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A B S T R A C T

Over the past decade, there is increasing interest in the ways in which environmental unpredictability shapes
human life history development. However, progress is hindered by two theoretical ambiguities. The first is that
conceptual definitions of environmental unpredictability are not precise enough to be able to express them in
statistical terms. The second is that there are different implicit hypotheses about the proximate mechanisms that
detect unpredictability, which have not been explicitly described and compared. The first is the ancestral cue
perspective, which proposes that humans evolved to detect cues (e.g., loss of a parent, residential changes) that
indicated high environmental unpredictability across evolutionary history. The second is the statistical learning
perspective, which proposes that organisms estimate the level of unpredictability from lived experiences across
development (e.g., prediction errors encountered through time). In this paper, we address both sources of
ambiguity. First, we describe the possible statistical properties of unpredictability. Second, we outline the an-
cestral cue and statistical learning perspectives and their implications for the measurement of environmental
unpredictability. Our goal is to provide concrete steps toward better conceptualization and measurement of
environmental unpredictability from both approaches. Doing so will refine our understanding of environmental
unpredictability and its connection to life history development.

I saw those Djakarta markets for what they were: fragile, precious
things. The people who sold their goods there might have been poor,
poorer even that the folks in Altgeld. They hauled 50 pounds of
firewood on their back every day, they ate little, they died young.
And yet for all that poverty, there remained in their lives a dis-
cernable order, a tapestry of trading routes and middle men, bribes
to pay, and customs to observe, the habits of a generation played out
every day. It was the absence of such coherence that made a place
like Altgeld so desperate, I thought to myself; it was the loss of
order.

Barack Obama (1995). Dreams from my Father.

Barack Obama spent part of his childhood living in Jakarta,
Indonesia, and his emerging adulthood working as a community orga-
nizer in Altgeld Gardens, a public housing project on Chicago's South
Side. In his memoir, Obama described both Jakarta and Altgeld as
tough environments in which people died young. Indeed, Jakarta and
Altgeld seemed similar on a fundamental dimension of environmental
risk—harshness—which Ellis, Figueredo, Brumbach, and Schlomer
(2009) defined as age-specific rates of morbidity-mortality. At the same
time, Jakarta and Altgeld appeared very different on a second key di-
mension of environmental risk: unpredictability. The challenges and

struggles of life in Jakarta were tough but similar from day-to-day. In
Altgeld, life was chaotic, haphazard, and disordered.

For decades, scholars have examined the link between environ-
mental conditions, evolution, and the development of life-history stra-
tegies (Belsky, Steinberg, & Draper, 1991; Chisholm, 1993; Draper &
Harpending, 1982). Recently, evolutionary-developmental theory and
research have identified a unique role for environmental unpredict-
ability in regulating human development (Ellis et al., 2009). For in-
stance, studies have shown associations between environmental un-
predictability and life history traits in humans, such as sexual behavior
(Belsky, Schlomer, & Ellis, 2012; Simpson, Griskevicius, Kuo, Sung, &
Collins, 2012), mating and relationship outcomes (Szepsenwol et al.,
2017; Szepsenwol, Zamir, & Simpson, 2019), and parenting
(Szepsenwol, Simpson, Griskevicius, & Raby, 2015). Studies have also
linked environmental unpredictability to behavior and cognition, in-
cluding risk-taking and temporal discounting (Griskevicius et al.,
2013), executive functions and working memory (Mittal, Griskevicius,
Simpson, Sung, & Young, 2015; Young, Griskevicius, Simpson, Waters,
& Mittal, 2018), and decision-making (Griskevicius, Delton, Robertson,
& Tybur, 2011; White, Li, Griskevicius, Neuberg, & Kenrick, 2013).
Together, these findings appear to tell a convincing story: growing up in
an unpredictable environment uniquely predicts human life history
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traits, even after controlling for other factors, such as poverty.
Although the empirical literature on environmental unpredictability

has grown substantially in the past 10 years, this body of work faces
theoretical and methodological challenges. The most visible challenge
is the wide range of measures used to quantify unpredictability, which
makes it difficult to compare findings and assess replicability. We be-
lieve this is a symptom of two major theoretical ambiguities. The first
focuses on the definition of environmental unpredictability as a selec-
tion pressure across evolutionary time. Specifically, unpredictability
has been defined as the level of spatial-temporal variation in environ-
mental harshness (Ellis et al., 2009). However, current definitions do
not specify the pattern of variation in statistical terms. In addition,
current definitions do not address stationarity in environmental un-
predictability. Stationarity refers to whether the statistical properties of
an environment (e.g., mean, variance, autocorrelation etc.) remain
constant across lifetimes. The statistical properties of a non-stationary
environment change across the lifetime (e.g., changes in the mean,
variance, or autocorrelation etc.). Whether environmental unpredict-
ability is stationary or non-stationary affects environmental un-
predictability as a selection pressure.

