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A B S T R A C T

Background: Despite extensive environmental standardization and the use of genetically and microbiologically
defined mice of similar age and sex, individuals of the same mouse inbred strain commonly differ in quantitative
traits. This is a major issue as it affects the quality of experimental results. Standard analysis practices summarize
numerical data by means and associated measures of dispersion, while individual values are ignored. Perhaps
taking individual values into account in statistical analysis may improve the quality of results.
New method: The present study re-inspected existing data on emotional reactivity profiles in 125 BALB/cJ and
129 mice, which displayed contrasting patterns of habituation and sensitization when repeatedly exposed to a
novel environment (modified Hole Board). Behaviors were re-analyzed on an individual level, using a multi-
variate approach, in order to explore whether this yielded new information regarding subtypes of response, and
their expression between and within strains.
Results: Clustering individual mice across multiple behavioral dimensions identified two response profiles: a
habituation and a sensitization cluster.
Comparison with existing method(s): These retrospect analyses identified habituation and sensitization profiles
that were similar to those observed in the original data but also yielded new information such as a more pro-
nounced sensitization response. Also, it allowed for the identification of individuals that deviated from the
predominant response profile within a strain.
Conclusions: The present approach allows for the behavioral characterization of experimental animals on an
individual level and as such provides a valuable contribution to existing approaches that take individual var-
iation into account in statistical analysis.

1. Introduction

Most animal studies for research and other scientific purposes use
laboratory mice; In the EU for example they account for more than half
of the vertebrate experimental animals (Dutta and Sengupta, 2016).
Furthermore, approximately 80 % of the (published) laboratory mouse
studies worldwide are conducted with inbred strains (Festing, 2014). A
major issue however is that, despite the use of genetically and micro-
biologically defined laboratory mice and extensive environmental
standardization, considerable differences in quantitative biological
traits – like behavior – between individual animals of the same inbred

strain, age and sex are still found (Loos et al., 2015; Jensen et al., 2016;
Einat et al., 2018). In fact, inbred strains, when compared to outbred
stocks, display similar trait variability (Tuttle et al., 2018). Apparently,
there is another component that contributes to the individual (beha-
vioral) phenotype in inbred mice, one that is not controlled for with
environmental and genotypic standardization (Beynen, 1991; Beynen
et al., 2001; Gärtner, 2012).

The exact constitution of this so-called ‘third component’ (Gärtner,
2012) remains unclear, although many sources of variation have been
identified, ranging from nuclear genetic, epigenetic, mitochondrial
genetic and environmental factors (e.g. Crabbe et al., 1999; Freund
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et al., 2013; Loos et al., 2015) to variation in the gut-microbiome
(Burokas et al., 2017; Sandhu et al., 2017). These findings indicate that
the existence of phenotypic difference between individuals of the same
inbred strain which are kept under standardized husbandry practices
and are subject to standardized experimental protocols, is the result of
complex interactions between the aforementioned sources of variation.
As a consequence, even individuals that share a genetic background
differ in their behavior or response to some extent (Koolhaas et al.,
2010).

A basic rule of good design of animal experiments is that all vari-
ables should be controlled except that due to the treatment (Festing,
2011; Festing et al., 2016). From a laboratory animal science perspec-
tive, this complex interaction between different sources of variation
makes it challenging to completely control or eliminate all sources of
inter-individual variation in animal experiments. An alternative ap-
proach might in turn be to improve control by taking individual phe-
notypic variation into account in experimental design and statistical
analysis, rather than dismissing it as noise (Bello and Renter, 2018;
Karp, 2018).

Standard analysis practices however summarize numerical data by
means and standard deviation, standard error of the mean, 95 % con-
fidence interval and/or medians with the interquartile range. By pre-
senting the data this way one focuses mainly on the means (or medians)
and the associated P values from the statistical analyses. Since statistical
significance represented by P values may not necessarily predicate
practical importance, some scientists also emphasize the importance of
reporting effects sizes (e.g. Labots et al., 2018; Wahlsten, 2011). In any
event, when describing data with means (or medians), measures of
dispersion, P values and effect sizes, individual values are ignored. If
one is able to behaviorally define experimental animals on an in-
dividual level and incorporate these findings into the study design and
statistical analyses, then this may contribute to the quality of any an-
imal experiment (i.e. not only to the quality of behavioral animal ex-
periments) (Garner, 2005). Further, it may lead to a more accurate
estimation of the optimal number of experimental units (often the ex-
perimental unit is a single animal) needed for such an experiment.

Incorporating individual variability may be of special importance in
preclinical animal models on behavioral disorders and psychopatholo-
gies (Armario and Nadal, 2013; Ebner and Singewald, 2017; Einat et al.,
2018). In human patients, the susceptibility to develop neuropsycho-
logical disorders, and the response to treatment is known to vary
greatly between individuals (Einat et al., 2018). As such, Einat et al.
(2018) for instance argued that animal models may become more re-
presentative and homologous when individual differences are taken
into account. Increased knowledge on individual variability of behavior
and/or response to treatment in model animals may improve under-
standing of differential vulnerability to development of disorders or
patterns in response to treatment, as well as the neurobiological sub-
strates that characterize these differential responses (Armario and
Nadal, 2013; Einat et al., 2018).

What type(s) of characteristics are addressed when defining in-
dividual animals however, naturally depends on the research objective.
To acquire more meaningful behavioral data several reports on the
application of multivariate techniques in the study of exploration and
anxiety-related behavior in rodents have been produced. Some of these
studies have utilized approaches based on the analysis of transition
matrices (e.g. Spruijt and Gispen, 1984; Casarrubea et al., 2009; Spruijt
et al., 2014) and T-pattern analysis (Magnusson, 2000; Casarrubea
et al., 2014, 2015). The work of these authors emphasizes that func-
tionality of individual behaviors can only be fully understood when
placed in the (temporal/sequential) context of other behaviors that are
displayed. However, the objective of these approaches is not so much
directly related to the assessment of behavior of individual animals, but
rather to interpreting and analyzing individual behavioral acts in the
context of other behaviors expressed by either the same animal or on
average by a group of animals. As such these particular multivariate

approaches lie beyond the scope of this study.
In other fields however, particularly behavioral ecology, an in-

creasing number of frameworks have been developed that consider
and/or facilitate the analysis of individual variation (e.g. Dingemanse
and Dochtermann, 2013; Araya-Ajoy et al., 2015; Allegue et al., 2017;
Bushby et al., 2018; Reed et al., 2019; Voelkl and Würbel, 2019). The
majority of these approaches rely on multilevel models (i.e. generalized
linear mixed models). In these models, different variance components
related to individual variation are summarized to single point data. For
example, they enable researchers to estimate which amount of variation
in the data is related to differences between individual animals (mea-
sured as the deviation of individual intercepts from the population in-
tercept, related to animal personality, Réale and Dingemanse 2012).

In some cases however, one may be interested in defining in-
dividuals on yet another characteristic: the shape or progression of
behavioral (or physiological) response curves (Galatzer-Levy et al.,
2013; Reed et al., 2019). When zooming in on individual response
curves, one might for example want to assess the extent to which groups
of individuals follow the same response over time in a population, and
delineate the characteristics of these individuals (Nagin, 1999; Genolini
et al., 2015; Galatzer-Levy et al., 2013). In those instances, the evolu-
tion of a response (e.g. the increase/decrease of a response) is of in-
terest, rather than the deviation from a population intercept.

