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Comprehensive understanding of particle motion in microfluidic
devices is essential to unlock additional technologies for shape-
based separation and sorting of microparticles like microplastics,
cells, and crystal polymorphs. Such particles interact hydrody-
namically with confining surfaces, thus altering their trajectories.
These hydrodynamic interactions are shape dependent and can
be tuned to guide a particle along a specific path. We pro-
duce strongly confined particles with various shapes in a shal-
low microfluidic channel via stop flow lithography. Regardless
of their exact shape, particles with a single mirror plane have
identical modes of motion: in-plane rotation and cross-stream
translation along a bell-shaped path. Each mode has a charac-
teristic time, determined by particle geometry. Furthermore, each
particle trajectory can be scaled by its respective characteristic
times onto two master curves. We propose minimalistic relations
linking these timescales to particle shape. Together these mas-
ter curves yield a trajectory universal to particles with a single
mirror plane.

microfluidics | Hele–Shaw flow | particle-laden flow

Separation on the microscale is a persistent industrial chal-
lenge: Pharmaceutical crystal polymorphs (1, 2), specific

strains of yeast cells in the food industry (3), mammalian cells
(4), and microplastic pollutants (5, 6) all come in different
shapes, yet comparable sizes. Advances in microfluidics have
resulted in robust and high-throughput methods for micrometer-
scale segregation. These techniques rely on external force fields
(7, 8), sorting based on fluorescence (9), intricate separator
geometries (10–18), or carriers with non-Newtonian behavior
(19). An alternative approach toward microscale separation is
to leverage the long-range hydrodynamic interactions emerg-
ing from fluid–structure coupling (20, 21). By tuning these
interactions particle trajectory can be controlled, thus enabling
separation (22).

A model system common in microfluidic applications, exhibit-
ing such interactions, is confined Stokes flow in a Hele–Shaw
cell. In it, particles or droplets are sandwiched between a pair
of confining walls of a shallow microfluidic channel and are sub-
jected to creeping flow (23). Owing to the shallowness of the
cell, the flow is effectively two dimensional (2D) (24). What is
more, the particle scatters the surrounding fluid, creating a dipo-
lar flow disturbance, which decays with 1/r2, where r is the
distance from the particle center. This flow disturbance strongly
couples the particle to its surroundings. Experimentally, creat-
ing and driving particles in shallow channels have become widely
accessible with the advent of microfluidics and soft lithography
(25–31). Their easy fabrication and versatile out-of-equilibrium
behavior make particles in confined Stokes flow an interesting
toy system for the study of flow-mediated separation and self-
assembly (32, 33).

Utilizing long-ranged hydrodynamic interactions (HIs), Bea-
tus et al. (34, 35) demonstrated how trains of “pancake”
droplets flow along a Hele–Shaw cell as out-of-equilibrium

one-dimensional crystals. In a similar experiment, Shen et al.
(36) compare the dynamics of clusters comprising two or three
droplets as they interact near or far away from the side walls
of the cell. The presence of a side wall breaks the symmetry
of the system and induces transversal motion of the cluster.
Cross-streamline migration is also present if the symmetry of an
individual particle, rather than that of an ensemble of particles,
is reduced. A particle with two planes of mirror symmetry, such
as a rod (37, 38) or a symmetric disk dimer (22), also moves
toward one of the side walls of a Hele–Shaw cell, provided its
long axis is neither normal nor parallel to the flow. As one such
particle approaches the channel boundary, it begins to interact
with its hydrodynamic image (39), the flow symmetry is reduced
even further, and the particle begins to rotate. All three modes of
motion, namely, rotation and streamwise and cross-streamwise
translation, are also present when an asymmetric disk dimer is
far away from any side walls as demonstrated by Uspal, Eral, and
Doyle (22). Evidently, screened hydrodynamic interactions give
rise to nontrivial behavior not only in particle ensembles (40–44),
but also in single-particle systems with broken symmetry (45–51).
A first step toward the development of low-cost flow separators
requires understanding the relation between the geometry of one
such particle and its trajectory in confined Stokes flow.

