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A B S T R A C T   

A large variety of model systems are used in hepatobiliary research. In this review, we aim to provide an 
overview of established and emerging models for specific research questions. We specifically discuss the value 
and limitations of these models for research on metabolic associated fatty liver disease (MAFLD), (previously 
named non-alcoholic fatty liver diseases/non-alcoholic steatohepatitis (NAFLD/NASH)) and cholestasis-related 
diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). The entire range of 
models is discussed varying from immortalized cell lines, mature or pluripotent stem cell-based models including 
organoids/spheroids, to animal models and human ex vivo models such as normothermic machine perfusion of 
livers and living liver slices. Finally, the pros and cons of each model are discussed as well as the need in the 
scientific community for continuous innovation in model development to better mimic the human (patho) 
physiology.   

1. Introduction 

Cholangiopathies including primary biliary cholangitis (PBC) and 
primary sclerosing cholangitis (PSC) [1], auto-immune hepatitis, IgG4- 
associated cholangitis and genetic defects in biliary transporters such as 
cystic fibrosis transmembrane conductance regulator (CFTR) increase 
the risk of cholestasis. This is a clinical condition in which toxic bile 
acids accumulate in the liver and cause amongst others irreversible 
liver injury due to decreased or obstructed bile flow in intrahepatic or 
extrahepatic bile ducts. Cholangiopathies, but also the metabolic 

syndrome: metabolic associated fatty liver disease (MAFLD) [2] have 
unclear aetiology and treatment is not always available or effective. The 
definition MAFLD replaces the outdated exclusion-based definition non- 
alcoholic fatty liver disease (NAFLD) and the international experts 
consensus panel further argues against a “dichotomous stratification” of 
non-alcoholic steatohepatitis (NASH) versus non-NASH [2,3]. As the 
new name more accurately reflects the (complex) aetiology of this 
disease, this nomenclature will likely be adopted broadly in the near 
future and therefore used throughout this review. It is of utmost im
portance that further research fills the current knowledge-gap regarding 
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disease aetiology and helps to develop better therapies. Currently, 
models vary from immortalized cell lines and primary cell cultures to 
more advanced 3-dimensional (3D) organoid models and animal 
models. The decision which model to use is not always straightforward 
and is dependent on many aspects, varying from technical arguments 
such as the costs, reproducibility, ease in use and possibilities to per
form (semi) high throughput analyses, to biological arguments such as 
anatomical and physiological characteristics. 

In this review, we aim to create an overview of established and 
state-of-the-art models in liver disease research and discuss their ad
vantages and disadvantages. More specifically, we will focus on hepa
tocellular and cholangiocellular models for cholestatic liver diseases 
and hepatocellular models for MAFLD. First, we will discuss in vitro 
models such as primary human hepatocytes, immortalized hepatic/ 
cholangiocyte cell lines and stem cell-derived models leading to hepa
tocyte- and cholangiocyte like cells or organoids. Subsequently, novel 
advanced in vitro models, human ex vivo liver systems and finally (ro
dent) animal models to study cholestatic liver diseases and MAFLD will 
be discussed. 

2. In vitro models for liver function 

The majority of the liver mass is formed by hepatocytes. Although 
these cells perform many of the functions of the liver, it is evident that 
cholangiocytes and the non-parenchymal cells (stellate cells, en
dothelial cells and Kupffer cells) also largely contribute to liver (patho) 
physiology. Furthermore, the liver 3D anatomy largely contributes to its 
functional characteristics and this generates further diversity in cellular 
functions. For example, pericentral-based hepatocytes encounter dif
ferent concentrations of metabolites compared to periportal hepato
cytes. Similarly, cholangiocytes of a large bile duct face a biliary con
tent that is distinct from those of the small bile ducts. This implies that 
the full complexity of the liver cannot be modelled with homogeneous 
in vitro models of individual cell types. Nevertheless, such model sys
tems do allow for the investigation of specific cell-intrinsic aspects of 
liver function, in a cost/user friendly manner with high experimental 
control. Here, we focus on models for hepatocytes and cholangiocytes, 
while other liver cell types are only briefly discussed (Fig. 1). 

Fig. 1. Schematic overview of in vitro and ex vivo liver models and applications in hepatobiliary research (A) Different cell origins can be used to create hepatocyte 
and cholangiocyte models. Ex vivo systems (B) or more advanced in vitro models (C) in combination with treatments (D) can be used to model cholestatic liver 
diseases or MAFLD. 

R.F. Kunst, et al.   Biochemical Pharmacology 180 (2020) 114173

2



2.1. Primary human hepatocytes (PHHs) 

The most obvious cell source to recapitulate fully matured hepatocytes 
in vitro would be primary human hepatocytes (PHHs). PHHs can be isolated 
through enzymatic digestion from either partial liver resection for ther
apeutic purposes, for example after removing a tumour [4], rejected livers 
unsuitable for liver transplantation or from liver segments after split liver 
transplantation [5]. Most of the isolation procedures use a two-step col
lagenase perfusion technique for the isolation of PHHs [6]. The obtained 
PHHs can be cultured using hepatocyte-specific media to optimize the 
preservation of the hepatic phenotype and are widely used in studies for 
metabolism and xenosensing [7]. Besides, PHHs can also be cryopreserved 
while maintaining these properties [8]. However, PHHs rapidly undergo 
dedifferentiation after isolation [9] and cannot be expanded upon culturing 
in standard 2D culture plates [10]. The dedifferentiation can be delayed by 
using a sandwich culture method where PHHs are maintained between two 
layers of collagen hydrogel [11-13]. 

The prediction of drug-induced cholestasis (DIC) predominantly relies 
on assessing the potential of compounds to inhibit bile salt export pump 
(BSEP) activity of PHHs in sandwich cultures [14]. Several well-known DIC 
compounds were tested on PHHs by using sandwich cultures [15,16]. 
Prerequisite for the analysis of DIC is that PHHs form canalicular networks 
using the sandwich culture which usually takes several days to form [17]. 
With respect to steatosis, free fatty acid (FAA)-exposed PHHs showed a 
dose-dependent increase in lipid accumulation with, amongst others, in
dications of endoplasmic reticulum (ER) stress and induced transforming 
growth factor beta-1 expression, indicative of a pro-fibrogenic response [18- 
21]. Another study involving PHHs showed that the long-term exposure to 
hyperglycaemia leads to accumulation of neutral fats in PHHs co-cultured 
with fibroblasts [22]. Although the use of PHHs for disease modelling has 
been hampered by the inability to propagate hepatocytes successfully, re
cently novel techniques allow the long-term culture of hepatocytes. One of 
these techniques is directed to the dedifferentiation of PHHs towards a 
hepatic progenitor cell (HPC)-like state for expansion and then differ
entiating them back toward the hepatocyte-lineage. This can be achieved 
either by using two small molecules, A83-01 and CHIR99021, in combi
nation with hepatocyte growth factor (HGF) [23], or the manipulation of 
SIRT1 signaling [24]. Another PHH culture method relies on the inhibition 
of the dedifferentiation process resulting in a bi-phenotypic phase (in be
tween PHHs and HPCs) by WNT3A addition and hypoxia [25]. Finally, 
PHHs can also be expanded without dedifferentiation using a mixture of 
five chemicals [9] or using a 3D organoid culture system [26]. 