This may be of interest in research on behavioral habituation and
sensitization in the context of preclinical anxiety research. These two
contrasting forms of non-associative learning are viewed as either the
decremental (habituation) or incremental (sensitization) change in be-
havioral response after repeated exposure to environmental stimuli,
provided these stimuli are not accompanied by biologically significant
consequences (Eisenstein and Eisenstein, 2006). In preclinical anxiety
research, successful habituation of anxiety related responses is con-
sidered an adaptive emotional response that allows individuals to adapt
to environmental challenges (Salomons et al., 2010b; Ohl et al., 2008).
In a series of mouse studies, Salomons, Boleij and colleagues assessed
whether the opposite of such a response (i.e. a sensitization of anxiety
responses) may then reflect a non-adaptive anxiety response, and - ul-
timately – whether this phenomenon may be employed as a symptom of
pathological anxiety in mouse models (Boleij et al., 2012; Salomons
et al., 2010a, b; Salomons et al., 2010c, 2013).

In these studies, (sub-)strains of BALB/c and 129 mice were beha-
viorally characterized by repeated exposure to the modified Hole Board
(mHB) test (Labots et al., 2015). The BALB/c strain is the most com-
monly used mouse inbred strain in animal experimentation (≈46 %;
Festing, 2014), whereas the 129 mouse was the most widely used strain
in gene targeting experiments (Cook et al., 2002). These strains show
distinct contrasting behaviors in tests of anxiety, and are therefore often
used in preclinical anxiety studies. In the aforementioned studies, mice
from the BALB/cJ strain were characterized by initial high levels of
anxiety-related behavior that decreased as trials progressed, while ex-
ploratory and locomotor behavior increased over time. This indicated
successful habituation to the behavioral test. In contrast, the profile of
mice from the 129P3/J strain was characterized by a lack of habitua-
tion as initial low levels of anxiety-like behavior increased as trials
progressed, while exploration and locomotor activity largely remained
stable over time. This indicated a sensitization response to the same
experimental set up.

These profiles were based on the (sub-)strain means and medians.
Retrospect analyses on these studies however, showed that variation in
anxiety-like responses within strains was quite substantial: it was not
unusual to find coefficients of variation over 100 % (exemplary vari-
able: percentage of time spent on board; Salomons et al., 2010a). Per-
haps the ‘third component’ played a role here as well.

In the present paper we therefore re-inspected the data of these
experiments by zooming in on response curves of individual mice, in-
stead of average strain responses. These response curves will be referred
to as trajectories from here on, as is common in longitudinal studies
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(Genolini et al., 2015). Our objective was to explore the data for sub-
groups of individual mice, regardless of strain, that displayed similar
trajectories across trials, and that consistently grouped together across
multiple behavioral dimensions: distinct types of behavioral response
profiles. To do this we used a k-means clustering procedure that was
specifically designed for grouping of multiple longitudinal response
trajectories, kml3d (Genolini et al., 2015). We asked whether this ap-
proach would yield new information regarding subtypes of behavioral
profiles, and how different profiles were divided across and within
strains.

In order to do this, we first summarized the behavioral variables.
Anxiety-related behavior is expressed by a combination of behavioral
dimensions, such as avoidance (Belzung and Griebel, 2001), risk as-
sessment (Rodgers and Dalvi, 1997), arousal (O’Leary et al., 2013), but
also locomotor activity and exploration; the latter acts as counterpart of
expressed anxiety (Ohl, 2003; Laarakker et al., 2008; Labots et al.,
2016). Moreover, previous research showed that behavioral variables
observed in the modified Hole Board can be summarized in five beha-
vioral dimensions: avoidance, risk assessment, arousal, locomotion and
exploration (Laarakker et al., 2008, 2011; Labots et al., 2018). It was
therefore considered desirable to use so-called composite variables that
represent these underlying dimensions rather than single behavioral
variables to classify habituation and sensitization patterns.

Hence, in order to assess whether the ‘third component’ may be
present in the habituation and sensitization responses of inbred mice,
the yielded composite variables were analyzed across experiments and
strains using the k-means clustering procedure by Genolini et al.
(2015). The number of different behavioral response profiles that were
displayed and how these profiles were expressed within and between
inbred strains of mice are described below.

2. Materials and methods

The data in the present paper combined data from five previously
published studies (Boleij et al., 2012; Salomons et al., 2010a, b;
Salomons et al., 2010c, 2013). The underlying animal experiments all
followed the same procedure with respect to animal handling, housing,
experimental protocol and ethical permission. These procedures are
described below. The experiments also differed in factors such as (sub-)
strain, sex, age at behavioral testing, experimenter, animal supplier or
housing location. Appendix Table A1 gives an overview of these factors
for each study.

2.1. Animals and housing

The experiments were performed on 125 naïve male and female
mice of two different mouse inbred strains: BALB/cJ (N=40; female
N=10) and 129P3/J (N=53, female N=10), and four other sub-
strains of the 129-family: 129S2/SvPasCrl (N= 8), 129S2/SvHsd
(N=8), 129×1/J (N=8) and 129P2/OlaHsd (N=8), all males. For
detailed information on stock numbers, supplier, age of testing and sex,
see appendix Table A1.

Experiments were conducted at three different locations (see ap-
pendix Table A1). In all locations similar housing conditions applied.
Animals were housed individually in Macrolon Type II (size
268×215×141mm, floor area 370 cm2) or Macrolon Type II L cages
(size: 365× 207×140mm, floor area 530 cm2, Techniplast, Milan,
Italy) with standard bedding material (autoclaved Aspen Chips, Abedd-
Dominik Mayr KEG, Köflach, Austria) and a tissue (KLEENEX® Facial
Tissue, Kimberley-Clark Professional BV, Ede, the Netherlands) and
cardboard shelter as enrichment. Food (CRM, Expanded, Special Diets
Services Witham, England) and water were available ad libitum.

All animals were kept in a laboratory animal housing room for a
habituation period of 17 days under a reversed 12 h/12 h light/dark
cycle (lights off at 6:00) and a radio played constantly as background
noise. The mice were handled three times a week during this period by

the person who conducted the experiment. Relative humidity was kept
at a constant level of 50 % (±5) with an average room temperature of
22⁰C (± 2) and a ventilation rate of 15–20 changes/hour.

2.2. Modified hole board

All mice were tested in the modified Hole Board (mHB), a test for
assessment of unconditioned behavior that combines characteristics of
an open field, a hole board and a light-dark box (Ohl et al., 2001). It is
aimed at analyzing a range of anxiety and activity related behaviors and
as such is suitable for a complete phenotyping of complex behavioral
constructs, such as behavioral habituation. At the same time, it over-
comes the disadvantages of a test battery, by reducing the number of
animals, and the time, used for testing. Further it circumvents the
possible effect of test order as well as the risk of that the experience of
one test carries over to another one (Ohl et al., 2001; Labots et al.,
2015). A drawback is that the behavior in the mHB is manually scored
for a certain period of time and manual scoring is more laborious
compared to an automated scoring system. In addition, automatic
scoring allows more data collection. Also, handling and possible influ-
ence of the experimenter weighs heavier on the manually scored be-
havioral outcome compared to an automated procedure.

