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Fibrations and stable generalized complex structures

Gil R. Cavalcanti and Ralph L. Klaasse

Abstract

A generalized complex structure is called stable if its defining anticanonical section vanishes
transversally, on a codimension-two submanifold. Alternatively, it is a zero elliptic residue
symplectic structure in the elliptic tangent bundle associated to this submanifold. We develop
Gompf–Thurston symplectic techniques adapted to Lie algebroids, and use these to construct
stable generalized complex structures out of log-symplectic structures. In particular we introduce
the notion of a boundary Lefschetz fibration for this purpose and describe how they can be
obtained from genus one Lefschetz fibrations over the disc.
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1. Introduction

Generalized complex structures [16, 17, 20] capture aspects of both symplectic and complex
geometry. While slightly misleading, a generalized complex structure can be seen as a Poisson
structure together with a suitably compatible complex structure normal to the (singular)
symplectic leaves. In general the symplectic leaves may have varying dimension, leading to
the notion of type change, where complex and symplectic behavior is mixed.

In this paper we are interested in a class of generalized complex manifolds for which the type
need not be constantly equal to zero, but differs from zero only in the mildest way possible.
These are called stable generalized complex structures [9, 14], and are those generalized
complex structures whose defining anticanonical section vanishes transversally. Whenever a
generalized complex structure is of type 0, it is isomorphic after a B-field transformation to a
symplectic structure. In this sense a stable generalized complex structure is a symplectic-like
structure that fails to be symplectic on at most a codimension-two submanifold.

In [7, 8, 15, 32, 33], many examples of stable generalized complex structures on four-
manifolds were constructed, in particular on manifolds without a symplectic nor complex
structure. A thorough study of stable generalized complex manifolds was initiated in [9].
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Stable generalized complex structures can be seen as the generalized geometric analogue of
a log-symplectic structure, which is a type of mildly degenerate Poisson structure that has
recently received a lot of attention [6, 10, 18, 19, 25, 26].

In [9] it was noted that stable generalized complex structures can alternatively be viewed
as symplectic forms on a Lie algebroid, the elliptic tangent bundle, constructed out of the
anticanonical section and its zero set (they are further of zero elliptic residue: see Section 2 for
details). This symplectic viewpoint allows one to apply symplectic techniques to the study of
stable generalized complex structures. In this paper we focus on constructing stable generalized
complex structures on total spaces of fibration-like maps.

More precisely, in this paper we extend Gompf–Thurston symplectic techniques to arbitrary
Lie algebroids. We introduce Lie algebroid fibrations and Lie algebroid Lefschetz fibrations, and
give criteria when these can be equipped with compatible Lie algebroid symplectic structures.
We discuss morphisms between elliptic and log-tangent bundles, which are Lie algebroids
whose symplectic structures describe stable generalized complex structures and log-symplectic
structures respectively. We then introduce a class of maps called boundary maps. These induce
morphisms between the elliptic and log tangent bundles, and we use them to construct stable
generalized complex structures out of log-symplectic structures.

The following is the main result about Lie algebroid Lefschetz fibrations and Lie algebroid
symplectic structures. A more precise version exists (Theorem 4.8), as well as an analogous
result for Lie algebroid fibrations (Theorem 4.5).

Theorem 1.1. Let (ϕ, f) : A4
X → A2

Σ be a Lie algebroid Lefschetz fibration with connected
fibers. Assume that AΣ admits a symplectic structure and there exists a closed AX -two-form
η such that η|kerϕ is nondegenerate. Then X admits an AX -symplectic structure.

This result can be used as a tool to obtain geometric structures that admit an interpretation
as A-symplectic structures using Lefschetz-type maps. What is most crucial for being able to
apply it is understanding how to obtain the above ‘fiberwise symplectic’ form η.