There is also the possibility to use PHHs to create humanized chi
meric mice [27]. Here, transgenic immune-deficient mice are used to 
generate chimeric animals harbouring PHHs. Two models, the albu
min–uroplasminogen activator (uPA) transgenic mouse and the 
knockout of the fumarylacetoacetate hydrolase (Fah) gene, have been 
shown to have a high degree of human hepatocytes present in the 
mouse liver after transplantation [28]. Since virtually all CYP or Phase 
II conjugation pathways and transport proteins examined are expressed 
in the chimeric animals and polarisation of human hepatocytes does 
occur, these models will likely increasingly be used for steatosis and 
cholestatic modelling in the future [29]. 

2.2. Hepatic cell lines 

Many different hepatic cell lines exist that can recapitulate liver func
tion, established from either immortalised hepatocytes (e.g. Fa2N-4, THLE) 
or derived from tumours such as hepatocellular carcinoma or hepato
blastoma (e.g. HepG2, HepaRG, Huh7, Hep3B) [30]. The main advantage of 
these cell lines is their unlimited growth, the ability to easily alter the 
genome for disease modelling or screening purposes and the possibility to 
recapitulate (partial) liver function [12,31]. Limitations of these cell lines 
include lacking metabolism and the high prevalence of chromosomal ab
normalities [31]. Moreover, these cell lines often have an immature gene- 
expression profile exemplified by the high expression of alpha-feto protein 

(AFP), a major serum protein synthesized during foetal development [32]. 
Since they are derived from a single clone and/or donor, cell lines are not 
representative for individual differences but can still aid in answering spe
cific questions related to cholestasis and steatosis. Two of the most studied 
tumour-derived cell lines for in vitro modelling of hepatocytes are HepaRG 
and HepG2 [33]. Monolayer cultures of HepaRG demonstrate improved 
hepatocyte functionality compared to other models [34] and directly 
compared to HepG2s, which lack certain liver-specific functions. HepaRG 
cells are therefore more suited for in vitro modelling [35]. However, He
paRGs also express low levels of two essential CYP450 types 2D6 (CYP2D6) 
and 2E1 (CYP2E1), leading to a decreased suitability for studies involving 
specific metabolism [36]. Moreover, the HepaRGs overexpress CYP3A4 
compared to PHHs which may lead to decreased sensitivity for some 
compounds in picking up toxicity [37]. HepaRGs have been shown to be 
sensitive to DIC (e.g. chlorpromazine) [38] which decreased expression of 
BSEP and multidrug resistance protein 3 (MDR3), leading to cholestasis. 
Increased fat accumulation has also been shown in HepaRGs with two 
compounds known to induce microvesicular steatosis (tolcapone and en
tacapone) [39] or with an access of FFAs [40]. 

HepG2s proliferate fast, can be differentiated into polarized cells with a 
clear canalicular membrane and can be used for toxicology- and disease 
modelling [41]. Although these cells lack liver-specific functional expres
sion, such as CYP450 activity, HepG2s are commonly used in drug-efficacy 
tests [42]. HepG2s have been shown to be sensitive to glycochenodeox
ycholicacid (GCDCA)-induced cholestasis [43], but the lack of sodium 
taurocholate co-transporting polypeptide (NTCP) expression in this cell line 
does not make it a suitable model for bile acid toxicity during cholestasis  
[44]. An artificially induced NTCP expression could overcome the absence 
of this bile acid transporter [45]. Steatosis can be achieved in HepG2s using 
high levels of FFAs to induce fat accumulation, and also downstream con
sequences of steatosis such as apoptosis and impaired insulin signaling 
could be studied in this cell model [46]. 

The vast majority of immortalised hepatocytes include an over
expression of an immortalisation gene (e.g. SV40 large-T antigen or 
telomerase) by means of transfection of transduction [47]. Although 
this provides a way to proliferate the hepatocytes ex vivo, the in vivo-like 
hepatic functionality is still largely lacking [47]. Immortalised hepa
tocytes have been used successfully in viral infection models but some 
studies also involved steatosis [48,49]. Both studies use an access of 
FFAs to induce fat accumulation. 

The model of choice for immortalized human cholangiocytes is the 
H69 cell line, which is SV40 immortalized [50]. Other cell lines used for 
in vitro modelling of cholangiocytes such as CLCC1 are derived from 
cholangiocarcinoma and consequently somewhat less suitable to study 
normal cholangiocyte physiology. 

2.3. Stem cell-derived models 

Besides liver cancer cell lines and primary liver cells, the usage of stem 
cells followed by differentiation towards liver-specific lineages allows for 
novel opportunities in in vitro liver disease modeling such as for MAFLD and 
cholestasis. Stem cells are a novel, hypothetically unlimited, source of he
patocytes and bile duct epithelial cells alike, suitable for both drug screening 
as well as for gaining mechanistic understanding of liver disease. Stem cells 
can readily be expanded in culture due to high proliferative and self-re
newal capacity. In addition, stem cells can be derived from specific patients 
which allows to study disease traits for personalized precision medicine. 
Furthermore, genome alteration and gene editing strategies in the stem cell 
state allow to study the effect of specific gene mutations on liver disease 
progression after differentiation. Major limitations of these models are re
lated to costs, as the culture conditions are more demanding than those of 
cell lines, and the level of differentiation towards hepatocytes or cho
langiocytes. 

2.3.1. Human induced pluripotent stem cell (hiPSC) models 
The discovery by Takahashi et al. (2007) [51] enabled great 
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opportunities in the usage of stem cells and resolved earlier ethical issues 
raised by embryonic stem cells, since they were the first to generate human 
induced pluripotent stem cells (hiPSCs) from somatic cells by using genetic 
engineering techniques. To generate hiPSCs, four transcription factors, 
namely OCT3/4, SOX2, C-MYC and KLF4, are transfected in human somatic 
cells, such as fibroblasts or epithelial cells resulting in cells which can grow 
indefinitely and show pluripotency [51]. The transfection of these factors in 
somatic cells was first achieved by using an integrating viral system such as 
retroviral vectors, but can now also be achieved using non-integrating 
strategies to improve safety for the usage of hiPSCs in clinical settings [52]. 
This enabled to establish pluripotent stem cells from specific patients non- 
invasively by obtaining somatic cells from blood, skin or urine. This allows 
to study disease mechanisms with certain genetic backgrounds. These 
hiPSCs are capable of being differentiated in all three germ lines, namely 
endoderm, mesoderm and ectoderm. Indeed, hiPSCs can be transformed 
into any cell type of interest. 

2.3.2. hiPSC-derived hepatocyte-like cells (HLCs) 
Reports have shown that hiPSCs can be efficiently differentiated into 

hepatocytes using growth factors and cytokines in a step-wise fashion [53- 
58]. In general, hiPSCs are first differentiated into definitive endoderm via 
stimulation with Activin A, a member of the TGF-β superfamily and mimics 
Nodal signaling [59]. Thereafter, hepatic progenitor cell (HPC) formation is 
initiated through the use of certain growth factors followed by differentia
tion into HLCs. However, relying on recombinant growth factors may 
hinder the differentiation reproducibility due to possible batch-to-batch 
variability and are costly. Recently, also other differentiation approaches 
have been established completely relying on small molecules to improve 
reproducibility and cost-effectiveness [60-62]. Other strategies in
corporating overexpression of certain critical transcription factors, such as 
HEX or HNF1A, showed to improve the differentiation towards HLCs [63- 
67]. Despite the efforts and great progress that has been made regarding 
hepatocyte differentiation, often these HLCs still show fetal characteristics 
and do not yet fully resemble mature hepatocytes in vivo, possibly due to a 
sub-optimal differentiation strategy or the lack of liver-specific 3D archi
tecture. To improve the maturity of HLCs, efforts have been made to im
prove the maturation phase of the differentiation process, either by im
proving medium composition [63], growing in a 3D environment [68-70], 
including multiple liver relevant cell types and utilizing microfluidics [71]. 
Up until now, great progress was achieved in optimizing the differentiation 
strategy of hiPSCs towards HLCs to serve as an in vitro model closely mi
micking the liver in vivo and can be used for liver disease modeling pur
poses. 