The mHB paradigm has been described extensively elsewhere (see
Labots et al., 2015) and will only be briefly explained here. The ap-
paratus consists of a grey PVC opaque box (100× 50×50 cm) with a
board made of the same material (60×20×20 cm) functioning as an
unprotected area, as it is positioned in the center of box. The board
stacks 20 cylinders (diameter 15mm) in three lines (Fig. 1). The area
around the board is divided into 10 rectangles (20×15 cm) and 2
squares (20× 20 cm). In our experiments, this periphery was illumi-
nated with red light (1−5 lux) and functioned as the protected area. In
contrast, the central board was illuminated by an additional stage light
in order to increase the aversive nature of the central (unprotected)
area. Light intensity was either 50 lx or 120 lx, depending on the study
(see appendix Table A1).

2.3. Experimental protocol

Testing took place in the same room as where the animals were
housed, and test equipment was placed in the room prior to arrival of
the animals. Testing occurred between 09:00 and 13:00, during the
active phase of the animals. Experiments were conducted by four dif-
ferent experimenters, see appendix Table A1. Test procedure was the
same across experiments. All mice were tested individually for a total of
20 trials. Each trial lasted 5min, and mice were tested in a randomized
order for 5 consecutive days (4 trials/day). Prior to start of the trial, the
home cage was placed next to the mHB. Mice were picked up at the tail

Fig. 1. Schematic overview of the modified Hole Board.
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base, transferred from the home cage to the mHB and always placed in
the same corner, facing the central board. During the test, mice were
allowed to freely explore the mHB-set up. After each trial the mHB was
carefully cleaned with water and a damp towel. Behavior was scored
live by using the software Observer (Noldus Technology, Wageningen,
the Netherlands; for Observer versions per experiment see appendix
Table A1). Trials were simultaneously recorded on camera for raw data
storage.

2.4. Behavioral dimensions

Behavioral profiles were assessed by scoring behavioral variables
listed in appendix Table A2. These behaviors were scored as separate
variables during testing. However, as described in the introduction,
previous studies have shown that behaviors scored in the mHB can be
summarized in five behavioral dimensions: avoidance behavior, risk
assessment, arousal, exploration and locomotion (Laarakker et al.,
2008, 2011; Labots et al., 2018). In the present manuscript scores on
the original variables were therefore combined to these five underlying
behavioral dimensions using the procedure described below. All di-
mensions and corresponding behavioral variables are specified in ap-
pendix Table A2.

2.5. Integrated behavioral z-score calculation

Guilloux et al. (2011) proposed the method of integrated behavioral
z-scoring as a method for behavioral phenotyping in mice. In this ap-
proach behavioral variables that measure different aspects of behavior
are normalized and combined to a single score representing that un-
derlying behavioral dimension or motivational system (Labots et al.,
2018). Normalization is done by z-score transformation, which assesses
the amount of standard deviations each observation is above or below
the mean of a reference or control group (Guilloux et al., 2011). The
advantage of integrated behavioral z-scores is that they are not con-
strained by criteria that are demanded by other multivariate ap-
proaches like principal component/factor analysis (such a behavioral
variable to sample size ratio of at least1:3, Budaev, 2010).

A potential drawback of this approach is that the determination of
the reference or control group is not always straightforward, depending
on the study design. Control groups may not always be available, for
example in studies that directly compare behavior between two inbred
strains. This was the case in the experimental studies that were com-
bined for analysis in the present paper (Boleij et al. (2012); Salomons
et al., 2010a, b; Salomons et al., 2010c, 2013).

Also, a problem may occur when the control group used for the
calculation of the z-scores has a standard deviation of zero. Labots et al.
(2018) therefore suggested an improved calculation procedure, in
which the combined data of all experimental groups in a study is used
as a reference group. A standard deviation of zero in a pooled dataset
would imply that there is no variance in an entire study population for a
specific behavior, which is very unlikely to occur (and naturally war-
rants the question how useful a behavior would be for analysis).

Because our data indeed was compiled from studies that compared
behavior between different inbred strains, we used to the pooled data
(the combined data across trials of all experimental groups in all in-
cluded studies) as a reference group to normalize our variables to z-
scores. For each behavioral measure from appendix Table A2, z-scores
for individual animals were calculated using the formula below, which
indicates how many standard deviation (SD, σ) an observation (X) is
above or below the mean (μ) of the pooled data:

=z X µ

Although it is not common to treat discrete numerical data as
continuous, the means and SD for ‘total number-variables’ were also
calculated and subsequently z-scores were computed; i.e. these so-

called count based measures were treated as continuous data as sug-
gested by Fagerland et al. (2011). The computed z-scores for single
behavioral mHB measures were subsequently averaged within each
behavioral dimension. In this procedure, the directionality of z-scores
was adjusted so that increased score values reflected increased values
for that behavioral dimension. This is illustrated in the example below
for the behavioural dimension ‘Risk assessment’, which included the
variables ‘total number of stretched attends’, and ‘latency to the first
stretched attend’.

T = total number of stretched attends; L = latency until first
stretched attend; R = risk assessment

= = = +zr ; z ; ZT
X µ

L
X µ

R
Z ( Z )

2
T T

T
L L

L
T L

2.6. Statistical analyses

All analyses were conducted with R version 3.5.1 in R-Studio (R
Core Team, 2018). All Figures were created with GraphPad Prism
(GraphPad Prism version 7.04 for Windows, GraphPad Software, La
Jolla, California USA, www.graphpad.com).

2.6.1. Residuals for clustering: linear mixed models
The procedure described in Section 2.5 yielded five trajectories of

integrated behavioral z-scores for each individual mouse, one trajectory
per behavioral dimension. These five trajectories were subsequently fit
with generalized linear mixed models to control for potentially con-
founding factors. The resulting standardized Pearson residuals could
then be used for a clustering procedure.

Most of the potentially confounding factors were recoded into a
single categorical variable. As listed in appendix Table A1, the included
studies differed with respect to test location [3], experimenter [4], (sub-
)strain [6], age [2], light condition [2] and sex [2] (number of cate-
gories in brackets). The majority of these factors consisted of only a few
levels, causing risk for collinearity. We therefore summarized them in
the categorical variable ‘Group’, yielding 13 levels. Other included
explanatory variables were day of test to control for seasonal effects,
counting from the first day of the year a particular trial was run
(Ferguson and Maier, 2013) and test order (within a single test day) to
control for time of day effects (Chesler et al., 2002). The variable ‘trial’
was intentionally left out of the model because we wanted to maintain
this information in the residuals so that we could assess behavioral
responses of individual mice over time (trials).

Linear mixed effects models were run using the package ‘nlme’
(Pinheiro et al., 2018). All models included Group and day of test as
fixed predictors (without interaction). Individual intercepts (mouse ID)
as well as intercepts for time of day, nested within individual mice,
were included as random factors. Model assumptions were assessed
visually by inspecting the standardized residuals through QQ-plots,
histograms and residual plots (Sokal and Rohlf, 1995; Zuur et al.,
2009). The variable arousal was logarithmically transformed to achieve
normality of the residuals. Heteroscedasticity was avoided using the
‘varIdent’ variance structure transformation from the ‘nlme’ package
when needed. This particular transformation allowed different residual
spread for each level of the categorical variable ‘Group’ in our model
(Zuur et al., 2009), and was applied on all five dimensions.