Significance

Particles of all shapes and sizes flowing through tight spaces
are ever present in applications across length scales rang-
ing from blood flow through tissue capillaries to industrial-
scale processes. To date, separating these particles relies on
methods employing external force fields. Currently underex-
plored, omnipresent fluid–structure interactions hold the key
to shape-based separation independent of external interven-
tion. By leveraging experiments, theory, and simulations, we
show how the symmetry of a particle determines its over-
all trajectory: In particular, mirror-symmetric particles, both
strongly and weakly confined, follow a universal path. We
propose minimalistic scaling relations to describe how parti-
cle shape affects the parameterization of the universal path.
These findings could be used to “program” particle trajectories
in lab-on-a-chip devices and industrial separation processes.
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In this study, we combine theoretical and experimental
approaches to investigate how particle shape can be tailored to
induce self-steering under flow in quasi-2D microchannels. Con-
trolling the motion of a particle in flow facilitates its separation.
To this end, we use optical microscopy to track the in-plane
motion of a variety of particles with a single mirror plane sub-
jected to creeping flow in a shallow microfluidic channel. The
mirror plane is perpendicular to the top and bottom walls of the
channel and bisects the particle in two identical pieces (white
dashes in Fig. 1 A–D). Through finite-element (FE) calculations
we link the shape-dependent dynamics of the particles to the
flow disturbances they create as they lag the far-field flow. Using
Stokes linearity and the force-free nature of the particles, we
collapse their reorientation and cross-streamwise dynamics onto
two master curves. We accomplish this collapse by scaling each
particle’s angular and transversal velocities by two characteris-
tic times. Finally, through minimalistic scaling relations we link
these timescales to a particle’s geometrical parameters includ-
ing, but not limited to, area, moment of inertia, and length.
Our scaling arguments predict the characteristic times from both
experiments and FE computations up to a factor on the order
of unity. This good agreement among experiments, simulations,
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Fig. 1. Mirror-symmetric particles in quasi-2D Stokes flow. (A–D) Stop-flow
lithography (29) produces strongly confined microparticles with various
shapes in a Hele–Shaw cell. We investigate particles with a single mirror
plane, each one consisting of two or three simple building blocks such as
disks, squares, or triangles, connected with rigid shafts. These particles are
a useful toy system to study how the geometry of a particle determines its
trajectory. (E) We demonstrate this strong shape dependence by comparing
the trajectories of three particles with R1/R2 = 1.5: from top to bottom a
trimer with φ= 90◦ and a dimer and a trimer with φ= 68◦. The small arrows
denote the orientation of the particles. The trajectories are obtained via 3D
finite-element calculations. (F) We assume a planar Poiseuille profile along
the height of the channel and Couette flow in the thin lubrication gaps
with height hg. Due to channel symmetry, we present only half of a Hele–
Shaw cell with particle to scale and highlight the bottom confining wall. (G)
Upon depth averaging, we arrive at the so-called Brinkman flow with steep
velocity gradients near the side walls and constant velocity u along most
of the channel width. In this top view the particle is magnified 2.5 times.
The streamlines in all three flow profiles are represented by horizontal blue
arrows. (Scale bars, 50 µm.)

and scaling arguments is a strong indication that the observed
dynamics are universal to mirror-symmetric particles in quasi-2D
Stokes flow.

To produce strongly confined polymeric particles with distinct
shapes in a Hele–Shaw cell we use stop-flow lithography (SFL)
(29), as depicted in Fig. 1 A–D. In a nutshell, SFL creates parti-
cles by projecting the image of a mask onto a photoreactive fluid.
We choose dimeric and trimeric particles, composed of, respec-
tively, two or three simple shapes connected by rigid shafts. The
building blocks for dimers are disks, triangles, or squares (Fig. 1
B, D, and A), while those for trimers are always disks (Fig. 1C).
For brevity, we denote disk, triangle, and square dimers with
“D,” “F,” and “S,” while “T” stands for trimers. In all cases one
of the building blocks is larger with a size ratio κ≡R1/R2, where
1<κ≤ 3 and R2 is the radius of the circle escribing the smaller
shape. This asymmetry in the particle ensures its rotation even
far away from any side walls (53). The trimers have an additional
geometrical parameter, namely, the angle φ formed between the
three disks (Fig. 1C). The vertex of φ is defined as the center of
the larger disk, while the two rays starting from it point to the
centers of the smaller equally sized disks. By changing φ we gain
additional control over the dynamics of the particles (Fig. 1E).
The geometry of the particle profoundly influences its trajectory:
Particles with identical starting positions, yet slightly different
geometries, follow dramatically different paths, as demonstrated
numerically in Fig. 1E.

As the particles are created in situ, we directly track their
motion in the viscous fluid by moving the stage of an optical
microscope. We set the system in motion by applying a small
pressure drop across the channel, thus inducing creeping flow
with a Reynolds number Re ∼ 10−5. This flow regime, together
with the large aspect ratio of the channel W /H > 15, allows us
to average out the parabolic profile expected along the channel
height H (Fig. 1F). Thus, the particle is effectively subjected to
an in-plane potential flow with steep velocity gradients near the
side walls of the channel and a constant velocity u for most of its
width W (54) (Fig. 1G).

Apart from preventing sticking, the fluid layers with thick-
ness hg present above and below the particle strongly affect its
motion (Fig. 1F and Fig. 1 F, Inset). As the particle moves along
the channel with a longitudinal velocity ẋ , it experiences addi-
tional drag, because it shears the lubricating fluid in the gaps.
To distinguish this drag from the drag due to the in-plane flow
around the particle, we dub these two interactions “friction” and
“flow” drag, respectively. Due to the strong particle confine-
ment the velocity profile in the gaps is close to linear (38, 52),
allowing us to assume Couette flow in the gaps (Fig. 1F). The
friction drag from the confining walls Fw

x scales with −2ẋη/hg
and slows down the particle, where η is the dynamic viscosity of
the fluid. Furthermore, it ensures the particle is confined to the
plane of the flow, because any tilt or out-of-plane motion results
in additional force acting on either face of the particle. Thus,
the particle exhibits 3 degrees of freedom: translation along
the length x and width y of the channel and in-plane rotation
θ (Fig. 1G).

The particle lags the flow, perturbing the velocity field, and
as a result pressure builds up on the upstream particle surface.
This flow disturbance is strongly dependent on the particle shape
(cf. Fig. 2 A and B). To illustrate this phenomenon, we use
FE computations (52) to calculate the forces and torque acting
on two distinctly shaped particles with κ= 1.6: a dimer and a
trimer with φ= 120◦. We impose a unidirectional inlet flow with
height-averaged velocity u and prescribe a longitudinal velocity
ẋ = u/2 to each particle. We orient the particles in such a way
that their mirror axes form an angle θ= 60◦ with the flow. The
particle heights Hp in both cases are equal and comparable to
the channel height H , with Hp/H ∼ 0.8. While the longitudinal
forces Fx acting on the two shapes are identical (FD

