
FIBRANCY OF PARTIAL MODEL CATEGORIES

LENNART MEIER AND VIKTORIYA OZORNOVA

Abstract. We investigate fibrancy conditions in the Thomason model
structure on the category of small categories. In particular, we show
that the category of weak equivalences of a partial model category is
fibrant. Furthermore, we describe connections to calculi of fractions.

1. Introduction

The homotopical study of (small) categories with respect to the nerve
functor

N : Cat→ sSet

was started by Segal [11] and Quillen [10]. But it was only Thomason in
his 1980 paper [13] who equipped Cat with a model structure, where a
functor f : C → D is a weak equivalence if and only if Nf : NC → ND is a
weak equivalence of simplicial set. The choice of fibrations is less obvious: If
Ex: sSet→ sSet denotes Kan’s Ex-functor, a functor f : C → D is a fibration
if and only if Ex2Nf : Ex2NC → Ex2ND is a Kan fibration. Taking just
functors f such that Nf or ExNf are fibrations would not define enough
fibrations in Cat.

It is classically known that a category C is a groupoid if and only if NC is
a fibrant simplicial set. We will give a characterization by Fritsch and Latch
of categories C such that ExNC is fibrant, which appeared previously only
without proof in print (as far as the authors know).

A convenient characterization of categories C such that Ex2NC is fibrant
(i.e., C is fibrant in the Thomason model structure) is unknown to this date.
This problem was already considered, for example, by Beke [3]. In this
note, we will present a sufficient criterion in form of a large class of fibrant
categories motivated by homotopy theory: A relative category is a category
M together with a subcategory W of M containing all objects. Here, W is
thought of as the “weak equivalences” in M. In general, relative categories
are not well-behaved. For example, the functor M → M[W−1] from a
relative category to its homotopy category (i.e., its localization at W) may
send morphisms to isomorphisms that are not weak equivalences. In [2],
Barwick and Kan introduced the notion of a partial model category, which
is a convenient notion of a relative category with a “3-arrow calculus” in the
sense of Dwyer, Hirschhorn, Kan and Smith [4]. Among several pleasant
properties of partial model categories, we want to mention that for a partial
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model category (M,W) the functor M → M[W−1] sends only the weak
equivalences to isomorphisms.

Our main result is the following.

Main Theorem. Let (M,W) be a partial model category. Then W is
fibrant in the Thomason model structure.

This includes, in particular, all categories that possess all pushouts or all
pullbacks, but is considerably more general. For example, the category of
weak equivalences of a model category (such as Top, sSet, ...) usually does
not possess all pushouts or all pullbacks, but is fibrant in the Thomason
model structure by the theorem above.

The structure of this article is as follows: In Section 2, we will give the
criterion by Fritsch and Latch for the fibrancy of ExNC. In Section 3, we
will define partial model categories and discuss some examples. In Section
4, we will prove our main theorem. In Section 5, we will discuss some
concrete examples and also give criteria when a category has a left calculus
of fractions. We end with Section 6, containing open questions and further
remarks.

Acknowledgements. We thank the University of Bremen and the Univer-
sity of Virginia for their hospitality during our visits.

Conventions and notation. We denote by Cat the category of small cat-
egories, by sSet the category of simplicial sets and by Top the category of
topological spaces.

There is an adjunction

Cat
N ++

sSet
c

kk

where N denotes the nerve functor given by (NC)n = Cat([n], C) and its
left adjoint c is often called the fundamental category functor.

Another important adjunction for our purposes is

sSet
Ex ++

sSet
Sd

kk

where Sd is the Kan subdivision functor and Ex is its right adjoint. More
concretely, Sd ∆[n] is the nerve of the poset that has as objects all non-
degenerate simplices of ∆[n] and the relation is generated by v ≤ w if v is
a face of w. For a general X, we have SdX = colim∆[n]→X Sd ∆[n]. Kan’s
Ex is defined by (ExX)n = sSet(Sd ∆[n], X).

We will always equip sSet with the Quillen model structure, where the
fibrant objects are exactly the Kan complexes.

For set-theoretic reasons, we have to define Cat to be the category of
small categories, i.e., categories with a set of objects. As, for example, the
category Top of topological spaces in the usual sense is not small, there
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appears to be a technical problem, if we want to state that the category of
weak equivalences of Top is fibrant in Cat. There are at least two possible
remedies for this.

The first is to view the statement that Ex2NC is Kan for a category C just
as a formal statement. It is equivalent to C having the right lifting property
with respect to all inclusions cSd2 Λi[n]→ cSd2 ∆[n]. This statement makes
sense also for large categories C and it is actually this lifting property that
we will prove.

The second possibility is to assume the existence of a Grothendieck uni-
verse U and call its elements small sets. We would then redefine Top to
consist just of all topological spaces whose underlying set is small. Then
Top is a small category. Note that we have to be careful in this case what
we mean by a model category if Top should still be a model category. We
can only assume the existence of limits and colimits over categories with a
small set of objects.

The reader might choose the remedy he or she likes and we will ignore
this issue for the rest of this article.

2. Left calculus of fractions and fibrancy

The goal of this section is to prove the following theorem.

Theorem 2.1. [8] Let C be a category. Then ExNC is Kan if and only if
C admits a left calculus of fractions.

The content of this section is not new. The theorem above seems to
appear first in [8], and is also mentioned in [3]. The second author also had
a helpful e-mail exchange with Tibor Beke on this topic. We give here a
proof since we were unable to find one in the literature. First we will recall
the notion of a left calculus of fractions.

Definition 2.2. [7] A small category C is said to have left calculus of
fractions (with respect to itself) if it satisfies the following to conditions:

(CF1) For any two morphisms s : X → Y , t : X → Z in C, there is a
commutative diagram of the form

X
s //

t
��

Y

��
Z // W.

(CF2) For any three morphisms f, g : X → Y and s : X ′ → X satisfying
fs = gs, there is a further morphism t : Y → Y ′ so that tf = tg.

X ′
s // X

f
))

g
55 Y // Y ′
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In a monoid language, the condition (CF1) corresponds to the existence
of a (right) common multiple for a pair of morphisms. The condition (CF2)
is a weak version of cancellativity (see Example 5.5 for a non-cancellative
monoid having a left calculus of fractions). The following lemma says that
we also obtain common multiples for arbitrary finite sets of morphisms with
a common source.

Lemma 2.3. Let fi : X → Xi for 1 ≤ i ≤ n, n ≥ 2, be a finite set of
morphisms with the same source in a category C possessing left calculus of
fractions. Then there are morphisms gi : Xi → Y so that gifi = gjfj for all
1 ≤ i, j ≤ n.

