
Applying the Adaptive Hybrid Flow-Shop Scheduling

Method to Schedule a 3GPP LTE Physical Layer

Algorithm onto Many-Core Digital Signal Processors

Julien Heulot, Jani Boutellier, Maxime Pelcat, Jean François Nezan,

Slaheddine Aridhi

To cite this version:

Julien Heulot, Jani Boutellier, Maxime Pelcat, Jean François Nezan, Slaheddine Aridhi. Ap-
plying the Adaptive Hybrid Flow-Shop Scheduling Method to Schedule a 3GPP LTE Physical
Layer Algorithm onto Many-Core Digital Signal Processors. NASA/ESA Conference on Adap-
tive Hardware and Systems (AHS-2013), Jun 2013, Turino, Italy. pp.Pages 123 - 129, 2013.
<hal-00877643v2>

HAL Id: hal-00877643

https://hal.archives-ouvertes.fr/hal-00877643v2

Submitted on 12 May 2014

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00877643v2


HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.



Applying the Adaptive Hybrid Flow-Shop

Scheduling Method to Schedule a 3GPP LTE

Physical Layer Algorithm onto Many-Core Digital

Signal Processors

Julien Heulot∗, Jani Boutellier§, Maxime Pelcat∗, Jean-François Nezan∗, Slaheddine Aridhi∗∗

∗IETR, INSA Rennes, CNRS UMR 6164, UEB

Rennes, France

email: jheulot, mpelcat, jnezan@insa-rennes.fr

§University of Oulu

FI-90014 University of Oulu, Finland

email: jani.boutellier@ee.oulu.fi

∗∗Texas Instruments France

Villeneuve Loubet, France

email: saridhi@ti.com

Abstract—Currently, Multicore Digital Signal Processor (DSP)
platforms are commonly used in telecommunications baseband
processing. In the next few years, high performance DSPs are
likely to combine many more DSP cores for signal processing
with some General-Purpose Processor (GPP) cores for application
control. As the number of cores increases in new DSP platform
designs, scheduling of applications is becoming a complex opera-
tion. Meanwhile, the variability of the scheduled applications also
tends to increase as applications become more sophisticated. Such
variations require runtime adaptivity of application scheduling.

This paper extends the previous work on adaptive scheduling
by using the Hybrid Flow-Shop (HFS) scheduling method, which
enables the device architecture to be modeled as a pipeline of
Processing Elements (PEs) with multiple alternate PEs for each
pipeline stage. HFS scheduling is applied to the scheduling of
3rd Generation Partnership Project (3GPP) Long Term Evolution
(LTE) telecommunication standard Uplink Physical Layer data
processing (PUSCH).

The experiments, conducted on an ARM Cortex-A9 GPP,
show that an HFS scheduling algorithm has an overhead that
increases very slowly with the number of PEs. This makes the
method suitable for executing the adaptive scheduling in less than
1 ms for the 501 actors of a LTE PUSCH dataflow description
executed on a 256-core architecture.

I. INTRODUCTION

Today, multicore Digital Signal Processor (DSP) platforms
are commonly used in signal processing, such as baseband
processing in telecommunications and multimedia applica-
tions. Although the use of multi-core processors is widespread,
the system-level complexity of the platforms causes myriad
problems which still remain unsolved.

Computationally, the most powerful multi-core DSP plat-
forms (Texas Instruments TMS320C6678 and Freescale P4080
for instance) currently comprise up to 8 DSP cores. The
next generation DSP TMS320TCI6636 from Texas Instruments
will combine a 4-core ARM Cortex-A15 General-Purpose
Processor (GPP) and 8 c66x DSP cores. Combining GPP
cores dedicated to control-oriented operations and application

This work was supported by the ANR COMPA project

scheduling and DSP cores dedicated to signal processing may
become a typical internal architecture for computationally
powerful DSP processors. Moreover, if the current trend to
integrate increasingly more cores in processors continues [1],
many-core DSP processors, comprising a few GPP cores and
many powerful DSP cores, made possible by higher integration
density may prevail in a few years over other DSP processors.