x /F
T
x = 0.99),
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Fig. 2. (A and B) Particle-induced flow disturbances in a Hele–Shaw cell.
As the particle thickness Hp = H− 2hg is comparable to the channel height
Hp/H' 0.8, the particle lags the surrounding flow, creating shape-specific
velocity and pressure disturbances (cf. arrows and density plots in A and B).
As the disturbances differ, so too do the hydrodynamic forces and torque
acting on each particle differ. While the streamwise forces Fx on a dimer
and a trimer have similar magnitudes (horizontal blue arrows), the drift
forces Fy and torques Tz acting on them differ (vertical red arrows and clock-
wise green arcs, respectively). (C–E) This shape dependence of the forces and
torque results in distinct linear and angular velocities, which manifest them-
selves in the different trajectories followed by different particles (cf. C, D,
and E). The orientation and scaled position x/H as function of scaled time
t× u/H are strongly dependent on particle shape. The disturbances to the
pressure and velocity fields, as well as the forces and torques on the parti-
cles, are calculated using a 3D finite-element scheme (52). In all subfigures
the flow is from left to right as denoted by the white arrow in A. (Scale bars,
50 µm.)

the torques differ—the dimer experiences a smaller torque
TD

x /T
T
x = 0.81. The difference in the transversal forces Fy is

even more evident, as its direction also changes: FD
y /F

T
y =

−0.67. This disparity can be traced back to the pressure distur-
bance created by each particle—the larger the disturbance is, the
larger the forces.

The shape dependence of the disturbances manifests itself in
the distinct dynamics of different particles, as shown in Fig. 1E.
To demonstrate this distinction experimentally, we compare the
motion of three particles with different shapes, which have one
and the same initial position and orientation, x/H , y/H , and
θ0 = 7π/9, respectively (Fig. 2 C–E). While all three particles
rotate to orient their larger building block upstream, only the
dimers experience a significant lateral drift. Nagel et al. (38)
report a similar coupling between longitudinal and transversal
motion for symmetric rods, which drift at a constant velocity
as they flow downstream. However, cross-streamwise motion
is orientation dependent, resulting in a nonlinear cross-stream
trajectory when an asymmetric dimer rotates: As our particles
become perpendicular to the flow, their transversal velocities

diminish. Moreover, after acquiring this perpendicular orienta-
tion both particles change the direction of their lateral motion
(cf. Fig. 2 C, Center Right and Fig. 2 D, Center Left). The coupling
between rotation and translation explains why the disk dimer
moves farther away from its initial position ∆ymax(t × u/H =
60)∼ 1.5H compared to the square dimer, which covers half of
that distance in half the time (cf. Fig. 2 C, Center Right and Fig. 2
D, Center Left). Due to its slower rotation, the disk dimer spends
a longer time crossing streamlines before orienting perpendic-
ular to the flow and starting to move in the opposite direction.
This reasoning does not, however, answer the question of why
the trimer experiences negligible drift, even though its rotational
velocity is comparable to that of the disk dimer.

Understanding why these mirror-symmetric particles rotate
in the absence of a side wall, while rod-like ones do not (38),
requires introducing the concept of the center of hydrodynamic
stress (CHS). First identified by Brenner (55), CHS is a point
about which rotation is force-free and translational motion is
torque-free in an unbounded fluid. However, as already men-
tioned, a confined particle moving in a flow experiences two types
of drag. The friction drag can be considered to be applied at the
particle centroid and the flow drag at the CHS. Both the CHS
and the centroid of a mirror symmetric particle lie on the mir-
ror plane. The latter, which indicates how area is distributed,
is always closer to the larger of the two blocks composing an
asymmetric dimer. Conversely, as the flow acts predominantly
on the particle sides, it is the perimeter that affects the position
of the CHS. The two points coincide for particles with an even
number of mirror planes, thus canceling rotation. Any asymme-
try, however, offsets the two points by a finite distance, placing
the centroid closer to the larger building block. Then, the two
types of drag acting on different geometric points produce a
torque which rotates the particle toward an orientation in which
the centroid, and by extension the larger component, is farther
upstream. More detailed discussions of this concept are given in
refs. 56 and 57.

Evidently, the observed coupling between the modes of trans-
lation and the rotation is a hallmark of flowing particles with
low symmetry (58). However, there are three notable differences
between particles in confined Stokes flow and the rods studied
by Russel et al. (58), which sediment in three dimensions. Due
to confinement, disturbances in quasi-2D flow decay faster than
in three dimensions (3D): 1/r2 as opposed to 1/r . The latter
produces disturbances which are described with a series of cou-
pled Stokeslets in contrast to the deformed dipoles we observe
in quasi-2D. Finally, while sedimentation obeys the Galilean
invariance principle, a confined particle moving with velocity
ẋ = u experiences a force due to the friction drag from the gaps.
Surprisingly, despite these disparities, there is an intriguing simi-
larity between the two systems. Particles in confined Stokes flow
behave analogously to those driven by gravity in an unbounded
fluid: Objects drift and rotate in opposite directions, depending
on the driving mechanism. This phenomenon has been discussed
by Uspal et al. (22) and is illustrated by Nagel et al. in ref. 38,
figure 1. A possible explanation for these “mirrored” dynam-
ics is the presence of two opposing forces acting on particles
in both systems: During sedimentation viscous drag counteracts
gravity, but is counteracted by friction drag when a particle is
confined.