Proof. This follows by easy induction. The base case is exactly Condition
(CF1). Assuming the claim holds for some n − 1, let fi : X → Xi for
1 ≤ i ≤ n, n ≥ 3, be given. Then we already have morphisms gi : Xi → Y
for 1 ≤ i ≤ n − 1 with gifi = gjfj by induction hypothesis. Now we apply
Condition (CF1) to the morphisms g1f1 : X → Y , fn : X → Xn, so we
obtain maps h : Y → Z and k : Xn → Z with hg1f1 = kfn. Now the set of
functions hg1, . . . , hgn−1, k does the job. �

Proposition 2.4. [8] If a category C has left calculus of fractions, then
ExNC is Kan.

Proof. Assume that we are given a map Λk[n] → ExNC that we want
to extend to a map ∆[n] → ExNC. Consider the adjoint map (functor)
F : cSd Λk[n] → C. As explained in Section 3 of [6], the category c Sd ∆[n]
is the poset of non-empty subsets P+(n) of n = {0, 1, . . . , n} with inclusions
as morphisms. Furthermore,

cSd Λk[n] = P+(n) \ {n, n \ k},

considered as a subposet of cSd ∆[n]. Here and in the following, we abbre-
viate n \ {i} to n \ i.

To extend F to a functor c Sd ∆[n] → C, corresponds in this notation to
the following: We have to assign to all inclusions n \ {i, k} → n \ {k} for
i 6= k and to all inclusions n \ {j} → n morphisms in C and check that this

defines a functor. As a first step, we define a functor F̃ : P+(n)\{n\k} → C
extending F . Set

ai := F ({k} → n \ i)

for i 6= k. By Lemma 2.3, there are morphisms bi : F (n\ i)→ Z in C so that
b1a1 = . . . = bnan (omitting index k).

We tentatively extend F by F̃tent(n) = Z and F̃tent(n \ i→ n) = bi. This
does not in general define a functor, as we will see below, but we will find a
way to “correct” this definition to a functor. The only (possible) problem of
functoriality arises for maps with target n. It will be enough to consider for
all pairs of distinct i, j (unequal to k) the following square (and its image
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unter F̃tent).

n \ {i, j} //

��

n \ i

��
n \ j // n.

Write s = F ({k} → n \ {i, j}). Since F is a functor, we have

F (n \ {i, j} → n \ j)s = aj

F (n \ {i, j} → n \ i)s = ai.

Postcomposing by bj and bi, respectively, we see that the image of the square
will commute when precomposed with s. Yet, it does not necessarily com-
mute as Condition (CF2) is weaker than cancellativity. But we can still
apply Condition (CF2) to obtain a map tij : Z → Wij so that the image of
the square above commutes when postcomposed with tij . By Lemma 2.3, we
can find morphisms uij : Wij →W in C for all pairs of distinct i, j (unequal
to k) so that v = uijtij : Z →W is the same morphism for all i, j.

Now define F̃ (n) = W and F̃ (n \ i → n) = vbi. We have to check
that this extension of F is now a functor. Again, the only check needed is
for maps with target n. Assume we have two different chains of inclusions
A ⊂ A1 ⊂ A2 ⊂ . . . Ar ⊂ n and A ⊂ B1 ⊂ B2 ⊂ . . . Bs ⊂ n, where each
inclusion may be assumed to enlarge the foregoing set by one element. Then
either Bs = Ar, and we are done since F was assumed to be a functor, or
Ar = n \ i and Bs = n \ j for some i 6= j. Then A ⊂ n \ {i, j}, and both
morphisms factor through n\{i, j}, so that it is enough to show for all pairs

of distinct i, j (unequal to k) that the following square is mapped by F̃ to a
commutative square:

n \ {i, j} //

��

n \ i

��
n \ j // n.

This is exactly achieved by the construction above. So F̃ is indeed a functor
extending F to P+(n) \ {n \ {k}}.

Next, we have to extend the functor to all of P+(n). Set F̃ (n \ k) = W

and F̃ (n \ k → n) = idW . We are then forced to define

F̃ (n \ {i, k} → n \ k) = F̃ (n \ {i, k} → n)

for i 6= k. We have to check that this defines a functor P+(n) → C. Note
that it is immediate from the definition that compositions ending with n are
mapped to the same morphisms in C. By the same argument as before, it
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is enough to consider squares of the form

n \ {i, j, k} //

��

n \ {i, k}

��
n \ {j, k} // n \ k.

Since F̃ (n \ k → n) is identity of W and in particular a monomorphism, the
claim follows from the commutativity of the outer square and the triangles
in the following diagram:

n \ {i, j, k} //

��

n \ {i, k}

��

��

n \ {j, k} //

--

n \ k

$$
n.

This completes the proof of the fact that for any category C with left calculus
of fractions, the simplicial set ExNC is Kan. �

Lemma 2.5. [8] Let C be a small category such that ExNC is Kan. Then
any two morphism of C admit a common multiple, i.e., the Condition (CF1)
is satisfied.

Proof. Let C be a small category such that ExNC is a Kan simplicial set.
Consider any two morphisms s : X → Y , t : X → Z in C. We define a map
F : c Sd Λ0[2]→ C via

01 02

0 1 2

Y Z

X Y Z

s idZ

t

idY

This diagram can be extended, due to the Kan property, to a functor F̃
on
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012

01 02 12

0 1 2

In particular, the image of the commutative square

0 //

��

01

��
02 // 012

in cSd ∆[2] under F̃ yields the desired commutative square in C. �

Lemma 2.6. [8] Let C be a small category so that ExNC is a Kan simplicial
set. Then C satisfies Condition (CF2).

Proof. Let f, g : X → Y and s : X ′ → X be morphisms in C so that fs = gs.
We will prove the existence of a morphism t : Y → Y ′ with tf = tg by filling
a Λ0[3]-horn in ExNC. Using the adjunctions again, we give first a functor

F : cSd Λ0[3] → C. We will see later why its extension F̃ : cSd ∆[3] → C
yields the desired morphism t.

Recall that cSd Λ0[3] has the following shape.

012 013 023

01 02 03 12 13 23

0 1 2 3

We now define a functor from this category to C.
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Y Y Y

X Y X X X X

X ′ X ′ X X

f idY
gg

g gidY
g

g

s fs
s s s s

g
idX

idX

idX idX idX

One easily checks that this, indeed, defines a functor (there are 9 squares
in this diagram, which can be seen to commute). By the Kan extension
property and using the adjunctions again, we obtain a functor from cSd ∆[3]
to C, as displayed in the following picture.

Y Y Y

X Y X X X X

X ′ X ′ X X

f idY
gg
g

g

idY
g g

s fs

s s s s

g
idX

idX

idX
idX idX

W

Z

b3 b2 b1 b0

a3

a2

a1

Now this implies b2g = b1g, b1 = b3 and b2g = b3f , so b1f = b1g and t = b1
does the job. This completes the proof. �

This finishes the proof of Theorem 2.1

3. Partial model categories

Definition 3.1. A relative category is a category M together with a sub-
category W containing every object. The morphisms in W are often called
weak equivalences.
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A general relative category is difficult to work with. For example, one
can form the localizationM→M[W−1], but in general not every preimage
of an isomorphism will be a weak equivalence. One useful class of relative
categories is the following:

Definition 3.2. [2] A relative category (M,W) is called a partial model
category if there are subclasses C,F ⊂ W (called (acyclic) cofibrations and
(acyclic) fibrations, respectively) satisfying the following axioms:

(1) W satisfies the 2 out of 6 property, i.e., if r, s and t are morphisms
such that the compositions sr and ts exist and are in W, then r, s, t
and tsr are also in W.

