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1.  INTRODUCTION

Boundary dynamics provide a framework for inves-
tigating how ecosystem edges can affect the flow of
materials from one environment to another. This
frame work describes permeability as an important
factor in regulating the transport of nutrients and en-
ergy vectors across ecosystems (Wiens et al. 1985).

Permeability, the degree to which a boundary may
deflect the movement of vectors, depends on the
boundary characteristics and the nature of the vector
(Wiens et al. 1985). The permeability of marine subsi-
dies at the coastal boundary may be particularly im-
portant on small islands that have large perimeter to
area ratios, allowing marine resources to penetrate to
the island’s interior more easily than on larger islands
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and potentially affecting species productivity and
 diversity (Polis & Hurd 1996, Anderson & Wait 2001).

Marine−terrestrial subsidies can take many forms.
Bird guano (derived from marine resources) and dis-
carded marine mollusk shells fertilize soils and
increase plant productivity directly through nutrient
additions (Anderson & Polis 1999, McCauley et al.
2012, Trant et al. 2016). Beach-cast fish, carrion, mar-
ine mammal carcasses, and intertidal invertebrates
provide nutrition to numerous vertebrate and inver-
tebrate scavengers, increasing consumer populations
(Polis & Hurd 1996, Barrett et al. 2005). Despite fluc-
tuating across both spatial and temporal scales, pri-
mary consumers (e.g. amphipods and isopods) will
increase in abundance near these vectors of marine
subsidy (Polis & Hurd 1996, Colombini et al. 2000,
Dugan et al. 2003, Ince et al. 2007, MacMillan & Qui-
jón 2012). Accordingly, secondary consumers such as
birds, spiders, scorpions, lizards, and rodents will re -
spond to the increased abundances of macroinverte-
brates (Catenazzi & Donnelly 2007, Spiller et al.
2010, Schlacher et al. 2017). Larger mammals, such
as coyotes Canis latrans and black bears Ursus amer-
icanus, have also been observed to alter their spatial
and temporal distribution in response to marine sub-
sidies (Rose & Polis 1998, Carlton & Hodder 2003, Fox
et al. 2015).

Sea wrack (defined here as dead, shore-cast sea-
weeds and seagrasses) is another example of a mar-
ine subsidy that directly and indirectly affects terres-
trial ecosystems (Spiller et al. 2010, Del Vecchio et al.
2013). Sea wrack is generally deposited on a shore-
line in a strip or in patches that run parallel to the
 water and mark the high, spring, or storm tide line
(Suursaar et al. 2014). While decomposing, wrack
that has been washed above the high intertidal zone
can act as a direct fertilizer, enriching sand and ter-
restrial flora (Cardona & García 2008, Villares et al.
2016). Wrack deposits also provide a nutritionally
rich and important food resource for large communi-
ties of microbes and semi-terrestrial or terrestrial in-
vertebrate decomposers (Pennings et al. 2000, Ince et
al. 2007, Sosik & Simenstad 2013, Lastra et al. 2014).
These can significantly increase both the abundance
and diversity of invertebrate communities along
shorelines (Dugan et al. 2003, Schlacher et al. 2017).
Subsequently, these invertebrate species are ingested
by higher trophic level terrestrial consumers. Owing
to these interactions, the presence or absence of sea
wrack on a shoreline can affect the diversity and
abundance of crabs, lizards, birds, and multiple mam-
malian omnivores (Dugan et al. 2003, Stapp & Polis
2003, Lewis et al. 2007, Spiller et al. 2010).

As with many marine nutrient subsidies, wrack
depositions and accumulations vary temporally. In
some locations, wrack biomass accumulations are
consistent throughout the year (Barreiro et al. 2011).
However, seaweed detritus production may fluctuate
due to seasonal senescence, water temperature,
wave conditions, shoreline dislodgment, or erosion
due to tidal and climate events (Koop & Field 1980,
Stenton-Dozey & Griffiths 1983, Witman 1987, Sey-
mour et al. 1989, Chapman & Johnson 1990, Krum -
hansl & Scheibling 2011, de Bettignies et al. 2013).
Many seaweed species have annual life histories that
influence detritus production. For example, bull kelp
Nereocystis luetkeana grows from late spring to early
fall, then senesces en masse, often dislodging during
the first large winter storm (Mann 1973). These sea-
sonal and climatic events can influence the volume
and species composition of detrital production,
though it is unknown whether this higher availability
translates to changes in onshore sea wrack deposi-
tion and accumulation. Examining the timing and
extent of accumulations may clarify whether sea
wrack is ubiquitous temporally or is deposited in sea-
sonal surges, which will help to decipher how
resource pulses may affect resource−consumer inter-
actions on islands.

To explore the potential subsidy effect of sea wrack
on islands, we first examined the permeability of the
coastal boundary by measuring the timing and extent
of wrack accumulations on 101 islands within the
coastal temperate rainforests of the Central Coast of
British Columbia (BC), Canada. We predicted that 3
broad factors may affect macrophyte and macroalgal
wrack abundance and distribution: the extent of
donor habitats, climate, and physical shoreline char-
acteristics.

The extent and proximity of detrital donor habitats
may be a strong indicator of wrack biomass and spe-
cies composition. On the eastern Pacific coast, vast
quantities of sea wrack originate from several donor
habitats: intertidal macroalgal beds, subtidal kelp
forests, and seagrass meadows. On the Pacific coast
of Canada, the dominant canopy-forming kelp spe-
cies, Macrocystis pyrifera, forms kelp forests that
produce up to 900 g C m−2 yr−1 (Wilmers et al. 2012),
which produce as much as 650 g C m−2 of detritus
every year (Druehl & Wheeler 1986). Eelgrass beds of
Zostera species are estimated to cover 423 km2 of the
coastline of the Central Coast (Reshitnyk et al. 2016),
and reach up to 1450 g C m−2 yr−1 of primary produc-
tivity (Mann 1973), but dislodgment rates have not
yet been reported. Aside from these species, the rate
of productivity and detrital production is not well
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known for many of the dominant marine macroalgae
and seagrasses found throughout the Central Coast.
Additionally, little is known about how many of these
dislodged kelps and macrophytes are being exported
to the open ocean (but see Harrold & Lisin 1989).
Given that BC’s convoluted coastline extends for over
29 000 km (including islands) and seaweed commu-
nities comprise a lush band that encompasses this
complex coastline (Druehl & Clarkson 2016), there is
potential for a large amount of biomass from this
band to be washed ashore.

