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A B S T R A C T

Canopy nitrogen (N) influences carbon (C) uptake by vegetation through its important role in photosynthetic
enzymes. Global Vegetation Models (GVMs) predict C assimilation, but are limited by a lack spatial canopy N
input. Mapping canopy N has been done in various ecosystems using remote sensing (RS) products, but has rarely
considered environmental variables as additional predictors. Our research objective was to estimate spatial pat-
terns of canopy N in European forests and to investigate the degree to which including environmental variables
among the predictors would improve the models compared to using remotely sensed products alone. The en-
vironmental variables included were climate, soil properties, altitude, N deposition and land cover, while the
remote sensing products were vegetation indices and NIR reflectance from MODIS and MERIS sensors, the
MOD13Q1 and MTCI products, respectively. The results showed that canopy N could be estimated both within and
among forest types using the random forests technique and calibration data from ICP Forests with good accuracy
(r2 = 0.62, RRMSE = 0.18). The predicted spatial pattern shows higher canopy N in mid-western Europe and
relatively lower values in both southern and northern Europe. For all subgroups tested (All plots, Evergreen
Needleleaf Forest (ENF) plots and Deciduous Broadleaf Forest (DBF) plots), including environmental variables
improved the predictions. Including environmental variables was especially important for the DBF plots, as the
prediction model based on remotely sensed data products predicted canopy N with the lowest accuracy.

1. Introduction

In recent years, mapping canopy nitrogen (N), defined here as the N
concentration in plant foliage (g N / 100 g dry matter, %N), has been
studied at different scales and in a variety of natural environments (Martin
et al., 2008; Ollinger et al., 2008; Ramoelo et al., 2012; Wang et al., 2016).
This interest in canopy N can be attributed to the role N plays in physio-
logical and ecosystem processes. N is an essential nutrient for plant growth
(Zhao and Zeng, 2009). Leaf nitrogen concentration is linked to several leaf
traits associated with plant photosynthesis (Hikosaka, 2004), i.e. photo-
synthetic capacity (Evans, 1989), light use efficiency (Kergoat et al., 2008),
specific leaf area and leaf life span (Reich et al., 1999), as shown in the leaf
economic spectrum (Wright et al., 2005; Wright et al., 2004) as well as
whole-ecosystem net primary productivity (Reich, 2012).

Global vegetation models (GVMs) are designed to simulate eco-
system functioning and carbon (C) assimilation by terrestrial

ecosystems. Several DGVMs explicitly include a representation of the N
cycle, which allows them to analyze the influence of the N cycle on the
terrestrial carbons sink (Xu-Ri and Prentice, 2008). Spatially explicit
data about the N cycle are needed to validate these models. Canopy N
mapping through remote sensing could be useful for this purpose.

Mapping canopy N using remote sensing evolved from benchtop
studies aiming to identify specific wavelengths related to leaf N con-
centration using spectroradiometers (Kumar et al., 2006). The red-edge
and near infra-red (NIR) have since then been identified as key spectral
regions for canopy N estimation (Clevers and Gitelson, 2013; Li et al.,
2014; Ollinger et al., 2008). The role of the red-edge region, located
between 680 and 750 nm (Horler et al., 1983), for canopy N estimation
is based on the link between foliar N and chlorophyll through the ob-
served correlation between the red-edge region and leaf chlorophyll
content (Clevers and Gitelson, 2013; Homolová et al., 2013; Horler
et al., 1983; Kokaly et al., 2009; Schlemmer et al., 2013). The NIR
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spectral region was also identified to correlate with canopy N (Ollinger
et al., 2008; Wang et al., 2016). This was observed in temperate and
boreal North American forests where canopy N was correlated to both
the NIR spectral region as well as NIR-based vegetation indices, in-
cluding NDVI and EVI (Lepine et al., 2016; Ollinger et al., 2008). Si-
milar relationships were also observed in a mixed European temperate
forest (Wang et al., 2016). Although the exact mechanism behind the
relationship between canopy N and the NIR reflectance is still unclear,
it likely stems from associations between canopy N and the structural
properties influencing the NIR scattering .

Among the existing techniques employed for canopy N mapping,
creating and using vegetation indices (VIs) is a method that relies on a
combination of several spectral regions or bands. Initially developed for
crops and local scale applications (Chen et al., 2010; Clevers and
Gitelson, 2013; Hansen and Schjoerring, 2003; Li et al., 2014; Mutanga
et al., 2004; Schlemmer et al., 2013; Serrano et al., 2002; Tian et al.,
2011), red-edge and, to a lesser extent, NIR-based VIs have been used
for canopy N estimation at larger scales in various ecosystems. Several
studies focused on grasslands and forest at local scale (Ling et al., 2014;
Mirik et al., 2005; Wang et al., 2016) while other studies focused on
regional areas such as savannah (Ramoelo et al., 2012) and Medi-
terranean forests (Loozen et al., 2018).