Mathematically, we represent the interdependence of particle
degrees of freedom using a resistance tensor Rp, a symmetric
matrix with size equal to the number of degrees of freedom a par-
ticle exhibits (SI Appendix, sections 1A and 1B). The resistance
tensor relates the hydrodynamic forces and torque a stationary
fluid u = 0 exerts on a particle, which translates through it with
velocities ẋ and ẏ , while also rotating at a rotational velocity
θ̇ (55, 59):
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Fx

Fy

Tz

=−ηRp ·

ẋ
ẏ

θ̇

, with Rp∼

lxx lxy l2xθ
lyx lyy l2yθ
l2θx l2θy l3θθ

. [1]

We present each component of Rp in terms of arbitrary length
scales lij to demonstrate one of its defining features—much
like Stokes flow itself, the resistance tensor is time independent
and defined purely by geometry. If the particle possesses only
a single mirror plane, all nine components of Rp are generally
nonzero, reflecting the entwined nature of its modes of motion
(SI Appendix, section 1C). Conversely, for a rod the l2ij compo-
nents become zero, since its coupled translational modes are
unaffected by rotation. Particles with an even higher symmetry
such as disks have all three modes independent of each other
and their resistance tensors are diagonal matrices.

Using the concept of the resistance tensor together with Stokes
linearity, we recently derived equations of motion for a force-
free mirror-symmetric particle subjected to confined Stokes
flow (60). Briefly, being a linear transformation of velocity into
force, the resistance tensor at angle θ can be rotated by ∆θ
about the z axis, yielding the resistance tensor at a new angle
θ+ ∆θ: Rp (θ+ ∆θ)= Mz (∆θ)·Rp (θ)·Mᵀ

z (∆θ). The rotation
matrix Mz (∆θ)is detailed in SI Appendix, section 1A and Eq. S3.
Alternatively, the particle velocity can be rotated by −∆θ using
the same matrix. Applying a similar approach to the flow veloc-
ity and balancing the flow force acting on a stationary particle
to the drag on a moving particle in a quiescent fluid we obtain
a system of linear equations (SI Appendix, section 1B). Solving
this system yields how particle orientation θ (t) and lateral dis-
placement y (t) change over time. Both equations, as presented
in ref. 60, seemingly depend on the initial orientation of the par-
ticle θ0. However, once we realize Stokes flow is time reversible,
θ0 becomes an arbitrary reference angle. For convenience, we set
θ0 =π/2, resulting in

θ (t) = 2 arctan

[
exp

(
− t − t⊥

τ

)]
[2]

and

y (t) = y (t⊥)+ 2H
τ

τy

[
sech

(
t − t⊥
τ

)
− 1

]
, [3]

where t⊥= t (θ=π/2) denotes the time at which the particle
is perpendicular to the flow. The two timescales, τ and τy , are
characteristic for the reorientation and cross-stream migration
of each particle. Numerically, they can be computed directly
from the resistance tensor (60), and just like Rp, they are purely
geometrically determined. Furthermore, Eq. 3 captures the cou-
pling between rotation and translation, because the particle path
depends on both timescales. The generality of these equations
of motion points to their validity for a wide range of particle
shapes provided they have at least one plane of mirror symme-
try. The equations also hold for particles that do not rotate—
shapes with more than one mirror plane have an infinitely
large τ and translate at a constant lateral velocity (SI Appendix,
section 1C).

To test the validity of these equations, we produce a vari-
ety of disk dimers and track their motion as they rotate from
θ∼ 0.85π to θ∼ 0.10π. Upon comparing the obtained raw exper-
imental trajectories, we see a qualitative similarity (SI Appendix,
Fig. S4). However, as some particles rotate more slowly than oth-
ers, the overall paths the particles follow differ considerably in
quantitative terms. We fit Eqs. 2 and 3 to the observed trajec-
tories and extract the two characteristic times for each particle,
as discussed in SI Appendix, section 2. Finally, we transform
experimental time to (t − t⊥)/τ for each shape and compare the
angle evolution for the set of dimers (top curve in Fig. 3A). The
reorientation dynamics of the studied disk dimers do not only

agree quantitatively—they seem to be independent of the exact
particle shape as evident from the collapsed experimental data,
which closely follows Eq. 2, as well as 3D FE computations. This
apparent shape independence implies that the characteristic time
captures all geometric details of a particle. By condensing them
in τ and factoring them out, we are left with the general dynam-
ics determined by the mirror symmetry and described well by
our equation for θ (t). This notion is reaffirmed once we take
a look at the lateral motion of the disk dimers (bottom curve in
Fig. 3A). Their cross-streamwise motion also appears shape inde-
pendent once we use (t − t⊥)/τ instead of experimental time
and scale their lateral displacement by the channel height and
the characteristic times. Even when the lateral motion of a par-
ticle deviates from the one predicted by Eq. 3, the deviation
can be traced back to the reorientation dynamics. Some dimers
stop rotating before their mirror axes align with the flow direc-
tion, leading to a decoupling of rotation and translation. Thus,
they begin to behave as rods with a finite cross-stream velocity
even at long timescales (38). A possible reason for these devi-
ations is interaction with hydrodynamic images if the particle
comes too close to the wall. Additionally, artifacts of the lithog-
raphy process such as slight asymmetry in the particle itself or
dust of size comparable to hg are other possible culprits. We test
these notions by simulating the full trajectory of a dimer whose
experimental behavior deviates from the theoretically predicted
one. Since the 3D FE results are well described by the equa-
tions of motion and agree with the experimental trajectories, we
conclude that the observed deviations are indeed experimental
artifacts.