Climate can affect wrack depositions. Factors such
as winds and swell, and the interactions among these
conditions and the tides, can detach macroalgae and
macrophytes from their anchorages (Witman 1987,
Seymour et al. 1989, Krumhansl & Scheibling 2011),
creating areas or times with predictable wrack depo-
sitions (Oldham et al. 2010, López et al. 2019), espe-
cially where there are consistent winds. For instance,
increased seagrass deposits in the northwest Mediter-
ranean are attributed to strong wind events (Jiménez
et al. 2017), higher than normal tides have increased
wrack accumulation along Estonian shorelines (Suur-
saar et al. 2014), and on the Pacific coastline of the
USA, wave events caused by swell in creased wrack
ac cu mu lations (Reimer 2014). Additionally, storms
can facilitate sporadic long- distance kelp dispersal
events, disrupting patterns of connectivity across eco-
system boundaries (Waters et al. 2018).

The third broad factor potentially affecting sea
wrack accumulation and retention is a site’s physical
shoreline characteristics, which are: slope, substrate,
aspect, width, and wave exposure. Interactions be -
tween beach length and exposure to waves that
resulted in greater edge exposures to donor habitats
(similar to the large perimeter to area ratios seen on
small islands) increased wrack accruals in Spain
(Barreiro et al. 2011). Along the coastlines of Vancou-
ver Island, BC, shores composed of cobble substrates
retained significantly more wrack than those com-
posed of sand or gravel, as the spaces between cob-
bles trapped large wrack particles and retained them
despite tidal and wave forces (Orr et al. 2005). In Cal-
ifornia, sloped beaches were positively correlated
with the retention of Phyllospadix spp., suggesting
that steeper beaches can retain greater amounts of
specific wrack species when high tides deposit wrack
high upon the shoreline (Liebowitz et al. 2016), pre-
sumably in part due to the buoyancy of a species
(Oldham 2014).

Although globally sea wrack as a vector of marine to
terrestrial nutrient transfer is a well-studied phenom-
enon, little research exists on the mechanisms of

wrack deposition and accumulations on island shore-
lines across extended spatial and temporal scales. In
this study, we aimed to determine the drivers of
spatial and temporal wrack variability across large
spatial and temporal scales by distinguishing when
and where sea wrack is most likely to accumulate
along coastlines by asking the following questions: (1)
What are the biophysical and environmental variables
that best explain patterns in wrack accumulations on-
shore? (2) What are the seasonal changes in accumu-
lated wrack biomass and species composition?

2.  MATERIALS AND METHODS

2.1.  Study region

The Central Coast of BC encompasses the region
be tween the northern tip of Vancouver Island
(50.7865° N, 128.2324° W) and the southern tip of
Hai da Gwaii (51.8711° N, 131.0010° W). The study
area spanned ~2000 km2 within the Central Coast
region (Fig. 1), which contains ~1500 islands. This
region is located within the very wet hypermaritime
subzone of the Coastal Western Hemlock biogeocli-
matic classification (Meidinger & Pojar 1991), which
is characterized by cool summers (mean warmest
month 14.0°C), warm winters (mean coldest month
2.3°C), and large amounts of precipitation (mean
annual precipitation >3000 mm) (Meidinger & Pojar
1991). The sea surface ocean temperatures range
from a mean low of 7°C in March to a mean high of
15°C in August (Jackson et al. 2015). Tides in the
region fluctuate from 3 to 5 m and are semidiurnal
(Thomson 1981). Field work was conducted out of the
Hakai Institute on Calvert Island, BC, within the
Hakai Lúxvbálís Conservancy, and in the Penrose
Island Marine Provincial Park area under a long-
term operation BC Parks Use Permit No. 107190. All
research was conducted within the territories and
with permission of the Heiltsuk and Wuik inuxv First
Nations.

2.2.  Spatial surveys

2.2.1.  Island selection

We selected 101 islands to represent a range of
island characteristics and used cluster analysis to
provide a method of data reduction that still ensured
a range of island characteristics were sampled (Har-
grove & Hoffman 2004). Five biogeographical de -
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Fig. 1. Central Coast of British Columbia (BC), Canada (top right; WA: Washington State, AB: Alberta). The study region and
location of nodes of study islands as selected by cluster analysis (top left). All study islands are colored in red shades according
to their average biomass per quadrat (g) dry biomass accumulations. (A) McMullin, Tribal, and Admiral nodes (52.0457°N,
128.3563°W); (B) Goose node (51.9291°N, 128.4524°W); (C) Triquet node (51.8256°N, 128.2132°W); (D) Calvert and Stirling
nodes (51.7425°N, 128.0576°W); (E) Penrose node (51.4632°N, 127.7247°W); and (F) South Calvert node (51.4250°N, 

127.9108°W). Map reproduced with permission from the Hakai Institute
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scriptors (distance from mainland, area, normalized
perimeter to island ratio, exposure, neighboring
land) for all islands within the study region (n = 1470)
were derived (see Table S1 in the Supplement
at www. int-res. com/ articles/ suppl/  m635 p037_ supp.
pdf), and additional biogeographical characteristics
were extrapolated from the BC ShoreZone dataset
(Howes et al. 1994). The results of cluster analysis
identified several nodes (Table S2) where islands
with different biogeographical descriptors were
located within close proximity to each other. Within a
node, islands were selected to maximize variation
across a range of island sizes and shoreline structure.
The final dataset consisted of 101 islands within 9
nodes (Fig. 1, Table S3).

2.2.2.  Wrack biomass and composition
 measurements

During the spring/summer season (May−August) of
2015−2017, we visited each island one time through-
out the 3 yr period. During a visit, we conducted 4 sur-
veys per island, one at each of the predetermined

coordinates representing the furthest north, east,
south, and west aspect of each island. Depending on
the availability of substrate, additional surveys were
conducted on islands that had shorelines with either a
sand, gravel, cobble, or boulder substrate (Fig. 2). This
allowed us to examine substrate effects on wrack
retention. Therefore, each island had a minimum of 4
to a maximum of 10 survey sites resulting in a total of
455 sites in the study area. Each survey entailed one
20 m transect, centered on the most recent high tide
wrack line (which ran roughly parallel to the water-
line), and beginning at the pre-determined cardinal
direction coordinates.

