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Mammalian gametes—the sperm and the egg—represent opposite extremes
of cellular organization and scale. Studying the ultrastructure of gametes
is crucial to understanding their interactions, and how to manipulate them
in order to either encourage or prevent their union. Here, we survey the
prominent electron microscopy (EM) techniques, with an emphasis on con-
siderations for applying them to study mammalian gametes. We review how
conventional EM has provided significant insight into gamete ultrastructure,
but also how the harsh sample preparation methods required preclude
understanding at a truly molecular level. We present recent advancements
in cryo-electron tomography that provide an opportunity to image cells in
a near-native state and at unprecedented levels of detail. New and emerging
cellular EM techniques are poised to rekindle exploration of fundamental
questions in mammalian reproduction, especially phenomena that involve
complex membrane remodelling and protein reorganization. These methods
will also allow novel lines of enquiry into problems of practical significance,
such as investigating unexplained causes of human infertility and improving
assisted reproductive technologies for biodiversity conservation.
1. Introduction
Mammalian gametes represent extremes of cellular organization. The male
gamete—the sperm—has lost most of its cytoplasm and many of the organelles
present in its somatic counterparts, thus becoming a small, streamlined cell. The
female gamete—the egg—accumulates cytoplasm in preparation for embryonic
development, thus becoming one of the largest cell types. Because cellular func-
tion is inextricably linked to subcellular organization, knowledge of gamete
ultrastructure is vital for understanding how these cells function and interact.

Since the invention of the light microscope in the 1600s, microscopy has
become one of the most powerful methods for the cell biologist. Microscopy
occupies a unique position in the pantheon of cell biology techniques because it
allows direct observation of biological phenomena. Indeed, the history of
gamete biology is intimately tied to the development of microscopy. It was,
after all, van Leeuwenhoek himself who first described sperm [1]. The lightmicro-
scope also played a central role in the first descriptions of oocytes [2] andprovided
direct evidence that fertilization involves gamete fusion [3]. With recent develop-
ments such as expansion microscopy and super-resolution light microscopy,
specific proteins can now be localized in cells to within tens of nanometres
[4–6]. However, this often comes at the expense of capturing cellular complexity
in its entirety, as only specifically labelled proteins are imaged.
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Electron microscopy (EM), on the other hand, can yield
complete snapshots of the cellular interior at nanometre
resolution without the need to label specific proteins [7,8].
Following the invention of the electron microscope in 1931
and the first attempts to study biological samples by trans-
mission electron microscopy (TEM) in 1934 [9], the technique
made it possible to image cells and tissues at much higher
resolutions than light microscopy. Gamete structure was
studied with EM from the early days of the method [10–13].
EM provided valuable insights into the ultrastructure of
gametes and their interactions, which in combination with
advancements in gamete cell biology and biochemistry led
ultimately to successful in vitro fertilization (IVF) and other
assisted reproductive technologies (ART) [14,15].

Cellular EM does not come without its challenges,
however. Because electrons scatter strongly in air, the electron
microscope needs to be operated under vacuum—a particu-
larly hostile environment for cells, which are composed
mostly of water. Furthermore, electrons used for imaging
are accelerated to very high energies that are damaging to
biological samples, which are inherently radiation-sensitive.
Over the years, many approaches were developed to protect
biological samples within the EM. Classical or conventional
approaches involve sample fixation, dehydration, resin
embedment and heavy metal staining [16].

Although conventional EM has yielded immense insight
into a myriad of cellular processes, the harsh sample prep-
aration methods limit achievable resolution and, moreover,
can alter cellular structure and introduce artefacts [17,18].
Excitingly, the past few years have seen a methodological
revolution in cellular EM. At the forefront of this revolution
are methods based on rapid vitrification of samples and sub-
sequent imaging at cryogenic temperature, collectively
referred to as cryo-electron microscopy (cryo-EM). Cryo-EM
addresses many of the limitations of conventional EM,
though it also faces a unique set of challenges.