2.6.2. Cluster analysis
The resulting standardized Pearson residual z-score trajectories

were subsequently analyzed with a k-means clustering procedure using
the package ‘kml3d’ (Genolini et al., 2015). The advantage of the
‘kml3d’ procedure is twofold: it allows for dependence between time
points (as is nearly always the case in longitudinal data) and it allows
for analysis of joint response trajectories: multiple continuous response
variables that were collected on the same instance (Genolini et al.,
2015). Our joint response trajectories consisted of the five behavioral
trajectories for each individual mouse. These were clustered
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simultaneously to explore the occurrence of homogeneous groups of
mice that follow the same response on all five behavioral dimensions.

Prior to analysis the gap statistic was applied to evaluate whether
the data was perhaps best represented by a single cluster, using the
package ‘clusGap’ (Tibshirani et al., 2002). This was not the case. The
gap statistic compares the within-cluster sum-of-squares to a null re-
ference distribution of the data, which is then equivalent to a single
cluster (Tibshirani et al., 2002), and as such gives an indication of
whether it is appropriate to partition the data into clusters. Using the
kml3d-algorithm, partitioning into k=2 to k=6 clusters was assessed
with the ‘nearlyAll’ configuration, using Euclidean distance as distance
measure and Copy Mean for monotone missing values for imputation of
missing values (see Genolini et al., 2015 for a detailed description of
these settings). The analysis compiled 1000 iterations for each k clusters
between 2 and 6, resulting in 5000 cluster solutions.

2.6.3. Cluster selection
The optimal partitioning of the clusters was selected using the ap-

proach of Clustering Validity Indices (CVI’s) as described by Kryszczuk
and Hurley (2010). CVI’s combine indices from multiple quality criteria
and as such form an effective strategy to optimize accuracy in cluster
number selection (Wahl et al., 2014). The selection criteria that were
used were Calinski-Harabasz, Ray-Turi and Davies-Bouldin (Genolini
et al., 2015). These three non-parametric criteria reflect the relative
compactness within clusters versus distance between clusters (Genolini
and Falissard, 2010). The higher the value for Calinski-Harabasz, the
more compact the clusters and the larger the differences between
clusters. Conversely, high values for Ray-Turi and Davies-Bouldin re-
flect less compactness within clusters and smaller distances between
clusters. To make the three criteria comparable, we used negative va-
lues for Ray-Turi and Davies-Bouldin, and criteria were normalized to
values between 0 and 1 according to the following formula (Wahl et al.,
2014):

=
Z

i x x
x min x

min( )
max ( ) ( )

i

The optimal number of clusters (k=2 to k=6 clusters) was se-
lected according to the procedure suggested by Wahl et al. (2014). First,
the optimal partition according to the Calinski-Harabasz criterium was
selected for each scenario of k =2 to k = 6 clusters. The arithmetic
mean of the three quality criteria (the fused CVI) on that partition was
then computed for each number of clusters. The cluster number with
the highest fused CVI was subsequently selected as the optimal cluster
number.

2.6.4. Cluster characterization
The obtained clusters were characterized by linear mixed models

that analyzed the difference between clusters in residual integrated
behavioral z-scores over trials. The main model for each behavioral
dimension included cluster, trial and their interaction as fixed pre-
dictors. Individual intercept (mouse ID) was included as random factor.
Individual slope (trial nested in mouse ID) was initially also included as
random factor, but was ultimately left out of the models as the corre-
lation between individual slopes and intercepts was near perfect (r< -
0.992 in all models), which may reflect overparameterization and result
in loss of power (Matuschek et al. 2017). Models were run with a
continuous autoregressive correlation structure (AR(1) process for a
continuous time covariate) and fit with restricted maximum likelihood.

Model assumptions were again assessed visually by inspecting the
standardized residuals through QQ-plots, histograms and residual plots.
A square root transformation was applied on the residual integrated z-
score for risk assessment to achieve normality of the residuals.
Heteroscedasticity was avoided using the ‘varIdent’ variance structure
transformation from the ‘nlme’ package when needed. The models for
the variables avoidance behavior, risk assessment and exploration in-
cluded a transformation that allowed differential residual spread

between clusters. The model for locomotion included a transformation
that allowed differential residual spread between trials.

Significant main and/or interaction effects were further broken
down by post hoc tests using the package ‘emmeans’, which enables
users to obtain least squares means for linear mixed models and com-
pute contrasts for post hoc assessment (Lenth, 2019).

To reduce the probability of a Type I error due to multiple com-
parisons, the α was adjusted using a Dunn-Šidák correction in all post
hoc tests. The α was computed using the following formula: α=1-
[1−0.05]1/λ, where λ = the number of times a group was used in a
comparison. For all five behavioral dimensions, general directionality
of the response curve for each cluster was assessed by pairwise com-
parisons of the estimated marginal means between trial 1 and trial 20
(the first and the last trial of testing, α=0.02532). In addition, dif-
ferences in onset levels of behavior between clusters were assessed by
post hoc comparisons of the estimated marginal means on trial 1
(α=0.05). For the behavioral dimensions risk assessment and arousal
additional post hoc tests were conducted to assess the differences in
(estimated marginal means) between clusters on each trial. For these
specific comparisons the α was set to 0.00256, again using the Dunn-
Šidák correction.

Main and interaction effects from the linear mixed models were
derived using conditional F-tests with corresponding P value
(α=0.05). All post hoc contrasts were summarized as the difference
between the two estimated marginal means and their corresponding
standard error, t statistic, and P values. In addition, Cohen’s d effect size
was reported to estimate the relative weight of post hoc comparisons.
Cohen’s d was computed from the value of the t test that resulted from
the pairwise comparisons, with the following formula, where t re-
presents the value of the t test between two clusters, and n1 and n2 the
respective sizes of each cluster (Rosenthal and Rosnow, 2008):

+t n n
sqrt df sqrt n n

( 1 2)
( )* ( 1 2)

The guidelines provided by Wahlsten (2011) were used to interpret
the absolute values of Cohen’s d (|d|). This extensive review of various
phenotypes suggested the following interpretation of effects for neu-
robehavioral mouse studies: small effect, |d|< 0.5; medium effect,
0.5< |d|< 1.0; large effect, 1.0< |d|< 1.5; very large effect,
|d|> 1.5.

Residual integrated behavioral z-scores for clusters on each di-
mension were summarized as means with 95 % confidence intervals in
Fig. 1. The differences between clusters in residual integrated beha-
vioral z-scores on trial 1 were graphed as means with 95 % confidence
intervals in Fig. 2.

2.6.5. Cluster stability
Stability of the clusters was assessed by a bootstrapping procedure

in which 200 random samples (of n= 125) were drawn from the da-
taset with replacement (meaning a particular individual could occur
multiple times in one sample). If clusters are stable, kml3d cluster
analyses on all 200 samples should reveal similar cluster structures
(Clatworthy et al., 2005). Similarity in cluster composition between the
bootstrapping samples and the originally obtained clusters was de-
termined by the Jaccard similarity index: For each individual mouse,
the number of times (out of 200 bootstrap samples) it belonged to the
same cluster as in the original cluster analysis was determined ac-
cording to the following formula: number of times in the same cluster/
total number of bootstrapping samples. The individual similarity indices
were subsequently averaged across mice to determine the overall Jac-
card similarity index for each cluster (Fig. 3).