We randomly sampled 1 m2 (n = 3) quadrats along
each transect line. Within each quadrat, we identi-
fied and sorted all wrack either to the functional algal
group (as per Steneck & Dethier 1994), genus, or spe-
cies level and then weighed all samples. Wrack that
was unidentifiable was categorized as such and
weighed. Wrack that was partially buried but still
had a portion visible was uncovered, rinsed or wiped
of sand, sorted, and weighed. Wrack was weighed
with either a small scale with precision of ±2 g or a
hanging spring scale with precision of ±1 kg at -
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Fig. 2. Examples of the different types of shoreline substrates commonly found on the west coast of British Columbia: (A) sand on
island GS05 (51.9271° N, 128.4691° W), (B) gravel on island GS03 (51.9170° N, 128.4763° W), (C) cobble on island CV17
(51.7306° N, 128.0012° W), (D) boulder on island ST14 (51.7729° N, 128.0626° W), (E) rock on island SC01 (51.4160° N,
127.9203° W), and (F) rock on island ST10 (51.7463° N, 128.1323° W). Refer to Supplement Table S3 for island node and number 

abbreviations

https://www.int-res.com/articles/suppl/m635p037_supp.pdf
https://www.int-res.com/articles/suppl/m635p037_supp.pdf
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tached to a tarp. Following methods outlined by
Wickham et al. (2019), we collected subsamples from
12 of the most common seaweed species to derive a
correction factor for wet to dry weight conversions.
All biomass results for both spatial and temporal data
are reported in dry estimates.

2.2.3.  Biophysical and environmental
 measurements

To determine the drivers of wrack accumulation,
we included 10 biophysical and environmental meas-
urements as variables in our analysis (wind direction,
wind speed, wave height, wave period, high tide,
shoreline slope, shoreline width, shoreline wave
exposure, shoreline substrate, and extent of nearby
donor habitat; Table 1).

To determine the relative contribution of donor
habitat in explaining wrack biomass measurements,
we first determined each site’s proximity to a wrack
source. We identified the 3 main wrack donor habi-
tats within our study area: (1) kelp forests as donors
of Macrocystis pyrifera and Nereocystis luetkeana,

(2) eel grass beds as donors of Zostera marina, and (3)
rocky intertidal shorelines as donors of Fucus disti -
chus. We analyzed remotely piloted aerial system
(RPAS)-based digital photogrammetry and World-
View-2 multispectral satellite imagery in ArcGIS and
estimated the extent of all donor habitats, then
summed these estimates. Kelps such as M. pyrifera
commonly wash ashore within a 5 km radius of their
detachment sites (Dugan & Miller 2019), so we posi-
tioned a set of radii around each survey site (length of
radii = 50, 100, and 500 m, and 1, 2 , 3, 4, 5, and
7.5 km) and analyzed the strength of the relationship
between the summed area of donor habitat and the
onshore biomass of kelp/eelgrass/F. distichus using
Spearman’s correlation analysis for non-normally
distributed data (Fig. S1). Following methods estab-
lished by Liebowitz et al. (2016), the extent of donor
habitat within the radius with the strongest relation-
ship (from our analysis: 2 km) was used for subse-
quent analysis.

Climate variables such as hourly wind direction,
wind speed, wave height, and wave period measure-
ments for the day of a site visit were accessed from
Environment Canada West Sea Otter Buoy archives
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Parameter    Variable                     VC                            Source               Description

Donor             Donor                       na                   WorldView-2 and      Extent of summed Zostera marina, Fucus distichus, 
habitat           habitat                                                 RPAS imagery         Nereocystis luetkeana, and Macrocystis pyrifera
                                                                                                                     habitat visible within 2 km of a survey site (m2)

Climate           Wind                        na                       Environment          Direction from which the wind is blowing (° True)
                     direction                                                     Canada

                       Wave                        na                       Environment          Wave height as reported by the buoy (m)
                       height                                                       Canada

                       Wave                        na                       Environment          Wave peak period as reported by the buoy (s)
                       period                                                       Canada

                    High tide                     na                       Fisheries and         Predicted high water associated with vertical 
                                                                                  Oceans Canada        movement of tide (m)

Site                 Aspect                       na                   WorldView-2 and      Mean value of 5 measurements taken at 5 m 
                                                                                   RPAS imagery         intervals for 20 m (°)

                       Slope                        na                   WorldView-2 and      Mean value of 5 measurements taken at 5 m 
                                                                                   RPAS imagery         intervals for 20 m (°)

                    Substrate     Sand, gravel, cobble,     Recorded at site        Determined via Wentworth scale of grain size
                                                boulder, rock 

                       Width                        na                   WorldView-2 and      Mean value of 5 measurements taken at 5 m 
                                                                                   RPAS imagery         intervals for 20 m (m)

                       Wave             Very protected,         Recorded at site        Classified via biobands (Howes et al. 1994)
                    exposure          protected, semi-
                                              protected, semi- 
                                            exposed, exposed, 
                                                very exposed

Table 1. Biophysical and environmental variables used as predictors in the candidate models. VC: variable categories; 
variables that are continuous are listed as ‘na’
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(West Sea Otter Archive Plot1). Data from 6 h prior to
a site visit until the hour of the site visit were aver-
aged (the amount of time for 1 tidal cycle; Fig. S2).
We included tide as a climate variable because of the
potential for wind and waves to interact with tidal
conditions.

We collected data pertaining to a site’s physical
characteristics following protocols outlined in the
ShoreZone Coastal Habitat Mapping Protocol
(Harper & Morris 2014). This protocol describes
methods to catalog geomorphic and biological coast -
al features of the Pacific Northwest (including BC,
Alaska, Washington, and Oregon). Site data col-
lected included shoreline slope, aspect, substrate,
width, and biobands (patterns of identifiable biota
ob servable in the intertidal and supralittoral zone)
(Howes et al. 1994). Biobands were used to classify
the wave exposure of a site as per the ShoreZone
Mapping Protocol (Harper & Morris 2014). Substrate
categories were adapted from the Wentworth scale of
grain size and included sand, gravel, cobble, boulder,
and rock (Wentworth 1922). Shoreline slope, aspect,
and width measurements were obtained from RPAS-
derived imagery and elevation models, which were
produced at 10 cm ground resolution and processed
according to the methods outlined by Nijland et al.
(2017). This dataset generated slope, aspect, and
width measurements at every 5 m along every
island’s shoreline, which we averaged for each 20 m
transect.

2.3.  Temporal surveys

2.3.1.  Site selection

We chose 3 easily accessible sites for temporal sur-
veys because winter wind, storms, and swells can limit
boat access. These included North Beach (51.6628° N,
128.1401° W), West Beach (51.6558° N, 128.120° W),
and Fourth Beach (51.6431° N, 128.1510° W) on Cal -
vert Island, all of which are classified as flat (<5°),
sandy, semi-exposed shorelines (Howes et al. 1994).
Sites with consistent biophysical characteristics were
chosen to best gauge temporal rather than biophysical
effects. Surveys were conducted during the lowest
tide (<1.0 m) once every 2 mo starting in July 2016 and
ending in April 2017, with one 3 mo period between
the November 2016 and February 2017 survey dates.