To obtain a better understanding of the development of particular liver 
diseases, such as MAFLD or cholestatic related diseases, HLCs can be used as 
an in vitro liver model to model such a disease, allowing to identify novel 
drug targets and perform drug screening. Indeed, Parafati et al. (2018) [72] 
were able to develop a MAFLD model for the early phase of the disease 
using hiPSC-derived HLCs which were treated with FFAs, palmitic and oleic 
acid, and ER stress inducer thapsigargin to elevate fatty acid accumulation. 
After exposure with the combination treatment, lipid accumulation and 
upregulation of MAFLD markers such as FGF21 was seen showing a stea
totic transcriptomic phenotype. Moreover, a comparable triacylglycerols 
accumulation was seen as in steatotic human livers. The model was vali
dated with obeticholic acid being a clinical stage drug for NASH, and 
showed its usability for drug discovery purposes against MAFLD. 

Another study by Ouchi et al. (2019) [73] showed the development 
of a hiPSC-derived multi-cellular organoid model in combination with 
FFA treatment to recapitulate the development of steatohepatitis. Here, 
hiPSCs were differentiated as organoids where single-cell tran
scriptomics and FACS analysis revealed the existence of multiple cell 
types including hepatocytes, stellate cells and Kupffer cells. These or
ganoids showed dose-dependent lipid accumulation and triglyceride 
production when treated with oleic acid. Upon FFA treatment, cytokine 
induction was seen mediated by the Kupffer cells and activation of 
stellate cells indicating both inflammation and fibrosis signaling. 

Although further model characterization is needed, combined this study 
showed its capability to cover multiple facets of the development of 
steatosis and study mechanisms for the treatment of liver disease. 

2.3.3. hiPSC-derived cholangiocyte-like cells (CLCs) 
Besides HLCs, hiPSCs can also be a source for cholangiocyte-like cells 

(CLCs) [74]. Similar to hepatocytes, intrahepatic cholangiocytes are derived 
from hepatoblasts, thereby having a common progenitor. By culturing them 
with specific growth factors key in cholangiocyte differentiation after the 
hepatoblast stage, cholangiocytes can be efficiently generated [75-77]. In
deed, Sampaziotis et al. (2017) [77] have shown to be able to differentiate 
hiPSCs towards CLCs using a 26-day differentiation protocol where hepa
toblasts are differentiated towards cholangiocytes using FGF10, retinoic 
acid, ActivinA and EGF [77,78]. These hiPSC-derived CLCs showed ex
pression of cholangiocyte markers keratin 19 (KRT19), keratin 7 (KRT7) 
and SRY-box transcription factor 9 (SOX9), lack of hepatocyte markers AFP 
and hepatocyte nuclear factor 4 alpha (HNF4A), and showed functional 
characteristics such as γ-glutamyl transferase and alkaline phosphatase ac
tivity. Similar to HLCs, here hiPSC-derived CLCs still express immature 
cholangiocyte markers indicating their immature state. 

2.3.4. Human adult stem cells and organoid models 
Another source of stem cells which could serve for modeling liver 

diseases such as MAFLD or cholestasis are the adult liver tissue-derived 
stem cells or progenitors. Upon injury, the liver has the great capability 
to regenerate through various described mechanisms depending on the 
type of damage [79]. One of these mechanisms is by the hepatocytes 
themselves being capable of self-renewal [80,81]. Alternatively, it can 
be mediated by a population of bipotent progenitor cells derived from 
cholangiocytes capable of proliferation and differentiation towards 
both hepatocyte and cholangiocyte fates [82-85]. 

2.3.5. Adult stem cell-derived HLCs 
Indeed, Huch et al. (2015) [84] has shown to be able to grow bipotent 

progenitor cell organoids from human liver tissue dependent on the pre
sence of EpCAM positive ductal cells. These organoids can be expanded and 
kept in culture for many months while maintaining genetic integrity. Single 
cell transcriptomics revealed that indeed these bipotent progenitor cells 
derive from bile duct cells and could give rise to both CLCs as well as HLCs. 
Although they show more dominantly cholangiocyte characteristics, these 
organoids can be differentiated with a two-step strategy for 15 days to 
enhance their hepatocyte maturation status, which increases albumin se
cretion, CYP3A4 activity and bile acid secretion. However, this does not yet 
result in fully functional mature hepatocytes and still some cholangiocyte 
markers remain expressed, suggesting a mixed population of cell pheno
types. Other studies have focused on culture expansion of hepatocytes 
themselves using modified organoid culture conditions. Indeed, recently it 
was demonstrated to be feasible to initiate organoids from primary hepa
tocytes. These primary hepatocyte organoids showed proliferation cap
ability in culture and more closely retained the hepatocyte phenotype  
[86,87]. However, initiation was most effective from fetal liver tissue rather 
than adult liver and the growth rate declines already after a few months of 
culture. Therefore, these new primary hepatocyte organoid models show 
potential to serve as a model system to study liver diseases, although im
provements in culture strategies are needed to allow for prolonged stability. 

Adult stem cell liver organoids could well serve to study liver dis
ease, especially since these organoids could be established from patient- 
specific material retaining stably their genetic background. Indeed, a 
study by Kruitwagen et al. (2017) [88] had applied liver-derived or
ganoids to study hepatic steatosis. Here, liver organoids from multiple 
species were treated with FFAs. After treatment, lipid accumulation 
could be observed and revealed more insight in cellular lipid-coping 
strategies by testing the effect of specific small molecules. Liver-tissue 
derived organoids can also be used to study genetic-related liver dis
eases, such as alpha-1 antitrypsin deficiency (A1ATD) where accumu
lation of misfolded and aggregated A1AT in hepatocytes leads to ER 
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stress and liver injury [89]. Studies have shown that organoids derived 
from A1ATD patients could recapitulate pathology upon differentiation 
towards a more hepatocyte phenotype, showing A1AT aggregate ac
cumulation and induction of ER stress signaling [84,90]. Organoids can 
also be applied to study liver cancer development. Indeed, Broutier 
et al. (2017) [91] have shown to be able to grow organoids derived from 
primary liver cancer tissues enabling to study liver tumorigenesis and 
applied for drug screening. Together this emphasizes the suitability of 
liver organoids for disease modeling, shedding more light on mechan
isms of disease progression. These liver organoids have the advantage 
of resembling the genetic background of patients enabling to study 
specific diseases, maintain genetic stability during culture, robust ex
pansion after initiation, self-assembling properties consisting of mul
tiple liver cell types while no genetic manipulation is needed. However, 
many challenges remain. For example, to initiate liver-derived orga
noids, invasive retrieval of liver tissue is needed and differentiation 
does not yet reflect a fully mature hepatocyte status. 