(2) For every map f ∈ C, its pushouts along arbitrary maps in M exist
and are again in C.

(3) For every map f ∈ F , its pullbacks along arbitrary maps in M exist
and are again in F .

(4) Every weak equivalence can be functorially factorized into a cofibra-
tion and a fibration, i.e., there is a functor

F = (Fc, Ff ) : Fun(0→ 1,W)→ Fun(0→ 1, C)× Fun(0→ 1,F),

such that for every morphism g in W, the morphisms Fc(g), Ff (g)
are composable and Ff (g) ◦ Fc(g) = g holds.

This is a slightly more restrictive variant of the notion of a homotopical
category with 3-arrow calculus as in [4].

As in [2], we have the following list of examples:

Examples 3.3. (1) For every model category its underlying relative cat-
egory is a partial model category.

(2) Let (M,W) be a partial model category and M1 ⊂ M be a full
subcategory with the property that if X ∈ ObM1 and Y ∈ ObM are
connected by a zig-zag of weak equivalences, then Y ∈ ObM1. Such
subcategories are called homotopically full. Then (M1,W ∩M1)
is a partial model category.

(3) For every partial model category (M,W) and category D, the func-
tor relative category (M,W)D = (MD,WD) is again a partial model
category.

(4) IfM is a category with all pullbacks, then (M,M) is a partial model
category with C only consisting of identities and F =M.

(5) IfM is a category with all pushouts, then (M,M) is a partial model
category with F only consisting of identities and C =M.

(6) For every partial model category (M,W) the associated relative cat-
egory (W,W) is a partial model category.

4. Fibrancy of Partial Model Categories

Let now W be the category of weak equivalences of a partial model cat-
egory or, equivalently, a partial model category, where every morphism is a
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weak equivalence. Denote the distinguished classes of cofibrations by C and
that of fibrations by F . Our aim in this section is to show that the simplicial
set Ex2NW is Kan.

For a category D, let K(D) be the category D× (0→ 1)∪D×1 DC, where
DC denotes the category D with an additional initial object. Thus, K(D)
consists of two copies of D, where there is a unique map from the 0-copy
of each object to the 1-copy of it, and each object in the 1-copy receives an
additional morphism from a “partial” initial object. We will often consider
the inclusion of D ∼= D × 0 into K(D). We will denote the “partial” initial
object by kD ∈ K(D) or, if no confusion is possible, just by k.

Remark 4.1. (1) The assignment K : Cat → Cat constitutes a functor.
For a functor F : D → D′, define K(F ) : K(D)→ K(D′) to be a copy
of F on both D×0 and D×1, and set K(F )(kD) = kD′ . A morphism
of the form d×(0→ 1) in K(D) is mapped to F (d)×(0→ 1), and the
ones of the form kD → (d, 1) are mapped to the unique morphisms
kD′ → (F (d), 1). This makes K into a functor.

(2) We can identify cSd2 ∆[n] for n ≥ 1 with K(cSd2 ∂∆[n]). As this
category (and thus all of its subcategories) are posets, we will con-
sider it either as a (partially) ordered set or as a category whenever
convenient without further mentioning. For this, we use the descrip-
tion of cSd2 ∆[n] from Section 3 of [6]. The objects of cSd2 ∆[n]
are strictly increasing sequences v0 ( . . . ( vm, m ≥ 0, of non-
empty subsets of the set n. The ordering is given as follows: The
sequence v0 ( . . . ( vm is less or equal (≤) to w0 ( . . . ( wl
iff the set {v0, . . . , vm} is contained in the set {w0, . . . , wl}. The
subposet c Sd2 ∂∆[n] consists of all sequences v0 ( . . . ( vm with
vm 6= n. Note that any other element of cSd2 ∆[n] is either of the
form v0 ( . . . ( vm ( n with v0 ( . . . ( vm in cSd2 ∂∆[n] or a
sequence consisting of the single subset n. We identify the latter
with k and the former with cSd2 ∂∆[n] × 1 in K(cSd2 ∂∆[n]). The
pictures for the case n = 1 and n = 2 might illustrate the situation.

0 0 ( {0, 1} {0, 1} 1 ( {0, 1} 1

and
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Here, the red part is identified with cSd2 ∂∆[n] × 0, the blue part
with cSd2 ∂∆[n] × 1 and the black point is the additional point k.
Observe that we usually leave out the maps obtained as compositions
of displayed maps in our pictures.

(3) One can view K as a homotopically correct cone functor since for
every category D, the nerve NK(D) is contractible and D → K(D)
is a Dwyer morphism. Dwyer morphisms form the cofibrations in
a cofibration category structure on Cat as essentially proven in [13]
and observed in [12, Section 1.4.5]. Note that D → DC is not a
Dwyer morphism.

First, we show that we can use K to reformulate the fibrancy of Ex2ND
for a category D. Note to that purpose that by adjointness Ex2ND is
fibrant if and only if D has the lifting property with respect to all inclusions
cSd2 Λi[n]→ cSd2 ∆[n].

Lemma 4.2. For a category D, to have a lifting property with respect to all
inclusions c Sd2 Λi[n]→ cSd2 ∆[n] is equivalent to having the lifting property
with respect to all inclusions cSd2 Λn[n]→ K(cSd2 Λn[n]).

Proof. First, observe that for any 0 ≤ i ≤ n, there is an automorphism of
the category cSd2 ∆[n] mapping the subcategory cSd2 Λi[n] isomorphically
to cSd2 Λn[n]. Therefore, it is enough to consider i = n.

Next, we observe that K(cSd2 Λn[n]) is isomorphic to a full subposet P
of c Sd2 ∆[n]. This follows from Remark 4.1 as cSd2 Λn[n] is a subposet of
cSd2 ∂∆[n]. More explicitly, the subposet c Sd2 Λn[n] of cSd2 ∆[n] consists
of all those sequences v0 ( . . . ( vm for which vm 6= n and vm 6= n− 1. The

subposet P of cSd2 ∆[n] contains all sequences v0 ( . . . ( vm in cSd2 Λn[n],
for each such sequence also the sequence v0 ( . . . ( vm ( n, and finally the
sequence consisting only of n (corresponding to k ∈ K(c Sd2 Λn[n])).
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This implies immediately that having the lifting property for all mor-
phisms cSd2 Λi[n] → cSd2 ∆[n] implies the lifting property for all mor-
phisms cSd2 Λn[n]→ K(cSd2 Λn[n]).