2.3.2.  Wrack biomass and composition
 measurements

To establish a finer-scaled resolution of the shift in
accumulated wrack biomass and species composition
throughout a seasonal interval, we visited each site
twice (2 d apart) every 2 mo and performed 6 tran-
sects per visit (n = 12). The terrestrial edges of each
site were divided into 100 m intervals, and 6 transect
locations were randomly generated. One transect per
100 m was completed to avoid overlap along the
beach. Transects ran perpendicular to the water,
starting at the terrestrial edge and marked perma-
nently with flagging tape. A compass bearing was
measured along the perpendicular direction, and this
bearing was followed for each survey to create a
repeatable transect. We collected wrack starting at
the daily high tide wrack line and ending at the low-
est water level experienced during the daily low tide.
All wrack within 0.5 m of either side of the transect
line was collected, identified, and weighed. Col-
lected and weighed wrack was placed far above the
highest tidal line to prevent it from being redeposited
in the transect during the next survey (2 d following).
A wet-to-dry mass calibration was established using
previously collected data (Wickham et al. 2019).

2.4.  Statistical analysis

2.4.1.  Spatial surveys

All analyses were performed in R version 3.5.1 (R
Core Team 2018). To test the variability in wrack spe-
cies composition among nodes, we analyzed the rel-
ative biomass accumulation of each wrack taxon per
site using analysis of similarity (ANOSIM) (Clarke
1993). ANOSIM routines are based on a Bray-Curtis
dissimilarity matrix of species occurrences using the
species’ logged dry biomass data. A similarity per-
centage (SIMPER) routine was performed to identify
the species with the highest contribution to the simi-
larity/dissimilarity of each node. All data were ana-
lyzed using the ‘vegan’ package in R (Oksanen et al.
2017). To determine which nodes accumulated the
most wrack, dry biomass per site was compared
using ANOVA, with node (n = 9) as a fixed factor and
island (n = 101) as a random variable using the
‘lmerTest’ package in R (Kuznetsova et al. 2017).

We used a modeling approach to investigate how
our potential explanatory variables predicted the
presence and biomass of wrack across our study
sites. Given that our dataset was heavily inflated with
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1http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-
vagues/index-eng.htm
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zeros (i.e. no wrack found in a quadrat), we sepa-
rated the data into 2 datasets (a presence/absence
dataset and a biomass dataset) and used hurdle mod-
eling (Zuur et al. 2009). This required 2 steps. First,
the data were considered as zero or non-zero to cap-
ture the probability of wrack presence on a beach
during the surveys. Second, all zero data points were
removed and a normally distributed dataset was cre-
ated that captured wrack biomass accumulations on
a beach once wrack was present.

Prior to modeling, the response variable (dry bio-
mass) was log-transformed to normalize distribution.
Periodic data (wind direction and aspect variables)
were multiplied by sine and cosine to account for cycli-
cal values (Roberts 1986). Wind speed and wave height
were correlated and wind speed was subsequently re-
moved because wave height provides a more direct
measure of the process we intended to investigate.
High and low tides were correlated, so we removed

low tide, given our primary interest in understanding
the ability of a high tide to transfer wrack ashore. Con-
tinuous predictor variables (wind speed, wave period,
wave height, high tide, slope, width, and extent of
donor habitat) were standardized by subtracting the
mean and dividing by the standard deviation.

To analyze the presence/absence dataset, we used
a generalized linear model (GLM) with binomial dis-
tribution (Zuur et al. 2009). To analyze the biomass
data set, we used a linear mixed effect model with
Gaussian distribution and month and year as random
effects and our 10 biophysical predictor variables for
fixed effects (as described in Table 1) using the R
package ‘nlme’ (Pinheiro et al. 2017). We ranked the
multiple candidate models generated for each data-
set using Akaike’s information criterion (AIC) (Burn-
ham & Anderson 1998). We developed multiple can-
didate models a priori (Tables 2 & 3) for both
datasets. All models within 4 points of the lowest AIC
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Table 2. Akaike’s information criterion (AIC) values from candidate models to predict sea wrack presence/absence. ΔAIC:
difference between the current and best model; AICw: Akaike weight; DE: proportion of deviance explained by the model; 

(*) denotes interaction terms. Best performing models are in bold text

Parameters Variables AIC ΔAIC AICW DE

Site + Donor
Habitat

Aspect + Slope + Substrate + Width + Wave Exposure + 
Donor Habitat

236.59 0 0.50 0.64

Site + Climate* +
Donor Habitat

Aspect + Slope + Substrate + Width + Wave Exposure + Wind
Direction × Wave Height + Wave Period + High Tide + Donor Habitat

237.01 0.42 0.41 0.66

Site + Climate +
Donor Habitat

Aspect + Slope + Substrate + Width + Wave Exposure + Wind
Direction + Wave Height + Wave Period + High Tide + Donor Habitat

240.05 3.46 0.09 0.65

Site Aspect + Slope + Substrate + Width + Wave Exposure 281.01 44.42 0 0.56

Site + Climate Aspect + Slope + Substrate + Width + Wave Exposure + 
Wind Direction + Wave Height + Wave Period + High Tide

282.73 46.14 0 0.58

Site* + Climate* +
Site × Climate +
Donor Habitat

Aspect × Wind Direction + Slope × Substrate + Width + 
Wave Exposure + Wind Direction × Wave Height + Wave Period +

High Tide + Donor Habitat

361.97 125.38 0 0.44

Site* + Climate +
Donor Habitat

Aspect + Slope × Substrate + Width + Wave Exposure + Wave Height
+ High Tide + Donor Habitat

366.34 129.75 0 0.44

Site* + Donor
Habitat

Aspect + Slope × Substrate + Width + Wave Exposure + Donor Habitat 369.35 132.76 0 0.41

Site* + Climate* Aspect + Slope × Substrate + Width + Wave Exposure + 
Wind Direction × Wave Height + High Tide

397.61 161.02 0 0.38

Site* Aspect + Slope × Substrate + Width + Wave Exposure 404.04 167.45 0 0.34

Climate* + Donor
Habitat

Wind Direction × Wave Height + Wave Period + High Tide + 
Donor Habitat

477.52 240.93 0 0.21

Climate + Donor
Habitat

Wind Direction + Wave Height + Wave Period + High Tide + 
Donor Habitat

499.96 263.37 0 0.16

Donor Habitat Donor Habitat 508.39 271.80 0 0.13

Climate* Wind Direction × Wave Height + Wave Period + High Tide 570.33 333.74 0 0.03

Climate Wind Direction + Wave Height + Wave Period + High Tide 570.79 334.20 0 0.03
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value were considered to have similar levels of sup-
port. From the top models, we determined which
option best explained the data by calculating the
Akaike weight for each model and the proportion of
deviance being explained for the presence/absence
model (Tables 2 & 3) (Burnham et al. 2011).