In this review, we survey the prominent EM techniques
that shaped our knowledge of gamete cell biology, with an
emphasis on mammalian systems. We cover conventional
EM and cryo-EM, discussing specific considerations for
applying them to questions of gamete and reproductive
biology. We discuss challenges and limitations for cellular
cryo-EM as well as current efforts to address them.
2. EM modalities and conventional EM
sample preparation

There are two main EM imaging modalities, and the choice of
the appropriate method depends ultimately on the biological
question. In scanning electron microscopy (SEM), a focused
beam of electrons is rastered across the sample. Electrons
that bounce back from the surface are used to generate an
image that provides topographical information on the
sample [19]. In TEM, images are formed from electrons that
are passed through and interact with the sample. Unlike in
SEM, TEM provides information on the cell interior as well
as the cell periphery. However, because electrons need to
penetrate the sample in order to generate an image, TEM
has a strict thickness limit. Consequently, samples thicker
than approximately 1 µm (for an electron at an accelerating
voltage of 300 kV) [20] are not suitable for high-resolution
TEM. On the other hand, SEM is relatively flexible in terms
of sample size and can be applied to samples on the order
of centimetres.

Each imaging modality has dedicated sample preparation
approaches, but a common feature for both is the need to
protect samples from high vacuum and from radiation
damage. Thus, conventional sample preparation steps typi-
cally include fixation, careful dehydration to prevent sample
collapse, and staining to increase contrast. Fixation is often
based on the use of chemicals such as aldehydes and
osmium tetroxide to cross-link proteins. In the dehydration
step, organic solvents are used to replace cellular water.

In SEM, samples must be dried carefully in order to pre-
vent structural collapse due to surface tension. This is often
achieved through a method known as critical point drying,
which is based on replacing biological water with liquid
CO2 and subsequently raising pressure and temperature to
a point where the liquid-to-gas phase change can occur
while keeping surface tension close to zero. The sample is
then covered with a conductive coating to reduce the surface
charging effects caused by electron irradiation [19].

For TEM, subsequent steps aim towards preparing sections
thin enough for imaging. This involves embedding the sample
in epoxy resins that are then polymerized into a solid block.
The block is then cut with a diamond knife to obtain thin sec-
tions of desired thickness. These sections are then mounted on
EM grids and are stained with heavy metals like uranium or
lead salts to enhance contrast [21]. If protein localization is
desired, antibodies coupled to gold particles can be used
before embedding, following, for example, the Tokuyasu
technique for immunogold labelling [22].

Fixation and dehydration steps are notorious for introdu-
cing artefacts, but over the years approaches aimed at
alleviating some of these effects have been developed. These
methods are based on fixation and dehydration at low temp-
eratures. In freeze-substitution, ice in frozen cells is replaced
by an organic solvent at temperatures below that at which sec-
ondary ice crystals can grow (below −70°C) [23]. In freeze-
fracture and etching, a frozen sample is broken open to
reveal internal structures, and further sublimation of surface
ice under vacuum exposes details of the fractured face that
were originally hidden (etching) [24,25]. Surface replica/
metal shadowing involves deposition of a metal/carbon mix
under high vacuum and dissolution of the biological material
that create a metal replica of the sample [26].
3. Conventional EM has contributed greatly
to our understanding of gamete biology
and fertilisation

Much of our current knowledge of gamete structure comes
from conventional EM studies (figures 1–3). These efforts
have revealed that, beyond their characteristic size and
shape, gametes are also specialized at the subcellular level,
with organelles that are often highly modified relative to
their somatic counterparts.