Two major issues in multiprocessing are a) the nature
of the interconnect topology [2] and b) the scheduling and
synchronization of computations. In fact, these two issues can
not be separated from each other, as the interconnect dictates
the nature of the scheduling approach. In this paper, the term
Processing Element (PE) is used to refer to either a DSP core
or a dedicated co-processor.

Pipelined interconnects and their scheduling are of high
relevance in DSP and multimedia applications [3, Page 124].
An example of pipelined interconnects can be seen in Figure 1.
Figure 1 a) depicts a classical pipeline with three stages, each
consisting of one PE. Figure 1 b) depicts a slightly more
complex pipeline where the second stage has two PEs (#2
and #3) that can process data concurrently.

In the Hybrid Flow-Shop (HFS) scheduling method [4],
used in the proposed methodology, the target architecture is
modeled as in Figure 1 b). For multi-core architectures that
allow bidirectional (isotropic) inter-processor communication,
the HFS scheduling method restricts communication to fixed,
unidirectional links. This dramatically reduces the complexity
of adaptive scheduling and makes the overhead of scheduling
up to 256 PEs manageable (Section V).

It has been shown previously [5] that the highly dynamic
nature of the Uplink Physical Layer data processing (PUSCH)
decoding algorithm executed in 3rd Generation Partnership
Project (3GPP) Long Term Evolution (LTE) base stations
does not allow the use of static multiprocessor schedules; fast
adaptive scheduling is mandatory. [5] used a list scheduling
method to schedule 3GPP LTE PUSCH decoding on a multi-
core DSP. This method is not applicable to many-core adaptive
scheduling (with hundreds of PEs), as 1/9 of the computation
is dedicated to scheduling which involves 8 PEs.



P1,1 P2,1 P3,1

P1,1

P2,2

P3,1

P2,1

a)

b)

pipeline
stage P1

pipeline stage P2 pipeline
stage P3

Fig. 1. Three stage pipelines with a) one PE per stage, b) one or more PEs
per stage.

In this paper, we propose a method based on HFS sched-
uling to adaptively schedule the 3GPP LTE PUSCH algorithm
onto many-core architectures. We show that HFS scheduling
can be applied to schedule applications on pipelines of proces-
sors that have parallel PEs at arbitrary stages. As an application
example we show how the 3GPP LTE telecommunication stan-
dard PUSCH can be modeled as an HFS scheduling problem
and that the simplifying assumptions of HFS scheduling enable
the fast computation of an efficient many-core schedule.

The adaptive scheduling of classical pipelines (as in Fig-
ure 1 a)) has been previously studied [6], [7], whereas the
more complex hybrid case containing stages with parallel PEs
(as in Figure 1 b)) is still largely unexplored in the context of
signal processing.

This paper is formulated as follows: Section II discusses
work related to the topics discussed in this publication; Sec-
tion III presents the PUSCH application; Section IV shows how
the PUSCH application can be modeled as an HFS scheduling
problem; Section V shows experimental results on scheduling
of 3GPP LTE PUSCH and Section VI concludes the paper.

II. RELATED WORK

The use and scheduling of PE pipelines in signal processing
has been previously studied. In [6], MPEG-4 macroblock
decoding was modeled as a classical flow-shop scheduling
problem and [7] extended the study to consider various in-
termediate buffers between the pipeline stages.

The scheduling of the 3GPP LTE PUSCH decoding pro-
cess has previously been discussed in the work of Pelcat
et al. [5]. In this work it was shown that static scheduling
of PUSCH is unfeasible and that an adaptive scheduler is
necessary. The applied list scheduling method provided very
high-quality schedules, but the context of [5] was different
to this work, as the assumed platform was isotropic and the
resulting communications were not restricted in their direction.

The review article of Ruiz et al. [4] gives an overview
of available methods for solving HFS scheduling problems.
However, only a small minority of these are applicable to the
problem at hand, as task graphs that depict DSP algorithms
(such as PUSCH) generally have precedence constraints. Fi-
nally, as our context is the adaptive scheduling of pipelined
PEs, none of the presented solutions in [4] are suitable due to
their complexity or restricted applicability.