Encouraged by the close agreement between theory and exper-
iments in Fig. 3A, we broaden our scope to mirror symmetric
particles of various shape. Substituting the disks with pointy
building blocks such as squares and triangles leads to differ-
ent timescales, but does not affect the general particle dynamics
(Fig. 3B). Increasing the number of building blocks has the same
effect—trimers with different size ratios and interdisk angle also
behave identically once we isolate the geometrical details con-
densed in τ and τy . This universality, remarkable as it is, is
not entirely unexpected—Eqs. 2 and 3 are derived with the sole
assumptions of a force- and torque-free particle with a mirror
plane moving in creeping flow. Moreover, our findings suggest
we should expect this type of dynamics from any particle that
has at least one mirror plane and is subjected to confined Stokes
flow. Our reasoning also raises the question, What is the behavior
of an asymmetric particle, for instance, a trimer where all three
disks have different radii (SI Appendix, Fig. S3)? One such shape
rotates until it acquires a stable orientation θ∞ 6= 0 as discussed
in SI Appendix, section 1C. However, since the flow disturbance
it creates is asymmetric, the particle has a nonzero lateral veloc-
ity even after it has ceased reorienting (48, 60). Finally, the
assumption of heavy confinement (Hp/H > 0.8) does not pre-
clude applying our general approach to less-confined particles,
since rods spanning half the channel height also experience mea-
surable cross-stream motion (38). Also, a thin mirror-symmetric
particle (Hp/H = 0.5) and its strongly confined counterpart (i.e.,
a particle having the same in-plane shape but larger Hp/H )
follow identical paths, as shown numerically in Fig. 3A. Simi-
larly, this universality is not restricted to particles with uniform
thickness: A spherical dumbbell, comprising two unequal spheres
and a cylinder, also follows the universal trajectory (Fig. 3B).
While the larger, strongly confined, sphere has a radius of 0.4H ,
the smaller one spans only half the channel height and the
connecting cylinder has a radius of 0.15H .

Although we have a rigorous description of the general trajec-
tory of a mirror-symmetric particle, its exact motion still depends
on two timescales. Up to now we obtain τ and τy as fitting
parameters in Eqs. 2 and 3. However, knowing their values a
priori opens the door toward tailoring the shape of a particle
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T, 1.54, 90°T, 1.84, 51° DFEM, 1.54, - DFEMHp/H=0.5, 1.54, - TFEM, 1.54, 90° sphere DFEM, 1.60, -
Equation 2 Equation 3

A B

Fig. 3. (A and B) Universal motion of mirror-
symmetric particles. Regardless of their detailed
shape, all studied particles follow a universal tra-
jectory. They exhibit the same quantitative behavior
as long as we take into account two characteris-
tic times, τ and τy , scaling their modes of motion
(52): exponentially decaying rotation θ(t) to orient
with the big disk upstream (top curves) and bell-
shaped translation in the lateral direction y(t)−
y(t⊥) (bottom curves). The only geometrical element
common to all studied particles is their single plane
of mirror symmetry. In all cases, the error bars denot-
ing experimental uncertainty are smaller than the
symbols and are omitted. The particles and their
motion are sketched in the middle. In the key disk,
square, and triangle dimers are denoted with D,
S, and F for brevity. Disk trimers are denoted as
T. Angles, where given, are for the trimer angle φ
defined in Fig. 1C. The subscript “FEM” signifies that
some trajectories are obtained through our finite-
element scheme. We also demonstrate that this type
of motion is present even at weaker confinement
(Hp/H< 0.8) and is not limited to objects with con-
stant thickness: A particle spanning half the chan-
nel height (DFEM Hp/H = 0.5, 1.54,−) and a particle
comprising two unequal spheres held together by a
rigid cylinder (sphere DFEM, 1.60,−) follow the same
universal path.

to a desired trajectory. One possible way to obtain this target-
specific shape is to survey a large variety of particles, compute
their resistance tensors, and estimate τ and τy (60). As robust as
this method is, it is not particularly insightful as it does not yield
an explicit relation between the timescales and a particle’s geo-
metric parameters. By considering imbalanced rods, we propose
scaling arguments linking the timescales τ and τy of a particle to
its geometry.

We do so by first taking the time derivatives of θ and y
in Eqs. 2 and 3 and substituting (t − t⊥)/τ =− ln (tan (θ/2))

in the resulting expressions. This yields θ̇=− sin θ/τ and ẏ =
−2H sin θ cos θ/τy , respectively. The former expression points to
an inverse relation between the rotational timescale and the rota-
tional velocity when the particle is parallel to the flow: τscaling =
1/θ (θ=−π/2). We avoid the angular dependence in the latter
derivative by using a similar expression for the drift velocity of
rods used by Nagel et al. (38): ẏrod =−

(
ẋ⊥− ẋ‖

)
sin θ cos θ. The

subscripts of the streamwise velocities denote particle orienta-
tion: ẋ⊥= ẋ (θ=π/2)and ẋ‖= ẋ (θ= 0). Since rods are a special
case of mirror-symmetric particles, rather than a separate class,
we assume ẏrod = ẏ and demonstrate the assumption’s validity in
SI Appendix, Fig. S16C. Finally, we express τy via the difference
in the longitudinal velocities when the particle is perpendicular
and parallel to the flow: τy,scaling = 2H /(ẋ⊥− ẋ‖).

To compute the three velocities, we make use of the force-
and torque-free nature of the particle. At any instant in time, the
angular momentum it gains from the in-plane flow is dissipated
as Couette torque from the confining walls above and below
its faces: T f

z +Tw
z = 0. We write two similar balances for the

streamwise force—the friction from the confining walls and the
drag from the surrounding fluid cancel: Fw

x ,i +F f
x ,i = 0, where

the subscript i in the x components of the force denotes parti-
cle orientation. We express Fw

x ,i by integrating the hydrodynamic
stress from the Couette flow in the gaps over the particle faces
with area Sp: Fw

x ,i ∼−2ηẋiSp/hg. We neglect any rotational con-
tribution from the force because the particle does not rotate at
θ= 0 and even when it does at θ=±π/2, the coupling between
the two modes of motion is weak. We use a similar approach to
calculate the Couette torque acting on the two faces of a rotating
particle: Tw

z ∼−2ηθ̇/hg ∫Sp
(r− c0)2dSp =−2ηθ̇Ip/hg, where r

are the coordinates of all differential area elements dSp and we

identify the integral as the area moment of inertia Ip. By com-
puting the wall torque with respect to the particle centroid c0, we
decouple streamwise motion from rotation.