For the other implication, it is enough to show that each morphism defined
on P can be extended to be defined on all of cSd2 ∆[n]. We will give a
retraction for the inclusion of P into cSd2 ∆[n], i.e., an ordering-preserving
map c Sd2 ∆[n] → P, which is identity on P. This will complete the proof.
Observe that the only objects of cSd2 ∆[n] which are not in P are given by
sequences in which n\n occurs; more precisely, these are the sequences n\n,
n\n ( n, and w0 ( . . . ( wl ( n\n and w0 ( . . . ( wl ( n\n ( n, where in
the last two cases, w0 ( . . . ( wl is a sequence of non-empty subsets of n\n.

The map r : cSd2 ∆[n]→ P is described as follows:

A 7→


A, if A ∈ P,
n, if A = n\n or n\n ( n,

w0 ( w1 ( . . . ( wl ( n, if A = (w0 ( w1 ( . . . ( wl ( n\n) or

A = (w0 ( w1 ( . . . ( wl ( n\n ( n).

Note that the assignment above covers all cases. Furthermore, the map
takes only values in P and is by definition identity on P. So the only thing to
check is that r is order-preserving. Note that the only changes to a sequence
A under r is deleting the entry n\n whenever it is present and if it was and
n was not, adding n. Now given A � B, if A does not contain n\n, then
it remains fixed under r and deleting n\n from B or adding n to it does
not change the relation, so in this case r(A) ≤ r(B). If A does contain
n\n, then so does B, and then both r(A) and r(B) do not contain n\n and
contain n, while all the other entries remained unchanged, so we have again
r(A) ≤ r(B), proving that r is order-preserving. This completes the proof
of the lemma. �

Example 4.3. We want to illustrate the procedure in the proof of the last
lemma for the case of the 2-simplex. By definition, the poset P can be drawn
as follows:
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Moreover, we highlighted in blue the part of it identified with cSd2 Λ2[2]×
1 as part of K(c Sd2 Λ2[2]); the barycenter of the large triangle is identified
with the additional point.

Now the retraction r maps the red dots here to the corresponding blue
dot and the red arrows to identities of this object.

The “horizontal” arrows are sent to corresponding arrows between the
blue points (and the vertices 1 and 2).

Definition 4.4. Let D be a category. A functor

Φ: Fun(D,W)→ Fun(K(D),W)

is called an extension functor (along i) if i∗ ◦ Φ = id for the inclusion
i : D = D × 0 → K(D). We will consider the following two properties of
extension functors.

(Cof): An extension functor Φ is said to fulfill (Cof) if for every functor
α : D →W and for every object x ∈ D, the morphism

Φ(α)(x× (0→ 1))

is a cofibration.
(Lim): An extension functor Φ is said to fulfill (Lim) if for every functor

α : D →W, the restriction Φ(α)|DC is a limit diagram for Φ(α)|D×1.

The following auxiliary lemma is often convenient to show (Lim) and is
not hard to prove.

Lemma 4.5. Let I be a category and β : K(I)→ D some functor. Assume
that B0 = limI×0 β|I×0 and B1 = limI×1 β|I×1 exist and denote by g : B0 →
B1 the induced map. Furthermore, the compatible maps β(k)→ β(i× 1) for
all objects i ∈ I induce a map h : β(k)→ B1. Assume the diagram

B0
g−→ B1

h←− β(k)

has a pullback P . Then the diagram β : K(I) → D has a limit and P ∼=
limK(I) β. Moreover, the projections from P to objects of K(I) factor through
B0, B1 or β(k), respectively.
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Recall that our goal is to construct an extension functor along

cSd2 Λn+1[n+ 1]→ K(cSd2 Λn+1[n+ 1]).

This will be glued from extension functors along

cSd2 ∆[n]→ K(cSd2 ∆[n]),

satisfying some boundary condition. These in turn will (inductively) be
defined via extension functors along

cSd2 Λn[n]→ K(cSd2 Λn[n]).

As noted above, we can view the poset K(cSd2 Λn[n]) as a subposet of
cSd2 ∆[n] and our plan is first to define a nice extension functor along

K(cSd2 Λn[n])→ K(K(cSd2 Λn[n])).

This works for any category D instead of cSd2 Λn[n]. To distinguish the two
“directions” of applying K, we will denote them by Kh for horizontal and
Kv for vertical one, so that we write Kv(Kh(D)) instead of K(K(D)). We
will write short kv for kKh(D).

Lemma 4.6. Let D be a category with a given extension functor

Φ: Fun(D,W)→ Fun(K(D),W).

Assume that Φ satisfies (Cof) and (Lim). Then there is an extension
functor

Φ′ : Fun(Kh(D),W)→ Fun(Kv(Kh(D)),W)

satisfying (Cof) and (Lim) and a natural transformation

ε : Kv(i)∗ ◦ Φ′ ⇒ Φ ◦ i∗,

where i now denotes the inclusion D → Kh(D), with the following property:
For any α : Kh(D) → W, we have Φ(α|D)|D×(0→1)v = Φ′(α)|D×(0→1)v and
ε induces the identity between them and εkv(α) is a fibration. In other
words: Φ′(α) agrees with Φ(α|D) where possible except at kv and we have a
compatible fibration Φ′(α)(kv)→ Φ(α|D)(kv).

Proof. To construct Φ′, we proceed in several steps. First, we construct out
of Φ for each given α : Kh(D) → W an intermediate extension α′, then we
improve it to an extension α′′ satisfying (Cof) and then we show it satisfies
also (Lim). The extension α′′ will be our Φ′(α).

Step 1: We can apply Φ to α|D×0h and to α|D×1h . Since the images of
(0→ 1)h induce under α a natural transformation between the two
diagrams, we obtain a natural transformation

Φ(α|D×0h)⇒ Φ(α|D×1h).

Define now α′ : KvKh(D) → W to be Φ(α|D×0h) on Kv(D × 0h),
furthermore Φ(α|D×1h) on D× 1h× (0→ 1)v and the natural trans-
formation discussed above on D × (0 → 1)h × {0, 1}v. Moreover,
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define α′((kh, 1v)) = Φ(α|D×1h)(k) and

α′(kv → (kh, 1v)) = Φ(α|D×0h ⇒ α|D×1h)(k)

We still need to define α′(kh × (0 → 1)v). Observe that we have
compatible maps from α′((kh, 0v)) = α(kh) to each object in

α′(D × 1h × 0v) = α(D × 1h × 0v).

We can compose these maps with maps given by α′(D×1h×(0→ 1)v)
to obtain compatible maps from α(kh) to α′(D × 1h × 1v). Since by
assumption the functor Φ satisfies the property (Lim), the limit of
this last diagram is Φ(α|D×1h)(k) = α′((kh, 1v)). Thus, there is a
unique morphism α′((kh, 0v))→ α′((kh, 1v)) making all the relevant
diagrams commute, so that we can define α′(kh × (0 → 1)v) to be
this morphism. Thus, we have extended α to KvKh(D).