For both the presence/absence and the biomass
datasets, we checked the models for independence
and spatial correlation by examining the residuals of
each top model for signals that we violated inde-
pendence (Fig. S3) and none were detected. Wrack
accumulation is understood to be determined by bio-
physical forces (represented by our predictor vari-
ables), not the influence of latitude or longitude (Bar-
reiro et al. 2011). However, for both the presence/
absence and the biomass dataset, we examined the
residuals of each top model for signals that we vio-
lated assumptions of spatial independence in the
 linear model. We plotted residuals against latitude,
longitude, and island node and found no patterns of

concern. We also mapped residuals against their spa-
tial coordinates using the package ‘gstat’ in R (Pebes -
ma 2004, Graler et al. 2016) to check for any patterns
that may indicate spatial correlation issues not cap-
tured by plots of latitude or longitude individually
(Figs. S4−S7).

2.4.2.  Temporal surveys

Dry wrack biomass was log transformed and com-
pared across months (n = 5) and sites (n = 3) using
ANOVA, and significant differences in biomass ac -
cu mu lations among months and sites were ex plored
via Tukey’s HSD test. To test the variability in wrack
species composition and biomass accumulation
through time, we analyzed the relative biomass accu-
mulation of each wrack taxon per month and per site
using ANOSIM (Clarke 1993). Non-metric multi -
dimensional scaling using Bray-Curtis dissimilarity
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Table 3. Akaike’s Information criterion (AIC) values from candidate models to predict accumulated sea wrack biomass.
AIC: AIC score; ΔAIC: difference between the current and best model; AICw: Akaike weight; (*) denotes interaction terms. 

Best performing models are in bold text

Parameters Variables AIC ΔAIC AICW

Site* Aspect + Slope × Substrate + Width + Wave Exposure 732.68 0 0.54

Site* + Donor Habitat Aspect + Slope + Substrate + Width + Wave Exposure + Donor Habitat 734.68 2 0.20

Site Aspect + Slope + Substrate + Width + Wave Exposure 735.99 3.31 0.10

Site* + Climate* Aspect + Slope × Substrate + Width + Wave Exposure + Wind Direction ×
Wave Height + Wave Period + High Tide

737.37 4.69 0.05

Site + Donor Habitat Aspect + Slope + Substrate + Width + Wave Exposure + Donor Habitat 737.86 5.18 0.04

Site + Climate Aspect + Slope + Substrate + Width + Wave Exposure + Wind Direction +
Wave Height + Wave Period + High Tide

739.47 6.79 0.02

Site* + Climate +
Donor Habitat

Aspect + Slope × Substrate + Width + Wave Exposure + Wind Direction +
Wave Height + Wave Period + High Tide

739.77 7.09 0.02

Site* + Climate* +
Site × Climate +
Donor Habitat

Aspect + Slope × Substrate + Width + Wave Exposure + Wind Direction ×
Wave Height + Wave Period + High Tide + Wind Direction × Aspect +

Donor Habitat

741.26 8.58 0.01

Site + Climate +
Donor Habitat

Aspect + Slope + Substrate + Width + Wave Exposure + Wind Direction +
Wave Height + Wave Period + High Tide + Donor Habitat

741.47 8.79 0.01

Site + Climate* +
Donor Habitat

Aspect + Slope + Substrate + Width + Wave Exposure + Wind Direction ×
Wave Height + Wave Period + High Tide + Donor Habitat

741.69 9.01 0.01

Donor Habitat Donor Habitat 743.24 10.56 0

Climate Wind Direction + Wave Height + Wave Period + High Tide 744.22 11.54 0

Climate* Wind Direction × Wave Height + Wave Period + High Tide 745.92 13.24 0

Climate + Donor
Habitat

Wind Direction + Wave Height + Wave Period + High Tide + Donor
Habitat

745.95 13.27 0

Climate* + Donor
Habitat

Wind Direction × Wave Height + Wave Period + High Tide + 
Donor Habitat

747.84 15.16 0
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matrix techniques was also used to assess whether
composition changed with seasons or between sites.
A SIMPER routine was performed to identify the spe-
cies with the highest contribution to the similarity/
dissimilarity of each month or site. The Shannon−
Wiener diversity index was used to explore species
diversity in the summer (June, July, September) com-
pared to the winter (November, February, April).

3.  RESULTS

3.1.  Spatial surveys

A total of 52 genus, functional group, or species rep-
resentatives were recorded throughout the study re-
gion (Table S4). Calvert node had the highest number
of species (n = 35) and Stirling node had the lowest
(n = 8, Fig. 3). Six species contributed to 84% of the to-
tal biomass accumulations: Zostera marina (40% of
total biomass), Fucus distichus (26%), Ptery go phora
californica (10%), Macrocystis pyrifera (4%), and
Nereo cystis luetkeana and Phyllospadix spp. (each
contributing 2% to total biomass) (Table S4). The
other 46 species each contributed 1% or less of total
accumulated biomass (Table S4). Species composition
was dissimilar among nodes (ANOSIM; factor = node,

R = 0.08, p < 0.02, Fig. 3; Fig. S8). The top contributors
to the dissimilarities among nodes were Zostera spp.,
F. distichus, and P. californica (SIMPER; Zostera spp.
average dissimilarity = 69%, F. distichus = 49%, P.
californica = 43%). All SIMPER results for the cumu-
lative contribution of the most influential species can
be found in Fig. S9. Driving these dissimilarities are
species that appeared dominant in certain nodes: P.
californica was abundant in the McMullin node, Z.
marina in the Goose node, N. luetkeana in the South
Calvert node, and F. distichus in all nodes except Mc-
Mullin (Fig. 3).

Accumulated wrack biomass varied widely across
the study region (Fig. 1A−F), ranging from 0 g m−2 on
many islands to a mean of 6952 ± 4325 (SD) g m−2 at
one small island in Goose node. Average wrack accu-
mulations per site did not differ among nodes
(ANOVA; F = 0.42, p = 0.9).