To estimate F f
x ,i , we follow the approach of Beatus et al. (35)

and assume the flow force acting on the particle is dominated
by the fluid pressure. While this is a good approximation when
the particles are oriented normal to the flow, F visc/Fpress∼
(2H /L⊥)2 . 1/4, when θ= 0, the force ratio is

(
2H /L‖

)
2∼ 1.

The projected lengths Li are sketched in Figs. 1G and 4C. Mak-
ing this strong assumption ultimately leads to an underestimation
of τy . Next, we integrate the pressure difference across the width
of the particle −∆x (y)∂p/∂x along its surface normal to the
flow HpLi and obtain

F f
x ,i ∼−

∂p

∂x
Hp

∫
Li

∆x (y)dy ∼ 12ηu

H 2
×Hp×Li

√
Sp

π

L‖
L⊥

, [4]

where we express the far-field pressure gradient −∂p/∂x =
12ηu/H 2 through the depth-averaged flow velocity u . Addition-
ally, we substitute the integral of the width ∆x with the geomet-
rically averaged width

√
Sp/πL‖/L⊥, which is computed as the

radius of a circle with the same area scaled with the aspect ratio
of the particle. Setting F f

x ,i +Fw
x ,i = 0, we obtain an expression

for the streamwise velocity: ẋi ∼ 6h̃Hp×L‖Li/
(
L⊥
√
πSp

)
×

u/H , where h̃ = hg/H .
Estimating the torque exerted by the flow on the particle

requires integrating a differential contribution over each point
on the particle sides. Alternatively, we can apply the pres-
sure force F f

x ,⊥ at the center of hydrodynamic stress, which
also produces a torque. As already discussed, the CHS is
related to the perimeter of the 2D projection of the parti-
cle, because the flow acts predominantly on the particle sides.
Then, we assume that, to a first approximation, the CHS coin-
cides with the center of perimeter cp =P−1

p ∫Pp
rpdPp, which

results in the compact expression for the flow torque: T f
z '

|cp− c0|F f
x ,⊥= rarmF f

x ,⊥. We can then isolate the rotational
velocity of the particle when it is perpendicular to the flow from
the torque balance: θ̇' 6h̃Hp×

(
rarmL‖

√
Sp/π

)
/Ip× u/H . A
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A

C

B

D

Fig. 4. Relation of the characteristic timescales to particle geometry. The
(A) rotation and (B) translation timescales needed to fully describe par-
ticle motion via Eqs. 2 and 3 are solely dependent on the geometry of
the system. For identical flow parameters such as depth-averaged flow
velocity u, gap thickness hg, and channel height H, the detailed shape
of the particle determines τ and τy . The rotational timescale depends on
the area of the particle Sp, its projected length when perpendicular to
the flow L⊥, and the distance rarm = |cp− c0| spanning from the centroid
c0 = S−1

p ∫Sp rdSp to the center of perimeter cp = P−1
p ∫Pp rpdPp, where r are

the coordinates of the differential area elements dSp and rp are points
on the particle perimeter Pp. Additionally, we need the area moment of
inertia Ip = ∫Sp (r− c0)2dSp. We obtain the translational timescale via the
area of the particle and its projected lengths L⊥ and L‖ when its mir-
ror plane is perpendicular or parallel to the flow, respectively. The vertical
error bars represent the SD of the timescales within an experimental series
(SI Appendix, Table S1). The horizontal error bars are calculated from the
uncertainty of the gap thickness hg = 2.5± 0.5 µm. The dashed diago-
nal lines with a slope of unity are a guide to the eye and serve to assess
the agreement between the experimental results and scaling relations. All
particle shape parameters needed to estimate τ and τy are sketched in
C. As the height of the particles Hp is reduced, their timescales begin to
diverge, as shown numerically in D. Yet particles spanning half the channel
height still exhibit a measurable cross-stream and rotational motion (gray
dashed line).

detailed version of these derivations can be found in SI Appendix,
section 1E.

Finally, we substitute the three velocities in the expressions for
the two timescales and arrive at our minimalistic scaling relations
for τ and τy :

τscaling'
1

6h̃Hp

× H

u
×

√
πIp

rarmL‖
√

Sp

[5]

and

τy,scaling' 2H × 1

6h̃Hp

× H

u
×
√
πSp

L⊥−L‖

L⊥
L‖

. [6]

The geometrical parameters that enter the two expressions are
illustrated in Fig. 4C and detailed in the legend.

We verify the scaling models by comparing our experimental
timescales to the ones computed via Eqs. 5 and 6 in Fig. 4 A and
B. We complement this comparison with numerical timescales,
computed via 3D FE method, and present them in SI Appendix,

Figs. S18 and S19. The scaling relation for τscaling overestimates
some τexp by a factor of roughly 1.6, while τy,scaling underesti-
mates the majority of τy,exp by a factor ∼1.5. This mismatch is
to be expected as the proposed minimalistic scalings strip the
particles of any geometric detail.