2.7. Ethical note

All experimental protocols were approved by the Animal
Experiments Committee of the Academic Biomedical Center Utrecht,
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the Netherlands (for approval numbers see supplementary Table A1).
Decision for approval was based on the Dutch implementation of the EC
Directive 86/609/EEC (Directive for the Protection of Vertebrate Ani-
mals Used for Experimental and Other Scientific Purposes; Anonymous,
1986). Furthermore, the experiments followed ‘the Principles of La-
boratory Animal Care’ and refer to the ‘Guidelines for the Care and Use of
Mammals in Neuroscience and Behavioral Research’ (National Research
Council, 2003). Finally, all experiments were reported in accordance
with the ARRIVE-guidelines to the author’s best ability (http://www.
nc3rs.org.uk/arrive-guidelines; Kilkenny et al., 2010).

3. Results

3.1. Cluster analysis

The optimal partition of the data yielded two clusters. Selection of
the optimal partition was based on the CVI of three quality criteria:
Calinski-Harabasz, Ray-Turi and Davies-Bouldin (Results not shown).
Cluster size and distribution of (sub-) strains across clusters were pre-
sented in Table 1. The majority of mice grouped together in cluster A
(58.4 %). This cluster was composed of the majority of 129P3/J mice
(77.4 %) and all mice of the four other 129 sub-strains. The remaining
129P3/J mice formed cluster B, together with all BALB/cJ individuals.

3.2. Cluster characterization

To characterize the clusters on each behavioral dimension, linear
mixed models were conducted to analyze between-cluster differences
across trials. These results are presented for each dimension in sub-
headings 3.2.1−3.2.5. Section 3.2.6 provides a summary description of
the different response types in each cluster. A visual representation of
the behavioral response across trials in clusters A and B for each di-
mension is depicted in Fig. 2 (presented as mean residual integrated
behavioral z-scores with 95 % CI). Fig. 3 shows the mean levels of
behavior on the first trial for each cluster, again in each dimension
(summarized as estimated marginal means with 95 % CI).

3.2.1. (Residual integrated z-score for) Avoidance behavior
Avoidance behavior was predicted by trial (F(19, 2373)= 3.51, P <

0.0001), but this effect was confounded by a significant interaction
between cluster and trial (F(19, 2373)= 47.54, P < 0.0001), see Fig. 2.
Pairwise comparisons of the estimated marginal means between trial 1
and trial 20 were conducted separately for each cluster to characterize
the directionality of avoidance slopes. Mice in cluster A displayed a
significant increase in avoidance behavior (-2.020 ± 0.128, t(2337) =
-15.723, P<0.0001), while mice in cluster B significantly decreased
avoidance behavior between the first and the last trial (2.073 ± 0.144,
t(2337) = 14.364, P<0.0001), both with moderate effect sizes (d =

-0.650 and d = 0.594 respectively).
In addition to differences in the course of avoidance behavior over

trials, we assessed cluster differences in onset levels of avoidance be-
havior. Post hoc comparisons of the estimated marginal means revealed
statistical differences on trial 1 between clusters A and B
(-3.043 ± 0.137, t(123) = -22.275, P<0.0001) with a very large effect
size (d = -4.075), see Fig. 3.

The significant interaction between trial and cluster could thus be
explained by the contrasting patterns in avoidance behavior between
the clusters: mice in cluster A increased avoidance behavior while
cluster B decreased avoidance behavior as trials progressed.

3.2.2. (Residual integrated z-score for) Risk Assessment
Risk assessment was significantly predicted by trial (F(19,

2335)= 94.64, P < 0.0001), but this effect was confounded by a sig-
nificant interaction between cluster and trial (F(19, 2335)= 4.45, P=
0.0001), see Fig. 2. Post hoc comparisons of the estimated marginal
means between trial 1 and trial 20 indicated that in both cluster A
(0.561 ± 0.038, t(2335) = 14.807, P<0.0001, d = 0.613) and cluster
B (0.793 ± 0.031, t(2335) = 25.698, P<0.0001, d = 1.064) risk as-
sessment decreased significantly between the first and the last trial,
with medium and large effect sizes respectively.

However, pairwise comparisons of the estimated marginal means
between clusters on each of the 20 trials (adjusted α=0.00256)
showed that clusters only differed in risk assessment on trial 1
(-0.217 ± 0.035, t(123) = -6.272, P<0.0001, see Fig. 3) and trial 2
(-0.190 ± 0.034, t(123) = -5.509, P<0.0001), with a large effect size
for trial 1 (d = -1.131), and a moderate effect size for trial 2 (d =
-0.993). The significant interaction between cluster and trial thus ap-
peared to be predominantly driven by an effect of trial (a general de-
crease in risk assessment), and the fact mice in cluster B displayed
higher onset levels of risk assessment.

3.2.3. (Residual integrated z-score for) Arousal
The main model indicated a significant effect of trial (F(19,

2337)= 6.24, P < 0.0001), but this effect was confounded by a sig-
nificant interaction between cluster and trial (F(19, 2337)= 2.40, P=
0.0006), see Fig. 2. Visual inspection of the data (Fig. 2) however,
suggested that arousal curves were highly similar between clusters. Post
hoc tests comparing the estimated means between trials 1 and 20 in-
dicated that neither cluster displayed a significant change in arousal
across trials (A, -0.262 ± 0.157, t(2337) = -1.672, P = 0.0946, d =
-0.069; B, -0.371 ± 0.186, t(2337) = -2.000, P = 0.0456, d = -0.082).

The significant interaction between trial and cluster was thus fur-
ther explored by pairwise comparisons of the estimated marginal means
between clusters on each trial (adjusted α=0.00256). This revealed
that clusters only differed in estimated means of arousal on trial 4
(0.758 ± 0.172, t(123) = 4.411, P<0.0001), with a moderate effect
size (d=0.795). It was therefore concluded that the significant effects
in the main model may have been the result of minimal fluctuation in
arousal across trials in combination with potential over-parametriza-
tion of the model, rather than the reflection of meaningful differences
between clusters.

3.2.4. (Residual integrated z-score for) Exploration
Exploration was significantly predicted by trial (F(19, 2335)= 11.80,

P < 0.0001) but this effect was confounded by a significant interac-
tion between cluster and trial (F(19, 2335)= 29.96, P < 0.0001), see
Fig. 2. Post hoc comparisons of the estimated marginal means between
trials 1 and 20 showed that cluster A displayed a significant decrease in
exploration with a small effect size (0.839 ± 0.150, t(2335) = 5.577,
P<0.0001, d = 0.231) while cluster B significantly increased ex-
ploration as trials progressed (-2.216 ± 0.141, t(2335) = -15.699,
P<0.0001) with a moderate effect size (d = -0.650). Onset levels of
exploration were higher for cluster A than for cluster B, with a very
large effect size, as indicated by a post hoc test comparing mean

Table 1
Cluster size and distribution of (sub-) strains across clusters.

Cluster size (n) and proportion of total n per cluster

Cluster A Cluster B
n total= 125 n=73 (58.4%) n=52 (41.6%)
Distribution of strains within clusters

Cluster A Cluster B
(sub-) Strain n % n %
BALBc/J – – 40 76.9
129P3/J 41 56.2 12 23.1
129P2/OlaHsd 8 10.9 – –
129X1/J 8 10.9 – –
129S2/SvPasCrl 8 10.9 – –
129S2/SvHsd 8 10.9 – –

Top row: Cluster size (n) and proportion of total population per cluster. Bottom
rows: Distribution of (sub-) strains (n and proportion per strain) within each
cluster.

M.H. van der Goot, et al. Journal of Neuroscience Methods 343 (2020) 108810

6

http://www.nc3rs.org.uk/arrive-guidelines
http://www.nc3rs.org.uk/arrive-guidelines


exploration on trial 1 (2.194 ± 0.146, t(123) = 15.039 P<0.0001, d=
2.751), see Fig. 3.