In tests for the presence/absence of wrack, the top
model was composed of 2 parameter groups: site and
the extent of donor habitat (Table 2). This model indi-
cated that the combination of aspect, slope, width,
wave exposure, substrate, and extent of donor habi-
tat best predicted whether a site would have wrack
present (Table 2). Examining the relative influence of
each factor in the top model, substrate, extent of
donor habitat, and slope had significant associations
(Table 4). Of the 5 substrate types (sand, gravel, cob-
ble, boulder, and rock), rock had a strong negative
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Variable                                       Estimate       SE         p

Sine aspect                                        0.24        0.28       0.4
Cosine aspect                                  −0.44        0.27       0.1
Shoreline slope                              −0.83        0.32    <0.01
Shoreline width                                0.57        0.32       0.8
Wave exposure: very protected       1.85        1.03       0.07
Wave exposure: protected               1.45        0.79       0.06
Wave exposure: semi-protected      0.96        0.82       0.2
Wave exposure: semi-exposed        0.49        0.80       0.5
Wave exposure: very exposed      −0.28        0.98       0.8
Substrate: sand                               14.5       1022.67    1
Substrate: gravel                            −0.29        1.40       0.8
Substrate: cobble                              0.82        1.30       0.5
Substrate: rock                               −4.84        0.69    <0.01
Donor habitat                                   1.42        0.26    <0.01

Table 4. Coefficient estimate, standard error (SE), and p-
value for each term in the top model (see Table 2) predicting
wrack presence/absence, as determined by the lowest AIC
and highest AICw scores. Coefficient estimate is standardized
for continuous predictor variables (shoreline width, wave pe-
riod, and donor habitat). The first (alphabetical) term for cate-
gorical variables (substrate: boulder and wave exposure: ex-
posed) is the reference/baseline for that category. Significant

terms are in bold text
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influence when predicting the presence of wrack on
shorelines (Table 4, Fig. 4). None of the other 4 sub-
strates significantly influenced wrack presence.
Shoreline slope negatively influenced wrack accu -
mu lations (Table 4, Fig. 4). The extent of donor habi-
tat within a 2 km radius had a positive influence on
wrack presence (Table 4, Fig. 4).

For the biomass data set, which tested the predic-
tors of accumulated wrack biomass at a site, the top
model had 1 parameter: site (and the interactions
be tween site variables; Table 3). This model indi-
cated that a combination of aspect, slope, width,
substrate, wave exposure, and interactions between
slope and substrate best predicted wrack biomass
accumulations (Table 3). Wave exposure and width
significantly influenced the biomass of wrack accu-
mulations (Table 5). Of the 6 categories of wave
exposure (very protected, protected, semi-protected,
semi-exposed, exposed, and very exposed), semi-
exposed exposures were positively correlated with
wrack presence (Table 5, Fig. 5). The width of the
shoreline, measured from the terrestrial edge to the
water’s edge at a consistent tidal height, also had a
positive influence on wrack accumulations (Table 5,
Fig. 5).

3.2.  Temporal surveys

Wrack was present at all sites in all
seasons (Fig. 6), but we found a signif-
icant difference in the amount of
wrack deposited on a monthly basis
(ANOVA; F5,174 = 4.07, p < 0.002).
These results were driven by differ-
ences in wrack accumulations be tween
July and the winter months (Tukey
multiple comparison of means; Feb-
ruary p < 0.03, November p < 0.009,
Fig. 6). There was a significant differ-
ence in wrack accumulation among
sites (ANOVA; F2,177 = 4.39, p < 0.02),
driven by a difference between North
Beach and West Beach (Tukey multi-
ple comparison of means p < 0.02). We
also found differences in species com-
position among months. Given the
modest ANOSIM R estimate (R = 0.23
or 0.24) and the low number of repli-
cates, we interpret these results con-
servatively and thus we consider there
to be only moderate overlap in species
composition for both month and site
(Fig. S10, ANOSIM; factor = month,
R = 0.24, p < 0.001; factor = site, R =

0.23, p < 0.05). North Beach had the most distinct bio-
mass and species composition for each survey, driv-
ing the variation among sites in the ANOSIM
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Variable                                       Estimate       SE         p

Sine aspect                                        0.21        0.29       0.5
Cosine aspect                                    0.39        0.31       0.2
Shoreline width                               0.46        0.21       0.03
Wave exposure: very protected       2.06        2.06       0.1
Wave exposure: protected               1.73        1.20       0.2
Wave exposure: semi-protected      0.88        1.24       0.5
Wave exposure: semi-exposed       2.73        1.26       0.03
Wave exposure: very exposed         0.30        1.65       0.9
Slope × Substrate: sand                 −0.89        0.72       0.2
Slope × Substrate: gravel               −0.19        0.96       0.9
Slope × Substrate: cobble              −0.70        0.49       0.2
Slope × Substrate: boulder            −1.02        0.64       0.1
Slope × Substrate: rock                    0.86        0.57       0.1

Table 5. Coefficient estimate, standard error (SE), and p-
value for each significant term in the top model (see Table 3)
predicting wrack biomass accumulation as determined by
the lowest AIC and highest AICw scores. Coefficient esti-
mate is standardized for continuous predictor variables
(donor habitat). The first (alphabetical) term for categorical
variables (wave exposure: exposed) is the reference/baseline
for that category. × denotes interaction terms. Significant 

terms are in bold text
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results. Species diversity was higher in the summer
(H’ = 2.02) than in the winter (H ’ = 1.64).

The top contributors to the dissimilarities among all
sites were N. luetkeana and Phyllospadix spp., (SIM-
PER; N. luetkeana average dissimilarity = 52%,
Phyllo spadix spp. = 36%). F. distichus was also a top
contributor in explaining North Beach’s dissimilari-
ties to West and Fourth Beaches (SIMPER; average
dissimilarity = 76%). N. luetkeana and Phyllospadix
spp. were again responsible for explaining dissimi-

larities among months (SIMPER; N. luetkeana aver-
age dissimilarity = 62%, Phyllospadix spp. = 38%). In
addition, F. distichus was a top contributor in July
(SIMPER; average dissimilarity = 44%), and P. cali-
fornica was a top contributor in February (SIMPER;
average dissimilarity = 71%). All SIMPER results for
the cumulative contribution of the most influential
species are summarized in Figs. S11 & S12.