2.3.6. Mesenchymal stem cell-derived HLCs 
Mesenchymal stem cells (MSCs) are another source of adult stem cells 

that could serve as a starting point for differentiation towards HLCs [92]. 
They can be retrieved from blood, adipose tissue or bone marrow, have self- 
renewal capabilities and are multipotent. Differentiation of MSCs towards 
HLCs encompasses either a one or two-step strategy of growth factor and 
cytokine exposure [93-95]. However, due to a lack of specific markers for 
MSCs, potentially there is a heterogeneous population of differentiated cells 
and increase in variability [96]. Also the tissue of origin may affect the 
differentiation capability towards HLCs [97]. Similar to the differentiation 
of hiPSCs, growing the differentiated MSCs in 3D combined with other 
relevant cell types during the maturation phase may improve the differ
entiation towards HLCs [98]. Overall, MSC-derived HLCs would also serve 
as a relevant model to study specific liver diseases such as MAFLD or 
cholestatic related diseases, having the advantage of a relatively easy access 
of cells, unlimited supply, capability of studying genetic background of 
specific patients and no genetic manipulation is needed. Although, MSC- 
derived HLCs may be more variable due to lack of specific markers for MSCs 
to retrieve an uniform cell population and do not yet reach full maturity of 
primary hepatocytes. 

2.3.7. Adult stem cell-derived CLCs 
Liver-derived organoids described by Huch et al. (2015) [84] show 

already cholangiocyte-like characteristics without any differentiation, 
which could serve as a model for intrahepatic cholangiocytes to study 
cholangiopathies. Upon cholangiocyte differentiation of these orga
noids, further cholangiocyte maturity can be established. Another study 
by Sampaziotis et al. (2017) [77] showed the capability of growing 
primary cholangiocyte organoids derived from isolation of primary 
extrahepatic cholangiocytes which closely resemble characteristics of 
mature cholangiocytes exhibiting expression of key cholangiocyte 
markers such as KRT7 and KRT19, and activity of GGT and ALP. Re
cently, Rimland et al. (2020) [99] compared cholangiocyte organoids 
derived from different locations along the biliary tract. Here, organoids 
derived from intra- or extrahepatic cholangiocytes showed all expres
sion of cholangiocyte markers KRT7/19 and stem cell marker leucine 
rich repeat containing G protein-coupled receptor 5 (LGR5). In general, 
biliary markers were downregulated while cell cycle related genes were 
upregulated. In addition, only the intrahepatic cholangiocyte organoids 
showed bipotent differentiation capacity towards HLCs and CLCs, while 
the extrahepatic organoids only showed differentiation towards CLCs 
but not HLCs. Besides these intrahepatic and extrahepatic tissue-de
rived organoids, organoids could also be initiated from fresh human 
bile obtained from patients. Indeed, Soroka et al. 2019 [100] estab
lished bile-derived organoids from PSC patients. These organoids ex
pressed cholangiocyte markers and are responsive to inflammatory 
stimuli, reflecting the pathology of PSC. Together, these cholangiocyte 
organoids can serve as a disease model for cholangiopathies from 

specific regions enabling to unravel underlying disease mechanisms and 
identify novel drug targets. 

2.3.8. Direct transdifferentiation (iHEP cells) 
Adult somatic cells can be converted into other cell types through a 

process termed direct transdifferentiation. Direct transdifferentiation of so
matic cells can be achieved through an intermediary state of less differ
entiated cells or directly without any intermediate step [101]. Most com
monly used cells for transdifferentiation into hepatocytes are fibroblasts 
from the skin but other sources such as pancreatic progenitor cells have also 
been described [102]. Usually transdifferentiation is achieved by over
expression of hepatocyte specific transcription factors and/or transcription 
factors important during embryonic hepatocyte development [103]. For 
overexpression usually lentiviral vectors are used carrying the transcription 
factors although the use of mRNAs has also been reported [104]. These 
induced hepatocytes or iHEPs usually have an immature phenotype but can 
be used in disease modelling [105]. In one study neonatal fibroblasts and 
human foreskin fibroblasts were transdifferentiated to iHEPs by over
expression of the transcription factors HNF4A, CEBPB, FOXA2, and MYC  
[106]. The iHEPs generated through this protocol have a hepatocyte-like 
phenotype, but display low growth rates and only short-term culture po
tential. A similar approach using a different combination of transcription 
factors (FOXA3, HNF1A, HNF4A) also resulted in HLCs with a poor pro
liferation, but the latter was overcome by overexpression of SV40 large T 
antigen [103]. DIC has been modelled in iHEPs and showed a highly similar 
response to nevaripine-induced cholestasis compared to PHHs [107]. 

3. Advanced in vitro models 

Current liver models are usually based on a single cellular entity and 
often lack polarity, inter-cell communication and gradients/zonation. To 
circumvent these limitations and in order to recapitulate a more in vivo-like 
liver model, several approaches can be applied which include co-culture, 
spatial orientation or microfluidics. Even ex vivo approaches are used such 
as normothermic machine perfusion of livers or precision-cut liver. Several 
advanced in vitro models of fatty liver disease and cholestasis have been 
developed during the last decades. These include both scaffold-containing 
and scaffold-free systems, such as organ-on-chip systems [108]. 

3.1. Liver-on-a-chip (LOC) 

In 2016, during the World Economic Forum, “Organs-on-chips” 
were amongst the top 10 emerging technologies and several reviews 
have been published describing the technology, principles and potential  
[109-111]. The vast majority of liver-on-chip (LOC) devices are di
rected towards hepatotoxicity [112,113], but several allow the analysis 
of fat accumulation in hepatic cells [114]. The LOC models were usually 
based on an excess of FFAs and lacked non-parenchymal cells limiting 
the analysis to end-point fat accumulation [114]. 

3.2. Hollow fiber membranes (HFMs) 

Hollow fiber membranes (HFMs) have been used to study different 
organ systems in vitro including intestine and kidney [115,116]. The ad
vantages of the HFMs include the addition of microfluidics and the epi
thelial polarisation allowing the analysis of trans-epithelial transport [117]. 
For in vitro modelling of liver HFMs cultured with HepG2s have been shown 
to increase the functionality of the cells [118]. With PHHs and supporting 
cells, HFMs have been used for drug biotransformation under static and 
dynamic conditions [119]. Although no cholestatic or steatotic models are 
described, bile acid transport has been described in a HFM system with 
cholangiocytes showing the feasibility of the system [120]. 

3.3. Spheroids 

The 3D culture of single cell-type spheroids with PHHs have been 
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show to better preserve the mature hepatocyte phenotype during long- 
term cultivation which re-establish cell polarity and improve (duration 
of) liver function [26,121]. With regards to cholestasis, spheroids cre
ated with PHHs can be used to study the effect of compounds (e.g. 
bosentan and troglitazone) known to cause cholestatic injury [122]. 
Exposure of spheroids to these cholestatic inducing drugs in the pre
sence of bile acids lead to oxidative stress, increased bile acid accu
mulation, induced death receptor 5 expression and ultimately cell death  
[122]. Also for steatosis modelling PHH spheroids can be used to study 
the accumulation of neutral lipids, for instance after treatment with 
drug-induced steatosis compound cyclosporine A [26] or excessive 
amounts of FFAs [123]. 

4. Ex vivo human liver systems 

The idea to use tissue slices for research has been posted as early as 
the 1920s [124], however only in the 1980s an instrument for the re
trieval of advanced tissue slices was developed that was able to cut 
standardised sections of (liver) tissue [125]. As such, human precision- 
cut liver slices (PCTS) represent an ex vivo liver model which retains the 
complex and multi-cellular architecture of the hepatic environment. 
Usually, they are generated by cutting freshly isolated liver into sec
tions of approximately 8 mm [126]. This multicellular model can be 
used to investigate the mechanisms of liver injury and for the identi
fication of novel therapeutic targets. Moreover, PCTS show organ- and 
pathology-specific differences in the regulation of genes and canonical 
pathways for drug metabolism and fibrosis [127]. Some limitations 
remain, as the PCTS need to be obtained from fresh healthy tissue 
which usually is the most distal part of a diseased liver after hepa
tectomy [128]. In addition, the ischemia during organ collection, me
chanical stress due to slicing and culture conditions (usually high- 

oxygen conditions under continuous agitation) lead to a loss of tissue 
viability [127]. DIC in PCTS has been shown to affect the pathways 
affected in drug-induced cholestasis in human liver [129] and also a 
steatotic model using excess FFAs has been described [128]. 