More recently, environmental variables were used together with
remote sensing products to predict canopy N. This approach was sug-
gested by McNeil et al. (2012) who observed an influence of N de-
position on the spatial variability of leaf N concentration. Including
environmental variables to predict canopy N is thus based on the fact
that foliage biochemical concentration is influenced by several en-
vironmental factors. In particular, canopy N has been documented to be
influenced by climate in Mediterranean forests (Sardans et al., 2011), in
Europe (Sardans et al., 2015) and at the global scale (Reich and
Oleksyn, 2004). Similarly, N deposition affects canopy N (McNeil et al.,
2007, 2012; Sardans et al., 2016b; Sardans et al., 2015) as does plant
functional type (PFT) (Han et al., 2011; Sardans et al., 2016a; Sardans
et al., 2015). Soil properties, i.e. soil pH and nutrients, were also found
to correlate with canopy N (Han et al., 2011). This approach, i.e. in-
cluding environmental to predict canopy N using remote sensing, was
implemented in a study mapping canopy N in savannah grass using red
edge VIs as well as several environmental variables: soil, climate,
geology and altitude (Ramoelo et al., 2012). In a recent study, Moreno-
Martínez et al. (2018) used the random forests algorithm to map canopy
N at global scale for several PFTs. As predictor variables, they used both
bands and VI products from the MODIS sensor as well as environmental
variables, i.e. bioclimatic variables, surface temperature and elevation.

The random forests algorithm used by Moreno-Martínez et al.
(2018), is a machine learning technique based on regression trees
which allows to model nonlinear relationships using several types of
explanatory variables. It was found to be among the best techniques to
predict foliar traits (Moreno-Martínez et al., 2018). Random forests
have mainly been implemented in grasslands, at local (Adjorlolo et al.,
2014; Mutanga et al., 2015) and regional scales (Ramoelo et al., 2015),
but also in a coffee plantation (Chemura et al., 2018) and the miombo
woodlands (Mutowo et al., 2018). These studies included either all
reflectance bands available or several VIs as predictor variables for
canopy N.

In this context, although several studies attempted to develop a
methodology to map canopy N mapping over large spatial extents
(Lepine et al., 2016; Martin et al., 2008; Moreno-Martínez et al., 2018),
no study so far investigated the feasibility of mapping the spatial pat-
terns of canopy N in European forests. In this study, our research ob-
jective was (i) to predict canopy N and its spatial pattern over European
forests and (ii) to test whether including environmental variables as
predictors improves canopy N predictions compared to approaches that
rely on remotely sensed data alone. To do so, we mapped canopy N in
European forests using the canopy N data from the ICP network as
calibration data. We related canopy N plot data to the NDVI, EVI and

NIR obtained from the MODIS MOD13Q1 product and the MTCI from
the MERIS sensor, and environmental variables. The environmental
variables included were elevation, climate, soil properties, N deposition
and land-cover. We used the random forests machine learning tech-
nique to relate canopy N to the predictor variables. To evaluate the
influence of including environmental variables on the results, we
evaluated nine different random forests model settings: models using all
predictor variables (All pred), using only remote sensing variables (RS
only), and using only environmental variables (Env only). Each model
was parameterized on three subgroups: all available plots (All plots),
only Evergreen Needleleaf Forest (ENF) plots and only Deciduous
Broadleaf Forest (DBF) plots. Including these three subgroups provided
insights about the feasibility of mapping canopy N at European scale on
all available plots, ENF plots and DBF plots. The results of the models
were evaluated on each subgroup separately.

2. Material and methods

2.1. Canopy N data

2.1.1. ICP Forests
Canopy N data used in this analysis were obtained from the ICP

Forests program (International Co –operative Program on Assessment
and Monitoring of Air Pollution Effects on Forests, www.icp-forests.
net). ICP Forests is a European biomonitoring network of forest con-
ditions. The intensive monitoring program (level II network) includes
more than 800 permanent forest plots sampled regularly across
European countries. The forest plots are in homogeneous forest sites
selected such that the diversity in European forests is represented. The
forest plots have a minimum size of 0.25 ha, which corresponds to 56 m
diameter for a circular plot (Ferreti et al., 2017). The foliar chemistry
survey, including canopy N measurements, has been repeated every two
years. The plots were sampled following a standard and consistent
sampling design. Minimum five trees of each species belonging to the
dominant class were selected. The sampling was repeated on the same
sampled trees over the years. The leaves or needles were collected from
the upper third part of the crown. If several species composed the
dominant forest class, the foliar chemistry analysis was done separately
for each species. Deciduous species plots were sampled during the
second half of the growing season, before the onset of autumn, while
evergreen plots were sampled during winter months, in the dormancy
period. Quality control of the foliar concentration measurement was
ensured by means of regular interlaboratory comparisons (Rautio et al.,
2016).

2.1.2. Canopy N data analysis
Annual plot canopy N measurements data were obtained from the

ICP Forests website for the period 1990–2014. Missing and duplicate
entries as well as rare tree species, i.e. species that were sampled in less
than six plot measurements, were excluded from the analysis. Canopy N
outlier values, defined as those that were outside of the species-specific
5–95% percentile, were also removed from the dataset. 5207 annual
plot measurements were left for analysis. Canopy N annual plot mea-
surements were averaged by plot over all the sampling years to produce
long-term averages of plot canopy N. This represented 818 plots, for
which we obtained a long-term average canopy N value. Long-term
averages canopy N will be called canopy N in the rest of the article.
Plots were labelled according to their PFT. Plots with trees belonging to
different PFTs were labelled as mixed PFT. Descriptive statistics of the
canopy N data were performed.

2.2. Environmental variables

We chose to include as predictor variables the following environ-
mental variables for their known influences on the N cycle and eco-
system properties in general.
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2.2.1. Bioclimatic variables
Climate was found to be related to canopy N (Reich and Oleksyn,

2004; Sardans et al., 2015; Sardans et al., 2011). Bioclimatic variables
from the WorldClim2 dataset (Fick and Hijmans, 2017) were used. The
bioclimatic variables were computed from monthly temperature and
precipitation over the period 1972–2000. The bioclimatic variables
consist in annual mean, seasonality, minimum or maximum values. The
complete list of bioclimatic variables (19) included in the analysis is
presented in Table 1. The initial spatial resolution was 1 km.