[3, Page 129] lists several approaches for compile-time
mapping of DSP algorithms to pipelined multiprocessors. Due

to the dynamic nature of the LTE PUSCH decoding process,
these approaches are not applicable.

III. 3GPP LTE PUSCH PROCESSING

The 3GPP telecommunication standards, GSM and 3G, are
used by billions of people over the world. The 3GPP LTE
telecommunication standard improves the peak data rates in
downlink to more than 100Mbit/s and peak uplink data rates to
over 50Mbit/s. Theoretically, up to one hundred simultaneous
users can share this available bandwidth.

The high performance is acquired by advanced tech-
niques of Multiple Input Multiple Output (MIMO), Orthogonal
Frequency-Division Multiple Access (OFDMA) in the down-
link and Single-Carrier Frequency-Division Multiple Access
(SC-FDMA) in the uplink processing [8]. These techniques
must be implemented both in the physical layer of LTE base
stations (which are also known as eNodeB) and in the User
Equipment (UE) such as cell phones.

The use of these complex techniques in variable condi-
tions requires high adaptivity from the processing platform.
To maintain the real-time, power-efficiency and versatility
requirements of the LTE physical layer processing, multi-core
DSPs with hardware coprocessors are the platform of choice.
However, the scheduling and synchronization of the physical
layer processing on a multiprocessor platform is a considerable
challenge.

A. PUSCH Processing Stages

Rem. CP
Freq. Shift

FFT
Rem. CP

Freq. Shift
FFT

Rem. CP
Freq. Shift

FFT

SC-FDMA and multiple antennas decoding (static)

Subcarrier
demapping

RF/
ADC

IDFT

Constellation demapping and bit processing (dynamic)

RF/
ADCRF/
ADCRF/
ADC

Rem. CP
Freq. Shift

FFT

Constellation demapping Bit process CRC checkTurbo dec

Channel
estimation

+
Equalization

Fig. 2. PUSCH high level processing chain: static and dynamic parts.

The physical layer decoding operation [8] can be roughly
divided in two parts as shown in Figure 2 :

1) The static part: The Cyclic Prefix (CP) is removed,
the symbols are converted into frequency domain by
a Fast Fourier Transform (FFT) and equalized using
channel estimation on received reference signals. The
subcarriers are then reordered and, finally, an Inverse
Discrete Fourier Transform (IDFT) reconverts the
data back into the time domain per user basis.

2) The dynamic part: constellation demapping and bit
processing. For these operations, the parameters are
highly variable during runtime (number of connected
UEs, number of allocated Code Blocks (CBs), mod-
ulation order, and so on). The multi-core scheduling
of this dynamic part must be adaptive [5]. A de-
tailed graph description of this part is shown in
Section III-B.



The first (static) part of processing can be represented as a
Synchronous Dataflow graph (SDF [3]) and represents a high
level of parallelism. Consequently, a design tool can efficiently
parallelize these operations at compile time. However, for the
second (dynamic) part, the multi-core scheduling needs to be
adapted to the varying parameters.

The LTE uplink physical layer bandwidth may vary be-
tween 1.4 MHz and 20 MHz. In the most complex case of
20MHz, the base station (eNodeB) Medium Access Control
(MAC) scheduler can assign resources to about 20 dynamically
allocated users and 30 Voice over LTE users (VoLTE) semi-
persistently. This translates to 50 variable size CBs, associated
with these 50 UEs , being transmitted every millisecond.
Given the number of UEs and their CB sizes, the dynamic
part of PUSCH needs also to be rescheduled onto the multi-
core architecture every millisecond. The next section explains
the model used to represent the dynamic part of the PUSCH
algorithm.

B. Dataflow Description of the LTE PUSCH Decoding Dy-
namic Part

In order to schedule the decoding of one LTE PUSCH
subframe every millisecond, a parameterized model of the
algorithm is required. Dataflow has proven to be an efficient
representation for signal processing applications [3].

The vertices of dataflow graphs are known as actors. Actors
consume data tokens on their input edges, process the data
and produce result tokens on their output edges. Data between
actors are exchanged exclusively via edges, representing First
In, First Out data queues (FIFOs). An actor fires (executes) as
long as there is data to consume on its input edges.