Some of the limitations of PCTS could potentially be overcome by 
the use of modern perfusion systems. Recent developments in machine 
perfusion systems originally developed for liver transplantation could 
create a potential to use normothermic perfused whole livers as an in 
vitro model to study liver diseases [130]. The main benefit of using 
normothermic perfusion is that the liver is maintained in a fully func
tioning state ex situ for up to one week by providing oxygen and nu
trition at 37 °C [131]. Although this technique is currently mainly 
performed to improve the quality of human donor livers deemed unfit 
for transplantation [132-134], normothermic machine perfusion with 
whole blood using porcine livers has already been used to study specific 
liver diseases [135,136]. These studies were mainly focussed on hepa
totoxicity, however, studies using steatotic pigs, for instance through a 
high fat diet, showed the potential to use these ex vivo models to study 
steatosis [137,138]. Cholestasis has not yet been investigated using this 
approach, as far as we could ascertain. 

5. Animal models for liver diseases 

Using animal (mostly rodent) models in research has several ad
vantages and disadvantages (Fig. 2). Rodent models are useful to ex
amine the liver in situ and to investigate inter-organ relations or even 
behavioural consequences of liver disorders. On the other hand, 
housing and breeding can be expensive and time consuming, animal 
research is subject to ethical concerns and sometimes issues arise about 
the translatability to human diseases. Over the years, several reviews 
have been written about established cholestatic rodent models  

Fig. 2. Rodent models in hepatobiliary research. Numerous rodent models that reflect either hepatocellular or cholangiocellular origin of disease are available and 
encompass different aspects of cholestatic liver diseases or MAFLD. 
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[139,140]. Below, we aim to give an up-to-date overview of the current 
rodent models used in hepatobiliary research, focussing on cholestatic 
liver diseases and MAFLD. The section about cholestasis is subdivided 
based on location of the defective flow and subsequently in non-genetic 
approaches versus genetically modified animal models for disease. 

Extrahepatic obstruction resulting in cholestasis is mimicked by 
performing a bile duct ligation (BDL), by surgically removing the gall 
bladder (this step is occasionally omitted) and ligating the common bile 
duct to fully disturb bile flow [141]. This is a relatively simple acute 
model for a total obstruction. Many of the clinical characteristics, such 
as jaundice, elevated bile salt levels and increased biochemical para
meters of cholestasis are mimicked, but the onset is very acute and the 
severity of the phenotype often prevents long term follow-up. This can 
be overcome using a more advanced procedure with partial BDL which 
has been shown to cause obstructive cholestasis but has slightly milder 
symptoms such as reduced necrotic areas in the liver [142,143]. In
jections of rhesus rotavirus soon after birth induces biliary atresia mi
micking cholestasis in Balb/c mice [139,144]. Administration of the 
toxic isoflavonoid, biliatresone, induces a biliary atresia phenotype in 
zebrafish [145]. Finally, Marrone et al. (2019) [146] measured a sig
nificant reduction in bile flow 72h after femoral vein injection with 
Salmonella typhimurium lipopolysaccharide (LPS) in rats, showing that 
LPS can also be used to induce cholestasis. However, the origin of the 
blockade is somewhat unclear. 

Intrahepatic cholestasis can be subdivided into cholestasis with a 
hepatocellular or cholangiocellular origin. Examples of hepatocellular- 
derived cholestasis include intrahepatic cholestasis of pregnancy (ICP), 
genetic causes leading to intrahepatic cholestasis and cholestasis due to 
drugs, alcohol, viral infection or hepatocellular cancer, whereas PBC 
and PSC are examples of cholangiocellular cholestasis. 

5.1. Animal models for hepatocellular cholestasis 

Experimental models for disturbances in bile flow with a hepato
cellular aetiology can roughly be divided into 2 categories: chemically 
induced or linked to a monogenetic gene defect. Models for the latter 
are largely driven by human genetics identifying gene-defects that are 
postulated to be causatively linked to cholestasis. Here, we limit the 
discussion to models for progressive familial intrahepatic cholestasis 
(PFIC) and for Solute Carrier Family 51 Subunit Alpha/Beta (SLC51A/ 
SLC51B) deficiency. Recently, Li & Dawson (2019) [171] extensively 
summarized animal models to study bile acid biosynthesis, transport 
and metabolism with both genetic and non-genetic models. Pharma
cological inhibition of BSEP also leads to cholestasis with an hepato
cellular origin. Most commonly used experimental approach is the use 
of a high dose of oestrogens. Particularly in rats this induces impaired 
bile flow and is sometimes used as a model for ICP. The aetiology of the 
latter disease is indeed linked to hormones that peak in the third tri
mester of pregnancy, but not unequivocally restricted to oestrogen. 

5.1.1. Progressive familial intrahepatic cholestasis (PFIC) 
PFIC is clinically subdivided in 5 different types, each caused by a 

different genetic mutation [147,148]. Symptoms caused by PFIC1 
usually develop in the first months of life and originate from a mal
functioning ATPase Phospholipid Transporting 8B1 (ATP8B1) protein, 
due to mutations in the ATP8B1 gene [149]. Atp8b1 deficient mice have 
been used as a suitable model for intrahepatic cholestasis and PFIC, 
although the onset of disease requires additional dietary challenge with 
cholate [150]. PFIC2 also develops shortly after birth, and is associated 
with a mutation in the ATP-binding cassette subfamily B member 11 
(ABCB11) gene encoding BSEP protein, facilitating bile salt export 
across the apical membrane [151]. Bsep deficient mice are less fre
quently used to model cholestasis since deletion of Abcb11 does not 
automatically result in severe cholestasis, most likely due to the more 
hydrophilic composition of the bile acid pool in mice compared to 
human [152,153]. In contrast, Bsep knockout mice are protected 

against acquired cholestatic liver injury induced by ligation of the 
common bile duct or prolonged 3,5-Diethoxycarbonyl-1,4-dihy
drocollidine (DDC) feeding as bile acid detoxification/hydroxylation is 
induced in these mice [154]. 

For the third PFIC type, PFIC3, the origin of the disease can be found 
in a genetic mutation in ATP binding cassette subfamily B member 4 
(ABCB4), coding for MDR3 (in humans) and MDR2 (in rodents). MDR2/ 
3 is responsible for the secretion of phospholipids in bile, thereby 
amongst others reducing the toxicity of bile salts [155]. Abcb4 deficient 
mice are used as a rodent model for PFIC3 [155-157]. However, the 
lack of phospholipids in bile induces cholangiocyte damage, fibrosis 
and ultimately cholangiocarcinoma. Therefore, the Mdr2 knockout 
mouse is a genetically modified mouse that is frequently used to study 
liver fibrosis and sclerosing cholangitis [155,156,158]. PFIC4 and 
PFIC5 are discovered more recently and associated with mutations in 
genes Tight Junction Protein 2 (TJP2) and Nuclear Receptor subfamily 
1 Group H member 4 (NR1H4), respectively encoding the tight junction 
protein 2 and the nuclear receptor for bile acids FXR [159]. Rodent 
models to study these genetic diseases therefore mainly consist of Tjp2 
and Nr1h4 knockout mice (the latter eventually cross bred with the 
Shp knockout mice, where Small Heterodimer Partner (SHP) is a 
downstream target of FXR signaling) [160]. 