2.2.2. Altitude
We have decided to include elevation as a predictor variable be-

cause of both the correlation found between canopy N and temperature
at global scale (Reich and Oleksyn, 2004) and the relationship between
altitude and temperature. The digital elevation model over Europe (EU-
DEM) was used for altitude data (European Environment Agency,
2013). The EU-DEM is a digital surface model based on both SRTM and
ASTER GDEM as source data. The EU-DEM was produced using Co-
pernicus data. The EU-DEM was obtained from the European Environ-
mental agency website for the extent of Europe. The original spatial
resolution was 30 m.

2.2.3. Soil properties
We chose to include soil properties as predictor variables because

soil is an important component of the ecosystem that influences vege-
tation. More specifically, canopy N has been shown to be correlated to
soil pH and soil mineral content (Han et al., 2011). Soil property maps
were obtained from Soilgrids250m Global Soil Information (Hengl
et al., 2017). The Soilgrids250m soil properties maps were predicted
from a large collection of soil profile samples and globally available
remote sensing products using machine learning prediction techniques.
The list of Soilgrids250m variables included in this analysis (e.g. soil
pH, soil cation exchange capacity, CEC, soil sand, clay and silt content,
soil depth) is presented in Table 1. The original spatial resolution was
250 m.

2.2.4. N deposition
Canopy N has been found to be correlated with N deposition in

various ecosystems including in Pinus sylvestris forests and mixed
European forests (McNeil et al., 2007, 2012; Sardans et al., 2016b;
Sardans et al., 2015). N deposition was included as predictor variable.
The N deposition maps used in this analysis were aggregated from three
atmospheric chemistry models (GISS-E2-R, CCSM-CAM3.5 and GFDL-
AM3, Lamarque et al. (2013a)) within the Atmospheric Chemistry and
Climate Model Intercomparison Project (ACCMIP, Lamarque et al.
(2013b)). The maps were obtained from the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP) website (ISIMIP, 2019). We
used reduced (NHx), oxidized (NOy) and total N deposition maps for
the year 2006. The total N deposition was calculated as the sum of
oxidized and reduced N depositions. The initial spatial resolution was
0.5 × 0.5 decimal degrees or approximately 50 km.

2.2.5. Land cover
We included the land cover as predictor variable in this analysis

because the plant functional type has been shown to be related to leaf N
(Kattge et al., 2011; Sardans et al., 2016a; Sardans et al., 2015). We
used the land cover (LC) map from the ESA climate change initiative
(CCI) over the epoch 2008–2012 (v.1.6.1, Defourny et al. (2016)).
Following the UN land cover classification system, the land cover in-
cludes 22 land cover classes, which are compatible with the classifi-
cation used in GVMs. We chose the ESA CCI LC from the epoch
2008–2012 because it is the period with the highest number of annual
plot canopy N measurements. The LC spatial resolution was 300 m.

2.3. Remote sensing variables

2.3.1. MOD13Q1 product
MODIS data included in this analysis were NDVI and EVI VIs as well

as NIR reflectance from the MOD13Q1 product (Didan, 2015). We
chose to include these remote sensing products because the relationship
between canopy N and NIR, either as a stand-alone reflectance product
or included in the calculation of the NDVI and EVI, is well documented
(Chemura et al., 2018; Mutowo et al., 2018; Ollinger et al., 2008). The
MOD13Q1 product is available globally for every 16 days period at
250 m spatial resolution. One MODIS image for each 16 days period
between the 1st January 2002 and the 31st December 2014 was ob-
tained for each product considered (NIR, NDVI and EVI) as well as for
the pixel reliability quality layer (QA). The MODIS images were
downloaded from the AppEEARS website (AppEEARS Team, 2019) for
the extent of Europe.

2.3.2. MTCI product
The MTCI was originally developed to monitor chlorophyll content

in vegetation (Dash and Curran, 2004). It has been related to canopy N
in various types of ecosystem and for various spatial extents, from local
to regional studies (Cho et al., 2013; Loozen et al., 2018; Ramoelo et al.,
2012; Tian et al., 2011). MTCI is a red-edge based VI that is computed
using three MERIS sensor's reflectance bands located near the red-edge
region (Eq. 1).

= =MTCI R R
R R

R R
R R

band band

band band

10 9

9 8

753.75 708.75

708.75 681.25 (1)

The MTCI level 3 product is available almost globally as a monthly
average at 1 km spatial resolution. The original reflectance data were
provided by the European Space agency and were processed by Airbus
Defense and space. The MTCI imagery is distributed by the Natural
Environment Research Council (NERC) Earth Observation Data Centre
(NEODC, 2015). One MTCI image was downloaded for the extent of
Europe for each month between June 2002 and December 2011, except
for October 2003, as no valid product was available.

2.4. Data preprocessing

Both MODIS and MTCI imagery were averaged by month to produce
12 long-term monthly averaged images for each remote sensing product
considered. Before averaging, pixel-based quality information from the
QA layers were applied on MODIS images. All pixels for which the
quality value was not labelled as “good” were excluded from the
computation of the long-term average. While there is no quality layer
available for MTCI imagery, MTCI values lower than 1 are not valid. We
ensured that no pixel with invalid values were included in the long-
term MTCI monthly averages. However, by doing so, virtually no MTCI
pixel were excluded from the calculation. The obtained long-term
monthly averages of the MODIS products in January, February and
December as well as the MTCI product in January and December con-
tained a high number of pixels with missing values. These long-term
monthly averages were excluded from the analysis.