Step 2: Observe that all the maps of the form x× (0→ 1)v for some object
x of Kh(D) except for x = kh are mapped by α′ to cofibrations due
to property (Cof) of Φ and the construction in Step 1. Since we
need to fulfill (Cof) again, we want to replace α′(kh × (0 → 1)v)
by a cofibration. We start by functorially factorizing this morphism
into a cofibration g1 : A1 → A2 followed by a fibration g2 : A2 → A3,
so α′(kh × (0 → 1)v) = g2 ◦ g1. Now define α′′ : KvKh(D) → W to
coincide with α′ everywhere except on objects (kh, 1v) and kv and
on morphisms starting or ending in these objects. Set α′′((kh, 1v))
to be A2 and define α′′(kh × (0 → 1)v) = g1. For any map starting
in (kh, 1v), we precompose its image under α′ with g2 to obtain its
image under α′′. Last, we have the problem that there is in general
no map from α′(kv) to A2. But since we have a cospan

α′(kv)→ α′((kh, 1v)) = A3
g2←− A2

and g2 is a fibration, we can define α′′(kv) as its pullback. As a
pullback of a fibration, the morphism α′′(kv)→ α′(kv) is a fibration.
Note that since there are only morphisms starting in kv in KvKh(D),
we can simply precompose the image of each such map under α′

with the pullback projection morphism α′′(kv) → α′(kv) to obtain
the corresponding images unter α′′ (except for the morphism to A2).
This now defines a functor α′′ : KvKh(D)→W, and observe that by
construction now all morphisms of the form α′′(x × (0 → 1)v) are
cofibrations. We set Φ′(α) = α′′ and obtain an extension functor
that, due to modification in this step, satifies (Cof). It is a functor
since pullbacks and factorizations are functorial.

Note that by definition, Φ′(α) and Φ(α|D×0h) coincide when re-
stricted to D × 0h × (0→ 1)v. Moreover, by construction, the map

Φ′(α)(kv) = α′′(kv)→ Φ(α|D×0h)(kv) = α′(kv)

is a fibration. Altogether, we already have constructed a natural
transformation ε as required.
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Step 3: To prove that Φ′ satisfies (Lim), we want to prove that α′′(kv) with
the corresponding maps is a limit of α′′|Kh(D)×1v .

This is a consequence of Lemma 4.5. Indeed, recall that on both
D × 0h × 1v and D × 1h × 1v, the functor α′′ coincides with α′ and
is given by

Φ(α|D×0h)|D×0h×1v and Φ(α|D×1h)|D×1h×1v ,

respectively. By Property (Lim) of Φ, both of these diagrams have
a limit, namely α′(kv) and α′((kh, 1v)), respectively; the map

α′(kv → (kh, 1v))

is exactly the one induced by maps of the form x× (0→ 1)h. More-
over, the map g2 : α′′((kh, 1v)) → α′((kh, 1v)) is the induced map to
the limit. Thus, by Lemma 4.5, α′′(kv) is the limit of the diagram
α′′|Kh(D)×1v . This completes the proof of the lemma.

�

Next, we want to prove that the category of weak equivalences of a given
partial model category has the lifting property with respect to all inclusions
cSd2 Λn[n] → K(c Sd2 Λn[n]). More precisely, we will inductively prove the
following statement:

Theorem 4.7. Let (M,W) be a partial model category. Then for each n,
there are extension functors

Φn : Fun(cSd2 Λn[n],W)→ Fun(K(cSd2 Λn[n]),W)

and

Ψn : Fun(c Sd2 ∆[n],W)→ Fun(K(cSd2 ∆[n]),W)

fulfilling (Cof) and (Lim) and the following additional boundary condi-
tions:

(F1): The order on the vertices of an n-simplex in the boundary of an
(n+ 1)-simplex gives a distinguished way to identify it with the stan-
dard ∆n. With this identification, we require that for any

α : cSd2 Λn+1[n+ 1]→W
and for all i 6= n we have

Φn+1(α)|cSd2 di∆n+1×(0→1) = Ψn(α|cSd2 di∆n+1)|cSd2 di∆n+1×(0→1)

and a compatible morphism

Φn+1(α)(k)→ Ψn(α|cSd2 di∆n+1)(k).

(F2): Likewise, we require that for any α : cSd2 ∆[n]→W we have

Ψn(α)|c Sd2 Λn[n]×(0→1) = Φn(α|cSd2 Λn[n])|cSd2 Λn[n]×(0→1)

and a compatible morphism

Ψn(α)(k)→ Φn(α|cSd2 Λn[n])(k).
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(F3): Last, we require for any α : cSd2 Λn[n]→W the morphism

Φn(α)(k)→ Φn(α)({n}, 1)

to be fibration. Here, {n} stands for the length-1-chain of subsets of
n, corresponding to an object in cSd2 Λn[n]. Similarly, we want for
each α : cSd2 ∆[n]→W the map

Ψn(α)(k)→ Ψn(α)({n}, 1)

to be fibration.

Before proving the theorem, we would like to remark the following: All
we need to apply Lemma 4.2 to deduce our main theorem is that Φ is an
extension functor. All the other properties are just for the purposes of the
induction.

Proof. As we already mentioned, the proof works by induction. We will
explain first the plan of the proof before we give the details.

Given Φn and Ψn−1, we construct first Ψn. Recall that we identified a
part (denoted by P and highlighted blue in the picture below) of cSd2 ∆[n]
with K(cSd2 Λn[n]). Having again two applications of K around now, we
want to call this one “horizontal” and denote it by Kh, while the other one
is called vertical and denoted by Kv. To construct Ψn, we start with a
functor α : cSd2 ∆[n] → W and extend its restriction α|P first to Kv(P) ⊂
Kv(cSd2 ∆[n]) using Lemma 4.6. This is the main point of Step 1.

We claim that we can consider the subdivided simplex cSd2 ∆[n] as glued
from two pieces, one of which is P identified with Kh(c Sd2 Λn[n]). A part of
P is constituted by Kh(cSd2 ∂dn∆[n]). Here, cSd2 ∂dn∆[n]×0h corresponds
to sequences v0 ( . . . ( vm of non-empty subsets of n\n not containing n\n
itself. The cSd2 ∂dn∆[n]× 1h-part consists of sequences v0 ( . . . ( vm ⊂ n,
where v0 ( . . . ( vm is as in the last sentence. The additional point k is
identified with the barycenter n. On the other hand, Kh(cSd2 ∂dn∆[n]) can
be identified with a double subdivision of an (n− 1)-simplex. In the case of
n = 2, cSd2dn∆[n] is marked in green (and red) and cSd2 ∂dn∆[n] in red in
the picture below; the latter consists only of two 0-simplices.
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Note that the Kh(cSd2 ∂dn∆[n])-part of P is not this green simplex, but
merely the red highlighted part in the following picture:

Then c Sd2 ∆[n] can be viewed as glued from P with Kh(cSd2 ∆[n − 1])
along cSd2 ∆[n− 1]× 0h identified with Kh(c Sd 2∂dn∆[n]).
The cSd2 ∆[n−1]×0h and c Sd2 ∆[n−1]×1h-parts of this Kh(cSd2 ∆[n−1])
are highlighted red and blue in the picture, respectively; the additional point
kh is the green one.
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After Step 1 we already have an extension to Kv(P), so in particular to
Kv(Kh(cSd2 ∆[n − 1])) (i.e., to Kv of the red part of the last picture), and
we want to promote it to an extension for the whole (doubly subdivided)
simplex. A naive attempt would be to build pushouts for all the highlighted
spans in the following picture:

1

Yet this does not seem to work without modification. In Step 2, we take
this pushout and modify it by applying Ψn−1 to the pushout result, for n=2
the highlighted part of the picture.