During sperm development and maturation, sperm lose
most of their cytoplasm and a number of their organelles.
Conventional TEMwas instrumental both in the study of sper-
matogenesis (recently reviewed in [37]) and of mature sperm
(recently reviewed in [38]), revealing that in mature sperm, the
structures that do remain adopt specialized sperm-specific
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Figure 1. Conventional EM of mammalian spermatozoa. (a) TEM micrograph of a thin section of human sperm head (×30 500): ac, acrosomal cap region; sas,
subacrosomal space; nuc, nucleus; es, equatorial segment; pas, postacrosomal sheath; rne, redundant nuclear envelope; bp, basal plate; scp, striated connecting
piece [27]. (b) TEM micrograph of a longitudinal thin section through the neck and proximal tail regions of a human spermatozoon (×64 000): bp, basal plate; rne,
redundant nuclear envelope (nuclear pores indicated by the triangle); pc, proximal centriole; scp, striated connecting piece; m, mitochondria; afc, axial filament
complex (comprising the axoneme and dense fibres) [27]. (c) SEM micrograph of a human spermatozoon, showing the surface morphologies in the anterior and
posterior regions of the head (×15 000) [28]. (d ) Freeze etching electron micrograph of a human spermatozoon head, depicting a face of the acrosomal membrane
beneath a portion of the overlying plasma membrane (×50 000) [29].
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Figure 2. Conventional EM of mammalian oocytes. (a) Thin-section TEM micrograph through the cortex of a mouse oocyte, showing the extent of the zona pellucida
(ZP) and numerous transzonal projections (*), which are thin cytoplasmic extensions of the cumulus granulosa cells connecting them to the oocyte, penetrating
through it [30]. (b) SEM micrograph of a mature human oocyte, showing the porous nature of the outer surface of the ZP (×1200) [31]. (c) SEM micrograph of the
outer surface of the ZP of a mature human ooctye at a higher magnification, showing the filamentous-like arrangement of globule-bearing structures (×50 000)
[31]. (d ) SEM micrograph at a very high magnification of an unfertilized mouse oocyte, showing a branch of the filamentous structure of the ZP (×50 000) [32].
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configurations. For instance, conventional EM demonstrated
that mammalian sperm mitochondria are arranged in a tight
spiral around the flagellar axoneme [39–41], and that the mam-
malian spermaxoneme is surroundedbyaplethora of accessory
structures that dwarf the axoneme proper [13] (figure 1b). These
characteristics are general features of mammalian sperm, but
details such as the number of mitochondria in the midpiece
and the sizes of the accessory elements vary across species
(reviewed in [12,13]).

Conventional TEM was instrumental in the prognosis of
male fertility by identifying teratozoospermia [42,43]. Likewise,
SEM has been applied extensively to assess the detailed surface
morphologies of normal and abnormal spermatozoa of humans
and other mammalian species [28,44,45]. SEM can also be used
as a tool to evaluate and score morphological abnormalities of
spermatozoa in infertile men [46]. Motility is pivotal to sperm
function and a combination of SEMwith TEM of several mam-
malian species revealed potential relationships between sperm
motility and mitochondrial functions [47].

However, despite decades of EM work, new structures are
still being discovered in the deceptively simple sperm cell.
For instance, it was only recently recognized that in non-
rodent mammals, the atypical distal centriole at the base of
the flagellum is in fact a functional centriole [4]. Previously,
the distal centriole was thought to degenerate during sper-
miogenesis, leaving mature sperm with a single functional
centriole, the proximal centriole. Given that zygotic centrioles
are paternally inherited in non-rodent mammals, the origin of
the second centriole was a mystery. The discovery that the
distal centriole is functional yet structurally atypical is an ele-
gant example of how explorations of cell structure can still
help resolve important questions.

Freshly ejaculated mammalian sperm are unable to fertilize
oocytes; theymust first undergoa ‘capacitation’phase culminat-
ing in the acrosome reaction to render them fusion-competent
[48]. Both SEM and TEM helped define the physiological and
morphological changes that spermundergoduring capacitation
and the acrosome reaction. TEM revealed that the acrosome
reaction is a dramaticmembrane remodelling event culminating
in vesiculation of the acrosome [49,50]. Freeze-fracture/etching
revealed fine surface features of the sperm head (figure 1d) [29],
and showed that sperm surface proteins are re-organized
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Figure 3. Conventional EM of mammalian sperm–oocyte interactions. (a) SEM micrograph of a mature human oocyte, showing the vertical binding of the sperm
with a penetration of the apical tip of the sperm head into the ZP [33]. (b) SEM micrograph of a human sperm–oocyte interaction, showing the vertical binding of a
sperm head vanishing into the the ZP [14]. (c) TEM micrograph of human sperm–oocyte interaction in vitro, showing acrosome-reacted sperm invading the ZP of a
polyspermic ovum at different angles (×3330) [34]. (d ) TEM micrograph of human sperm–oocyte interaction in vitro, showing an acrosome-reacted sperm that has
penetrated about half the thickness of the ZP, just blocked outside the inner surface of the ZP (*) which is denser and more compact than the outer surface, thus
depicting the block to polyspermy (×4330) [34]. (e) TEM micrograph showing the fusion of a tubal mouse egg incubated with capacitated epididymal sperm for
60 min. It shows the fusion of the sperm at the postacrosomal cap of the equatorial segment (es); cg, cortical granules; mv, microvilli; vs, vesiculated plasma and
outer acrosomal membranes (×31 200) [35]. ( f ) SEM micrograph of a wild-type mouse egg incubated with sperm for 25 min, clearly showing sperm are not bound
to microvilli-free region (*) [36].
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and re-distributed during the acrosome reaction to facilitate
interaction and fusion with the egg [51].