Even with precise concepts at the ultimate level, a second theore-
tical ambiguity concerns the proximate mechan-
isms—adaptations—that evolved to detect and respond to environ-
mental unpredictability. Specifically, there are at least two conceptually
distinct frameworks. The first is the ancestral cue perspective, which
proposes that humans evolved to detect and respond to cues that re-
liably indicated high environmental unpredictability across evolu-
tionary history. The second is the statistical learning perspective, which
suggests that organisms estimate the level of unpredictability by in-
tegrating differences in lived experiences across development. Because
these approaches imply different proximate mechanisms for detecting
environmental unpredictability, drawing on one or the other has con-
sequences for measurement.

Our goal is to highlight–and attempt to clarify–these theoretical
ambiguities while also proposing some steps forward. We restrict our
focus to two questions. First, what is environmental unpredictability
and how can it be described in formal statistical terms? Second, how do
organisms detect environmental unpredictability and what information
triggers a response once detected? We do not address questions about
the selection pressures posed by the developmental timing of exposures
to environmental unpredictability (e.g., juvenile versus adult life stage),
sensitive periods of development for responding to unpredictability,
specific biological or cognitive mechanisms that mediate responses to
unpredictability (e.g., stress physiology, mental representations,
learning mechanisms), or adaptive responses to unpredictability (e.g.,
accelerating or decelerating life history development). In addition, we
focus on how organisms estimate environmental unpredictability in a
general sense and not on whether or how they estimate the environ-
mental conditions in which an individual will reproduce (even if these
variables may be related, for instance, when estimates of the former can
inform estimates of the latter). With this narrow scope in mind, we
proceed in four steps. First, we provide a brief overview of research on
environmental unpredictability and illustrate the widespread incon-
sistency in its measurement. Second, we analyze environmental un-
predictability at the ultimate level of explanation and identify possible
statistical definitions, depending on whether the environment is sta-
tionary or non-stationary. Third, we outline the ancestral cue and sta-
tistical learning approaches that might characterize the proximate
mechanisms for detecting environmental unpredictability and discuss
their implications for the measurement of environmental unpredict-
ability. Fourth, we propose ways in which the ancestral cue and sta-
tistical learning approaches could be integrated and outline future di-
rections for research.

1. Environmental unpredictability: the past decade

In a foundational paper, Ellis et al. (2009) proposed a conceptual
framework of unpredictability based on life history theory (Charnov,
1993; Roff, 1993; Stearns, 1992). Life history theory seeks to explain
the way organisms allocate limited time and energy to the various ac-
tivities during the life cycle. Natural selection favors organisms that
optimize the timing of developmental activities based on the local
ecology. Ellis et al. (2009) identified environmental unpredictability as
a key influence on the evolution and development of life history stra-
tegies and defined it as variation in environmental harshness (age-
specific rates of morbidity-mortality) over space and time. The central
thesis is that, over evolutionary time, humans were exposed to en-
vironments that varied both in mean levels of harshness and in the
degree of stochastic variation in harshness within and across genera-
tions. Variation in harshness affected fitness-relevant outcomes (e.g.,
survival and reproduction) of our ancestors over developmental time. In
response, humans may have developed conditional adaptions that en-
abled accelerated life history development if exposed to environmental
unpredictability.