Among the 22 LC classes initially present in the CCI LC variable,
some were rarely represented in our study area. We grouped together
similar LC classes and obtained 15 LC classes. Each of the obtained LC
class was converted to a binary layer, in which the pixel values corre-
sponded to the presence or absence of the specified LC class. All of the
binary layers obtained were used as variables in the analysis.

All the predictor variables layers, including MODIS and MTCI long-
term monthly averages, were resampled to a common grid and spatial
resolution of 300 m using the bilinear interpolation of the resample
function of the raster package in the R environment (Hijmans, 2018; R
Core Team, 2019).
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2.5. Random forests

Random forests is a machine learning method that is built on the
classification and regression trees (CART) with the ensemble method. It
was developed by Breiman (2001) and has been applied to map canopy
N using VIs and other remote sensing products at different scales and in
different ecosystems (Chemura et al., 2018; Moreno-Martínez et al.,
2018; Mutowo et al., 2018; Ramoelo et al., 2015).

Random forests avoids overfitting by randomly sampling the pre-
dictor space. It is can model non-linear relationships without being
constrained by the assumptions of the variable distributions and de-
pendency. In a recent study, random forests was also found to give
better leaf trait predictions compared to regularized linear regression,
neural networks and kernel methods (Moreno-Martínez et al., 2018).

Random forests works by training many regression trees and re-
porting the mean response over all the trees. We implemented the
random forests analysis in the R environment (R Core Team, 2019)
using the randomForest package (Liaw and Wiener, 2002). The random
forests algorithm is governed by three parameters, the number of trees
(ntree), the number of sampled variables (mtry) and the minimum
number of terminal seeds (nodesize). The random forests algorithm and
the settings of the models are as follows:

• The regression tree is grown by iteratively splitting the bootstrap
sample into two groups using the best predictor from a randomly
selected subsample of all the available predictors. The mtry was set
to one third of the total number of predictor variables.
• To build each regression tree, a bootstrap sample including two
third of the training data is randomly selected. The remaining third
of the training data (called the out-of-bag data (OOB)) is used to
evaluate this specific tree.
• The tree is grown until the nodesize is reached. We set the node size
to 5.
• This process repeated for ntree number of times. The ntree para-
meter was set to 2500 trees.

The random forests algorithm provides the mean square errors and
r-square values assessed using the OOB samples, MSEOOB and rOOB2,
respectively.

We implemented the random forests model to predict canopy N in
European forests. We fitted the random forests model to long-term
average plot canopy N (section 2.1.2) using the predictor variables. We
tested nine different models. A first type of model included all the
predictor variables (All pred), a second type of model included only the
remote sensing variables (RS only) and a third type of model included
only the environmental variables (Env only). Each type of model was
tested separately on three subgroups: All plots, only ENF plots and only
DBF plots. We included these three subgroups in this study because
each group provides different insight about canopy N spatial patterns
and the feasibility of mapping canopy N at European scale. We did not
develop a separate model for either EBF or mixed plots because of the
restricted number of plots for these two PFTs (29 and 11, respectively).

The subsequent workflow was applied for all the models tested in
this analysis:

• A first random forests model was fitted to the canopy N data. The
predictor variables included in the model were selected using a re-
cursive backward elimination (Brungard et al., 2015; Mutanga et al.,
2015). The model was first fitted with all the predictors. The least
important predictor was removed from the model. This process was
repeated until only one predictor variable was left. The model se-
lected was the one with lowest MSEOOB value. rOOB2and RRMSEOOB
are reported.
• We used 10-fold cross validation (C-Val) as independent validation
to assess the accuracy of the selected model. The rC−Val

2and
RRMSEC−Val are reported. The C-Val is calculated using the R caret

package (Kuhn, 2018) .

The coefficient of determination (r2) is calculated as 1 MSE
Var CN( ) (Eq.

2), where MSE is the mean squared error, Var is the variance and CN,
the canopy nitrogen (%N). The Relative Root Mean Squared Error
(RRMSE) is calculated as × ×= P O( )n i

n
i i o

1
1

2 1
i
(Eq. 3), where

i = 1, 2, …, n are distinct values, n is the total number of values, Pi is
the predicted value, Oi is the observed value and Oi is the mean of all
observed values.

The importance of the predictor variables is assessed by randomly
permuting each predictor variable and calculating the subsequent de-
crease in OOB accuracy. The importance measure is expressed as the
mean decrease in MSEOOB (Liaw and Wiener, 2002).

2.6. Mapping canopy N

The best model for each subgroup (All plots, DBF and ENF), assessed
using rCV2 and RMSECV, is used as predictive model to map canopy N in
European forests.

3. Results

3.1. Descriptive analysis of canopy N plot data

Table 2 gives the canopy N plot data descriptive statistics. Among
the 818 forest plots included in the analysis, the majority belongs to the
ENF forest type (63%), while the second most occurring PFT, i.e. DBF, is
present in 32% of the plots. Forest plots where several PFTs were
sampled represent only 1% of the total. As expected, ENF plots have on
average lower canopy N compared to DBF plots (1.4 and 2.4%N, re-
spectively). The locations of the canopy N plot data are presented in
Fig. 1. Higher canopy N values are observed in Midwestern Europe
while lower canopy N values occur in the southern and northern part of
the study region (Spain and south of Sweden, respectively, Fig. 1 - a).
Regarding the PFTs, DBF and ENF occur in the whole study area, while
EBF and mixed plots are only found in certain regions, i.e. in Southern
Europe and in central Western Europe, respectively. The observed dif-
ference in canopy N values between ENF and DBF plots is reflected in
the respective PFTs maps (Fig. 1 – b and c).