5.1.2. Organic solute transporter alpha and beta (OSTα/β) deficiency 
OSTα-β is a heteromeric transporter consisting of alpha and beta 

subunits encoded by SLC51A and SLC51B and plays a crucial role in the 
enterohepatic circulation of bile salts [161]. OSTα-β facilitates trans
port of bile salts across the basolateral membrane of enterocytes into 
the portal circulation, thereby effectively contributing to the recycling 
of bile salts from the ileum. In addition, OSTα-β is also increasingly 
expressed in hepatocytes during cholestasis to limit the toxic effects of 
accumulating bile acids [162]. The interaction between both subunits is 
crucial, in order to form a functional complex at the plasma membrane  
[163]. Absence of one of the subunits results in instability and finally 
degradation of the protein. Deficiency of OSTα in patients has been 
shown to result in liver fibrosis, cholestasis and congenital diarrhoea  
[164]. However, Ostα knockout mice did not show increased fecal bile 
salt secretion and showed even protection against cholestasis-induced 
liver damage in a BDL model [165]. This protection could be related to 
the decreased total bile acid pool due to repressed bile salt formation in 
the liver [166] and increased renal excretion of bile salts [165]. Similar 
to OSTα deficiency, OSTβ deficiency in human was characterised by 
chronic diarrhoea, slightly elevated serum liver enzymes and histolo
gical signs of cholestasis [167]. An Ostβ knockout mouse model is not 
yet published and under development. 

5.2. Animal models for cholangiocellular cholestasis 

Cholangiocellular diseases with a clear genetic aetiology, particu
larly monogenetic cholangiopathies can be studied using genetically 
modified animal and cellular models that phenocopy the disease. This is 
further outlined below and reviewed in detail by Fabris et al. (2019)  
[168]. For acquired cholangiopathies, with a less direct causal genetic 
link, several models have been postulated. Biliary blockade of bile flow 
can be chemically induced by administration of various compounds 
including α-Naphtylisothiocyanate (ANIT) and DDC. DDC-diet induced 
cholestatic rodent model is already extensively described by Pose et al. 
(2019) [140]. ANIT can be administered orally and DDC is usually 
added to the diet [169]. DDC treatment results in biliary obstructions in 
the larger bile ducts whereas ANIT induces damage in the smaller bile 
ducts [139]. The importance of the intestinal microbiome in develop
ment of biliary damage has been demonstrated by Ten Isaacs et al. 
(2020) [169]. Cholestasis-inducing agent ANIT and DDC-diet induced 
cholestasis in germ-free mice but did not cause increased liver enzyme 
concentrations in blood plasma or necrotic areas in the liver. From 
origin germ-free mice enriched with wild-type microbiota on the other 
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hand did have these effects, drawing attention to the crucial role of 
intestinal microbiota during cholestasis [169]. 

Although these models have provided detailed insight particularly 
in hepatic adaptations upon cholestasis, in general these models seem 
to divert significantly from biliary diseases such as PBC and PSC with 
respect to aetiology and presentation. This is hampering translational 
research and therefore better models are required. In our view, ge
netically modified models already provide a better basis and are likely 
further refined in the near future to provide models that mimic the 
human situation with respect to the role of the immune system, biliary 
composition and microbial contribution to disease development. 

5.2.1. Monogenetic models for cholangiopathies 
Fabris et al. (2019) [168] recently proposed that the knowledge 

acquired in the last decade about genetic and congenital cholangio
pathies has also led to a better understanding of the mechanisms of 
acquired cholangiopathies. In line with this line of reasoning, they 
suggest to consider models for these monogenetic disorders also for 
acquired biliary disorders and particularly advocate Cftr deficient mice 
as a suitable model for PSC. Lack of CFTR increases the sensitivity of 
epithelial Toll-like receptor 4, that sustains the secretion of pro-in
flammatory cytokines and consequently leads to peribiliary inflamma
tion in response to gut-derived products. We agree with their notion 
that a combination of an inflammatory component with biliary com
position alteration seems the best strategy and provide alternative/ 
additive strategies to achieve this below. 

5.2.2. Biliary composition modifiers 
One of the main reasons why animal models sometimes poorly 

mimic human cholestatic liver disease is the difference in biliary 
composition. Two main discrepancies are i) the relative amounts of 
bicarbonate, which is much higher in humans and ii) the hydro
phobicity of bile salts, with the majority of mouse bile salts formed by 
taurine-conjugated muricholate, a very hydrophilic compound, whereas 
human bile mainly contains glycine-conjugated chenodeoxycholate 
(CDCA) and glycine conjugated cholate, which contributes to a more 
toxic biliary milieu [170]. 

Currently, two distinct genetic strategies exist to induce bile salt- 
induced cholangiocyte damage. The first is the Abcb4 knockout model, 
which is introduced above. These mice do not have phospholipids in 
bile, rendering it more cytotoxic, and these mice have biliary damage 
leading to various aspects of PSC. Therefore, this genetic model is 
sometimes considered as a PSC mimicking system although PSC pa
tients do not have any defect in biliary phospholipid transport. 
Therefore, this system is mainly useful to study events downstream of 
biliary damage, and not so much the aetiology. Nevertheless, the Mdr2 
knockout mouse in combination with other genetic modifications or 
treatments is regularly used to study PSC pathogenesis. This way, stu
dies have outlined the importance of the histamine pathway [172], fi
lament protein vimentin [173], monoacylglycerol lipase [174] and 
transforming growth factor β2 [175] in PSC. Second is a more recent 
model using mice that lack CYP2C70, the enzyme responsible for se
quential 6β-hydroxylation and C7-epimerization of CDCA and thus the 
formation of hydrophilic muricholate [176,177]. This can be combined 
with deficiency for CYP2A12, the enzyme responsible for 7α-rehy
droxylation in mice. These mice have a more human-like bile acid pool 
composition (although the preference for taurine conjugation remains) 
and chronic liver inflammation with an obvious ductular reaction, de
spite normal (or even elevated) phospholipid excretion in bile. 

5.2.3. Putative novel models 
It is increasingly clear that the microbiome and its interplay with 

dietary components plays an important role in the aetiology of cho
lestasis and its consequences on liver function [178]. For example, 
microbial composition determines the bile acid composition (and vice 
versa), with obvious consequences on bile toxicity and signaling. PSC 

patients had decreased intestinal microbial diversity while specific pro- 
inflammatory bacteria were more abundant [179]. Future develop
ments in controlling and modifying rodent microbiota in animal re
search facilities will no doubt contribute to the developments of better 
animal models and lower inter-facility variation in disease presentation. 

The immune response to microbial products is largely determined 
on host genetics and might explain why some individuals are more 
prone to develop acquired cholangiopathies. Genome wide association 
studies (GWAS) in patients with PSC, PBC but also MAFLD have high
lighted the importance of a diverse set of genetic variations [180-187]. 
The most obvious association of gene variants with disease has been 
found in genes associated with the human leukocyte antigen (HLA) 
complex [182,185]. The role of inflammatory cells in PSC has been 
outlined by several studies [179,188,189]. T cells can directly affect 
bile acid metabolism and thereby limit bile acid induced injury [188]. 
There is also an increased amount of pro-inflammatory cytokine IL-17 
producing T cells found surrounding intrahepatic bile ducts of PSC 
patients [179]. Additionally, a potential role for the intestinal micro
biome in T cell differentiation has been described. Due to the extensive 
difference between the human and mouse immune system, this insight 
is not easily exploited to design improved models for PBS or PSC. 
However, models with a modified immune response could be valuable. 
For example, cholangiocyte damage results in recruitment of pre
dominantly pro-inflammatory macrophages via the CCL2 pathway. 
When this response was disrupted in mice, macrophage recruitment to 
the liver was decreased, together with the amount of liver fibrosis and 
serum bile acid concentrations [189]. Similarly, biliary senescence can 
be induced leading to local inflammatory response mimicking certain 
aspects of sclerosing cholangitis [190]. 