The Ellis et al. (2009) analysis inspired empirical studies that, to-
gether, have generated a body of knowledge about the developmental
effects of environmental unpredictability (Belsky et al., 2012;
Brumbach, Figueredo, & Ellis, 2009; Doom, Vanzomeren-Dohm, &
Simpson, 2016; Mittal et al., 2015; Simpson et al., 2012; Szepsenwol
et al., 2015; Szepsenwol et al., 2017; Szepsenwol et al., 2019; Young
et al., 2018). However, despite a common frame, empirical studies have
measured environmental unpredictability in many different ways. For
example, evolutionary-developmental psychologists tend to count the
number of residential changes, family disruptions, or changes in par-
ental financial status (Belsky et al., 2012; Brumbach et al., 2009; Ellis
et al., 2009; Simpson et al., 2012). Evolutionary social psychologists
tend to employ self-report questionnaires that quantify (retrospectively)
individual differences in the perception of environmental unpredict-
ability while growing up (Maner, Dittmann, Meltzer, & McNulty, 2017;
Mittal et al., 2015; Young et al., 2018). Finally, other behavioral sci-
entists typically measure household chaos, inconsistency in parental
discipline/nurturance, and/or inconsistent routines (Evans, Gonnella,
Marcynyszyn, Gentile, & Salpekar, 2005; Kolak, Van Wade, & Ross,
2018; Ross & Hill, 2002; Ross, Hood, & Short, 2016).

To illustrate the diversity in measures, we reviewed all studies citing
Ellis et al. (2009) on Web of Science (search completed on February 8,
2020). Of the 422 studies citing Ellis et al. (2009), we identified 21
empirical studies that measured environmental unpredictability (see
supplemental Table 1) but at least 15 different measures. Moreover,
studies using the same measures do so because they report findings
from the same dataset. Specifically, eight of the 21 studies come from
either the Study of Early Childcare and Youth Development (NICHD
Early Child Care Research Network, 2005) or the Minnesota Study of
Risk and Adaptation (Sroufe, Egeland, Carlson, & Collins, 2005). This
means almost half of the studies on environmental unpredictability
have used just two data sources. In addition, the psychological litera-
ture also employs many different methods for capturing environmental
unpredictability. For example, studies vary in report formats (e.g., self-
reports, interviews), informants (e.g., target participant or caregiver),
and report types (e.g., retrospective, prospective) to name only a few
(see supplementary Table 1). As such, there is little overlap across
studies in measures of environmental unpredictability. Moreover, to our
knowledge, there are no studies that explore whether distinct measures
are correlated with each other, indicate the same underlying construct,
and predict the same outcomes in a dataset.

Diversity in measurement is not inherently bad but makes it difficult
to compare findings and assess replicability. One solution would be to
conduct largescale psychometric analyses to evaluate the construct
validity of measures. However, psychometric work only gets us so far;
we also need to remove ambiguities in our conceptual definition of
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environmental unpredictability. At the ultimate level, we need to
identify the potential statistical properties of environmental un-
predictability that could impose a selection pressure. In addition, at the
proximate level, we need clearer hypotheses about the design features
of the mechanisms that may have evolved to detect and respond to
environmental unpredictability. Are organisms detecting discrete
events that indicated environmental unpredictability over evolutionary
time, or are they integrating over differences in their lived experiences
over the course of ontogeny, or both?

2. Statistical properties of unpredictable environments

Current definitions of environmental unpredictability focus on
spatial and temporal variation in environmental harshness (Ellis et al.,
2009). Although not always explicit, work in this area specifically fo-
cuses on stochastic (e.g., random) variation in harshness. We attempt to
refine this definition in two ways. First, we identify the patterns of
variation that make environments more or less predictable. For ex-
ample, some patterns of variation are predictable, such as seasonal
variation. After accounting for predictable variation (e.g., seasons or
trends), any remaining variability (e.g., leftover noise) can be still be
predictable if it is autocorrelated. The degree of autocorrelation in re-
sidual variation is sometimes referred to as the color of environmental
noise, with white noise reflecting no autocorrelation and pink, red, and
brown noise reflecting lower to higher degrees of autocorrelation
(Burgess & Marshall, 2014; Frankenhuis, Nettle, & Dall, 2019; Marshall
& Burgess, 2015; Vasseur & Yodzis, 2004; Wieczynski, Turner, &
Vasseur, 2018). Second, we address stationarity, which refers to whether
or not the statistical structure of an environment itself changes over a
lifetime. For example, if environmental harshness is stationary in a
lifetime, its mean, variance, and/or autocorrelation over the first 5
years of life (or any other arbitrary period of time) are equal to any
other 5-year window across the life course. In contrast, non-stationary
environments have a statistical structure that changes over time. If
environmental harshness is non-stationary in a lifetime, its mean, var-
iance, and/or autocorrelation over the first 5 years of life are different
from other 5-year periods across the life course. Whether environ-
mental unpredictability is stationary or non-stationary has implications
for evolution and development, formal modeling, and measurement
(Frankenhuis, Panchanathan, & Nettle, 2016).