The graph model used to represent the dynamic part of LTE
PUSCH is the Parameterized Cyclo-Static Directed Acyclic
Graph (PCSDAG) [5]. Rather than a new model, it is a subset
of the Cyclo Static Dataflow Model (CSDF [9]) parameterized
obeying the semantics of [10]. It has two main advantages:

• As a subset of CSDF, it can compactly model an
algorithm with complex production or consumption
patterns. This is the case of the current PUSCH
algorithm because the size of the CB assigned to each
user varies greatly, both in time and between users.

• The simplifications enable a fast computation of ac-
tor repetitions gathered in a repetition vector. A
new graph called single rate Directed Acyclic Graph
(srDAG) can then be generated, duplicating actors by
their repetition factors.

Both data token production and consumption of each
PCSDAG edge is set by the MAC scheduler based on UE
time and frequency scheduling. Figure 3 shows a simplified
view of the LTE PUSCH PCSDAG description. The shape of
the graph depends on the following parameters:

• the current number of UEs: nb UE,

• A pattern of parameters giving the number of CBs
allocated in each 1ms subframe to each UE: nb CB =
{CBs UE1,CBs UE2,CBs UE3...}. This pattern
has a maximum length of 50.

Other parameters influence the Deterministic Actor Exe-
cution Time (DAET) of each actor, i.e. the time needed to
execute each LTE PUSCH actor on each processing element.
Pattern parameters are shown in parentheses in Figure 3. The
init phase is executed at system initialization while subinit
phase is executed for each 1 ms subframe.

static part

converge

PCSDAG

max_CBs_per_UE*nb_UE
max_CBs_per_UE

max_CBs_per_UE;max_CB_size

init subInit

Keep
CBs

Symbol
to bit

nb_UE;(nb_CB) : modify graph shape
(code_rate); (modulation);
(MU-MIMO_mode);(CB_size)

Bit
process

Turbo
dec

CRC
check

(nb_CB)
1 1 1 1

(nb_CB)
(nb_CB)

t
2

t
3

t
4

t
1

t
5

t
6

Fig. 3. PCSDAG description of the LTE PUSCH dynamic part with
parameters recomputed every 1 ms.

Ignoring the effect of PCSDAG graph parameters on
DAETs, the number of possible graph configurations is shown
to be over 190 million [5]. Taking into account the DAET
modifications, the number of possible graphs is even higher;
thus is not suitable to precompute and store schedules.

In the next section we show how the PCSDAG formulation
can be transformed into a HFS scheduling problem, and we
present a PE pipeline-targeting scheduling approach that is
sufficiently fast given the constraint of the 1 ms time frame
for scheduling the PUSCH algorithm. Dataflow actors are con-
verted into flow-shop tasks. This transformation is illustrated
in Figure 3 where actors are converted into tasks ti.

IV. PROPOSED SOLUTION

The origins of the flow-shop scheduling problem formu-
lation are in factory production lines where multiple pro-
duction machines work in parallel and products move from
one machine to another as they are assembled. The flow-
shop scheduling problem involves the processing of N jobs
on M machines. In the classical flow-shop formulation each
job consists of a set of operations, so that each operation has
to be processed on exactly one machine. Due to our context,
we shall name the machines as PEs and operations as tasks.

In the classical flow-shop formulation it is assumed that
tasks have deterministic execution timings. This constraint is
respected in our study case as we suppose each actor to have
a DAET. Each job must pass through the PEs in a prescribed
order, although it is possible for individual tasks to skip PEs.
We assume that the optimization objective of the flow-shop
problem is makespan minimization instead of other possible
scheduling objectives. This is compatible with LTE constraints.

