R3). Note that a single error can impact devices

whose QoS can be arbitrarily different.

Restrictions R1, R2 and R3 are taken into account by partitioning the set of devices in Ak. This partition-

ing of Ak is formally defined as follows.

Definition 2 (Anomaly partition Pk) For any k ≥ 1,τ∈ J1,n−1K,r ∈ [0,1/4), the partition Pk of Ak is said

to be an anomaly partition at time k if it is made of non-empty and disjoint r-consistent motions B1, . . . ,Bℓ

that verify conditions C1 and C2 below. Subsets B1, . . . ,Bℓ are called anomalies.

C1: ∀B ⊆
⋃

|Bi|≤τ Bi, either B has an r-consistent motion with |B| ≤ τ or B has not an r-consistent motion,

C2: ∀B ⊆
⋃

|Bi|≤τ Bi,∀i ∈ J1, ℓK, Bi has an r-consistent motion with |B|> τ ⇒ B∪Bi has not an r-consistent

motion.

By extension, for any point j ∈ Ak, Pk( j) represents the (unique) subset B ∈ Pk such that j ∈ B. In spite of

the apparent complexity of Definition 2, given Ak, Sk−1, Sk, τ and r, there always exists at least one anomaly

partition. Finally, according to the number of devices belonging to each B1, . . . ,Bℓ of Pk, we differentiate

between isolated anomalies and massive anomalies. Specifically,

Definition 3 (Massive / Isolated Anomalies) Let Pk be an anomaly partition. An element B ∈ Pk is called

a massive anomaly in the time interval [k−1,k] if |B|> τ. Otherwise it is called an isolated anomaly. The
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set of devices impacted by a massive anomaly in the time interval [k− 1,k] is denoted by MPk
. We have

MPk
= { j ∈ Ak | |Pk( j)| > τ}. Similarly, the set of devices impacted by an isolated anomaly in the time

interval [k−1,k] is denoted by IPk
. We have IPk

= { j ∈ Ak | |Pk( j)| ≤ τ}.

To summarize, if Pk is an anomaly partition, then we have Ak = MPk
∪ IPk

and MPk
∩ IPk

= /0.
We consider in the following that all the errors or events that occur in the system respect restrictions

R1, R2 and R3. In this (ideal) context, there exists an anomaly partition that reconstructs exactly what

really happens in the system. In the following we denote by Rk, k ≥ 1, this real scenario of errors, and

by respectively MRk
and IRk

the set of devices that have been involved in respectively massive and isolated

anomalies.

2 The Addressed Problems

Consider an omniscient observer that is able to read, at any time k, the state vector Sk, and knows for any

point j ∈ J1,nK the output of the error detection function ak( j). Based on this knowledge, the goal of the

omniscient observer is to infer the set of devices that have been involved in massive and isolated anomalies.

The question that naturally crosses our mind is whether these inferred sets exactly match both MRk
and IRk

.

We reformulate this question as the Anomaly Characterization Problem (ACP). Specifically, for any k ≥ 1,

for any system states Sk−1 and Sk, for any Ak, for any r ∈ [0,1/4) and τ ∈ J1,n−1K, let Mk and Ik be the two

sets built by the omniscient observer that contained all the devices that have been impacted by respectively

massive and isolated anomalies.

Problem 1 (Anomaly Characterization Problem (ACP)) Is the omniscient observer always capable of

building Mk and Ik such that Mk = MRk
and Ik = IRk

without knowing Rk?

Unfortunatly, there exist configurations that do not allow an omniscient observer to decide with certainty

which devices have been impacted by massive anomalies and which ones have been impacted by isolated

anomalies. Because of the existence of such configurations, Problem 1 is not solvable. We propose to relax

this problem by partitioning Ak into three sets Mk, Ik and Uk such that Mk and Ik contain all the devices for

which it is certain that these devices have been impacted by respectively massive and isolated anomalies.

We have Ik = {ℓ ∈ Ak | ∀Pk, |Pk(ℓ)| ≤ τ} and Mk = {ℓ ∈ Ak | ∀Pk, |Pk(ℓ)|> τ}. Thus, whatever the anomaly

partition Pk, Mk ⊆ MPk
and Ik ⊆ IPk

. In particular Mk ⊆ MRk
, Ik ⊆ IRk

. On the other hand, set Uk contains all

the other devices j ∈ Ak for which an omniscient observer cannot decide with certainty whether j belongs

to a massive anomaly or an isolated one. This is formalized as follows.

Definition 4 (Unresolved configuration) Any device j ∈ Ak is in an unresolved configuration if there exist

two anomaly partitions Pk and P ′
k such that j ∈ IPk

and j ∈ MP ′
k
. The set of devices belonging to an

unresolved configuration in the time interval [k−1,k] is denoted by Uk.