Mammalian oocytes occupy the opposite end of the cellular
size scale, growing to become one of the largest cell types (e.g.
approx. 100 µm for human oocytes and approx. 150 µm for
bovine oocytes). Furthermore, they are surrounded by a thick
extracellular coat of glycoproteins known as the zona pellucida
(ZP), which is in turn surrounded by a layer of granulosa cells.
Together, these properties make them difficult samples for
TEM. Nevertheless, thin serial section and freeze-substitution
TEM (figure 2a) were instrumental in describing how
mammalian oocyte organization changes during growth and
maturation in the adult ovarian follicle [35,52–55]. Conventional
EMalso revealed thatmouse oocytes are polar [35]. Overmost of
its surface, the oocyte plasmamembrane (called the oolemma) is
covered with microvilli, with numerous underlying cortical
granules; however, the region overlying the meiotic spindle is
much smoother and is almost devoid of cortical granules.
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The ZP extracellular matrix has also been characterized
extensively by conventional EM. It was shown to be composed
of long interconnected filaments forming an elastic porous
coat (figure 2b–d) [32,33,56–58]. Each filament resembles
‘beads-on-a-string’ with consistent repeats [58]. The ZP plays
important roles both during fertilization, where it acts to
block polyspermy, and during embryo development, to protect
the growing embryo. EM showed that structural changes in the
ZP are associated with these changing roles, revealing remark-
able architectural plasticity in this large extracellular scaffold
[31,33,59,60].

Conventional EM was instrumental in visualizing sperm–
egg interactions leading to fertilization (figure 3). Mammalian
sperm can attach to and penetrate the ZP at various angles
(figure 3a–d) [14,34], but seem to only interact tangentially
with the oolemma via a specialized cell surface domain
known as the equatorial segment (figure 3e,f). Egg microvilli
are actively involved in fusion with the equatorial segment
[61]. EM-based immunogold labelling localized CD9 and
Juno, two proteins essential for fertilization, to the microvilli-
rich region of the oolemma [62,63]. Genetic perturbation
suggests that CD9 is required for microvilli formation [62],
which provides an intriguing ultrastructural signature for
CD9-associated infertility. These studies exemplify how the
resolutions achievable with EM allow it to pinpoint specific,
specialized membrane subdomains involved in sperm–egg
fusion.

The development of IVF and other ARTs has been
accompanied with EM to assess the effects of any treatments
on gamete morphology. In vitro oocyte maturation is central
to these procedures in agricultural species. Comparing oocytes
that were in vitromaturated to in vivomatured by conventional
TEM indicated that they are overall similar [64]. Successful cryo-
preservation of gametes and embryos is crucial for ART and
thus its effect was studied extensively [55,65–71]. SEM was
used to show that the needle used for intracytoplasmic sperm
injection (ICSI) does not damage the ZP or oolemma [72].
4. Limitations of conventional EM
Although conventional EM has made invaluable contributions
to fertilization research, thesemethods are limited by the nature
of the sample preparation required. Fixation, dehydration,
staining and sectioning can all introduce artefacts [17,18], and
the resulting micrographs must be interpreted carefully.

Among the most prominent structural distortions that
result from conventional EM sample preparation are those
associated with aggregation, which can be caused by fixation
or by dehydration. Cells are hydrated in their native state,
and hydrophilic surfaces of macromolecules are free to
interact with water. When water is removed, these surfaces
rearrange and may attract each other, forming aggregates
[73]. Aggregation explains why empty or clear spaces in the
cytoplasm are typical of conventional EM images [17] even
though cells are crowded [74].

When using heavy metal stains, the signal we observe
comes from the stain deposited on the object and not from
the biological material itself. Thus, we can see only as far as
the stain penetrates. Apparent differences in density in
stained samples are caused by differences in the propensity
of different biological materials to be stained, rather than by
genuine differences in density. Furthermore, the stain limits
achievable resolution to its grain size. Thus, membranes,
organelles and large macromolecules are readily observed
but most smaller proteins or protein complexes are not.
5. Cryo-electron microscopy of cells
The ultimate goal of any imaging method is to capture its
subject in a state as close as possible to reality. For cell biology,
this translates to imaging cells in a fully hydrated state, free of
chemical fixatives or stains. This is precisely the essence of
cryo-EM. Cryo-EM is based on rapid vitrification and
subsequent imaging of frozen-hydrated specimens at a temp-
erature so low that water does not evaporate significantly in
the microscope vacuum.