Genetic variants associated with PSC have also been found in non- 
immunology related genes such as Doublecortin Domain Containing 2 
(DCDC2) [191], kinesin family member 12 (KIF12) and Protein Phos
phatase Mg2+/Mn2+ dependent 1F (PPM1F) [192]. DCDC2 is normally 
expressed in cilia of cholangiocytes and mutations in DCDC2 in neo
natal sclerosing cholangitis patients leads to complete depletion of 
functional DCDC2 and absence of primary cilia [193]. Physiologically, 
mutations in DCDC2 therefore result in disturbed cholangiocyte 
homeostasis which might be caused by disturbed Wnt signaling [194]. 
KIF12 has previously been associated with cholestasis [195]. Three 
patients described harboured mutations in KIF12 and showed symp
toms such as liver fibrosis, inflammatory cell infiltration and bile duct 
loss. It is however not precisely known how KIF12 contributes to 
sclerosing cholangitis, although the authors propose that KIF12 might 
play a role in bile duct epithelial cell function via hepatocyte nuclear 
factor 1 β (HNF1β) [192,195]. Similar to DCDC2 and KIF12, PPM1F 
mutation is associated with primary cilia dysfunction since it is also 
known to regulate kinesin mediated transport [192]. A novel PSC ro
dent model might therefore include the dysfunctional primary cilia of 
cholangiocytes in order to accurately reflect human pathogenesis. 

Animal studies can be used to investigate a possible causal con
tribution of genes identified in GWAS studies and lead to better animal 
models for cholestasis with a cholangiocellular aetiology. A study using 
Fut2 knockout mice shows how challenging this can be. FUT2 is risk 
gene for PSC, but these knockout mice did not fully mimic PSC pa
thogenesis [196]. Instead, a subset of Fut2 knockout mice were found to 
have extremely high serum bile salt concentrations, although they did 
not develop cholestasis. The mice with elevated bile salt levels dis
played portosystemic shunting, although also signs of biliary damage 
were found when the mice were challenged with a hydrophobic bile salt 
in the diet. 

PBC is also associated with mutations in a broad set of genes. The 
disease is likely an auto-immune disease and many genetic mutations 
found in GWAS are associated with the immune system. Pathogenic 
pathways that are described in PBC are primarily involved in in
flammation, fibrosis, oxidative stress, cell proliferation, signaling and 
apoptosis [197]. Arenas et al. (2019) [198] found that reduced 

R.F. Kunst, et al.   Biochemical Pharmacology 180 (2020) 114173

8



expression of Anion Exchange Protein 2 (AE2), involved in biliary bi
carbonate secretion, in PBC patients is most likely caused by promotor 
hypermethylation. The relevance of AE2 in development of PBC has 
been shown in the Ae2a,b knockout mouse, which develops damaged 
cholangiocytes as a result of bile salt induced injury [199]. However, 
this model steps away from the original idea where PBC is described as 
an auto-immune disease. The NOD.c3c4 mouse on the other hand fol
lows the autoimmune aetiology [200,201]. The NOD.c3c4 mouse de
velops antibodies against the pyruvate dehydrogenase complex, speci
fically the lipoyl domain of the E2 subunit (PDC-E2), which is in line 
with the typical production of mitochondrial antibodies against PDC-E2 
in PBC patients [200,201]. In addition to this model, an IL-2 receptor α 
(IL-2Rα) knockout mouse and a mouse lacking TGFβ signaling in T cells 
specifically have been shown to feature PBC characteristics [202-204]. 
The lack of TGFβ signaling in T cells or global IL-2Rα signaling caused 
lymphocyte infiltration around biliary tracts and an increase in pro- 
inflammatory cytokines IFN-γ, TNF-α and IL-6 in the mouse serum, 
findings similar to PBC patients. E26 transformation specific sequence 1 
(ETS-1) is a transcription factor involved in, amongst other, T cell 
proliferation and differentiation and has been associated with PBC  
[205]. Furthermore, SNPs have been found in the major histocompat
ibility complex (MHC) region, specifically antigen presenting [206], 
and nuclear factor-κB subunit 1 (NFKB1), while array datasets have 
shown that C–C motif chemokine ligand 5 (CCL5), interleukin 7 re
ceptor (IL7R), TNF receptor superfamily member 1 A (TNFRSF1A) 
could also play a role in PBC [207]. These genes have im
munoregulatory functions. NFKB1 encodes for a subunit for the nuclear 
factor-κB (NF-κB) dimeric complex acting as a transcription factor 
which has a pivotal role in regulating immune metabolism. Ad
ditionally, Tumor Necrosis Factor Receptor Superfamily Member 1A 
(TNFRSF1A) is a membrane receptor, amongst other expressed in T 
cells, that binds TNFα and can thereby activate NF-κB. CCL5 recruits T 
cells towards inflamed tissue while IL7R is important for both B and T 
cell development [208,209]. In addition, CCL5 and IL7R mediate T cell 
apoptosis. Since most genes are involved in T cell regulation, this might 
be an interesting target for a novel PBC model. Finally, PBC was more 
likely to develop in patients with a mutation in the gene coding for 
muscarinic acetylcholine receptor type 3 as described by Greverath 
et al. (2019) [210]. 

Taken all together, there is still a lot unknown about the patho
genesis of many cholestatic disorders. Nevertheless, it is likely that a 
rodent model can be used reliably to investigate novel therapeutic 
options consists of a combination of genetic mutations/variations and/ 
or modifications in bile acid composition and microbiota. 

5.3. Metabolic associated fatty liver disease 

In 2016, Ibrahim and colleagues defined the ideal animal NASH 
model as a “model that encompasses all the defining features of the 
human condition, including obesity, insulin resistance, steatohepatitis, 
and fibrosis” [211]. Therefore, over the years several animal models 
have been developed based on genetic modifications, treatments con
sisting primarily of diets or a combination of both [211-214]. Chal
lenging aspect of creating an accurate rodent model for MAFLD is to 
model both the metabolic and histopathological phenotype and to re
flect the disease heterogeneity. Patient stratification is expected to be 
increasingly important in future clinical trials. Similarly, current animal 
models do not cover all aspects of disease, with regard to aetiology as 
well as testing novel therapeutic options and only a combination of 
models encompasses the full scope of MAFLD. 

Treatment of mice with diets high in fat, cholesterol and fructose is 
a relatively easy way to induce obesity and a fatty liver in mice, and 
therefore often used to study the onset and treatment of steatosis in 
MAFLD [212,215]. The severe liver pathological phenotype of human 
NASH is not directly reproducible with a high fat diet in mice alone, as 
inflammation is mostly lacking likely due to insufficient onset of 

lipotoxicity [216]. Addition of high fructose and cholesterol to the high 
fat diet is used to induce steatohepatitis and fibrosis in mice [217] but 
still very time consuming. Therefore, it was postulated by Tsuchida 
et al. (2018) [218] to add weekly intraperitoneal dosing of low con
centrations of carbon tetrachloride (CCl4), as an accelerator. Another 
strategy is to inject mice with streptozotocin shortly after birth. Strep
tozotocin severely damages pancreatic islets, causing diabetes type 1, 
and contributes to the development of hepatic steatosis when fed a high 
fat diet [219]. Furthermore, there seems to be clear contribution of the 
genetic background of the mice as Asgharpour et al. (2016) [220] 
showed that mice derived from a stable isogenic cross between C57BL/ 
6J and 129S1/SvImJ mice recapitulated multiple aspects of human 
MAFLD when fed a high fat diet with ad libitum consumption of glucose 
and fructose whereas the parent strains did not. 