A specific type of boundary map we call a boundary Lefschetz fibration is shown to induce
a Lie algebroid Lefschetz fibration between the elliptic and log-tangent bundle. These are
essentially genus one Lefschetz fibrations over surfaces, except that generic fibers can collapse
to circles over a codimension-one submanifold, which is often the boundary of the surface.
This concept extends and formalizes the generalized Lefschetz fibrations of [8]. Using this
correspondence we prove the following result (Theorem 7.1) which motivated this work.

Theorem 1.2. Let f : (X4, D2) → (Σ2, Z1) be a boundary Lefschetz fibration with D
coorientable such that (Σ, Z) carries a log-symplectic structure. Assume [F ] �= 0 ∈ H2(X\D; R)
for the generic fiber F . Then (X,D) admits a stable generalized complex structure.

A similar result is true in arbitrary dimension, using boundary fibrations instead
(Theorem 7.2). This result validates the definition of a boundary Lefschetz fibration as being the
type of fibration-like map which should be linked with stable generalized complex structures.
This extends the original relationship between Lefschetz fibrations and symplectic structures
due to Gompf [13], that between broken Lefschetz fibrations and near-symplectic structures
[1, 3], and between achiral Lefschetz fibrations and log-symplectic structures [6, 10].

To produce concrete examples, one has to construct boundary Lefschetz fibrations on explicit
four-manifolds. This can be done using genus one Lefschetz fibrations over punctured surfaces
with boundary monodromy given by powers of Dehn twists using a process we call completion
(see Corollary 6.6). In particular, we have the following corollary (Theorem 8.1).
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Theorem 1.3. Let f : X4 → D
2 be a genus one Lefschetz fibration over the disc whose

monodromy around the boundary is a power of a Dehn twist. Then all possible completions
f̃ : (X̃,D) → (D2, ∂D

2) admit a stable generalized complex structure.

Together with Stefan Behrens we have classified boundary Lefschetz fibrations over the disc
D

2 degenerating over its boundary, establishing the following.

Theorem 1.4 [4]. Let f : (X4, D2) → (D2, ∂D
2) be a relatively minimal boundary Lefschetz

fibration. Then X is diffeomorphic to one of the following:

(1) S1 × S3;
(2) #m(S2 × S2), including S4 for m = 0;
(3) #mCP 2#nCP 2 with m > n � 0.

In all cases the generic fiber is nontrivial in H2(X\D; R). In case (1), D is coorientable, while
in cases (2) and (3), D is coorientable if and only if m is odd.

Here relative minimality refers to the nonexistence of spheres with self-intersection −1 in
the fibers, nor of those vanishing cycles which are isotopic to the cycle specifying the boundary
monodromy of the boundary Lefschetz fibration (see [4, Definition 3.3]). This result can be
combined with Theorem 1.2 to equip the manifolds S1 × S3#nCP 2, #(2m + 1)CP 2#nCP 2

and #(2m + 1)S2 × S2 with a stable generalized complex structure whose type-change locus
has a single component. In particular, these manifolds admit a generalized complex structure
with connected type-change locus. Further, they provide a complete list of four-manifolds whose
stable generalized complex structures are obtained from boundary Lefschetz fibrations over
the disc degenerating over its boundary. Note that in the list of Theorem 1.4, the submanifold
D ⊆ X is coorientable if and only if X admits an almost-complex structure, as is required for
the existence of a generalized complex structure.

All manifolds in this paper will be compact, unless specifically stated otherwise. Note however
that they are not necessarily closed. Throughout we will identify de Rham cohomology with
singular cohomology with R-coefficients.

Organization of the paper

In Section 2 we recall the definition of a stable generalized complex structure and introduce
the language of divisors. We further define Poisson structures of divisor-type and recall the
definition of a log-symplectic structure.

In Section 3 we recall the definition of a Lie algebroid, and introduce the two relevant
Lie algebroids (the elliptic and log tangent bundle) constructed out of divisors. We further
define Lie algebroid fibrations and Lie algebroid Lefschetz fibrations, and discuss Lie algebroid
symplectic structures and their Poisson counterparts.