In stationary environments, there are at least three relevant statis-
tical properties for describing environmental unpredictability: variance,
autocorrelation, and cue reliability (see Fig. 1a). Variance refers to
average deviations from the mean. For example, high temporal variance
in harshness means that the environment can vary widely from safe to
dangerous (around a mean value) across time. However, whether or not
high variance is unpredictable depends on whether it is autocorrelated.
Autocorrelation refers to the degree to which current conditions are
related to future conditions (e.g., are conditions today correlated with
conditions tomorrow). Even when variance is high, such variation can
be predictable if it is autocorrelated. Finally, cue reliability refers to the
extent to which experiences or events provide information about cur-
rent or future environmental conditions (Fawcett & Frankenhuis, 2015).
For example, witnessing a fight could be a reliable cue to current or
future levels of harshness, whereas seeing people lock their doors could
be a less reliable cue to harshness (e.g., this happens in both safe en-
vironments and dangerous ones). Cues may provide information about
current or future states of the environment, even if states of the en-
vironment are not autocorrelated. For instance, if a leader in your vil-
lage, whom you trust, tells you that a gang, which you are a part of, will
raid a neighboring village, it indicates a likely increase in the rates of
morbidity and mortality in your environment, even if this increase
could not be predicted based on past levels of animosity (i.e., auto-
correlation), without the social cue.

In non-stationary environments, the underlying statistical structure
of the environment changes over time. However, some types of non-

stationary patterns are more predictable than others. For example, non-
stationary environments could have a trend (e.g., slope), seasonal
variation, and/or cyclic variation. A trend describes changes in the
overall mean across time or space. Seasonal and cyclic variation refer to
patterns of variation that repeat. Seasonal patterns repeat over regular
intervals whereas cyclic variation repeat over irregular patterns (Jebb &
Tay, 2017; Jebb, Tay, Wang, & Huang, 2015). Trend, seasonality, and
cycles describe predictable patterns of change. For example, an upward
trend in the mean level of harshness across time is predictable (e.g.,
tomorrow will be more dangerous than today). Likewise, a seasonal
pattern is also predictable (e.g., winter is harsher than summer).
However, non-stationary environments might be unpredictable if they
contain random change points, or abrupt changes in one or more sta-
tistical properties of the environment (see Fig. 1b). For example, a
change point could precede a sudden increase in mean levels of
harshness (e.g., a natural disaster) or sudden increase in the variance of
resource distribution (e.g., the stock market crashing).

If change points occur at irregular intervals (e.g., no seasonal or
cyclic pattern), the environment is more unpredictable in at least two
ways. First, the probability of another change point occurring at any
given time might change, compared to what it was before the change
point occurred. Second, experiences that happened prior to the change
point are less informative about environmental conditions after the
change point. Thus, after a change point occurs, organisms have a
limited ability to predict future outcomes without gathering more in-
formation and experience in the new statistical structure of the en-
vironment. However, like unpredictable stationary environments, reli-
able cues could make the environment more predictable, even if
random change points occur. For example, cues could indicate a change
point has occurred or will occur, even if they do not indicate the type or
direction of change. Similarly, if both the relevant cues and cue reli-
abilities do not shift as a function of a change point (e.g., cue reliability
itself is unaffected and/or the same cues are still informative), cues can
still provide reliable information about the state of the environment.

Our discussion highlights the need for formal models that explore
the effects of stationary and non-stationary environmental unpredict-
ability on evolution and development. For stationary unpredictability,
models could compare the adaptive strategies for all combinations of
variance (high, low) and autocorrelation (high, low). For non-sta-
tionary unpredictability, models could explore which strategies are
adaptive when random change points occur in the mean, variance, or
autocorrelation, or their combination. Models should also consider
whether unpredictability has a different impact on different age classes
(juveniles versus adults), affects all individuals in a population, or only
a subset (Ellis et al., 2009). The statistical definition of unpredictability
an empirical researcher adopts should inform the measures used to test
hypotheses (e.g., measure mean levels, variance, and autocorrelation,
or change points in these parameters). Finally, we have focused on
environmental harshness (i.e., age-specific rates of mortality and mor-
bidity) because this is a primary focus in evolutionary psychology.
However, our discussion of concepts, measures, and proximate me-
chanisms could apply to any dimension of the environment. For ex-
ample, social (e.g., rate of violence, parenting, etc.) and/or non-social
(e.g., food availability) dimensions of the environment may vary across
space and/or time in more or less predictable patterns (Frankenhuis
et al., 2019). Quantifying patterns of unpredictability in these social
and non-social variables in diverse human populations would be an
interesting direction for future theoretical and empirical research.