1
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This modification turns out to be the right one. The extension so far
is shown to satisfy (Cof) in Step 2 and (Lim) in Step 3. In Step 4, we
extend our functor to the last missing part (corresponding to the kh of
Kh(cSd2 ∆[n − 1])), and we check it still has the correct limit property in
Step 5. This completes the construction of Ψn. We construct Φn+1 out of Ψn

and Φn using the boundary conditions in Step 6. Here, we exploit the fact
that an (n+1)-horn is obtained by gluing n-simplices along (n−1)-simplices.

Now we begin with the actual proof. First, note that Φ1 can be just
chosen to extend a given functor by a constant functor since cSd2 Λ1[1] is
the category 0 with exactly one object and no non-trivial morphisms. In
the same manner, we construct Ψ0 and observe that the condition (F1)
is satisfied for n = 0. We proceed by induction. Assume that extension
functors Φn and Ψn−1 (and all smaller ones) with properties (Cof), (Lim)
and (F1)–(F3) have already been constructed, and let α : cSd2 ∆[n] → W
be given. We would like to extend α to a functor K(c Sd2 ∆[n]) → W,
yielding the functor Ψn. The reader should observe that all the steps of our
construction are functorial, so Φ and Ψ are going to be functors.

Step 1: To extend α to KvKh(cSd2 Λn[n]), we apply Lemma 4.6 with D =
cSd2 Λn[n]. By induction hypothesis, the functor Φn is an extension
functor satisfying the hypothesis of Lemma 4.6. This lemma gives
us (functorially) a functor α′ : Kv(P) = KvKh(cSd2 Λn[n]) → W
extending α. In addition, it satisfies (Cof) and (Lim) and coincides
with Φn(α|cSd2 Λn[n]) when restricted to cSd2 Λn[n]× (0→ 1)v. The

last part of Lemma 4.6 gives us a compatible fibration

α′(kv)→ Φn(α|cSd2 Λn[n])(kv).

In particular, the map

α′(kv)→ α′({n}, 1v)
is a fibration as a composition of two fibrations (using Property (F3)
for Φn). The reader should also observe that during the next steps
in the construction of Ψn, the value on cSd2 Λn[n] × 0h × (0 → 1)v
and thus in particular on ({n}, 1v) will not be changed.

Step 2: We want to extend α′ now somewhat further. Recall that we have
already defined a functor α′ : Kv(P)→W which maps morphisms of
the form x × (0 → 1)v to cofibrations and where α′(kv) is the limit
of α′|P×1v . Let P ′ stand short for

P ∪cSd2 ∆[n−1] (cSd2 ∆[n− 1]× (0→ 1)h),

i.e., cSd2 ∆[n] without the barycenter of dn∆[n]. Here, cSd2 ∆[n−1]
is still identified with Kh(∂dn∆[n]) as in the description of the plan of
the proof. Now we would like to extend both α′ and α simultaneously
to Kv(P ′). Observe that for each object x of cSd2 ∆[n − 1], we
already have a span of morphisms
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α(x× 0h × 0v) = α′(x× 0h × 0v)

α′(x× 0h × 1v)

α(x× 1h × 0v)

α′(x× 0h × (0→ 1)v)

α(x× (0→ 1)h × 0v)

and the horizontal map is a cofibration by construction. Thus we
could build all the pushouts of such squares to obtain values of our
extension α̃ on all of Kv(P ′), since we can simply take composi-
tions to obtain missing maps from α′(kv). Yet this doesn’t seem to
work, and we have to modify this attempt somewhat further. Taking
pushouts and induced maps yields a functor γ : cSd2 ∆[n− 1]→W,
where cSd2 ∆[n− 1] is identified with its 1h × 1v-copy. We can ap-
ply Ψn−1 to it. We define our new extension α̃ to coincide with α′

and α wherever it makes sense, and let it be Ψn−1(γ)|c Sd2 ∆[n−1]×1

on cSd2 ∆[n − 1] × 1h × 1v. Since there are no morphisms from
these to objects not of this form in Kv(P ′), we have to take care
only of morphisms with targets in cSd2 ∆[n − 1] × 1h × 1v. To do
so, we compose the pushout morphisms we obtained for γ with the
corresponding maps in Ψn−1(γ)|cSd2 ∆[n−1]×(0→1) as depicted in the

following diagram for an a ∈ c Sd2 ∆[n− 1]:

α̃(kv)

,,

��

α̃(a× 1h × 1v) = Ψn(γ)(a× 1h × 1v × 1)

α̃(a× 0h × 1v)

33

// γ(a× 1h × 1v)

OO

OO

α̃(a× 0h × 0v) //
OO

OO

L

α̃(a× 1h × 0v)

ee

OO

OO

This yields a functor

α̃ : Kv(P ′)→W.

Moreover, note that all pushout morphisms of the form

α(x× 1h × 0v)→ γ(x)

are cofibrations. By Property (Cof), the maps these are composed
with are also cofibrations, so that for any x ∈ cSd2 ∆[n − 1] × 1h,
the morphism α̃(x× (0→ 1)v) is a cofibration.

Step 3: We want to show that α̃ satisfies again a limit property analogous
to (Lim), namely that the object α̃(kv) is a limit of the diagram
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α̃|P ′×1v . It is enough to show that the inclusion functor ι : P → P ′
is an initial functor since we already know that α̃(kv) is a limit of
α̃|P×1h .

For doing so, we have to show that for any object x of P ′, the
comma category

(ι ↓ x)

is non-empty and connected. This is clear for objects x in P since in
this case (ι ↓ x) has the terminal object idx. Now consider an object
(y, 1h) where y is an object of cSd2 ∆[n− 1]. Then (y, 0h)→ (y, 1h)
is the terminal object of the category (ι ↓ (y, 1h)). Thus, the functor
ι is initial and the object α̃(kv) is a limit of the diagram α̃|P ′×1v .

Furthermore, observe that since α′(kv) = α̃(kv) and the maps to
α̃({n}, 1v) coincide, the map α̃(kv)→ α̃({n}, 1v) is a fibration.

Step 4: The functor α̃ is undefined at kh × 1v for kh in Kh(cSd2 ∆[n − 1])
the barycenter of dn∆[n]. We want to extend α̃ to a functor

δ : K(c Sd2 ∆[n])→W.