Although we determine the two timescales up to a scaling fac-
tor of order 1, Eqs. 5 and 6 accurately predict when τ or τy
diverges and when τy becomes negative. In some trivial cases,
particles cease to rotate and τ→∞ when there is no flow
(u→ 0), they are either too thick (h̃→ 0) or too thin (Hp→
0). The latter effect is demonstrated numerically in Fig. 4D.
The timescale also diverges when the distance between the cen-
troid and the center of perimeter vanishes (rarm→ 0). Particles
with more than one mirror plane—rods, symmetric dimers, and
disks—all have rarm = 0. Similarly, particles do not cross stream-
lines when their two projected lengths match L⊥=L‖. One
such particle is a trimer with κ= 1.5 and φ∼ 68◦, which rotates
without drifting away from the centerline of the channel, as
demonstrated by FE computations in Fig. 1E. We also observe
this phenomenon experimentally: The trimer with κ= 1.84 and
φ= 51◦ barely moves in the lateral direction (Fig. 2E). Its large
τy , damping its lateral motion, is due to its comparable pro-
jected lengths. Furthermore, τy may become negative for trimers
with large φ, as demonstrated in Fig. 1E. This change in drift
direction is present experimentally for a trimer with κ= 1.5 and
φ= 90◦ and is the reason why we compare |τy,exp| to |τy,scaling|
in Fig. 4B.

The universal path we discovered renders separation of quasi-
2D particles with at least one mirror seemingly impossible.
However, estimating the two geometry-dependent timescales
that govern the exact dynamics facilitates segregation by shape
via careful separator design.

Since hydrodynamic interactions couple every object in flow
to its neighbors, it is advisable to separate the mixture one par-
ticle at a time. Using a narrow inlet, a single object can be
injected through the side wall of a channel filled with a sta-
tionary fluid. Then, another inlet, which is aligned with the
channel side walls, sets the fluid and the particle in motion.
The side inlet, which determines the initial orientation of the
particle, should not be perpendicular to the walls to ensure cross-
stream motion for particles with two mirror planes. Sequencing
and balancing the strengths of these inlets can be done with
a programmable microfluidic pump. This workaround comes
at the expense of throughput, which can be amended by mas-
sive parallelism, a technique well suited for affordable and
easy-to-fabricate microfluidic devices.

Next, we can use the symmetry of the particle to determine
where it is most likely to be after a sufficiently long time.
Asymmetric disk dimers with a single mirror plane focus to the
centerline of the channel (22). In contrast, particles with two and
zero mirror planes oscillate between the side walls (22, 38, 60),
“hop” close to one of them (22, 38), or are captured by them (48).
These distinct types of long-time behavior already hint at possi-
ble ways to separate particles based on their symmetry. Objects
with a single mirror plane can be collected at the downstream
outlet of the microfluidic device. Conversely, those with two or
zero can be separated via strategically placed outlets at the sides
of the channel.

In more general terms, depending on how quickly particles
approach the wall relative to how quickly they rotate, we can
discern two separation strategies: collecting them at the down-
stream outlet if W /L⊥× τy/τ > 1 and collecting them via side
outlets otherwise. Additionally, we may use τy and W /H to esti-
mate where to position the side outlets. A possible approach to
separate particles with a single mirror plane based on asymme-
try is to form a cascade of separators. In such a setup, particles
collected at the main outlet of a channel are fed into the side
inlet of a similar separator with a smaller W . A particle, which

21870 | www.pnas.org/cgi/doi/10.1073/pnas.2005068117 Georgiev et al.
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previously migrated far from the side walls, may now, if only
weakly asymmetric, remain in close proximity with a side wall,
depending on the streamwise length of the cascade stage. Hence,
estimating the timescales over which the symmetry-specific
dynamics occur enables optimizing the geometry of a separator.

As a demonstration, we estimate τ and τy for different
microplastic pollutants (figure 2 in ref. 61, figure 3 in ref. 62,
and ref. 63). We carry out the same estimation for healthy and
cancerous mammary cells from a mouse (figure 2 in ref. 4),
where we make the common assumption that cells do not change
shape due to flow (64). Throughout this discussion, we assume
strong confinement for all objects, Hp/H = 0.8. Microplastic
pollutants differ vastly in shape: from straight slender fibers
through asymmetric fragments through microbeads. Estimating
the timescales governing the motion of fibers is particularly valu-
able as they are found in laundry machine effluents (63). Such
slender rods have an aspect ratio close to zero (L‖/L⊥< 0.05)
and their area in quasi-2D is approximately the product of
their projected lengths: Sp≈L‖L⊥. We can then simplify Eq. 6

to τyu/H ' 2H
√
πL⊥/L‖/

(
6h̃Hp

)
. We anticipate large rota-

tional timescales for the straight fibers and microbeads with τ >
1,000H /u . While the latter should not exhibit any measurable
cross-stream motion (τy > 1,000H /u), the fibers should move
from one side wall to another with 30<τyu/H < 80. Asymmet-
ric fragments should rotate but their rotational speed is strongly
dependent on asymmetry. For the fragment shown in figure 2
of ref. 61, we estimate τ ∼ 200H /u and τy ∼ 20H /u , where we
assume the thickness of the particle Hp∼ 100 µm is the same
as its width. Similarly, it may be possible to separate cells based
on their shape: Healthy mammary cells have a nearly rectangu-
lar shape (τ > 1,000H /u) with aspect ratio between 1/2 and 1/3
(τy ≈ 20H /u). In stark contrast, tumor cells are close to circular,
should not rotate, and should exhibit large τy > 200H /u .