We now formulate a relaxed version of ACP. Specifically, for any k ≥ 1, for any system states Sk−1 and

Sk, for any Ak, and τ ∈ J1,n− 1K, let Mk, Ik and Uk be respectively the set of devices involved in massive

and isolated anomalies and those being in an unresolved configuration.

Problem 2 (Relaxed ACP) Is the omniscient observer always capable of building Mk, Ik and Uk such that

Mk ⊆ MRk
and Ik ⊆ IRk

and Mk ∪ Ik ∪Uk = Ak without knowing Rk?

The following section presents necessary and sufficient conditions for any device j ∈ Ak to belong to one of

these three sets Mk, Ik and Uk.

3 Locally deciding whether one belongs to Mk, Ik, or Uk

A naive approach for device j ∈ Ak, k ≥ 1, to decide whether it belongs to Mk, Ik or Uk consists in generating

all admissible anomaly partitions and then in deciding whether it belongs to Mk, Ik, or Uk. Clearly this is

impractical. We propose to solve the relaxed ACP through a cheaper and local computation which relies
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uniquely on the knowledge of all the maximal r-consistent motions j is involved in. Theorem 1 provides a

necessary and sufficient condition (NSC) for j ∈ Ak to belong to Ik. Theorems 2 and 3 give respectively a

sufficient condition and a NSC for j ∈ Ak to belong to Mk. Finally, Corollary 4 exhibits a NSC for j ∈ Ak to

belong to Uk. We introduce the following two families.

Wk( j) = {B ⊆ Ak | j ∈ B , |B|> τ , B has an r-consistent motion} ,

W k( j) = {B ⊆ Ak| j ∈ B , |B|> τ , B has a maximal r-consistent motion} .

Theorem 1 For any k ≥ 1, and for any j ∈ Ak, we have W k( j) = /0 ⇐⇒ j ∈ Ik.

This theorem illustrates the fact that if there are not enough other devices in the vicinity of a given device

j exhibiting similar trajectories as j one, then j has necessarily been impacted by an isolated error. On the

contrary, we denote by Dk( j) the set of all devices having similar anomalous trajectories, and that belong

to an element of W k( j). We have Dk( j) =
⋃

B∈W k( j)
B. This set can be partitioned into two subsets Jk( j)

and Lk( j) as follows.

Jk( j) = {ℓ ∈ Ak | ∃B ∈ W k( j), ℓ ∈ B and ∀B′ ∈ W k(ℓ), j ∈ B′},

Lk( j) = {ℓ ∈ Ak | ∃B ∈ W k( j), ℓ ∈ B and ∃B′ ∈ W k(ℓ), j /∈ B′}.

Based on this neighborhood division, we enunciate the following theorems.

Theorem 2 For any time k ≥ 1 and for any j ∈ Ak, ∃B ∈ W k( j) such that |B∩ Jk( j)|> τ =⇒ j ∈ Mk.

Theorem 3 For any time k ≥ 1 and for any j ∈ Ak, j ∈ Mk if and only if W k( j) 6= /0 and for all collections

C of pairwise disjoint sets defined by C ⊆ {B ∈ Wk(ℓ) | ℓ ∈ Lk( j), j /∈ B}, the following relation holds.

(

∃A ∈ Wk( j) : A ⊆ Dk( j)\
⋃

B∈C

B

)

or

(

∃B ∈ C : B∪{ j} ∈ Wk( j)

)

.

Corollary 4 For any time k ≥ 1 and for any j ∈ Ak, j ∈Uk if and only if W k( j) 6= /0 and it exists a collection

C of pairwise disjoint sets defined by C ⊆ {B ∈ Wk(ℓ) | ℓ ∈ Lk( j), j /∈ B} such that the following relation

holds.
(

∀A ∈ Wk( j) : A * Dk( j)\
⋃

B∈C

B

)

and

(

∀B ∈ C : B∪{ j} 6∈ Wk( j)

)

.

For space reasons, proofs of Theorems 1– 3 and Corollary 4 are omitted from this paper but are presented

in the companion paper [AB+14]. We have also described in [AB+14] the algorithms implementing these

theorems, and evaluated their performance.

To summarize, we have derived conditions that allow any impacted device to decide whether many other

devices have been impacted by the very same error or not. We have shown that the concomitance of

errors may lead to unresolved scenarios that do not allow devices to distinguish which error they have

been impacted by. Finally, we have shown that each device j only needs to know the trajectories of its

neighbors (i.e., the devices that belong to j maximal r-consistent motions), and possibly the trajectories of

the neighbors of the devices that belong to Lk( j). Thus j only needs to know the trajectories that are at

no more than 4r from itself. A larger radius of knowledge – as the one got by an omniscient observer that

samples at each time k the system state Sk – does not bring any additional information and thus does not

provide a higher error detection accuracy.
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