These between cluster differences in onset levels and contrasting
curves of exploration across trials underlie the general interaction be-
tween trial and cluster: mice in cluster B increased exploratory behavior
as trials progressed while mice in cluster A decreased this type of be-
havior.

3.2.5. Residual integrated z-score for) locomotion
Locomotion was predicted by a significant effect of trial (F(19,

2336)= 7.52, P < 0.0001) and a significant interaction between
cluster and trial (F(19, 2336)= 10.64, P < 0.0001), see Fig. 2. Post hoc
comparisons of the estimated marginal means for each cluster between
trial 1 and trial 20 showed that mice in cluster A did not display a
change in locomotion (0.351 ± 0.195, t(2336) = 1.794, P = 0.0729),

Fig. 2. Residual integrated behavioral z-scores for mice in clusters A and B.
Results are presented as means with 95 % CI. Effects were significant in the linear mixed models (LMM) when P<0.05. T indicates a significant main effect of Trial;
CxT indicates a significant interaction between cluster and trial. * = Significant (P < 0.02532) post hoc comparison of the estimated marginal means between trial 1
and trial 20 for each cluster. ns= non-significant difference in post hoc comparison between trial 1 and trial 20. Note: Risk assessment scale on the y-axis differs from
the other four dimensions.

Fig. 3. Initial levels on al behavioral dimensions for clusters A and B (mean residual z-score on trial 1). Results are summarized as estimated marginal means with 95
% confidence intervals. * = Significant difference (P < 0.05) in post hoc comparison, ns= difference not significant.
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while mice in cluster B increased locomotion between the first and the
last trial (-2.432 ± 0.233, t(2336) = -10.438, P<0.0001), both with
small effect sizes (respectively d=0.074 and d = -0.432). Post hoc
comparisons of mean locomotion on trial 1 furthermore showed that
clusters differed in initial levels of locomotion (2.526 ± 0.253, t(123) =
9.993, P<0.0001), with a very large effect size (d=1.827), Fig. 3.
Thus, the significant interaction between cluster and trial appears
predominantly driven by the fact that mice in cluster B increased lo-
comotion, while mice in cluster A did not change locomotor activity as
trials progressed.

3.2.6. Summary characterization of clusters
The clusters were characterized by significantly contrasting patterns

in anxiety related behavior and activity patterns. Most notably, mice in
cluster A increased avoidance behavior, while avoidance decreased in
cluster B after repeated exposure to the test. In rodents, behavior dis-
played in a novel environment is often regarded as the net result of
conflict between the motivation to avoid a potentially harmful situation
and the drive to explore the novel stimulus (the approach/avoidance
conflict). In cluster B, a decrease in avoidance behavior was coupled
with an increase in exploration and locomotion. Initial inhibition of the
drive to explore was lifted once the situation was assessed to be safe,
resulting in habituation. The profile of cluster B was highly similar to
BALB/cJ response that was observed in original studies, which was
classified as habituating to the test. This cluster can thus be char-
acterized as ‘habituation profile’.

Mice in cluster A however, increased avoidance behavior, while
exploration decreased and locomotion remained unchanged across
trials. This profile was reminiscent of the sensitization response that
was observed in 129-mice in the original data, which reflected failure to
habituate to the test. This cluster can thus be classified as a ‘sensitiza-
tion profile’. The profile of cluster A also differed in an important as-
pect. In the original studies, sensitization was predominantly indicated
by an increase in avoidance behavior, but changes in exploration and
locomotion were less pronounced, while one would expect a decrease in
activity patterns according to the approach/avoidance conflict de-
scribed above. This (decrease) is indeed what was found for exploratory
behavior in cluster A. Zooming in on individual responses of 129-mice
thus revealed a more pronounced sensitization profile compared to the
original studies. Finally, risk assessment and arousal did not differ be-
tween the clusters.

3.3. Cluster stability

The 200 clustering solutions from the bootstrap samples appear
highly comparable to the original solution. Fig. 4 depicts the mean
trajectory of all 200 samples (black dashed line) against the trajectory
belonging to the original cluster (red, cluster A; blue, cluster B), as well
as the trajectories of each bootstrap sample (grey) for each cluster, on
each dimension. The average Jaccard similarity index for cluster A was
0.96, meaning that on average, an individual mouse belonged to cluster
A in 96 % of the bootstrap samples. The average Jaccard similarity
index for cluster B was 0.93. Fig. 4 depicts all individual Jaccard si-
milarity indices per cluster, their associated mean and sd. All in all,
these results indicate that the identified clusters are stable.

3.4. Relative weight of dimensions on clustering solution

The clusters described above were partitioned on all five behavioral
dimensions. However, differential cluster responses were more pro-
nounced on some dimensions than on others, with significant

differences between clusters in avoidance behavior, exploration and
locomotion, but largely similar patterns of arousal and risk assessment.
Therefore, we wanted to test whether some dimensions were perhaps
more ‘influential’ in the partitioning of response types than others. We
conducted an additional series of cluster analyses, all with four di-
mensions, each time leaving one of the five dimensions out. Pearson Chi
Square tests were used to assess whether the cluster size in these ana-
lyses deviated from the partitioning that was obtained with five di-
mensions. In addition to this, the number of individual mice that fell
into a different cluster after excluding a certain behavioral dimension
was recorded. Table 2 gives an overview of the cluster sizes for each of
the analyses. Although excluding a single dimension from the cluster
analysis did result in slight changes in cluster size and composition for
some dimensions, none of these changes were significantly different
from the original partitioning.

In an increasing order with respect to impact: Omitting arousal
yielded the exact same clusters (X2

(1) = 0.000, P= 1.000), with a
distribution of mice across clusters that was identical to the distribution
based on five dimensions (none of the mice fell in a different cluster).
After excluding risk assessment, one single mouse fell in another cluster
and cluster sizes were highly similar to the results based on five di-
mensions (X2

(1) = 0.017, P= 0.898), see Table 2. In the case of loco-
motion, five individuals ‘switched’ cluster, but cluster sizes were not
significantly different from the distribution based on five dimensions
(X2

(1) = 0.150, P= 0.699). Omitting avoidance or exploration resulted
in the most substantial change in cluster size and distribution of in-
dividuals: in both analyses, eight individuals fell in a different cluster
compared to the distribution based on five dimensions, but changes in
cluster size were not significant for avoidance behavior (X2

(1) = 0.261,
P= 0.610) or exploration (X2

(1) = 1.082, P= 0.298). These results
suggest that although none of the five dimensions dominated the par-
titioning of the clusters, some were more influential than others. Ex-
ploration and avoidance behavior exerted the most weight on parti-
tioning of the response types, while the contribution of arousal and risk
assessment was relatively small.

4. Discussion

The current paper explored inter-individual variability in habitua-
tion and sensitization responses in two mouse inbred strains. We re-
inspected data from a series of studies that measured impaired habi-
tuation to a novel environment as a possible indicator for non-adaptive,
i.e. pathological anxiety in BALB/cJ and various 129-substrains
(Salomons et al., 2010a, b; Salomons et al., 2010c, 2013; Boleij et al.,
2012).