3.2. Results of the random forests analysis

Table 3 shows results from the random forests analysis. Among the
nine models tested, the model including all predictor variables and all
plots performed best, with a r2 of 0.62 for the validation. The models
including all predictors showed higher r2 and lower RRMSE, both for
OOB and validation, compared to models including either remote sen-
sing or environmental variables. This was the case for all groups con-
sidered (All plots, ENF and DBF). When considering models for either

Table 2
Descriptive statistics of long-term average canopy nitrogen concentration (%N)
plot data calculated over all forest plots (All plots) and grouped by plant
functional type (PFT): Deciduous Broadleaf Forest (DBF), Evergreen Broadleaf
Forest (EBF), Evergreen Needleleaf Forest (ENF) and mixed forest plots (mixed),
with minimun (min), maximum (max), mean, and standard deviation (sd) va-
lues.

PFT Number of plots (%) Canopy N (%N)

min max mean sd

All plots 818 (100%) 0.6 3.0 1.8 0.5
DBF 265 (32%) 1.5 3.0 2.4 0.2
EBF 29 (4%) 1.2 1.6 1.4 0.1
ENF 513 (63%) 0.6 2.2 1.4 0.2
mixed 11 (1%) 1.4 2.4 1.7 0.3
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all plots or ENF plots, the type of model (All pred, RS only or Env only)
did not have a strong effect on the models fit. For the DBF subgroup, on
the contrary, the RS only type of model showed lower r2 compared to
the other two (r2 = 0.09 and r2 = 0.39, for RS only and both All pred
and Env only, respectively). The RS only model was thus not able to
predict canopy N for the DBF subgroup. If we compare the r2 for dif-
ferent subgroups included in the analysis, the models with all plots
performed always better (r2C-Val 0.54–0.62) always performed better
than those of the ENF (r2C-Val 0.47–0.49) or the DBF (r2C-Val 0.09–0.39)
subgroups. However, the opposite is observed when comparing the

RRMSE for three subgroups. The RRMSE for the DBF subgroup (RRMSE
0.08–0.09) is lower than the RRMSE of the ENF (RRMSE 0.11–0.12) or
all plots (RRMSE 0.18–0.20) subgroups.

Scatterplots of predicted vs observed values for canopy N for the All
plots, ENF plots and DBF plots are presented in Fig. 2. Regression lines
were fitted between the predicted vs observed values for each group of
predictor variables studied. Chow tests (Chow, 1960) were done to
assess whether the sets of coefficients between different linear regres-
sions were equal. The tests showed that the differences between each
group-wise pairs of regression lines were not significant.
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Fig. 1. Map of the forest plot locations for a) All plots, b) Evergreen Needleleaf Forest (ENF) plots and c) Deciduous Broadleaf Forest (DBF) plots. The color scale gives
the long-term canopy nitrogen (%N).

Table 3
Results of the random forests analysis for the models including all predictor variables (All pred), only remote sensing variables (RS only) and only environmental
variables (Env only), and for each plant functional type (PFT) group: all plots (All plots), Evergreen Needleleaf Forest (ENF) and Deciduous Broadleaf Forest (DBF).
The initial number of predictors represent the number of predictor variables available to build the model before variables selection, the selected number of predictors
represents the number of variables selected to build the model. r2, Relative Root Mean Square error (RRMSE) are presented for both out-of-bag data (OOB) and cross-
validation (C-Val).

PFT Number of plots Model Initial number of predictors Selected number of predictors Calibration (OOB) Validation (C-Val)

r2 RRMSE r2 RRMSE

All plots 818 All pred 86 17 0.63 0.18 0.62 0.18
RS only 37 16 0.61 0.18 0.60 0.18
Env only 49 15 0.55 0.19 0.54 0.20

ENF 513 All pred 86 22 0.50 0.11 0.49 0.11
RS only 37 9 0.45 0.12 0.44 0.12
Env only 49 8 0.48 0.11 0.47 0.11

DBF 265 All pred 86 17 0.40 0.08 0.39 0.08
RS only 37 17 0.12 0.09 0.09 0.09
Env only 49 10 0.39 0.08 0.39 0.08
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3.3. Variable importance

The 10 most important variables for predicting canopy N are pre-
sented in Table 4 for all models considered. For the All pred model,
when all plots were included, nine out of the 10 most important vari-
ables for predicting canopy N were remote sensing variables, with the

two most important ones being EVI long-term average in May and June.
These two variables are also the most important for canopy N predic-
tion in the All plots RS only model. More generally, the important
variables for the All pred model showed large agreement with the RS
only model. In the Env only model, the two most important variables
were the binary variables for presence or absence of broadleaf
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Fig. 2. Scatterplots between observed and predicted canopy N values (%N) based on OOB prediction for a) All plots, b) ENF plots and c) DBF plots. The color scale
refers to the predictor variables tested: all predictor variables (All pred), only remote sensing variables (RS only) and only environmental variables (Env only).