On objects of Kv(P ′) except kv, define δ to coincide with α̃. Our
first try would be to define δ(kh × 1v) to be the value at the ad-
ditional point Ψn−1(γ)(k). This is again almost what we do. This
object already has all necessary maps: by definition, we have maps
to δ(cSd2 ∆[n− 1]× 1h × 1v). Since by Property (Lim), the object
Ψn−1(γ)(k) is a limit of δ(cSd2 ∆[n − 1] × 1h × 1v) and since we
have compatible maps from δ(kh×0v) to δ(cSd2 ∆[n−1]×1h×1v),
we get also a map δ(kh × 0v) to the limit Ψn−1(γ)(k). For a sim-
ilar reason, we obtain a map α̃(kv) → Ψn−1(γ)(k). As the map
δ(kh × 0v) → Ψn−1(γ)(k) is not necessarily a cofibration, we first
factorize this map into a cofibration followed by a fibration using
functorial factorization:

δ(kh × 0v)
g′−→ D

h′−→ Ψn−1(γ)(k).

We define δ(kh × 1v) = D, and g′ to be the image of kh × (0 → 1)v
under δ. Analogously to Step 2 of Lemma 4.6, we define δ(kv) to be
the following pullback:

δ(kv) //

����

D

h′
����

α̃(kv) //

J

Ψn−1(γ)(k)

This is possible since h′ is defined to be a fibration. As before, it
also implies that δ(kv) → α̃(kv) is a fibration. Again, besides the
two morphisms already defined, all other morphisms in K(cSd2 ∆[n])
involving kv start in kv, so the corresponding image morphism under



FIBRANCY OF PARTIAL MODEL CATEGORIES 23

δ is obtained by precomposing with h′ the corresponding map from
Ψn−1(γ)(k). This defines a functor

δ : K(cSd2 ∆[n])→W.

We define Ψn(α) to be δ. First, observe that this construction is
functorial in α, since we only used constructions like functorial fac-
torization, limits and colimits and previously constructed functors
Ψn−1 and Φn to define Ψn. Moreover, this is by construction an
extension functor satisfying condition (Cof). Also, (F3) is satisfied
as the map δ(kv)→ δ({n}, 1v) is a composition of two fibrations.

Step 5: Next, we want to prove that (Lim) is satisfied for our newly defined
functor Ψn. Note that in the diagram cSd2 ∆[n] × 1v, the only
object not in P ′ × 1v is kh × 1v and, as mentioned above, it has
only outgoing maps to objects of P ′ × 1v, more precisely, to objects
of cSd2 ∆[n − 1] × 1h × 1v inside it. Now assume that we have an
object T in W with compatible morphisms to δ(cSd2 ∆[n] × 1v).
In particular, we can consider only the subset of these morphisms
with targets in δ(P ′), inducing a morphism T → α̃(kv). Considering
the even smaller subset of maps to δ(cSd2 ∆[n − 1] × 1h × 1v), we
obtain a map to Ψn−1(γ)(k) which is compatible with the previous
one. We have not yet considered the map T → δ(kh × 1v) = D.
Observe that the composition T → D → Ψn−1(γ)(k) is the same
map as the already described one. Thus, by the universal property
of the pullback, we obtain a compatible map T → δ(kv). Similarly,
it is not hard to see the uniqueness. Thus, δ(kv) is indeed a limit of
the restriction of δ to cSd2 ∆[n] × 1v, and the functor Ψn satisfies
(Lim). In particular, Ψn has now all desired properties.

Step 6: We continue by constructing the functor Φn+1. Let

α : cSd2 Λn[n]→W
be given. Property (F1) dictates us how to extend α to c Sd 2Λn[n]×
(0→ 1). This is possible by Property (F2). In particular, it implies
that Ψn(α|di∆[n+1])({n + 1}, 1v) is the same for all 0 ≤ i ≤ n; we
call this object E. Now we need to define Φn+1(α)(k). We have
fibrations Ψn(α|di∆[n+1])(kv) → E for all 0 ≤ i ≤ n. Successively
building pullbacks, we obtain a new object X in W, together with
fibrations X → Ψn(α|di∆[n+1])(kv) for all 0 ≤ i ≤ n, which give us
the same fibration X → E when continued to E. Moreover, X is the
limit of the diagram given by maps Ψn(α|di∆[n+1])(kv)→ E. Define
Φn+1(α)(k) = X. By construction, the Properties (Cof) and (F1)
as well as (F3) are obviously satisfied. So we are left with proving
(Lim). This is completely analogous to the argument in Step 5.

All in all, this completes the induction step and thus the proof of the
theorem.
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�

5. Examples

In this section, we would like to discuss some examples. Obviously, weak
equivalences W of any model category satisfy the conditions of Theorem
4.7, thus providing a wide range of examples. Here, we would like to present
some of these and a further example of partial model category. In partic-
ular, we want to show examples of partial model categories (C,W) where
Ex2NW is Kan, but ExNW is not Kan. This includes a category with all
pullbacks. In contrast, we will show that for a category C with all pushouts,
ExNC is already Kan. Furthermore, we will give an example of a category
C with ExNC Kan, which is not the category of weak equivalences of a
partial model category. This shows that the hypotheses of Theorem 4.7 are
sufficient, but not necessary. At last, we note that for every filtered category
C the simplicial set ExNC is Kan.

Recall that any category with all pushouts or all pullbacks can be given
a structure of a partial model category with every morphism being a weak
equivalence.

Example 5.1. It is easy to show that the category FI of finite sets and
injections has all pullbacks, so Ex2N(FI) is Kan. But FI does not have
the lifting property with respect to the diagram

• → •⇒ • 99K •
For example, we can consider

{0} // {0, 1, 2}
id --

τ
11 {0, 1, 2},

where τ permutes 1 and 2. Thus, ExN(FI) is not Kan.
It is furthermore interesting to note that while property (CF1) holds for

FI, the pushout in the category of sets of a given diagram of finite sets and
injections between them is not necessarily a pushout in the category FI.
For example, consider

{1} //

��

{1, 2}

{0, 1}
and the maps maps id: {1, 2} → {1, 2} and q : {0, 1} → {1, 2} with q(0) = 2
and q(1) = 1. Then the induced map {0, 1, 2} → {1, 2} is not an injection.
It is easy to deduce that this diagram actually does not have a pushout in
FI.

In contrast to this example, every category W with all pushouts already
possesses left calculus of fractions with respect to itself. Indeed, even more
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is true; we will prove the following easy proposition. This is essentially
contained in [9], but we prefer to give the following direct proof.

Proposition 5.2. Let W be a category with all pushouts. Let the diagram

A
α // X

f
))

g
55 Y

with fα = gα be given. Then the diagram

X
f
))

g
55 Y

has a coequalizer. In particular, both properties (CF1) and (CF2) hold in
W. Thus W possesses left calculus of fractions with respect to itself.