The applicability of the proposed scaling relations to a wide
range of particles with different geometry and symmetry sup-
ports the main conclusion of our work: In confined Stokes flow,
particles with at least one mirror plane behave identically as
long as we scale their trajectories by characteristic times, directly
related to their shape. The observed universal path can be uti-
lized to predict trajectories of particles based on minimalistic
scaling arguments.

Conclusion
In summary, by combining experiments, simulations, and theory,
we investigate how the trajectory of both weakly and strongly
confined particles subjected to Stokes flow is determined by
their geometry. We observe that particles with a single mir-
ror plane exhibit qualitatively similar behavior: They rotate in
plane to align their mirror axis with the flow and their larger
building block upstream, all of the while crossing streamlines.
However, the timescales over which these dynamics happen
are strongly dependent on particle shape. We fit our experi-
mental trajectories and finite-element calculations to theoretical
equations of motion we recently reported, thus extracting char-
acteristic rotational and translational times for each particle. By
scaling experimental time by the respective rotational timescale
for each experiment, we collapse the evolution of the orienta-
tion for all particles onto a single curve. Similarly, we obtain a
universal bell-shaped path by scaling real time and a particle’s
cross-streamline displacement. Finally, we propose minimalistic
scaling relations linking the characteristic times of a particle to
its geometry. We strip the particles of all geometrical details and
treat them as imbalanced rods, thus reinforcing the idea that
it is solely their symmetry that defines their overall dynamics.
Our observations suggest the trajectories are universal for par-
ticles with at least one mirror plane. This finding deepens our
understanding of fluid–structure interactions in confined Stokes

flow. Moreover, it opens additional opportunities in lab-on-chip
and industrial applications enabling shape-based separation of
suspended particles solely through hydrodynamic interactions.

Materials and Methods
Experimental Setup. Polymeric microparticles are produced and observed
with an experimental setup, similar to the one used by Uspal, Eral, and Doyle
(22). Polydimethylsiloxane (PDMS) (Sylgard 184; Dow Corning) microfluidic
devices of width W = 512± 2 µm are fabricated according to Dendukuri
et al. (65). Disk dimers are tracked in channels with height H = 30± 1 µm.
Trimers and triangle and square dimers are tracked in 33-µm high chan-
nels. A UV-cross-linking oligomer, poly-(ethyleneglycol) diacrylate (PEG-DA)
(Mn = 700, η= 95 mPa·s; Sigma-Aldrich), is mixed with a photoinitiator,
hydroxy-2-methylpropiophenone (Darocur 1173; Sigma-Aldrich), in a 19:1
volume ratio and the mixture is pumped through the microfluidic channel.
The device, loaded with prepolymer, is mounted on the stage of a motor-
ized Nikon Ti Eclipse inverted optical microscope. A photolithographic mask
with well-defined shape is inserted as a field stop. Mask designs are made in
Wolfram Mathematica and postprocessed in Dassault Systémes’ DraftSight.

Particle Production and Tracking. Microparticles are produced by shining a
100-ms pulse of UV light through the mask onto the channel, thus confining
photopolymerization to a discrete part of the prepolymer mixture. Oxygen,
diffusing through the permeable PDMS walls of the device, inhibits poly-
merization in their vicinity (65). This facilitates the formation of two thin
lubrication layers, hg = 2.5± 0.5 µm, which separate the particles from the
confining walls of the channel. Particles are produced and observed with
a 20× lens. The microparticle is set in motion by applying a pressure drop
∆p≈ 1.5 kPa across the channel, resulting in a depth-average flow velocity
u = 55 µm·s−1 for the shallower channel and u = 70 µm·s−1 for the 33-µm
high channel. The particle is tracked by moving the automated microscope
stage in a stepwise manner.

The positions and orientations of particles containing disks are extracted
from the acquired time series using a custom-written MATLAB script,
which employs circular Hough transforms to identify the particle shape
in each frame. The script utilizes MATLAB’s Bio-Formats package (66) and
the calcCircle tool. Particles comprising triangles and squares are tracked
by fitting an ellipse to them, calculating the angle, and detecting their
straight edges.

Finite-Element Computations. All computational results are obtained
through the finite-element method as implemented in the Creeping Flow
module of COMSOL Multiphysics 5.3, which we couple to MATLAB via
LiveLink. Each solution is carried out on a single computational node fitted
with an Intel Xeon E5-2620 v4 @ 2.10 GHz CPU and 64 GB memory. Technical
details regarding geometry building, meshing, and solver settings are given
in SI Appendix, section 3 (67–69).

We use the channel height H = 1 as a length scale. We set the inlet flow
velocity u, the kinematic viscosity of the fluid η, and its mass density ρ to
unity. To simulate creeping flow at this Re = 1, we neglect the inertial term
in the momentum equation and solve the Stokes equation with no external
forcing,

∇ ·
(
−pI + η

(
∇Uf +∇Uᵀ

f

))
= 0

∇ ·Uf = 0,

where we solve for Uf and p, the fluid velocity and pressure fields. We
integrate the total stress over the particle surface to obtain the forces and
torque acting on it at a given position and orientation with respect to the
flow. To compute the force- and torque-free velocities of the particle at this
configuration, we numerically solve the force balance

ẋ
ẏ
θ̇

=
1

η
R−1

p · F0,

where F0 is the forces and torque acting on a stationary particle in a flow
and Rp is the resistance tensor for this configuration (SI Appendix, section 1A
and Eq. S1). We obtain the trajectory of a particle through a first-order time

integration scheme, where we apply
(

ẋ, ẏ, θ̇
)

over a timestep tstep, which

we determine every iteration (SI Appendix, section 3).

Data Availability. Experimental data, theoretical derivations, and computa-
tional protocols that support the findings of this study are shown in this
article and SI Appendix.
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