Table 4
List of the 10 most important variables for canopy nitrogen prediction and importance values for all models tested: all predictor variables (All pred), only remote
sensing variables (RS only) and only environmental variables (Env only), and for each plant functional type (PFT) group: All plots, Evergreen Needleleaf Forest (ENF)
and Deciduous Broadleaf Forest (DBF).

All pred – All plots Importance Env only – All plots Importance RS only – All plots Importance

MODIS EVI long-term monthly average May 6.9 CCI land cover broadleaf deciduous 7.9 MODIS EVI long-term monthly average May 6.7
MODIS EVI long-term monthly average June 5.7 CCI land cover needleleaf evergreen 7.4 MODIS EVI long-term monthly average June 5.8
MODIS EVI long-term monthly average July 4.3 Annual Mean Temperature 4.7 MTCI long-term monthly average February 5.7
MTCI long-term monthly average February 4.2 Oxidized nitrogen deposition 4.0 MODIS EVI long-term monthly average July 4.4
MODIS NDVI long-term monthly average June 3.3 Sand content mass fraction 3.7 MODIS EVI long-term monthly average August 3.6
MODIS NDVI long-term monthly average August 2.2 Mean temperature coldest quarter 3.7 MODIS NDVI long-term monthly average June 3.2
MODIS NDVI long-term monthly average

November
2.2 Silt content mass fraction 3.2 MODIS NDVI long-term monthly average

November
2.5

MTCI long-term monthly average June 2.1 Minimum temperature coldest
month

3.0 MTCI long-term monthly average March 2.4

Oxidized nitrogen deposition 1.9 Mean temperature warmest quarter 2.7 MODIS NDVI long-term monthly average
August

2.2

MODIS NDVI long-term monthly average March 1.9 Clay content mass fraction 2.6 MTCI long-term monthly average June 2.2

All pred - ENF plots Importance Env only - ENF plots Importance RS only - ENF plots Importance

Sand content mass fraction 0.8 Annual mean temperature 1.4 MTCI long-term monthly average February 1.7
Annual mean temperature 0.7 Mean temperature warmest quarter 1.4 MTCI long-term monthly average September 1.2
Coarse fragments volumetric 0.7 Coarse fragments volumetric 1.2 MTCI long-term monthly average March 1.1
Mean temperature warmest quarter 0.6 Precipitation warmest quarter 1.0 MTCI long-term monthly average August 1.1
Precipitation warmest quarter 0.5 Mean temperature coldest quarter 1.0 MTCI long-term monthly average October 0.8
Mean temperature driest quarter 0.5 Silt content mass fraction 0.9 MODIS NDVI long-term monthly average June 0.7
Silt content mass fraction 0.5 Temperature seasonality 0.7 MTCI long-term monthly average May 0.6
Maximum temperature warmest month 0.3 Soil bulk density 0.6 MTCI long-term monthly average April 0.5
Oxidized nitrogen deposition 0.3 / / MODIS NIR long-term monthly average November 0.4
Mean temperature coldest quarter 0.3 / / / /

All pred - DBF plots Importance Env only - DBF plots Importance RS only - DBF plots Importance
Oxidized nitrogen deposition 1.1 Oxidized nitrogen deposition 1.6 MODIS NIR long-term monthly average September 0.8
Mean temperature warmest quarter 0.6 Mean temperature warmest quarter 0.8 MODIS EVI long-term monthly average October 0.8
Sand content mass fraction 0.5 Sand content mass fraction 0.7 MODIS EVI long-term monthly average June 0.7
Silt content mass fraction 0.5 Silt content mass fraction 0.7 MODIS NIR long-term monthly average July 0.7
Maximum temperature warmest month 0.5 Total nitrogen deposition 0.7 MODIS EVI long-term monthly average July 0.6
Annual mean temperature 0.5 Mean temperature driest quarter 0.6 MODIS NIR long-term monthly average October 0.6
Mean temperature driest quarter 0.4 Clay content mass fraction 0.6 MODIS EVI long-term monthly average August 0.5
Total nitrogen deposition 0.4 Soil bulk density 0.5 MTCI long-term monthly average June 0.5
Clay content mass fraction 0.4 Temperature seasonality 0.5 MODIS NDVI long-term monthly average August 0.5
MTCI long-term monthly average May 0.4 Altitude 0.5 MODIS NDVI long-term monthly average October 0.4
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deciduous forest and needleleaf evergreen forest. These variables were
obtained by modifying the CCI land cover map.

For the PFTs specific models, both ENF and DBF All pred models
showed large similarities with their Env only model counterpart. For the
ENF All pred model no RS variable was among the 10 most important
predictor variables. When comparing ENF and DBF All pred models, soil
properties and climate variables are important predictors of canopy N.
For ENF plots, the soil sand content and the annual mean temperature
were more important while for DBF plots, the oxidized nitrogen de-
position as well as the mean temperature of the warmest quarter were
important predictors of canopy N. For both DBF and ENF plots, the
granulometry of the soil influenced the prediction of canopy N.