3. Proximate mechanisms for detecting unpredictability

Clarifying and refining our conceptual definition of environmental
unpredictability raises interesting questions about the types of prox-
imate mechanisms that may be favored under different types of un-
predictability. For example, does natural selection favor the same
proximate mechanisms for detecting and responding to stationary
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unpredictability as non-stationary unpredictability? The answer is un-
clear without future research and formal models that explicitly address
this question. However, even before such models are developed, there
are at least two distinct (but not mutually exclusive) hypotheses about
the proximate mechanisms that may have evolved to detect environ-
mental unpredictability.

The first is the ancestral cue approach to unpredictability (Ellis et al.,
2009), which is anchored in the more general ‘ancestral cue’ perspec-
tive in evolutionary psychology (Buss, 1995; Tooby & Cosmides, 1990).
The core assumption of this perspective is that our ancestral environ-
ments contained cues that were associated with fitness-relevant en-
vironmental conditions. As a consequence, natural selection may have
shaped the brain to treat these cues as privileged sources of informa-
tion. Thus, ancestral cues enable organisms to adjust development
based on limited information; they do not need extended experience
with these cues to interpret their meaning and respond to them quickly
and effectively. For instance, female parasitic wasps start laying more
eggs on low-quality hosts (i.e., increase their reproductive effort) in
response to barometric pressure, which was (and is) associated with
approaching and potentially fatal thunderstorms (Roitberg, Sircom,
Roitberg, Vanalphen, & Mangel, 1993). Ancestral cues to environmental
unpredictability could indicate either stationary or non-stationary en-
vironmental unpredictability. For example, cues to stationary environ-
mental unpredictability may indicate environmental harshness is highly
variable and shows no autocorrelation. Cues to non-stationary en-
vironmental unpredictability may indicate that change points occur
randomly or that one has or will occur and, therefore, the statistical
structure of the environment has or will change. In either case, a core
(but untested) assumption of the ancestral cue approach is that, over
our evolutionary history, cues were informative regarding the levels of
environmental unpredictability within individual lifetimes.

The second perspective is the statistical learning approach
(Frankenhuis et al., 2019; Frankenhuis, Gergely, & Watson, 2013). This

approach suggests that natural selection shaped developmental me-
chanisms to track the statistical structure of the environment by in-
tegrating differences in lived experiences across development
(Frankenhuis et al., 2013, 2019), without privileging particular sources
of information per se. The organism uses its experience as raw data to
build a model of the statistical structure of the environment. It then uses
these models to ‘estimate’ (i.e., adapt to) the overall (e.g., mean) level,
variance, and autocorrelation in harshness. For example, blue jays can
weight recent versus past experiences differentially according to the
rate of changing conditions in their environment, suggesting that they
can detect and respond to patterns of change in the environment
(Dunlap & Stephens, 2012). Organisms might also learn new cues (e.g.,
police sirens) or update estimates of the reliability of cues. For instance,
people may learn to use police sirens as cues to danger, and experi-
mental studies show that humans are good at learning about cue re-
liability through repeated exposures over short timescales (Behrens,
Hunt, & Rushworth, 2009; Behrens, Woolrich, Walton, & Rushworth,
2007). Both of these abilities might involve, but do not require, high-
level cognition. For example, rats are able to make causal inferences
through experience and observations (Blaisdell, Sawa, Leising, &
Waldmann, 2006). Importantly, the statistical learning approach as-
sumes that individuals are able to track, store, and use experiences to
build predictive models about the current and future state of the en-
vironment. The approach also assumes that past experience over de-
velopmental time – unlike the ancestral cue approach, not necessarily
over evolutionary time – is informative about the current conditions,
even if past experience has taught the individual that future conditions
cannot be predicted with much accuracy.