Cellular samples are prepared for cryo-EM by rapid freez-
ing [75,76]. Cells are cooled so rapidly that they are frozen
before water can rearrange to form crystals, thus trapping
them in a glass-like (vitreous) state. Small cells can be
plunge-frozen simply by dropping them into liquid ethane
or ethane/propane [77] cooled to liquid nitrogen tempera-
tures (around −196°C). However, larger cells need to be
frozen under high pressure [78] in order to achieve uniform
vitrification throughout the cellular volume. For small, free-
swimming cells like mammalian sperm, sample preparation
for cryo-EM is straightforward and often involves nothing
more than pipetting cells onto an EM grid (figure 4a–c).

Cryo-EMhas gained traction in structural biology because of
advancements in electron detectors, microscope hardware and
image processing [79]. In the so-called single-particle analysis,
high-resolution structures of purified proteins can be obtained
by averaging many different projection images of individual
particles (ideally) randomly oriented in thin, vitreous ice. With
parallel advancements in automated data collection and bio-
chemistry, single-particle cryo-EM has become a go-to method
for biomolecular structure determination.

Cellular samples pose distinct challenges that necessitate
specialized image acquisition and processing strategies. Cells
are extremely complex, and the amount of data needed to
characterize an entire cell is immense (figure 4d). Cells are
also extremely variable—no two cells look alike under the
EM, which precludes direct averaging procedures. As such,
the preferred method for cellular EM is cryo-electron tomogra-
phy (cryo-ET). In cryo-ET, the sample is tilted in the electron
beam and a series of projection images is acquired. Images in
the resulting tilt series are then aligned and back-projected to
yield a tomogram. Because the sample is tilted in discrete angu-
lar steps and to a limited overall angular range, such a
tomogram is an incomplete three-dimensional reconstruction
of the original object. Despite these limitations, cryo-ET can pro-
vide high-resolution three-dimensional information on
pleiomorphic objects or rare events, all within the context of a
fully hydrated cell. Cryo-ET also provides a uniquely multi-
scale capability in that it can resolve membranes and organelles
(figure 4e) as well as individual protein complexes (figure 4f ).

As mentioned above, sample thickness is one of the major
challenges for TEM. Since most mammalian cells are thicker
than a few micrometres, direct imaging by cryo-ET is limited
to small cells or to the thin peripheries of larger cells. In
recent years, cryo-focused ion beam (FIB) milling [80,81] has
emerged as the method-of-choice for fine thinning of cellular
material without compression artefacts. Cryo-FIB milling is
performed in a dual-beam instrument equipped with both a
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Figure 4. Cryo-ET of pig sperm. (a–c) The general cryo-ET workflow involves transferring live sperm (a) to an EM grid (shown under the light microscope, b), followed by
plunge-freezing and imaging under a TEM (c). (d ) A montage of cryo-EM projection images tracing a whole pig spermatozoon. A projection image of the midpiece is
shown enlarged in the centre. (e,f ) Computational slices through cryo-tomograms of the midpiece (e) and the principal piece ( f ). (e) In thicker regions of the cell, such as
the midpiece, it is possible to resolve fine suborganellar features, such as membranes (inset: green, outer mitochondrial membrane; yellow, inner mitohondrial mem-
brane). ( f ) In thinner regions of the cell, such as the distal part of the principal piece, it is possible to resolve individual protein complexes (inset). In (e,f ), pm, plasma
membrane; mito, mitochondrion; odf, outer dense fibre; fs, fibrous sheath; mtd, microtubule doublet; cpa, central pair apparatus; rs, radial spoke.
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focused ion beam and an SEM. In these instruments, ions (typi-
cally gallium) are accelerated towards the sample, where they
sputter material off of the surface, leaving a thin lamella
usually approximately 150–250 nm thick. SEM is used for over-
view imaging, targeting and monitoring the milling process.
Lamellae allow high-resolution imaging of the crowded cellu-
lar interior [82–86] but represent only a small fraction of the
cell’s volume [87]. Applying these methods to even larger
samples, such as tissues and organisms, is an important
challenge driving the next generation of methodological
improvements in cryo-sample preparation. Several approaches
have yielded promising results [88,89], in some instances
allowing for molecular-resolution imaging [90,91].