Proof. First, we build the pushout B as follows:

A
α //

fα=gα
��

X

i
��

Y
j
// B.

From B, we obtain two maps F,G : B → Y from

A
α //

fα
��

X

i
�� f

��

Y
j
//

id ++

B

F   
Y

and

A
α //

gα

��

X

i
�� g

��

Y
j
//

id ++

B

G   
Y.

We claim that the pushout Z defined in the diagram below is the desired
coequalizer:

B
G //

F
��

Y

ϕ1

��
Y ϕ2

// Z.
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First, we want to show that ϕ1 = ϕ2. This holds since we can precompose
the equation ϕ1G = ϕ2F with j : Y → B and obtain by definition of F and
G:

ϕ1 = ϕ1 ◦ idY = ϕ1Gj = ϕ2Fj = ϕ2.

Next, we claim that ϕ = ϕ1 = ϕ2 : Y → Z equalizes f and g. Indeed,
precompose the identity ϕ1G = ϕ2F with i : X → B and obtain again by
definition of F and G:

ϕg = ϕ1Gi = ϕ2Fi = ϕf.

Last, we have to show that ϕ is universal with this property. Assume
h : Y → T is a map with hf = hg. We want to show that h factors uniquely
through Z, i.e., that there is a unique map ψ : Z → T so that ψ ◦ ϕ = h.
To construct such a map, we need to show that hG = hF : B → Y ; this will
induce a unique map ψ as desired. As B was defined as a pushout, to check
this property, it is equivalent to check that hGj = hFj and hGi = hFi. As
Fj = Gj = idY and hGi = hg = hf = hFi, we are done. �

Example 5.3. Let we Cat be the category with objects all (small) categories
and as morphisms functors that induce weak equivalences on nerves. As
these are the weak equivalences in the Thomason model structure, this falls
inside the scope of our theorem. We want to show that Property (CF1) fails
for we Cat.

Let C be the category with two objects x and y and two non-identity
morphisms a and b from x to y, depicted as follows:

x
a
((

b

66 y

Let furthermore N denote the category with one object corresponding to the
monoid of natural numbers (with addition) and call the generating morphism
t. Then we consider the diagram

C F //

G
��

N

N

The functor F sends a to t and b to the identity and the functor G sends
a to the identity and b to t. We need to show that NF and NG are weak
equivalences. As NN → NZ is a weak equivalence (e.g. by [5, Proposition
4.4]), we only need to show that the composition C → Z induces a weak
equivalence on nerves. As both nerves are K(Z, 1), we have only to show
that the map induces an isomorphism on π1. The fundamental group of
C is generated by b−1a. This is mapped by F and G to 1 and −1 in Z,
respectively. Thus, NF and NG are weak equivalences.
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Now assume we could complete the above diagram to a commutative
square

C F //

G
��

N

��
N // D

The resulting functor C → D has to send x and y to the same object and a
and b to the identity, i.e., it factors over the terminal category ∗. As NC is
not contractible, the functor C → D cannot be a weak equivalence.

Thus, ExNwe Cat is not Kan.

Example 5.4. Virtually the same example works also for the category of
weak equivalences we Top of Top, either meaning homotopy equivalences or
weak homotopy equivalences. Consider the diagram

S1 f //

g
��

S1

S1

where f collapses to the lower closed hemisphere to a point and g the upper
one. These are clearly homotopy equivalences. Assume we could complete
the diagram to a commutative square

S1 f //

g
��

S1

��
S1 // X

Then the resulting map S1 → X must send all points of the lower hemisphere
and all points of the upper hemisphere to the same point. Hence, it factors
over a point and cannot be a (weak) homotopy equivalence.

Thus, ExNwe Top is not Kan.

Example 5.5. Consider the monoid M generated by one element a with the
relation a2 = a. We view it as a category with one object and one non-trivial
morphism a. It has the property that ax = a = ay for any morphisms x, y
in M . Thus, M has a left calculus of fraction with respect to itself and
ExNM is fibrant.

On the other hand, M is not the category of weak equivalences of a
partial model category. Assume otherwise. If the class of acyclic cofibrations
contains a, then the pushout of the diagram

• a //

a

��

•

•
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has to exist. Assume that

• a //

a

��

•
b
��

• c
// •

is a pushout. This is equivalent to the following: For every x, y ∈ M with
xa = ya, there is a unique z ∈M with zba = xa. As every product involving
a equals a, this z can always be chosen to be either 1 or a, so it cannot be
unique and the pushout of the diagram above does not exist. Thus, the
class of acyclic cofibrations has to be equal to {id}. As M is self-dual, the
same is true for the class of acyclic fibrations. Thus, we cannot factor the
morphism a into an acyclic cofibration and an acyclic fibration.

Thus, M is not the category of weak equivalences of a partial model
category.

Example 5.6. Every filtered category has a left calculus of fraction. Indeed,
(CF2) is clear by definition and given a span

X
s //

t
��

Y

Z

we can argue as follows: By the definition of a filtered category, there is an
object W with morphisms f : Y → W and g : Z → W . Furthermore, there
is a morphism h : W → Q with hfs = hgt. This defines a commutative
square

X
s //

t
��

Y

hf
��

Z
hg
// Q

This implies (CF1).

6. Open questions and outlook

Question 1. Is every category equivalent in the Thomason model structure
to the category of weak equivalences of a partial model category?

Note that Example 5.5 shows that not every category that is fibrant in
the Thomason model structure is the category of weak equivalences of a
partial model category.

Question 2. Is there a notion of a category C with an (n + 1)-arrow cal-
culus (with respect to itself) such that ExnNC is fibrant but not necessarily
Exn−1NC?
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This question is a strengthening of a conjecture of Beke as formulated in
[3, Conjecture 3.1] that there are for all n categories C such that ExnNC is
fibrant but Exn−1NC is not. As a main difficulty in this conjecture is the
lack of good criteria for ExnNC being fibrant, our question seems to be a
possible line of attack towards Beke’s conjecture.

Note that being a groupoid is the same as a 1-arrow calculus and a left
calculus of fractions is a form of 2-arrow calculus. Furthermore, partial
model categories are a form of categories with a 3-arrow calculus. In the
best of all worlds, one could hope that there is a (transparent) notion of an
(n + 1)-arrow calculus such that ExnNC is fibrant if and only if C has an
(n+ 1)-arrow calculus.

Question 3. Is every partial model category fibrant in the Barwick–Kan
model structure on relative categories as defined in [1]?

This does not seem to be true, but the question whether model cate-
gories are fibrant in the Barwick–Kan model structure will be addressed in
a forthcoming paper by the first-named author.

Question 4. Is there an example of a category C such that Ex2NC is fibrant,
but Ex2NCop is not?

There are a few observations motivating this question: Whether NC is
Kan is a self-dual property (C has it if and only if Cop has it). Whether
ExNC is Kan is not a self-dual property as Example 5.1 and Proposition
5.2 show. In contrast, whether C is the category of weak equivalences of a
partial model category is again a self-dual property.
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