4.  DISCUSSION

We conducted a multi-year survey of wrack de -
posits on 101 islands to explain patterns of wrack
presence and accumulation along shorelines. Of the
3 broad factors considered (extent of nearby donor
habitats, climate, and site characteristics) we found
strong evidence that wrack accumulations were pri-
marily driven by site characteristics and the donor
habitat area. Climate events (i.e. wind, tide, swell) had
little influence on wrack accumulation. However, the
climate data used for analysis were short term. Fur-
ther analysis of long-term climate data could provide
more evidence for an effect of climate on wrack accu-
mulations. Ocean currents, which we did not include
in our models, are another broad factor that may
affect wrack accumulations along this coastline, and
we recommend this as an avenue for future studies.
Finally, we also found that wrack depositions dif-
fered significantly temporally and compositionally
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(i.e. among species). As seen in other systems, these
results indicate that wrack subsidies are varied, pulsed
across both space and time, and have the potential to
impact terrestrial productivity and diversity (Spiller et
al. 2010, Filbee-Dexter et al. 2018, Fong & Fong 2018).

Wrack accumulations varied in biomass across the
study region, ranging from 0 to 6952 g m−2, with an
average of 698 g m−2 in accumulated biomass per
site. Previous research on sea wrack performed in
Barkley Sound recorded dry biomass accumulations
ranging from near 0 to almost 9 kg m−1 of shoreline
across 6 sites in 1 season (Orr et al. 2005). A similar
study in Oregon recorded wrack biomass accumula-
tions across 12 sites in 2 seasons and found a maxi-
mum of 100 g m−2 in the summer and a maximum of
115 g m−2 in the fall (Reimer 2014). Notably, our sur-
veys were the only surveys to record sites with zero
accumulations and also the only surveys to include
sites composed of rock or boulder substrates.

These results demonstrate that patterns in wrack
biomass accumulations vary across the Pacific North-
west, which is not surprising as these sites differ in
so many factors (i.e. physical characteristics, donor
habitat species and productivity, climate). These re-
sults highlight the importance in determining ac cu -
mulation rates specific to local geographies when con-
sidering wrack as a potential vector of marine nutrients.
Below, we discuss the local factors (shoreline substrate,
slope, wave exposure, width, and the extent of donor
habitat) that affect the ability of sea wrack to permeate
ecosystem boundaries on the Central Coast of BC.

4.1.  Spatial and temporal patterns of 
wrack accumulation

The presence of sea wrack was significantly lower
at sites with consolidated rocky substrates compared
to sites with sand, gravel, cobble, or boulder sub-
strates. Previous studies have confirmed that the vol-
ume of wrack along a shoreline decreases with a sub-
stratum’s pore size (Valiela & Rietsma 1995, Orr et al.
2005). Rock, having no pores and relatively high sur-
face friction, does not retain wrack detritus to the
same extent as sand, gravel, cobble, or boulder sub-
strates do. Like many of the world’s temperate coast-
lines, the Central Coast of BC has abundant rocky
shorelines (Alaback & Pojar 1997; Fig. 2). In fact,
nearly 75% of the sites surveyed were classified as
rock (Fig. S13). These small temperate islands with
rocky shores accumulate less wrack along their shore-
lines, and thus fewer marine resources are available
to terrestrial consumers. Therefore, in the context of

boundary dynamics, wrack nutrient subsidy in this
system relies on site permeability, which may signifi-
cantly decrease nutrient arrival and thus dampen the
expected relationship between island size and sub-
sidy-enhanced productivity.

Shorelines with steeper slopes (i.e. cliffs, Fig. 2)
were negatively correlated with wrack presence.
This result aligns with our predictions based on the
assumption that cliffs would provide gravity the
opportunity to pull wrack off of a shoreline and back
into the ocean. These findings are also consistent
with results of previous studies from Australia and
Spain, which reported negative associations between
slope and the rate of wrack accumulations (Oldham
et al. 2010, Barreiro et al. 2011). In contrast, Liebo -
witz et al. (2016) found that the biomass of shore-cast
Phyllo spadix spp. was positively correlated with
steeper slopes, and suggested that this genus (which
degrades slowly) can persist on steep shorelines
when it is cast high up on the beach during peak high
tides (Liebowitz et al. 2016). However, Liebowitz et
al. (2016), Oldham et al. (2010), and Barreiro et al.
(2011) all performed research on sandy beaches,
whereas our research was conducted on a variety of
shoreline substrates. We suggest that more buoyant
seaweeds (i.e. species with pneumatocysts) could be
retained on steep slopes when they are cast high
upon the shoreline, and when this process does
occur, it may permit a wrack subsidy to permeate
islands with shorelines comprised of cliffs as either
direct fertilization for shoreline flora or indirectly as
an invertebrate food source.

The extent of donor habitat was a consistent driver
of wrack presence, suggesting that the size and pro-
ductivity of eelgrass beds, kelp forests, and Fucus
distichus habitats are important factors when consid-
ering island archipelagos and convoluted shorelines,
as fetch is reduced in these contexts and wrack is
likely to wash ashore close to its site of detachment,
creating predictability in marine resource subsidy
availability. These results are consistent with similar
findings on the coast of California, which tested the
relationship between accumulated wrack biomass
and extent of donor habitat within a 1 km radius of a
site and found the extent of donor habitat to have a
positive influence on accumulated wrack biomass
(Liebowitz et al. 2016). However, because the coast of
California differs geomorphologically from the Cen-
tral Coast of BC, these results have different implica-
tions in the context of rocky islands and the presence
and extent of donor wrack species. Islands with per-
meable shorelines near large, productive donor habi-
tats may receive more consistent wrack input than
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islands further away from donor habitats. Alterna-
tively, impermeable islands with rock and cliff shore-
lines will not be able to accept wrack as a subsidy,
regardless of the size or productivity of a donor bed.
Additionally, the species composition of the habitat
could affect the consistency of the subsidy, as eel-
grass and Macrocystis pyrifera kelp are perennials
and may contribute wrack to shorelines year-round.
However, the kelp Nereocystis luetkeana is an
annual and may contribute the bulk of its biomass as
wrack to shorelines when it senesces during the fall/
winter storm season. Accordingly, the size, proximity,
and species composition of the donor habitat, as well
as the permeability of the recipient ecosystem,
should be considered when investigating ecosystem
connectivity and marine− terrestrial subsidy.

We found that shorelines with semi-exposed wave
exposures were significantly positively associated
with wrack biomass accumulations. This contrasts
with other research, which described how reduced
water flow in more protected wave exposures leads to
greater wrack accumulations (Howd 2006, Barreiro et
al. 2011). However, on the Central Coast, the moder-
ate disturbance of semi-exposed shorelines may cre-
ate more seaweed erosion and thus more floating
wrack. The width of a shoreline was also positively
associated with wrack accumulations. When consid-
ering these results together, we hypothesize that
wider shorelines create a conducive environment for
waves to push wrack accumulations on shore.