In Section 4 we discuss the Lie algebroid version of the Gompf–Thurston argument to
construct Lie algebroid symplectic structures (Theorem 4.3). Moreover, we prove results for
Lie algebroid fibrations (Theorem 4.5) and Lie algebroid Lefschetz fibrations (Theorem 4.8).

In Section 5 we define the normal Hessian of a map and introduce boundary maps. We define
boundary fibrations and boundary Lefschetz fibrations and prove several normal form results
for boundary maps (Proposition 5.8, Proposition 5.10, and Proposition 5.15).

In Section 6 we introduce a standard boundary fibration (Proposition 6.2) and use this to
obtain boundary Lefschetz fibrations out of genus one Lefschetz fibrations over a punctured
surface using monodromy data (Corollary 6.6) via a completion process.

In Section 7 we then prove our main results: Theorem 7.1, that four-dimensional boundary
Lefschetz fibrations give rise to stable generalized complex structures; and Theorem 7.2,
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that the same holds for boundary fibrations. Moreover, we show compatibility with existing
fibrations over T 2 and S1 can be achieved in the compact case (Corollary 7.6).

In Section 8 we give examples of stable generalized complex manifolds constructed using our
methods. In particular, we recover the examples mCP 2#nCP

2
for m odd from [8].

2. Stable generalized complex and log-symplectic structures

In this section we recall the notion of a stable generalized complex structure as defined in [9],
and that of log-symplectic structures [19]. Moreover, we introduce the language of divisors
to study them. For a more comprehensive account, see also [21]. We start by recalling the
definition of a generalized complex structure, for which a general reference is [17].

2.1. Generalized complex structures

Let X be a 2n-dimensional manifold equipped with a closed three-form H ∈ Ω3
cl(X). Recall

that the double tangent bundle TX := TX ⊕ T ∗X is a Courant algebroid whose anchor is
the projection p : TX → TX. It carries a natural pairing 〈V + ξ,W + η〉 = 1

2 (η(V ) + ξ(W )) of
split signature and an H-twisted Courant bracket [[V + ξ,W + η]]H = [V,W ] + LV η − ιW dξ +
ιV ιWH for V,W ∈ Γ(TX) and ξ, η ∈ Γ(T ∗X). Two-forms B ∈ Ω2(X) act via B-field (or gauge)
transformations eB : TX → TX given by eB : V + ξ 	→ V + ξ + ιV B. This takes (TX,H) to
(TX,H + dB), leading to the Ševera class [H] ∈ H3(X; R) determining TX up to Courant
isomorphism. The Courant automorphisms of TX are generated by the diffeomorphisms and
closed B-field transformations.

Definition 2.1. A generalized complex structure on (X,H) is a complex structure J on
TX that is orthogonal with respect to 〈·, ·〉, and whose +i-eigenbundle is involutive under
[[·, ·]]H .

There is an alternative definition of a generalized complex structure using spinors. To state
it, recall that sections v = V + ξ ∈ Γ(TX) of the double tangent bundle act on differential
forms via Clifford multiplication, given by v · ρ = ιV ρ + ξ ∧ ρ for ρ ∈ Ω•(X).

Definition 2.2. A generalized complex structure on (X,H) is given by a complex line
bundle KJ ⊂ ∧•T ∗

C
X pointwise generated by a differential form ρ = eB+iω ∧ Ω with Ω a

decomposable complex k-form, satisfying Ω ∧ Ω ∧ ωn−k �= 0, and such that dρ + H ∧ ρ = v · ρ
for any local section ρ ∈ Γ(KJ ) and some v ∈ Γ(TX).

Both definitions are related using that KJ = Ann(EJ ) is the annihilator under the Clifford
action of EJ , the +i-eigenbundle of J . The bundle KJ is called the canonical bundle of J . For
later use, we further introduce the analogue of a Calabi–Yau manifold in generalized geometry.
Denote by dH = d + H∧ the H-twisted de Rham differential.