Unstained biological material consists mainly of elements
with low atomic number, which results in very low contrast
in the electron microscope. More recently, however, the Volta
phase plate (VPP) has emerged as a method of enhancing con-
trast [92]. The VPP is a heated thin film of amorphous carbon
that generates a phase shift of the incident electron beam.
The VPP allows high-contrast imaging close to focus, which
facilitates the interpretation of cellular tomograms [93].

Because of the sheer complexity of cellular tomograms,
they often need to be annotated or segmented in order to
aid interpretation. In the past, segmentation was performed
by expert annotator manually tracing the structures of inter-
est throughout the tomogram. As data acquisition becomes
faster and more reliable, more efficient ways of segmenting
tomograms are also necessary. Deep learning and neural net-
work-based approaches have been developed that greatly
facilitate the segmentation process [94,95].
When a tomogram containsmultiple copies of a given struc-
ture, these copies can be aligned and averaged, enhancing
signal-to-noise and improving resolution. This process is
known as subtomogram averaging, and has the potential to
reach subnanometre resolutions in ideal cases [96–98].Although
most applications do not readily reach near-atomic resolutions
that are now almost synonymous with single-particle cryo-
EM, subtomogram averaging nonetheless yields molecular-res-
olutionmaps of proteins or protein complexes that often simply
cannot be purified. These maps can then be integrated with
information from X-ray crystallography, single-particle cryo-
EM or structural mass spectrometry to build multi-scale
models of large protein complexes within the cellular envi-
ronment. More importantly, however, cryo-ET combines
molecular-resolution information with cellular context, which
means that different proteins, protein complexes, or even con-
formational states or assembly intermediates, can be traced
back to their positions in the original tomograms [86,99,100].
6. Cryo-electron microscopy is poised to
make important contributions to the
study of mammalian fertilization

Cryo-ET and subtomogram averaging have already been
applied extensively to the study of sea urchin sperm (figure 5a),
mostly in the context of the flagellar axoneme [100,101,104,105].
These elegant structural studies defined the molecular architec-
ture of the axoneme, revealing structural motifs that are highly
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conserved across motile cilia from algae to protists to metazoans
[104,106,107]. More recently, advanced image classification
methods applied on cryo-tomograms of actively swimming
sea urchin sperm unveiled structural rearrangements associated
with various stages of the dynein power stroke [101]. Mapping
individual dynein states back into their spatial context revealed
that most dyneins were in a primed, active conformation and
that asymmetric inhibition of dyneins on opposite sides of the
flagellum controls bending [100]. These studies exemplify how
the true power of cryo-ET lies in the ability to relate molecular
structures to precise subcellular contexts.

Cryo-ET also provides a means to assess the molecular
effects of targeted genetic disruption. Studies in zebrafish
revealed how mutations in different dynein assembly factors
resulted in structural defects at specific positions in the axo-
neme (figure 5b), which could be related to altered patterns
of sperm motility [102]. Genetic perturbation can also have
larger-scale effects on morphology, and the multi-scale capa-
bility of cryo-ET allows it to capture these as well. For
instance, cryo-scanning transmission electron microscopy
(STEM) tomography revealed that Outer dense fibre 2 (Odf2)-
haploinsufficient mice were characterized by a unique form
of head-midpiece separation [108].

Cryo-ET studies on mammalian sperm are scarce, not
least because the accessory structures characteristic of mam-
malian sperm flagella make them fairly thick compared to
other sperm. Nonetheless, where it has been attempted,
cryo-ET has already led to discoveries of novel cellular struc-
tures, providing a vital resource for future work. For instance,
cryo-ET has been applied to thin endpieces of human
[109,110] and bovine sperm [110]. These studies revealed
the presence of a helical microtubule inner protein (MIP)
inside endpiece singlet microtubules [109], and found that
doublet-to-singlet transitions can proceed through at least
three distinct configurations [110]. There is very little struc-
tural information on the distal regions of flagella and cilia
in general, probably because they are difficult to capture in
thin sections [111], but cryo-ET can circumvent this.