The ancestral cue and statistical learning perspectives target the
same process—estimating environmental unpredictability—but differ
in the types of information that trigger a response. Ancestral cues carry
information about ancestral environments. If particular cues, for ex-
ample geographic relocations (i.e., moving into a new territory), were

Fig. 1. Visual depiction of stationary and non-stationary environmental unpredictability. The x-axis depicts developmental time; the y-axis environmental harshness.
A) Ignoring cue reliability, the predictability of a stationary distribution depends on its variance and autocorrelation. When variance is high, harshness fluctuates
more than when variance is low. When autocorrelation is high, harshness in one time period is more related to harshness in future time periods. Even if variance is
high, fluctuations might still be predictable, if autocorrelation is high. On the flip side, if autocorrelation is low, fluctuations might deviate only little from the mean,
if the variance is low. An environment is the most unpredictable when autocorrelation is low and variance is high. B) Ignoring cue reliability, non-stationary
environmental unpredictability may be characterized by random change points. Change points are abrupt shifts in the statistical distribution of the environment.
Such shifts may occur in the mean, variance, or autocorrelation, or all of them. The timing of change points may itself be predictable or unpredictable (not depicted).
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reliably associated with environmental unpredictability, then natural
selection may have equipped the mind to detect and respond directly to
the cue (see Fig. 2). Thus, a developmental response may be triggered
by only limited exposure to the cue. This type of proximate mechanism
is efficient; organisms do not have to invest much time and energy in
learning new cues and their reliability. However, it is also relatively
inflexible because organisms are constrained in their abilities to learn
new cues, extinguish associations with ancestral cues, or update their
knowledge about cue reliability. If a geographic relocation happens to
be unrelated to environmental unpredictability for a particular in-
dividual in their lifetime, that individual may develop a mismatched
phenotype. In addition, relying solely on ancestral cues precludes the
use of other sources of information for detecting environmental un-
predictability. In this case, if an individual is never exposed to an an-
cestral cue (e.g., they never move), but there are other cues that are
related to environmental unpredictability (e.g., stochastic fluctuations
over time in police sirens), the individual may not detect environmental
unpredictability.

In contrast, a statistical learning proximate mechanism responds
directly to the statistical patterns of change in its environment.
Specifically, the organism responds to environmental unpredictability
when it detects a prediction error (see Fig. 2). For example, a geo-
graphic relocation will not trigger a response unless it renders past
experience uninformative (e.g., the previous environment was safe and
now it is dangerous). If the level of danger does not change after a
relocation, the statistical learning mechanism will not make a predic-
tion error, and therefore it will not trigger a response to unpredict-
ability. This type of mechanism is less efficient than ancestral cues
because it requires some amount of accumulated experience to first
build a model and then produce predictions. In addition, it must com-
pare its predictions to its current experience to evaluate ‘model fit’. If
the organism's model fit is continuously poor (e.g., prediction errors
remain large throughout extended periods of time), the organism may
then conclude the environment is highly unpredictable. However, this
type of proximate mechanism is flexible. For example, it can use any
source of information or experience that is associated with harshness
and variability in harshness to fit any type of statistical model to predict
future levels of harshness, but such models may be costly to build and
fit. For example, an organism could use time series analysis to estimate
autocorrelation or use a moving average to predict current or future
harshness; it could also use contingency analysis or directly learn new
(non-ancestral) cue reliabilities to learn about the causal relations in the

environment (Frankenhuis et al., 2013).
In summary, the central difference between the ancestral cue and

statistical learning perspectives lies in the type of information that
triggers responses to environmental unpredictability. An ancestral cue
mechanism is designed to look for and respond to cues (or categories of
cues) that were reliably associated with environmental unpredictability
in our evolutionary past. Statistical learning mechanisms need accu-
mulated lived experience and triggers a response when it detects pre-
diction errors. Importantly, our goal was to highlight possible ways
organism might detect environmental unpredictability. Formal models
will need to consider when organisms should implement one me-
chanism, the other, or both, depending on the statistical properties of
environments over evolutionary and developmental timescales.