Another frequently used mouse model is based on dietary depletion 
of methionine and choline or only choline [211,221]. Methionine and 
choline are amongst others crucial for production and secretion of very 
low density lipoprotein (VLDL). Impairment of these pathways results 
in lipid accumulation in the liver which together with increased oxi
dative stress results in a phenotype with steatohepatitis and fibrosis. 
Nevertheless, this model lacks metabolic features such as insulin re
sistance and is even accompanied by weight loss. A similar phenotype is 
observed in methionine adenosyltransferase 1A (Mast1a) deficient 
mice. These genetic/dietary approaches may provide suitable models 
for “lean MAFLD”, that is the presence of steatohepatitis without obe
sity, a disease presentation more prevalent in Asia [3]. The choline- 
deficient L-amino acid (CDAA) diet on the other hand consists of similar 
constituents as the choline deficient diet, however the proteins are 
substituted by a mixture of L-amino acids [211,213]. The metabolic 
effects seen as a result of the CDAA vary, as Kodama et al. (2009) [222] 
do not find altered insulin sensitivity after a 20-week CDAA diet in both 
male and female C57BL6/J mice, whereas Miura et al. (2010) [223] did 
find increased insulin resistance in male C57BL/6J mice after a 22-week 
CDAA diet. This model however greatly represents the histopatholo
gical phenotype seen in advanced MAFLD, by expressing features such 
as steatohepatitis, fibrosis and finally carcinoma [213]. This may reflect 
some of the considerable sexual dimorphism of MAFLD with male 
predominance at earlier disease state and increased disease frequency 
in postmenopausal women [224]. 

Ob/ob or db/db mice have a genetic mutation in the leptin or leptin 
receptor gene resulting in increased food intake, causing amongst 
others severe obesity, hyperlipidaemia and insulin resistance [211]. 
Liver injury or severe steatohepatitis such as seen in NASH is usually 
not present and therefore requires additional treatments such as acti
vation of the inflammasome and other interference with macrophage 
responses, toll like receptors or JNK signaling [211]. For example, 
Handa et al. (2016) [225] have shown that dietary iron supplementa
tion in db/db mice leads to a severe NASH histopathological phenotype 
in the liver, accompanied by immune cell activation. 

A less common but interesting genetic model for steatohepatitis is 
the foz/foz mouse, which has a mutated Alström syndrome protein 1 
(Alms1) gene, previously associated with obesity, and has been char
acterized with steatosis, obesity, diabetes, high cholesterol and insulin 
resistance [212,226]. Combination of the foz/foz mouse with a high fat 
diet resulted in severe steatohepatitis, thereby generating a more ac
curate reflection of the human NASH physiology. Another obese mouse 
model is the KK-Ay/a mouse, harbouring a heterozygous mutation in 
the Agouti gene and therefore lack hypothalamic suppression of appe
tite. KK-Ay/a mice are obese, insulin resistant and possess steatotic li
vers [227]. Additional treatment of KK-Ay/a mice with methionine and 
choline depleted diet has been shown to further induce hepatic fibrosis, 
steatohepatitis and immune cell infiltration [228]. As fat plays a major 
role in development of NASH, it might not be surprising that impaired 
fatty acid oxidation increases the risk on developing fatty liver, fibrosis 
and finally hepatic steatosis. Therefore, several genetic mouse models 
aim to disrupt fatty acid oxidation, such as fatty acyl-CoA oxidase (Aox) 
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deficient mice [211,229]. These mice lack the primary enzyme required 
for peroxisomal β-oxidation, leading to fatty acid accumulation and 
mild hepatic steatosis. Hepatocellular carcinomas developed sponta
neously between 10 and 15 months of age [230]. 

A major downside of gene-knockout models is that the pathway that 
is genetically inactivated could be also therapeutically relevant, leading 
to ineffective treatment in the knockout model. For example, ob/ob 
mice will not be a suitable model to test novel therapeutic modalities 
that engage with leptin signaling. Perhaps this limitation can be over
come by exploiting gene modifications and not total knockout models 
and by focusing on genes with a causal role in MAFLD. Human GWAS 
data has revealed genes associated with MAFLD. An overview and de
tailed discussion of these genes is provided by Anstee et al. (2016) [180] 
and Krawczyk et al. (2020) [231]. Involvement of these genes and 
pathways might explain human disease aetiology and therefore lead to 
a translatable mouse model that entails both the metabolic and histo
pathological phenotype. First, Karrar et al. (2019) [232] have shown 
that several alleles from both HLA class 1 and class 2 genes were as
sociated with development of MAFLD and NASH, thereby highlighting 
the importance of the immune system in development of disease. 
Second, and not surprisingly, genetic pathways involved in glucose and 
lipid metabolism are associated with MAFLD. For example, variants in 
the gene coding for adiponectin, which is involved in glucose home
ostasis and fatty acid metabolism has been associated with MAFLD  
[233]. Patatin-like phospholipase domain-containing protein 3 
(PNPLA3) mediates triglyceride hydrolysis in adipocytes and is a 
downstream target of transcription factor peroxisome proliferator-ac
tivated receptor-γ (PPARγ). PNPLA3 is highly associated with MAFLD 
development, as has been shown in multiple independent studies  
[180,181,234,235]. James et al. (2019) [236] also confirmed that 
variants in the genes glucokinase regulatory protein (GCKR), PNPLA3, 
the lyosophosphatidylinositol-acyltransferase MBOAT7, Transmem
brane 6 Superfamily Member 2 (TM6SF2) and Tribbles pseudokinase 
(TRIB1) are associated with MAFLD development [180,181,186]. 
TRIB1 functions via the MAPK pathway and therefore regulates cell 
proliferation, differentiation and apoptosis while dysfunctional TM6SF2 
has previously been associated with MAFLD due to impaired VLDL se
cretion [237]. 

Finally, gut microbiota likely play a role in several of the factors 
underlying MAFLD, including composition of bile salts, intestinal per
meability, altered immunity and presence of microbe-derived metabo
lites [238]. Using fecal microbial transfer (FMT) protocols several an
imal studies have demonstrated the contribution of the microbiome to 
the onset of steatosis and steatohepatitis [238]. However, a consensus 
on how to implement and standardize such approaches to create im
proved mouse models for MAFLD has not been reached yet. To sum
marize, it seems likely that a translatable mouse model for MAFLD 
entails both the metabolic and histopathological characteristics by 
combining an obese mouse model with additional treatment to activate 
the inflammasome, or by combining multiple models, each focusing on 
one of the causal factors in this multi-hit metabolic associated disease. 
This could be achieved with established rodent models as described 
above, however novel genetically modified mouse models based on 
human GWAS data and/or FMT could also be of use. Whether both 
metabolic and histopathologic characteristics are required in the mouse 
model or not, is fully dependent on the specific type of research and 
research questions involved. 

6. Conclusion 

In this review, we have extensively discussed in vitro, ex vivo and in 
vivo models specifically for MAFLD and cholestasis related diseases such 
as PBC and PSC. The availability of different types of models each with 
their own advantages and disadvantages creates a lot of opportunities 
for hepatobiliary research but also raises questions about correct use for 
a specific research goal. We summarized and clarified distinct 

approaches and therefore aim to be a helpful tool in deciding on the 
model that best suits your research question. 
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