Even for a cell as small as the sperm, thicker regions have
remained inaccessible to direct cryo-ET. Structural studies of
the connecting piece relied on fractionation [103] to generate
samples thin enough for high-resolution imaging. This work
used three-dimensional segmentation to reveal the complexity
of the large, asymmetric connecting piece. Cryo-ET revealed
fine linkers between individual plates of the segmented col-
umns that could be involved in elastic deformation of the
structure during sperm movement (figure 5c).

Wehere showhow the recent aforementioneddevelopments
in cryo-ET sample preparation, imaging and processing now
enable studies of whole, intact mammalian sperm (figure 6).
For instance, VPP imaging of whole pig sperm reveals the
three-dimensional organization of the mitochondrial sheath
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Figure 6. Cryo-FIB milling and use of the VPP improve cryo-ET imaging. Slices through cryo-tomograms of pig sperm midpieces, acquired (a,b) on whole cells with an
accelerating voltage of 200 kV and without the VPP; (c,d ) on whole cells with an accelerating voltage of 200 kV and with the VPP; (e,f ) on whole cells with an accelerating
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longitudinal slices, while right panels (b,d,f,h) show tangential slices. Scale bars: left panels, 250 nm; right panels (digital zooms), 100 nm.
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(figure 6c–f ). Imaging cryo-FIB-milled pig sperm further reveals
the internal organization of mitochondrial cristae (figure 6g,h).
Individual protein complexes, such as the axonemal radial
spokes, can be easily identified in VPP tomograms of slightly
thinner regions like the principal piece (figure 4f ).

Beyond detailed characterization of sperm structure, cryo-
EM also has the potential to interrogate sperm function. An
intriguing example of this is how cryo-EM was used to study
post-ejaculatory modifications associated with mosquito
sperm, revealing drastic changes in the organization of the gly-
cocalyx that correlate with changes in sperm motility and
female fertility [112]. Because rapid vitrification provides
superior sample preservation to conventional EMpreparations,
cryo-EM/ET would be particularly useful for re-investigating
the membrane remodelling events associated with capacitation
and the acrosome reaction in mammalian sperm. Cryo-EM/ET
could also be used to interrogate surface changes that occur
during the formation and dissociation of sperm aggregates,
such as in certain monotreme [113] or rodent [114] species.
Cryo-EM is beginning tomake inroads into studying oocyte
biology, as well. Single-particle cryo-EM of purified tetraspanin
CD9 in complex with a partner protein provided potential
mechanisms for CD9-mediated assembly of cell surface micro-
domains [115]. Helical reconstruction of purified uromodulin
filaments revealed a structural mechanism for the assembly
of ZP-domain containing proteins [116], setting the stage for
defining how the egg coat assembles and interacts with sperm.
7. Challenges and emerging solutions in
electron microscopy of gametes

7.1. Electron microscopy of large volumes
Although cryo-FIB milling makes thicker cells accessible to
cryo-ET, it is still limited to samples that can be reliably vitri-
fied by plunge-freezing (that is, a few micrometres thick).
This precludes the analysis of larger cells, like the oocyte,
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and tissues, like the testes. Several groups are actively devel-
oping methods to address these limitations. One promising
strategy involves first producing approximately 20 µm thick
slabs from high-pressure-frozen samples either with a cryo-
ultramicrotome or a cryo-FIB/SEM, followed by finer milling
with a cryo-FIB/SEM to 150–300 nm [90,91]. Currently,
however, these methods are technically challenging and
low-throughput. Furthermore, even when milling and trans-
fer steps are successful, each 150 nm thick lamella represents
a volume of only approximately 0.24 µm3 [87], which is only
approximately 0.00005% of the volume of a 100 µm oocyte.
As such, there will be biological questions for which
cryo-FIB-ET simply will not be the method of choice.

A family of EM methods known as volume EM would be
applicable in cases where entire cells or tissues need to be
imaged. Volume EM encompasses methods such as serial
block-face electron microscopy (SBEM), focused ion beam
scanning electron microscopy (FIB/SEM), and automated
tape-collecting ultramicrotome scanning electron microscopy
(ATUM-SEM) [117]. In SBEM, a microtome is mounted inside
the microscope chamber and a diamond knife is used to
shave a thin layer off the top of the sample, which is then
imaged by SEM. In FIB/SEM, a gallium beam is used instead
of a diamond knife, allowing for finer milling on the order of
2–5 nm. In ATUM-SEM, the entire sample is first sectioned
outside the microscope with a diamond knife, and the sec-
tions are automatically collected on tape, which can then be
loaded into an SEM. These volume EM methods have been
applied to muscle biology [118,119], large-scale connectomics
[120–122] and recently to oocyte biology as well [123,124].