4. Implications for measurement

The ancestral cue and statistical learning perspectives have different
implications for the measurement of environmental unpredictability.
Studies drawing on the ancestral cue perspective need to select and
measure the cues that are hypothesized to have indicated environ-
mental unpredictability in our evolutionary past. However, identifying
relevant cues is no easy task, especially because it is difficult (if not
impossible) to empirically link a proposed ancestral cue or category of
cues to (measured) spatial-temporal variation in harshness over evo-
lutionary time. Although ancestral cues cannot be directly verified, the
design of psychological mechanisms for responding to ancestral cues
can be inferred by examining relations between exposures to hy-
pothesized cues and relevant outcomes (i.e., life history-related traits
and underlying biological systems), as per standard scientific methods
(Ketelaar & Ellis, 2000).

One way to guide the selection of measures is to map potential cues
on to the particular conceptual definition of environmental unpredict-
ability at the ultimate level. For example, assuming environmental
unpredictability was stationary, cues should map on to environments
characterized by high variance and low autocorrelation in harshness. In
this scenario, relevant cues could be related to the level of chaos or
family conflict in the home environment. Likewise, there could also be
ancestral cues to non-stationary unpredictability. For example, if un-
predictability in our evolutionary past involved random change points
in the levels or degree of variation in harshness, relevant cues could be
disruptive events that cause shifts in environmental conditions. For
example, a parental transition could be a cue to unpredictability

Fig. 2. The ancestral cue and statistical
learning approaches. According to the an-
cestral cue approach, proximate mechan-
isms detect cues that carry ancestral in-
formation about environmental
unpredictability. If an ancestral cue is de-
tected, the organism ‘estimates’ environ-
mental unpredictability is high and triggers
an adaptive response. According to the
statistical learning approach, proximate
mechanisms use experience to develop
predictions that guide behavior (not ne-
cessarily consciously or explicitly).
Organisms compare their experience-based
predictions to new experiences to evaluate
‘model fit’. If model fit is poor, the or-
ganism detects a prediction error, ‘esti-
mates' environmental unpredictability is
high, and triggers an adaptive response.
Note that the two approaches are not mu-
tually exclusive. We depict them separetly
to highlight their differences, however, it is
possible that organims integrate across
both sources of information to estimate
unpredictability (see Section 5).
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because a change in family composition is hypothesized to have been
reliably associated with change points in harshness over evolutionary
time. There are many potential ancestral cues that map on to stationary
or non-stationary unpredictability. Examination of the ethnographic
record would be an invaluable source of information about such cues,
as it could shed light on potential ancestral cues that were present in
hunter-gatherer societies.

In contrast to ancestral cues, studies drawing on the statistical
learning perspective need to measure lived experiences across time and
compile enough observations to model patterns of variation (e.g., var-
iance, autocorrelation, change points etc.). To do so, researchers could
use time series data and analytical techniques for characterizing pat-
terns of change over time (Jebb et al., 2015; Jebb & Tay, 2017). For
example, these techniques can decompose variation into predictable
and more unpredictable components. Researchers could also calculate
autocorrelation in time series data and/or detect change points. Similar
to the ancestral cue approach, the key challenge for researchers is se-
lecting the relevant variables to measure over time. Whatever the di-
mension, the selected variables should relate to environmental harsh-
ness. For example, some researchers have analyzed socioeconomic data
over time to simultaneously measure harshness and unpredictability
(Li, Liu, Hartman, & Belsky, 2018). Specifically, these researchers cal-
culated an individual intercept and slope for each participants' income-
to-needs ratio across six time-points. Then, they used individual-level
intercepts to measure overall harshness and residual variance (e.g.,
variance around individual regression lines) to measure unpredict-
ability. This approach is more closely aligned with the statistical
learning perspective but residual variance could show different patterns
of autocorrelation across individuals. Thus, from a statistical learning
perspective, it would also be important to calculate autocorrelation in
the data. However, using time series techniques is a double-edged
sword—properly leveraging time series data requires many more ob-
servations per person than is typical of standard longitudinal designs,
which can create practical limitations. Daily diary studies, experience
sampling, or long-term longitudinal studies with relatively frequent
measurements may be the best study designs to measure unpredict-
ability from a statistical learning perspective.