The HFS scheduling method changes the setting by allow-
ing several PEs to process one type of task [4]. Figure 4 a)
shows an application that consists of three tasks, t1, t2 and t3.



time

ta,1P1,1

P2,1

P2,2

P3,1

ta,2

ta,3

tb,1

tb,2

tb,3

tc,1

tc,2

tc,3

time

ta,1P1,1

P2,1

P3,1

ta,2

ta,3

tb,1

tb,2

tb,3

tc,1

tc,2

tc,3

t1
a)

b)

c)

t2 t3

Job J ta,1 ta,2 ta,3
Job instance Ja

tb,1 tb,2 tb,3
Job instance Jb

tc,1 tc,2 tc,3
Job instance Jc

Fig. 4. a) 3 instances of one job J consisting of three tasks. b) Instances of
J scheduled on architecture shown in Figure 1 a). c) Instances of J scheduled
on architecture shown in Figure 1 b).

This little task graph represents a flow-shop job. The job exists
in three instances: Ja, Jb and Jc. Figure 4 b) shows the Gantt
chart (schedule) when the job instances Ja, Jb and Jc have
been scheduled onto the pipelined multiprocessor architecture
shown in Figure 1 a). Respectively, Figure 4 c) shows the
same jobs scheduled on the pipelined architecture of Figure 1
b), where PE2 and PE3 are both capable of executing task t2.

Figure 4 highlights the common situation where one kind
of task (t2, in this case) is computationally more demanding
than other tasks in the application and thus forms a bottleneck
in the processing pipeline. The classical flow-shop formulation
can not represent cases where a long-latency task is distributed
to more than one PE, whereas in HFS scheduling method
this is no problem. In LTE PUSCH the variance in task
execution times is high: on a programmable DSP the individual
PCSDAG actors have execution time differences of one order
of magnitude [5].

In this work, some common flow-shop assumptions are
used: jobs are processed in every stage in the same order; each
task is processed at most by one PE at each pipeline stage; all
jobs are available simultaneously before the scheduling starts;
tasks pre-emption is not allowed. We also assume that there
is enough buffer space between pipeline stages to hold the
data during inter-stage communication and that communication
times are included to task execution times.

Next, in SubSection IV-A we show how the LTE PUSCH
decoding process can be formulated as an HFS scheduling
problem and SubSection IV-B describes how schedules are
computed out of HFS job sequences.

A. Flow-shop jobs from PCSDAG

The PCSDAG graph is a simple linear graph that is
capable of capturing all the variability of the PUSCH algorithm
within its parameters. To enable HFS scheduling, the PUSCH
PCSDAG graph must be transformed to HFS jobs.

P3,1
P4,2

P5,1

P4,1

P2,2

P2,1

a)

b)

c)

static
part

P3 P4 P5P1

t1,1 t4,1 t4,2 t5,3

t3,3

t6,5t6,4

t5,2

t4,4

t3,2

t2,2

t1,5t1,4

t2,1

t3,1

t4,3

t5,1

t6,3t6,2

t1,3

J1

J2

J3

J5J6

t1 t2 t3 t4 t5 t6
x1 x3 x3 x3x6 x6

t1,2

t6,1

J4

P2

P1,1

Fig. 5. a) PCSDAG graph b) Transformation to flow-shop jobs c) Mapping
to 7 PEs.

The HFS scheduling method requires that every job has
only one kind of task for each pipeline stage. In practice, this
means that the pipeline mapping of PCSDAG actors affects the
transformation from PCSDAG to HFS jobs; the mapping of
actors to pipeline stages is the first step in the transformation.

For general many-core platforms that have a full, isotropic
interconnection network between PEs, applying HFS sched-
uling implies that only a subset of the full interconnect needs
to be used. Similarly, the PEs that are assigned to computations
must be grouped as different pipeline stages.

In the PUSCH algorithm model there are some actors
that have very short execution times and which execute only
infrequently. As an extension of the base HFS scheduling
method, the infrequent actors are mapped to pipeline stages
that also execute computationally more burdening actors.

After the assignment of actors to pipeline stages, jobs can
be extracted from the PCSDAG graph. The PCSDAG graph
has a basis repetition vector that expresses how many times
each PCSDAG actor is to be executed. As described in [5], the
PCSDAG graph is transformed into a srDAG graph in which
each vertex represents one HFS task instance. Figure 5 shows
the transformation from a) PCSDAG to b) srDAG and finally
to jobs, considering the 5-stage pipeline with 7 PEs in c).