3.4. Canopy N map for European forests

The best predicted canopy N maps for each group considered, i.e.
All plots, ENF plots and DBF plots, are presented in Fig. 3. The range of
canopy N values of the predicted map corresponded to the range ob-
served from forest samplings for each subgroup. The broad-scale spatial
patterns show similarities between the three maps considered: in the
southern and northern regions of Europe, i.e. the Mediterranean region
and the south of Sweden, the predicted canopy N was lower than in the
mid-western region of Europe. Local-scale patterns are also present. For
example, in Netherlands and in the north west of Germany, the pre-
dicted canopy N is relatively higher than average for both the ENF and
DBF maps. However, this is not observed when all plots are considered.
The All plots model also predicts relatively higher values of canopy N,
approximately between 2.4 and 2.6%N, in Eastern Europe and Slovakia,
in particular. The observed fine-scale pattern corresponds to the

location of the Carpathian Mountains. This pattern is also present, al-
though less clearly, in the ENF map, but not in the DBF map.

4. Discussion

4.1. Canopy N spatial pattern

The aim of this study was to estimate spatial patterns in canopy N
over European forests, which we were able to do with an r2 for the
validation of 0.62 for the All plots subgroup. The broad-scale spatial
pattern (Fig. 3) of the predicted canopy N maps showed similarities
between the three subgroups considered: lower canopy N concentration
in the south and in the north of Europe, higher values in mid-western
Europe. This pattern was also similar to that observed in the forest plot
data (Fig. 1a), which is expected as this data was used to train the
model. This indicates that the developed model was able to represent
the broad-scale canopy N pattern present in the data. More specifically,
however, the three predicted maps show finer scale variations. Both the
DBF and the ENF predicted maps show relatively high values in the
Netherlands and in the northwestern part of Germany. The forest plot
data (Fig. 1a) also included several forest plots with relatively high
long-term canopy N in this region. This trend, however, is not present in
the predicted canopy N map for all plots. Another dissimilarity was
noticeable in mid-southern part of France with higher canopy N values
in both the All Plots and DBF predicted maps. This region corresponds
to the location of the Massif Central mountain area and the canopy N
values of forest plots located there were not higher than average.

Fig. 3. Predicted canopy nitrogen maps (%N) calibrated using a) All plots, b) Evergreen Needleleaf Forests (ENF) and c) Deciduous Broadleaf Forest (DBF).
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4.2. Comparison with published studies

As mapping canopy N in forests has seldom been done at the
European scale, there is not a large body of literature to compare our
results with. A recent study published a forest leaf N map at global scale
(Moreno-Martínez et al., 2018). When visually comparing this map with
the results of the present study for the All plots model, the global scale
map also presents relatively lower concentration in the south of
Sweden, while showing relatively higher values in the center of Europe.
However, the range of values is different between the two maps: while
most values are between 1.4 and 2%N in the published study, in our
analysis the range of values is larger, between 1.2 and 2.4%N. The
accuracy for predicting canopy N (r2 = 0.62 for the best model) was
similar for both studies. The published study used the published data
from the TRY database (Kattge et al., 2011) for calibration. Although
the data in the TRY database are numerous, the data were sampled for
various research purposes and the sampling methods do not follow a
standard guideline. The ICP Forests data, on the contrary, were sampled
following a consistent process, which ensures of the good quality of the
dataset.

4.3. The role of environmental variables

The second aim of this study was to test whether including en-
vironmental variables as predictors improves canopy N predictions
compared to approaches that rely on remotely sensed data alone. The
results showed that including environmental variables as predictors
improved the explanatory power of the models for all groups con-
sidered as the models for All pred always show higher r2 and lower
RRMSE compared to the Env only and RS only models (Table 3). In a
previous study in savannah grass, including environmental variables in
a stepwise multilinear regression also improved canopy N prediction
compared to using VIs only (Ramoelo et al., 2012). It is interesting to
note that the RS only model performed better than the Env only model
for the all plots subgroup, while it was the opposite for both the ENF
and DBF subgroups. This shows that, in our study, RS variables were
useful to distinguish between different PFTS in the All pred All plots
model. Moreover, the influence of including environmental variables
can also be seen in the most important variables selected for the All pred
models. For both the ENF and DBF All pred models, the most important
variables are environmental variables, RS variables being among the
least important predictors (Table 4). For the DBF subgroup, the RS only
model showed the lowest observed accuracy of all models tested
(r2 = 0.09). The remote sensing variables were not able to predict
canopy N and including environmental variables was essential to pre-
dict canopy N for DBF plots, in our dataset. Including environmental
variables to predict canopy N was thus more beneficial for separate
PFTs, and even more so for the DBF subgroup.

4.4. Variables importance

Regarding the difference in RS products selected, it is interesting to
note that, although the NIR spectral region was shown to be important
for canopy N prediction in previous studies (Moreno-Martínez et al.,
2018; Mutowo et al., 2018; Ollinger et al., 2008), it was seldom selected
as predictor variable in the models tested. It was among the most im-
portant variables for the DBF Env only model, which showed the lowest
r2 of all the models tested. On the contrary, although being tested in few
studies for canopy N prediction (Lepine et al., 2016; Ramoelo et al.,
2012; Wang et al., 2012), EVI was the most important variable for the
All pred and all plots models. A remote sensing product derived from
EVI, the maximum EVI, was also found to be the most important vari-
able in a study mapping leaf N at global scale (Moreno-Martínez et al.,
2018). In a recent study in the Miombo woodlands, the results showed
that NIR VIs, among which NDVI and EVI, are complementary to the
NIR spectral region for canopy N mapping (Mutowo et al., 2018).