In these mechanisms, the temporal progression of a response is es-
sential for assessing its adaptive quality. Also, anxiety related behavior
is typically expressed by a combination of behavioral dimensions
(Rodgers and Dalvi, 1997; Belzung and Griebel, 2001; Ohl, 2003;
O’Leary et al., 2013). Our objective therefore was to take each in-
dividual response trajectory into account in analysis, and assess whe-
ther clustering these individual trajectories would identify subgroups of
response that grouped together across multiple behavioral dimensions.
This resulted in two homogenous subgroups of mice, representing a
habituation and a sensitization response profile.

4.1. Benefits

Overall, the habituation and sensitization profiles that emerged
from these analyses mirrored the two contrasting phenotypes from that
were identified by comparing average strain responses in the original
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studies. Interestingly however, our analyses also yielded new informa-
tion.

First, it demonstrated that subtypes of response may occur within
the same inbred strain. 129 mice were found to display both habitua-
tion and sensitization profiles when exposed to a novel environment,
while BALB/cJ mice showed less within strain variation by consistently
displaying a habituation response. The prevalence of subtypes of
emotional response within the same inbred strain is not new. Within

strain variation in anxiety responses has been previously documented in
BALB/cJ and 129 J mice (Ducottet and Belzung, 2004; Cohen et al.
2008; Jakovcevski et al. 2008). Our results are partially consistent with
these findings, although we did not observe within strain variability in
BALB/cJ. Mouse inbred strains may however also differ in their phe-
notypic robustness, resulting in differences in within strain variability
between strains. In an extensive study comparing within strain varia-
bility in 8 isogenic strains, Loos et al. (2015) demonstrated that BALB/
cJ mice ranked low in within strain variability while at the same time,
129S1/Sv mice (not included here) showed reduced phenotypic ro-
bustness, leading to high within strain variability (Loos et al., 2015).
Our results suggest that this may also pertain to other 129-substrains
but the relatively small number of included datasets in our analyses
limits the possibility of drawing vast conclusions.

Second, the analyses showed that individual mice consistently
grouped together on multiple behavioral dimensions. This is in line
with other findings that anxiety related behaviors (such as behavioral
habituation) are expressed by multiple behavioral dimensions (Belzung
and Griebel, 2001; Ohl, 2003; O’Leary et al., 2013; Labots et al., 2016).
It also indirectly seems to support the notion that behavioral habitua-
tion and sensitization in rodents is a complex phenomenon that in-
volves sensory, cognitive and emotional processes (Bolivar, 2009; Boleij
et al., 2012).

Fig. 4. Mean trajectories (residual z-scores) of 200 bootstrap samples (grey) for each cluster, on each behavioral dimension. For visual comparison, the average
trajectory of all bootstrap samples is depicted (black dotted line) against the trajectory belonging to cluster A (red) or B (blue). These two trajectories are highly
similar across behavioral dimensions. Last panel: Jaccard similarity index for clusters A and B (individual points, and population mean and sd).

Table 2
Overview of number of mice per cluster when omitting one of the five beha-
vioral dimensions.

Cluster All dimensions Excluded

AVOa RAa ARa EXPLa LOCa

N n n n n n
A 73 69 74 73 81 76
B 52 56 51 52 44 49
Total 125 125 125 125 125 125

a AVO=avoidance behavior; RA= risk assessment; AR=arousal;
EXPL= exploration; LOC= locomotion.
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Third, zooming in on individual response curves yielded a more
pronounced sensitization response than was initially observed in the
original data. In our analyses, the sensitization profile was character-
ized by an increase in avoidance and a decrease in exploration, while in
the original studies, sensitization was primarily indicated by an in-
crease in avoidance behavior only and changes in activity parameters
were less pronounced. These three findings illustrate that an individual
based approach may complement analyses based on group effects.

As noted before, more detailed information about individual
variability and subtypes of response within the data may contribute to
the quality of animal experiments. Lonsdorf and Merz (2017) for ex-
ample argued that the existence of subpopulations within a study
sample displaying contrasting response patterns may mask the detec-
tion of significant differences on group level (i.e. a type II error).

Also, the identification of subgroups of individuals that show the
same response pattern may also prove of valuable interest within the
context of systematic heterogenization (Bodden et al., 2019). This
concept was advocated by Richter (2017) and entails the systematic
introduction of factors that affect variation in observed results as a
means to increase robustness of experimental findings. Although si-
mulation studies have indicated a promising effect on increasing re-
liability of results, the challenge remains to identify factors that affect
variation which are suitable (and workable) for systematic variation
within a single experiment (Richter, 2017; Bodden et al., 2019). Po-
tential factors that have been suggested are batch, experimenter and
testing time (Paylor, 2009; Richter, 2017; Bodden et al., 2019. Sys-
tematic variation of individual response profiles may prove another
suitable factor that could be varied across experimental groups.

From a translational perspective, the identification of sub-profiles of
anxiety related behavior in mouse models may help to gain better in-
sight into the underlying mechanisms responsible for differential vul-
nerability for anxiety disorders in humans (Einat et al., 2018; Stegman
et al. 2019). In a clinical situation, exposure to a similar condition may
result in development of affective disorders in some, while other people
are unaffected. Kazavchinsky et al. (2019) therefore argue that corre-
sponding animal models should attempt to explore similar patterns of
responding.

The multivariate, longitudinal based, clustering approach utilized in
this paper may also be of interested in other domains. The integration of
multiple measures as a means to assess individuality has not only been
advocated for emotional reactivity (Ramos and Mormède, 1998; Hager
et al., 2014), but also for other constructs such as coping style
(Koolhaas et al., 2010; Koolhaas and van Reenen, 2016), behavioral
syndromes (Bell, 2007) and temperament (Réale et al., 2007;
Finkemeijer et al., 2018). Koolhaas and van Reenen (2016) for example
proposed a 3-dimensionsal model using coping style, emotionality and
sociality to assess individual vulnerability to stress related diseases.
Similarly, Reále et al. (2007) emphasized the combined analysis of
traits to describe the full nature of temperament.

Multidimensionality is typically assessed by multivariate ap-
proaches such as principal components analysis (PCA) or factor ana-
lysis. When one studies traits that heavily rely on the temporal/long-
itudinal nature of response however, these approaches offer no avail. In
that light, the kml3d-clustering algorithm employed in the present
study constitutes a valuable addition to the available techniques.

4.2. Limitations

While the benefits of taking individual variation into account are
evident, the applied clustering approach from this paper also has its
drawbacks. The first limitation is inherent to clustering techniques in

general. These techniques are mainly exploratory and do not statisti-
cally infer the reality of existence of the clusters (Genolini et al., 2015).
In other words, there is no single reliable method to determine the
“true” number of clusters in a given dataset (Genolini et al., 2015;
Everitt et al. 2001). In our analyses we had no a priori assumptions
regarding the number of clusters as this was the first time the kml3d-
clustering approach was applied to habituation and sensitization re-
sponses. Therefore we used the method proposed by Kryszczuk and
Hurley (2010), and adjusted by Wahl et al. (2014), that combined three
commonly applied quality criteria to a single clustering validity index
(CVI) as a means to select the optimal partition. This method has been
proven a validated way to increase robustness and accuracy of cluster
number selection in comparison to a single quality criterion (Kryszczuk
and Hurley, 2010).