In Figure 5 b), individual job instances are delimited by
dashed borders. The algorithm used to create jobs from the
srDAG graph is shown in Algorithm 1.

It is important to notice that the HFS jobs generated from
the PCSDAG are not independent, as the case commonly is
in the HFS scenario [4]. Looking at Figure 5, it must be kept
in mind that the causality relationships between the srDAG
actors still hold for the HFS jobs. Practically this means that
the scheduling order of jobs is restricted somewhat.



Algorithm 1: Constructing Jobs from Actors

Input: A PCSDAG graph G
Output: A queue of jobs L
begin1

static currentJob = new empty job;2

static jobList = new empty job list;3

call jobMaker(first actor of G);4

return jobList;5

end6

function jobMaker Input: currentActor7

begin8

if currentActor was visited then9

return;10

end11

if one of currentActor predecessors was not visited12

then
push currentJob to L;13

currentJob = new empty job;14

return;15

end16

add currentActor to currentJob;17

currentActor.isVisited = true;18

if currentActor has no successor then19

push currentJob to L;20

currentJob = new empty job;21

end22

else23

for each vertex in curVertex successors do24

jobMaker(vertex);25

end26

end27

return;28

end29

B. HFS scheduling

After the set of jobs, Ji, i ∈ [1,N], has been defined
and has been mapped to pipeline stages P j, j ∈ [1,M], the
actual HFS scheduling can be conducted. In classical flow-
shop the scheduling consists of two phases: 1) job ordering
and 2) timetabling [6]. In HFS scheduling method, one more
phase is added, which makes the sequence 1) job ordering, 2)
assignment and 3) timetabling.

The purpose of job ordering is to place the jobs, Ji, i ∈
[1,N], to a sequence with the aim of minimizing the makespan
of the schedule. Job ordering for HFS scheduling has been
studied extensively [4], but generally the ordering strategies
are very time-consuming and not appropriate for runtime
computations. For small job sets, there are simple job ordering
heuristics [11], but as the number of jobs increases, the
computation time of simple heuristics grows as well.

After job ordering has been conducted, the assignment
phase selects the actual processing element P j,k out of the set
of PEs in stage P j,k, k ∈ [1,M j] to which task tm has been
assigned. In this work, earliest start assignment was used: at
each step, the chosen PE grants the earliest start of the current
task.

Timetabling defines when a specific task ti,m job J is
allowed to start on a pre-defined pipeline stage j [11]. In

P1,1
ta,1 tb,1

tb,2

tb,3

tc,2

tc,1

time

P2,1

P3,1

ta,2

ta,3 tc,3

P1,1
ta,1 tb,1

tb,2

tb,3

tc,2

tc,1

time

P2,1

P3,1

ta,2

ta,3 tc,3

b)

a)

Fig. 6. a) Semi-active and b) No-wait timetabling for the same set of jobs
Ja, Jb and Jc.

0 30 60 90 120 150 180 210

kcycles
P6

P5

P4

P3

P2

P1

P0

Fig. 7. multi-core HFS scheduling of the example in Figure 5.

semi-active timetabling, each task ti,m is started when both the
previous task on the same PE has finished and the previous
task of the same job ti,m−1 has finished. In no-wait timetabling
each task (ti,m) within one job J is started immediately after
the previous task (ti,m−1) of the same job has finished. Figure 6
shows the difference of semi-active timetabling and no-wait
timetabling in Gantt-charts.

Figure 7 shows the multi-core HFS scheduling of the
example in Figure 5. The pipeline shape of the schedule is
already visible for this small number of actors.

V. EXPERIMENTAL RESULTS

The trend of computationally efficient DSPs in the next few
years is likely to consist of combining GPP cores for control
and scheduling with many DSP cores for signal processing.
In this context, experimental results will focus on the com-
parison between list scheduling and HFS scheduling. Results
have been acquired by scheduling a dataflow description of
LTE PUSCH decoding for a many-core DSP on an ARM
Cortex-A9 GPP processor. Experiments study the evolution of
simulated makespan and adaptive scheduling time when PE
count increases.