However, in our study, NDVI was not selected as most important
variable for any of the developed models. The MTCI index, based on the
relationship between canopy N and chlorophyll (Dash and Curran,
2004) was only selected as the most important variable for the ENF RS
only model. The stronger relationship between canopy N and the NIR
region compared to the MTCI, a red-edge based index, was previously
observed as well. In a mixed temperate forest, Wang et al. (2016)
showed that the relationship between canopy N and MTCI was weak.
What is also surprising is that the RS products selected as important
variables are from different months than the forest plots sampling
months. For DBF plots, the two most important RS variables for the DBF
RS only model were from the months September and October while the
DBF plots were mainly sampled in July and August. For the ENF plots, it
is not so clear as the RS products from winter months, during which the
ENF plots are sampled, were excluded from the analysis.

Among the environmental predictors tested, oxidized N deposition
was the most important variable for the DBF plots for both the All pred
and the Env only model (Table 4). For the ENF subgroup, although
previous studies showed that canopy N was correlated to N deposition
in needleleaf forests (Fleischer et al., 2013; Sardans et al., 2016b), N
deposition was only selected among the least important predictors for
the All pred model and it was not selected at all for the Env only model.
This might be related to an observed stronger response of deciduous
species to N deposition compared to coniferous species (Crowley et al.,
2012). The annual mean temperature was among the most important
variables for predicting canopy N for the ENF subgroup for both the All
pred and the Env onlymodels. Mean annual temperature was also among
the selected predictor variables for the All pred and all plots model. This
is consistent with previous findings showing an influence of mean an-
nual temperature on leaf N (Reich and Oleksyn, 2004; Sardans et al.,
2015).

For the Env only models including all plots, the land cover binary
variables indicating the presence of broadleaf deciduous forest and the
presence of needleleaf evergreen forest were the most important vari-
ables. This is not surprising, as forest type is well known to influence
foliage N (Sardans et al., 2016a; Sardans et al., 2015; Sardans et al.,
2011). In our study too, the DBF and ENF plots also show different
mean canopy N concentration, with 1,4%N and 2,4%N for ENF and BDF
plots, respectively (Table 2).

4.5. Source of errors

When we look critically at the results obtained, it is interesting to
note that the r2 values from the 10 fold cross-validation (rCV2) are close
to the rOOB2 values. This shows that the developed models were robust
for validation. The r2 obtained for the ENF and DBF models are lower
than the value obtained for the All pred models. This could be related to
the smaller number of plots used to calibrate the ENF and DBF models,
n = 513 and n = 265, respectively, compared to the All pred model,
n = 818. The limited range of canopy N values for the ENF and DBF
models, might also explain the observed decrease in model fit.

4.6. Future perspectives

In this study, we showed that combining vegetation indices with
environmental variables can contribute to canopy N mapping over large
spatial extents. Although, as showed by the comparison and differences
with a recent published study (section 4.2), this still needs to be further
developed, this study contributes to the discussion about the feasibility
of canopy N mapping over large spatial extents. The resulting canopy N
map could provide spatial indicators of canopy N in European forests.

In this analysis, we worked with MODIS and MERIS remote sensing
data to insure that the period during which the remote sensing data
were acquired was overlapping with the sampling period of the forest
plots. Although more recent satellite sensors such as Sentinel 2, Sentinel
3 or RapidEye have either higher spatial or spectral resolutions that
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would probably improve the accuracy of the obtained canopy N map,
the time series were too short to allow for a long enough overlapping
period with canopy N sampling data. As the ICP Forest monitoring
network is an ongoing project, a future perspective of this study would
be to compare the results with a similar analysis, including more recent
satellite sensors once the satellites' data time series are long enough.

We focused on canopy N in European forests. While this is a
common land use type across Europe (42% of total land area), it would
be valuable to further develop this analysis by including other natural
PFTs (like grasses) and non-natural land use types like agricultural land.
However, the ICP Forests database we used for this analysis was very
valuable, and these high quality long-term data are not yet available for
all land use types. The number of sites, but also the consistency in the
way the forest plots are sampled and the %N are measured in ICP
Forests is unique. We would like to emphasize that this would be an
important necessary step to extrapolate to other land use types.

Finally, an envisioned result of this project is to improve GVMs by
providing large-scale information about canopy N and its spatial pat-
tern. In the future, we therefore foresee to compare our results with
canopy N modelled with GVMs. However, canopy N values are not
static over time, and in our study we averaged the canopy plot data as
well as the RS data over a long time period. This gave us more data to
work with, as for each year much less data was available. However, if
we want to optimize GVMs using the predicted maps, including tem-
poral variations, e.g. yearly or bi-yearly data, would make the predicted
maps more compatible with GVMs output. Another future development
of the present study is thus to include temporal changes in canopy N
values.

5. Conclusion

In this study, our objective was to characterize spatial patterns of
canopy N in forests across Europe. We showed that we could map ca-
nopy N using the random forests technique and calibration data from
ICP Forests with good accuracy (r2 = 0.62, RRMSE = 0.18, for vali-
dation). Among the RS products tested (EVI, MTCI, NIR and NDVI), EVI
was the most important predictor for canopy N prediction when all
plots were included, while MTCI the most important predictor for the
ENF RS only model. We also investigated whether including environ-
mental variables as predictors would improve the prediction models.
For all subgroups tested (All plots, ENF plots and DBF plots), including
environmental variables improved the predictions. Moreover, in our
dataset, including environmental variables was especially essential for
the DBF plots, as the prediction model based on remotely sensed data
products only was not able to predict canopy N with sufficient accuracy.
Finally, including environmental variables together with RS products to
predict canopy N showed promising results and could be tested in other
regions and with different land use types. A future outcome of this
analysis is to compare the predicted canopy N map to GVMs outputs.
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