5. Toward consilience and future directions

The ancestral cue and statistical learning perspectives are not mu-
tually exclusive. In fact, they may operate in parallel. For example,
organisms could leverage both sources of information (e.g., ancestral
cues and statistical patterns of change) and use them to build a pre-
dictive model to estimate unpredictability. The organism could use
lived experience as raw data where each experience is weighted equally
and accumulates to reveal underlying patterns. If exposed to an an-
cestral cue, organisms could add them to their predictive models, using
weights to account for the ancestral knowledge (i.e., information pri-
vileged by natural selection) associated with ancestral cues.
Alternatively, individuals may track the statistical patterns of ancestral
cues themselves. For example, an ancestral cue may itself be an im-
portant environmental dimension that can be tracked over time or
space. Imagine that geographic relocations function as an ancestral cue.
Organism could track the probability, the frequency, and/or the reg-
ularity of moving (e.g., moves occur regularly or irregularly). Thus,
ancestral cues could both indicate environmental unpredictability and
be integrated together with lived experience to estimate environmental
unpredictability.

Another possibility is that ancestral cues indicate when the in-
dividual should recalibrate their model of the environment. For ex-
ample, an organism's environment may be autocorrelated across many
dimensions (e.g., level of danger, family conflict, economic conditions).
Over the course of development, the organism integrates experiences to
estimate the environmental unpredictability (e.g., conditions today will
be similar tomorrow). However, upon detection of an ancestral cue,

such as a geographic relocation, it may be adaptive to re-estimate these
statistics because a move could mean that past conditions are no longer
informative for predicting future conditions. As a result, the individual
might throw out “old data” in favor of using “new data” (and poten-
tially more representative of current conditions) after a transition oc-
curs. In this scenario, ancestral cues more likely indicate non-stationary
unpredictability; they were associated with change points that render
older experiences less informative. However, the cue aids prediction by
triggering statistical learning to pay attention to new environmental
data.

The degree to which we should expect ancestral cues and statistical
learning to operate together can be explored theoretically using formal
models. For example, a formal model could examine the environmental
and somatic conditions under which it is adaptive to use ancestral cues,
integrate across current cues, or leverage some combination of both.
Likewise, the degree to which ancestral cues and lived experiences are
correlated can be tested empirically by measuring both. For example,
future studies could measure to what extent geographic relocations
across development correlate with stationary environmental un-
predictability. If relocations are a reliable cue, they should be asso-
ciated, on average, with high variance and low autocorrelation in
measures of harshness across time. If relocations are a reliable cue to
non-stationary unpredictability, researchers could measure harshness
over time and track when ancestral cues appear. If ancestral cues in-
dicate non-stationary unpredictability, the statistical properties of
harshness should abruptly change after an ancestral cue is detected. For
example, imagine that a researcher measures exposure to violence
many times across development and calculates its mean, variance, and
autocorrelation while also measuring residential moves. One prediction
is that one or more statistical properties of violence exposure should
abruptly change after the move occurs.

The above discussion highlights the need for studies that measure
environmental unpredictability from both the ancestral cue and statis-
tical learning perspectives. Ideally, future studies would include tradi-
tional measures of environmental unpredictability (e.g., residential
changes, parental transitions, job changes, self-report questionnaires)
alongside time series data of environmental variables from which the
mean, variance, trend, seasonality, and autocorrelation can be esti-
mated. This would allow researchers to explore how measures derived
from both approaches operate, covary, and predict outcomes. To
measure ancestral cues most appropriately, researchers will need to
think carefully about which cues to measure and the type of un-
predictability those cues are hypothesized to indicate. To measure un-
predictability from a statistical learning perspective, researchers will
also need to think carefully about which environmental dimensions to
measure and acquire as many observations as possible over time, per-
haps using daily diary or experience sampling techniques.

6. Conclusion

Research on environmental unpredictability has progressed rapidly
over the past decade. We have argued that theoretical ambiguity at
both the ultimate and proximate levels impedes progress. Our goal was
to expose ambiguity at both levels and offer potential ways forward. At
the ultimate level, we need to be explicit about how we describe the
pattern of spatial-temporal variation that defines environmental un-
predictability. This means precisely describing the patterns of varia-
bility in harshness and explicitly addressing stationarity (as well as
what segments of a population environmental unpredictability pri-
marily affects). At the proximate level, we need clear ideas about how
organisms might detect environmental unpredictability. Organisms
could use ancestral cues, statistical patterns of change, or both, and the
specific measures of environmental unpredictability that we employ in
empirical studies should depend on the proximate mechanisms we
hypothesize have evolved to detect it. Regardless of these challenges,
we believe future research is well-situated to collect measures derived
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from both approaches and integrate insights. Doing so will refine our
understanding of environmental unpredictability and its connection to
life history development.
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