The timetabling approach used was semi-active. No-wait
timetabling was also trialled, and produced almost identical
makespans as semi-active timetabling. In the classical flow-
shop situation no-wait timetabling has the additional benefit of



minimizing the buffer space requirements between PEs [11].
However, for HFS scheduling with jobs that have precedence
constraints, the opposite is true. For this reason, no-wait
timetabling was excluded from the present experiments.

A. Experiment Assumptions and Setup

Accordingly to Section III-B, the PUSCH algorithm com-
prises of two variable parameters. The first is the number of
UEs and the second is the number of Resource Blocks (RBs)
allocated to each UE. For the LTE 20 MHz system, the total
number of RBs available is 100. In the presented results, the
number of UEs is set to 50, so the number of RBs per UE will
vary between 1 and 3, giving a total of 100 RBs for all users.
Because of the high number of users and the small resource
block allocation per user, there will be just one CB per UE.
This scenario results in a total of 50 CBs and illustrates one
of the worst LTE PUSCH scheduling cases.

The hardware platform contains a dual-core ARM Cortex-
A9 processor with a clock frequency of up to 1 GHz. The
experimental adaptive scheduler is written in C++ and runs
as a Linux mono-threaded task on the ARM processor. The
embedded Cycle Counter (CCNT) provides accurate cycle
measurements.

In order to compare schedules, tasks need to have known
durations. Timing measurements used in this paper are based
on a Texas Instrument c64x+ DSP. These timings do not
limit the study, as the paper goal is to compare scheduling
algorithms rather than publishing absolute schedule timings.
Communication times between PEs are assumed to be part
of the task timings. The simulated platform is thus a homo-
geneous many-core platform with cores equivalent to c64x+
DSPs.

Two metrics are used to compare adaptive scheduling
heuristics:

Makespan: The time difference between the start and the
end of a given application graph execution. This is also known
as latency.

Scheduling Overhead: The time necessary on the target
platform to compute the adaptive scheduling algorithm, from
acquiring PUSCH parameters to actor timetabling. As this
time is not dedicated to signal processing, its minimization
is necessary.

B. Results

Results on makespan (Figure 8) compare both list and
HFS scheduling algorithms to Greedy Scheduling Theorem
(GST) algorithm [12]. GST curve gives an idea of the speedup
that can be obtained with greedy scheduling, no actor timing
knowledge and a fully-connected isotropic architecture with
infinite communication rates [13].

In the test case, the algorithm critical path limits possible
speedup to about 50 times. We see that list scheduling produces
better speedup than HFS scheduling. List scheduling reaches
critical path length limitation as soon as 50 PEs are available.
On average, the makespan generated by HFS scheduling is
31% longer than that generated by list scheduling. The limi-
tation of HFS scheduling in terms of makespan is due to its

0

10

20

30

40

50

0 32 64 96 128 160 192 224 256

S
p

ee
d

u
p

PE count

max theorical speedup
List

HFS
GST

Fig. 8. Makespan vs. # of PEs

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 32 64 96 128 160 192 224 256

C
y

cl
es

PE count

HFS
List

Fig. 9. Scheduling overhead vs. # of PEs

reduced mapping choices, as all PEs must communicate to a
restricted list of PEs in a single direction.

The main advantage of HFS method is that its scheduling
overhead (Figure 9) is increasing very slowly with the number
of PEs, making the HFS method a good solution for many-core
adaptive scheduling. This is not the case for a list scheduler
whose scheduling overhead increases significantly with the
number of PEs. In Figure 9, it may be seen that the HFS
scheduler is faster once 17 PEs (or more) are available on
the architecture. For fewer than 17 PEs, the time needed to
construct HFS jobs makes HFS scheduling more costly than
list scheduling.

If we look at Figure 10, we can see that the HFS scheduling
overhead is divided into srDAG and job transformations that do
not depend on the number of PEs and mapping and scheduling
that do depend on the number of PEs.

We may conclude from our experiments that the HFS
method has a very low scheduling overhead compared to the
optimized list scheduling method when for higher PE count.



0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

8 128 256 8 128 256

C
y
cl

es

PE count

Job tranfo.
HFS Map.
HFS Sched.

srDag tranfo.
List Sched.