The processes that drive wrack species composi-
tion involve factors that operate at local scales. Al -
though the species comprising wrack accumulations
were ubiquitous across the study region, which indi-
cates no influence of a latitudinal gradient on species
composition, some species were present in higher
abundances in certain nodes (Pterygophora califor-
nica in McMullin node, Zostera marina in Goose
node, N. luetkeana in South Calvert node, and F. dis-
tichus in all nodes except McMullin). Abundances for
some species can be readily explained; there is a
large seagrass bed present in the Goose node, and
historical sea otter colonization mediated a recent
mass senescence of P. californica in the McMullin
node (Rechsteiner et al. 2018). Accordingly, rocky
intertidal shorelines (habitat for F. distichus) may be
present throughout the region in relatively similar
abundance. Our findings that indicated increased
donor habitat adjacent to a site led to the presence of
wrack on that same site’s shoreline, may be espe-
cially important when considering other factors. For
example, the physical characteristics of seaweed and
kelp species (such as pneumatocysts that create

buoyancy) may also influence the distribution pat-
tern of wrack species to shorelines, allowing some
species to travel further than others before being
washed ashore or cast higher up the beach (Salo -
mon sen et al. 1999, Hobday 2000, Flindt et al. 2007,
Oldham 2014, Liebowitz et al. 2016).

Our results indicate that wrack was consistently
present on shorelines throughout the year with
pulses in seasonal accumulations. Many seaweeds in
the northeast Pacific Ocean are annual species that
grow only in the spring and summer (Druehl & Clark-
ston 2016), which was consistent with our observa-
tions of a higher diversity of seaweed species on -
shore during these seasons. Accumulated biomass
was higher in the winter, but with fewer species. Of
the top biomass contributors, N. luetkeana displayed
patterns of seasonal wrack deposition. This is ex -
pected for seaweeds with annual life histories. N.
luetkeana grows from early spring to the fall (Mann
1973) and dislodgment due to winter storms likely
accounts for the increased biomass we recorded at
our sites. Species with perennial life histories are ex -
pected to display less pronounced seasonal signals
(Liebowitz et al. 2016); however, our results demon-
strated temporal dissimilarities for the perennials
Phyllo spadix spp., Pterygophora californica, and F.
distichus. This suggests that seasonality may not
affect patterns of wrack deposition and accumulation
on the Central Coast of BC. More frequent temporal
surveys could parse out whether seasonal patterns
are dominant factors in wrack accumulation.

4.2.  Implications for island nutrient subsidies

Our finding that shoreline substrate is a key factor
in facilitating the arrival of wrack on islands has
implications for the extent of island nutrient subsi-
dies. Globally, the main avenue thought to facilitate
the transfer of seaweed-derived nutrients to the ter-
restrial environment is the direct consumption of
wrack by a large community of semi-terrestrial and
terrestrial invertebrates (Lastra et al. 2008). Amphi -
pods are considered one of the most abundant and
ecologically important residents of beach ecosystems
(sand, gravel, or cobble substrates), but are not found
on rocky shorelines (Colombini & Chelazzi 2003, Pel-
letier et al. 2011). On islands composed only of rocky
shorelines, amphipods would not be able to facilitate
the transfer of seaweed-derived nutrients and per-
meability would be restricted at these sites.

On islands with sand, gravel, or cobble substrates
(capable of hosting amphipod populations), marine
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nutrient permeability to the islands’ interior would be
feasible. This vector of nutrient transfer would likely
be intensified during the summer months, which is
the active season for amphipods (Pelletier et al.
2011). Amphipods preferentially feed on aged wrack
over freshly deposited seaweed material, although
there is no clear amphipod preference for a particular
seaweed species (Pennings et al. 2000, Mews et al.
2006). Therefore, an amphipod’s variation in wrack
preferences enables a range of diet opportunities.
This is ideal during the summer months because
wrack accumulations are lower, but wrack species
diversity is higher. This adaptation allows amphipods
to exploit this marine resource and enables the sub-
sidy to permeate island shorelines that are composed
of sand, gravel, or cobble.

Permeability to subsidies is likely to depend on the
specific vector being considered. Other vectors of
marine− terrestrial subsidies (such as fog, sea spray,
humans, and river otters Lontra canadensis) fertilize
terrestrial soils with marine-derived nitrogen and
other nutrients (Ben-David et al. 1998, Whipkey et al.
2000, Ewing et al. 2009, Trant et al. 2016) and were
ubiquitous in the study region. Such vectors could
contribute to patterns of productivity in this area and
beyond. Fog, sea spray, humans, and river otters each
have distinct behaviors that would affect their ability
to permeate into island interiors and would likely be
less deflected by steep, rocky shorelines than sea
wrack is. However, the direct effects of these vectors
are limited to the edges of islands: trees and shrubs
can create a relatively impermeable boundary for fog
and sea spray (Ewing et al. 2009), historical humans
created ‘shell middens’ (large piles of bi-valve shells)
at habitation sites in bays and estuaries (Fisher et al.
2019), and river otters tend to create latrines and dens
near the terrestrial edges of coastlines (Ben-David et
al. 1998). Nevertheless, in contrast to sea wrack, com-
munities on rocky islands would still be able to accept
these vectors of nutrient flow. On steep, rocky islands
along the BC Central Coast (impermeable to sea
wrack penetration into the island interior), these 4
vectors of marine nutrient subsidies (fog, sea spray,
humans, and river otters) could affect terrestrial pro-
ductivity. The specific permeability characteristics of
a vector should be considered when evaluating the
flow of nutrients across ecosystem boundaries.

4.3.  Conclusions

Our research reveals that on BC’s Central Coast,
sea wrack is present on shorelines close to large

 do nor habitats and is not present on rocky or steep
shorelines. Additionally, wrack accumulates on wide,
semi-wave-exposed shorelines. Six dominant species
of seaweeds and seagrasses (F. distichus, M. pyrifera,
N. luetkeana, P. californica, Zostera marina, and
Phyllo spadix spp.) had a consistent presence on
shorelines throughout the year but displayed pulses
in biomass accumulations and species composition.
These results confirm the potential of sea wrack as a
vector of marine resources to islands with beach
shorelines. This marine−terrestrial nutrient subsidy
may affect the productivity of terrestrial consumers
on permeable islands, as other marine resources
have been shown to do in low-productivity terrestrial
environments (Polis & Hurd 1996, Stapp & Polis 2003,
Maron et al. 2006, Mellbrand et al. 2011, Adame et
al. 2015). Further research investigating terrestrial
species diversity and abundance at these sites can
de termine the effects, if any, sea wrack has on tem-
perate terrestrial communities in high productivity
environments.
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