Althoughmost applications of volume EM still use conven-
tional EM sample preparation, these methods have also
recently started to interfacewith cryo-EM. FIB/SEM in particu-
lar can be used to image high-pressure-frozen samples at cryo-
temperatures [125]. Among other applications, cryo-FIB/SEM
has been used for large-scale comparative studies of biominer-
alizing protists [126], and for whole-cell ultrastructural studies
directly on patient samples [127].

7.2. Correlative light and electron microscopy
Because contrast in cryo-EM comes directly from biological
material, EM data capture everything, not just the signal
from a protein of interest. Some large protein complexes,
such as ATP synthase and the nuclear pore complex, can be
recognized directly by virtue of their distinct shapes and by
the fact that they occupy defined subcellular locations
[84,128]. However, it is often difficult to identify individual
densities in information-rich cellular tomograms.

One solution to the localization problem is to integrate the
molecular specificity of fluorescence microscopy into the EM
pipeline. This technique is called correlative light and electron
microscopy (CLEM) and has in fact been applied quite suc-
cessfully for conventional TEM-based methods [4,129].
However, cryo-CLEM is much more difficult. The technical
challenges involved in optimizing the optical set-up while
minimizing chances for ice contamination and sample devi-
trification cannot be overstated. Several promising
approaches now exist, including light microscopes integrated
within the FIB/SEM chamber [130] and algorithms that
enable super-resolution CLEM with low laser intensities
[131]. Cryo-FIB/SEM-based ‘mill-and-view’ strategies can
also be integrated with cryo-fluorescence microscopy to
define sites of interest for subsequent cryo-FIB milling and
high-resolution cryo-ET [132]. Volume EM has also been
interfaced with super-resolution microscopy, enabling quanti-
tative studies of ultrastructure across entire cells [133].

Because CLEM methods often involve genetic tags and
thus require the system to be genetically manipulable, they
will always be challenging to apply to gamete biology.
Although mRNA microinjection is a viable alternative for
oocytes, sperm pose a more difficult challenge as they are
transcriptionally and translationally silent. Surface proteins
can be targeted through antibody- or nanobody-based label-
ling, or through aptamer-based DNA origami strategies.
However, most applications will probably involve the gener-
ation of transgenic animal lines, and thus will benefit greatly
from efforts to extend the range of species for which genetic
tools are available [134].
8. Concluding remarks
Since the first electron microscope image of eukaryotic cells
taken in 1945 [135], EM has enabled biologists to peer
deeper into the cell than ever before. Our modern under-
standing of cell biology is built on foundations laid by
EM-based structural work [136–138]. Gamete biology is no
exception—EM extended our understanding of gamete struc-
ture and revealed that structural specialization extends
beyond that of overall form, down to the level of individual
subcellular components.

From a practical perspective, insights from conventional
EM ultimately led to successful IVF and ARTs [14]. However,
the harsh sample preparation methods used in conventional
EM—fixation, dehydration and staining—can introduce
artefacts that distort our vision of cell ultrastructure [17].
Because many processes central to mammalian fertilization,
such as capacitation and gamete fusion itself, involve com-
plex rearrangements of membranes and individual protein
complexes, conventional EM can only go so far.

Much remains to be learned about gamete structure and
how it relates to the biology of fertilization. New and emer-
ging methods in cellular EM are poised to seamlessly
bridge the molecular and cellular scales. Examples of unre-
solved questions in gamete biology that are now ripe for
exploration with new EM techniques include: how does
membrane remodelling during capacitation and the acrosome
reaction transform the mammalian sperm into a fusion-
competent cell? How do differences in sperm motility
patterns across species arise from variations at the subcellu-
lar level? How is the ZP organized in three dimensions
and how is it remodelled during oocyte maturation and
post-fertilization? Answering some of these questions
undoubtedly will not only facilitate developing novel inferti-
lity treatments and contraceptives, but also improve ART for
biodiversity conservation [139].
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