ListHFS

Fig. 10. Scheduling cost decomposition

HFS scheduling presupposes pipelined PEs and orientates
inter-PE communications, simplifying PE assignment when
compared to the general isotropic and fully-connected archi-
tecture case. It also groups computing tasks into linear jobs,
simplifying task scheduling while maintaining task precedence.

For the case of 256 PEs and for all LTE PUSCH config-
urations, the HFS method has a scheduling overhead under
1 Mcycles. This makes HFS scheduling suitable for real-
time adaptive scheduling of studied LTE PUSCH worst case
(comprising 501 actor instances) onto a 256-core architecture.

VI. CONCLUSION

In this paper, the HFS scheduling method was used to
schedule the 3GPP LTE telecommunication standard PUSCH.
The experiments demonstrated that a HFS scheduling algo-
rithm on an embedded GPP has a very low computational
scheduling overhead making the method suitable for adap-
tive scheduling of the LTE PUSCH algorithm onto many-
core architectures. Moreover, the speedup degradation of the
generated many-core schedule is limited when compared to
the makespan produced by the more costly list scheduling.

Besides producing low computational scheduling overhead,
the HFS formulation additionally simplifies the inter-processor
communication requirements on a many-core system. Whilst
list scheduling requires a fully connected, bidirectional pro-
cessor interconnection network, HFS scheduling thrives with a
considerably smaller number of unidirectional inter-processor
links.

We have extended the previous work of applying flow-
shop scheduling to signal processing algorithms using HFS
scheduling. HFS scheduling extends flow-shop scheduling by
allowing each pipeline stage to have more than one PE,
thus enabling pipeline balancing and makespan optimization.
Experimental results show that HFS scheduling is a suitable
method to schedule the worst case of the LTE PUSCH algo-
rithm onto a 256-core architecture.

Directions for future work include evaluating the HFS
scheduling on other applications to assess its capacity to
schedule efficiently a wide range of applications.

References

[1] (2013, Jan.) Kalray MPPA. http://www.kalray.eu/products/mppa-
manycore.

[2] L. J. Karam, I. AlKamal, A. Gatherer, G. A. Frantz, D. V. Anderson,
and B. L. Evans, “Trends in Multicore DSP Platforms,” IEEE Signal

Processing Magazine, vol. 26, 2009.

[3] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Sched-

uling and Synchronization, 2nd Edition. CRC Press, 2009.

[4] R. Ruiz and J. A. Vázquez-Rodrı́guez, “The hybrid flow
shop scheduling problem,” European Journal of Operational

Research, vol. 205, no. 1, pp. 1–18, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221709006390

[5] M. Pelcat, J.-F. Nezan, and S. Aridhi, “Adaptive multicore scheduling
for the LTE uplink,” in NASA/ESA Conference on Adaptive Hardware

and Systems, 2010, pp. 36–43.

[6] J. Boutellier, S. S. Bhattacharyya, and O. Silvén, “Low-overhead
run-time scheduling for fine-grained acceleration of signal processing
systems,” in IEEE Workshop on Signal Processing Systems, 2007, pp.
457–462.

[7] J. Boutellier, “Quasi-static scheduling for fine-grained embedded mul-
tiprocessing,” Ph.D. dissertation, University of Oulu, 2009.

[8] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long Term Evolution:

From Theory to Practice. Wiley, 2009.

[9] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static data flow,” in International Conference on Acoustics, Speech, and

Signal Processing, 1995, pp. 3255–3258.

[10] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow model-
ing for DSP systems,” IEEE Transactions on Signal Processing, vol. 49,
no. 10, pp. 2408–2421, 2001.

[11] S. French, Sequencing and Scheduling: An Introduction to the Math-

ematics of the Job-Shop. Chichester, UK: Ellis Horwood Limited,
1982.

[12] C. Leiserson, “A minicourse on dynamic multithreaded algorithms,”
2005.

[13] M. Pelcat, S. Aridhi, J. Piat, and J.-F. Nezan, Physical Layer Multi-Core

Prototyping: A Dataflow-Based Approach for LTE eNodeB, 2013rd ed.
Springer, Aug. 2012.