Secondly, although no single dimension was dominant in parti-
tioning of the clusters, some dimensions appeared more influential in
determination of response types than others (Table 2). Contrasts be-
tween clusters were most evident in avoidance behavior and explora-
tion, which can be interpreted by the interplay between avoidance and
exploratory behavior (the approach/avoidance conflict, Ohl, 2003).
Exploration is inhibited by anxiety, and as such represents an indirect
measure of anxiety (Ohl, 2003). When taking previous studies in the
mHB into account, it seems hardly surprising that these dimensions
constituted the most defining factors in partitioning of our clusters.
Avoidance behavior was the most distinguishing feature between ha-
bituation and sensitization in the original studies (Salomons et al.,
2010a, b; Salomons et al., 2010c, 2013; Boleij et al., 2012). Also, be-
haviors indicative of avoidance behavior and exploration formed the
two largest components in a principal component analysis (PCA) sum-
marizing behaviors measured in the mHB (explaining 36.7 % of the
total variance, Laarakker et al., 2008). In a later study by Labots et al.
(2016) the same mHB-based composite z-scores that were used in the
present analyses were found to correlate strongly with components that
were obtained in the PCA by Laarakker et al. (2008).

The impact of locomotion on partitioning of the clusters was lower
than for avoidance behavior and exploration. Like exploration, loco-
motor activity is not only associated with general activity levels but also
has a confounding effect on anxiety related behavior (O’Leary et al.,
2013). In fact, an alternative interpretation of anxiety related behavior
is that differences in (lack of) exploration of a specific area may just as
well be the result of differences in overall activity levels (Boleij et al.,
2012). In the context of anxiety studies, it is therefore important to
distinguish between horizontal (e.g. line crossings in the mHB) and
vertical activity (e.g. rearing behavior). In the present study this dis-
tinction was indeed included, with rearing behavior regarded an ex-
ploratory activity, while the dimension locomotion only included hor-
izontal activity.

Locomotor activity is also strongly strain-specific (O’Leary et al.,
2013) and some 129 strains are indeed known for their low levels of
locomotion and exploratory activity (Cook et al., 2002; Boleij et al.,
2012). A persisting high level of avoidance behavior was indeed com-
bined with low locomotor and explorative activity in two 129S2 strains
(Boleij et al., 2012), but not in the remainder (and majority) of the
included 129 strains. It thus seems unlikely that a potential con-
founding effect of locomotion was the reason for its lower impact in the
partitioning of the clusters.

Perhaps this lower impact may be better explained by the fact that
differences in locomotion between clusters were less pronounced over
trials (compared to avoidance behavior and exploration). Although the
analyses indicated that clusters differed significantly in locomotion (by
means of a significant interaction between cluster and trial), post hoc
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analyses revealed that this effect was predominantly driven by loco-
motion differences on the first 5 trials. On the remaining trials, loco-
motion was largely similar between clusters.

A similar explanation may account for the relatively low impact of
risk assessment. Inferential analysis of the clusters indicated that clus-
ters differed in display of risk assessment across trials, but post hoc in-
spection revealed that clusters only differed in initial levels of this be-
havior: mice in cluster A showed lower levels of risk assessment in the
first two trials than mice in cluster B. Finally, the absence of dis-
criminative weight for arousal was hardly surprising as neither cluster
displayed a change in arousal across trials and clusters did not sig-
nificantly differ between one another.

All in all, this illustrates a potential pitfall of the utilized clustering
approach. The fact that risk assessment, arousal and locomotion exerted
a smaller discriminative effect could also imply that more subtle effects
are conflated when pooling all scored behaviors in a single analysis.
Genolini et al. (2015) addressed this point by stating that the relative
weight of variables can be of issue when partitioning joint trajectories.
They relate this matter however to variables that are measured on
different scales, and provide a function to standardize the variables in
their algorithm to overcome this issue. As our data was already sum-
marized in composite z-scores this could not have been the issue here. If
anything, this indicates that one should be considerate of which vari-
ables/dimensions are included when clustering joint trajectories. When
the goal is to identify individuality in behaviors that are expressed in
more low frequencies or which are very strain/species dependent per-
haps a univariate cluster analysis is more desirable.

Also, a relatively small portion of the mice was female (BALB/cJ,
n=10; 129P3/J, n=10; Salomons et al., 2010a). Female mice are
traditionally underrepresented in preclinical research, mainly because
of the assumption that that females show more variability in response
due to their estrous cycle (Mogil and Chanda, 2005; Prendergast et al.,
2014). In an extensive review comparing variability between male and
female mice however, Prendergast et al. (2014) found that females are
no more variable than males. In the same fashion, several studies found
that females tested at random points in their estrous cycle do not differ
in variability from males (Mogil and Chanda, 2005; Laarakker et al.,
2011). The present individual-based analyses extend these results, al-
though the small sample size makes it difficult to draw vast conclusions.
BALB/cJ females all displayed a habituation response, in agreement
with all BALB/cJ males. Females of the 129P3/J showed even less
variability in response than males, as all females displayed a sensiti-
zation response (cluster A) while 22.6 % (n=12) of the 129P3/J males
deviated from the response that was displayed by the majority of 129-
mice and grouped together in cluster B.

Incorporating sex as a discerning factor in rodent models of psy-
chopathologies has become increasingly advocated in the last decade
(Kokras and Dalla, 2014; Prendergast et al., 2014). Incorporating fe-
male findings preclinical anxiety research is especially relevant as an-
xiety disorders are more prevalent in women then in men (Zender and
Olshansky, 2009) and factors such as clinical course and treatment
response are known to differ between sexes (Donner and Lowry, 2013).
To our knowledge however, only a few studies (e.g. Pitychoutis et al.,
2011; Carreira et al., 2017; Kazavchinsky et al., 2019) have directly
addressed sex differences in individual variability in rodent models.
Further assessment of individual response profiles between and within
sexes may provide additional insight to mechanisms underlying sexual
dimorphism in vulnerability and response to treatment in human pa-
tients (Pitychoutis et al., 2011).

The last issue concerns the fact that the dataset used in these ana-
lyses was compiled of 7 different mHB-experiments (appendix Table

A1). These studies were combined because clustering approaches re-
quire a substantial sample size to detect meaningful clusters (Dolnicar
et al., 2016). These studies however, have been conducted over a time
span of 4 years (2006–2010) and vary in factors that are known to
affect variability between experiments, such as test location, experi-
menter, time of year etcetera (Crabbe et al., 1999; Garner, 2005). At
this point it is unclear to what extent these factors accounted for (part
of) the variation that resulted in the partitioning of the clusters. Al-
though the bootstrapping procedure indicated that these clusters were
stable (Fig. 4), we believe that further validation of the obtained results
is necessary in order to assess whether the identified variation in re-
sponse profiles is robust and exemplary for BALB/c and 129-mice in
general. This variation should ideally be empirically addressed in a
study that is specifically designed for such purpose (i.e. in a single ex-
periment and with a sufficient sample size).

5. Conclusions

For now, the present paper showed that re-analyzing habituation
and sensitization responses on an individual level yields distinct groups
of individuals that group together on multiple behavioral dimensions.
The combined analysis of multiple dimensions thus allows for a full
description of differential profiles of emotional response types. It also
yielded new, more detailed information on the characteristics of these
response types, and allowed for the identification of individuals that
may deviate from their strain specific response. In that respect, the
approach of quantifying individual response trajectories and assessing
the presence of groups of animals that show the same phenotype across
behavioral dimensions presents an additional avenue to the GLMM-
based approaches already available in the literature on capturing in-
dividual variation in analysis. To what extent the observed response
types are robust, and whether taking these differences into account
affects reliability of results remains to be tested.
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