Definition 2.3. A generalized complex structure J on (X,H) is generalized Calabi–Yau
if its canonical bundle KJ is determined by a global nowhere vanishing dH -closed form.

Example 2.4. The following provide examples of generalized complex structures on (X, 0).

• Let ω be a symplectic structure on X. Then KJω
:= 〈eiω〉 defines a generalized complex

structure Jω.
• Let J be a complex structure on X with canonical bundle KJ = ∧n,0T ∗X. Then KJJ

:=
KJ defines a generalized complex structure JJ .

• Let P ∈ Γ(∧2,0TX) a holomorphic Poisson structure with respect to a complex structure
J . Then KJP,J

:= ePKJ defines a generalized complex structure JP,J .
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The automorphisms Jω, JJ and JP,J are given by, with π = Im(P ):

Jω =
(

0 −ω−1

ω 0

)
, JJ =

(−J 0
0 J∗

)
, JP,J =

(−J π
0 J∗

)
.

We next introduce the type of a generalized complex structure J , which colloquially provides
a measure for how many complex directions there are. The type is an integer-valued upper
semicontinuous function on X whose parity is locally constant.

Definition 2.5. Let J be a generalized complex structure on X. The type of J is a map
type(J ) : X → Z whose value at a point x ∈ X is the integer k above, the degree of Ω. The
type change locus DJ of J is the subset of X where type(J ) is not locally constant.

The complement of DJ is an open dense set where the type is minimal. Using the
type, generalized complex structures are seen to interpolate between symplectic and complex
structures. At points where type(J ) = 0, the generalized complex structure is equivalent to
a symplectic structure, in that it is equivalent to the generalized complex structure Jω of a
symplectic structure under a B-field transformation.

Any generalized complex structure J determines a Poisson structure πJ as the composition
π�
J := p ◦ J |T∗X . The type of J is related to the rank of πJ through the formula rank(πJ ) =

2n− 2 type(J ). Using πJ one can view a generalized complex structure J as a foliation on X
with symplectic leaves, and a suitably compatible complex structure transverse to the leaves.

2.2. Stable generalized complex structures

Generalized complex structures which are stable were introduced in [9, 14]. Their defining
property is a natural condition and since stable generalized complex structures are not far
from being symplectic, one can use symplectic techniques to study them.

Let J be a generalized complex structure on (X,H). The anticanonical bundle K∗
J has a

section s ∈ Γ(K∗
J ), given by s(ρ) := ρ0 for ρ ∈ Γ(KJ ), with ρ0 the degree-zero part of ρ.

Definition 2.6. A generalized complex structure J on (X,H) is stable if s is transverse
to the zero section in K∗

J . The set DJ := s−1(0) is a codimension-two smooth submanifold of
X called the anticanonical divisor of J .

Outside of DJ , the section s is nonvanishing hence the type of J is equal to zero, while
over DJ it is equal to two. Consequently, stable generalized complex structures can be seen as
generalized complex structures which are close to being symplectic.

Example 2.7. Consider (C2, 0) with holomorphic Poisson structure π = z∂z ∧ ∂w. This
gives a stable generalized complex structure with KJ = 〈z + dz ∧ dw〉 and DJ = {z = 0}.

By Example 2.4, any holomorphic Poisson structure (J, P ) defines a generalized complex
structure JP,J on (X, 0) with KJP,J

= ePKJ . Thus KJP,J
is locally generated by ePΩ, with Ω

a local trivialization of KJ . This immediate proves the following.

Proposition 2.8 [9, Example 2.11]. Let (X, 0, J, P ) be a holomorphic Poisson structure
on a complex 2m-dimensional manifold. Then JP,J is a stable generalized complex structure
if and only if the Pfaffian ∧mP is transverse to the zero section in Γ(∧2m,0TX).

Any stable generalized complex structure J is locally equivalent around points in DJ to
〈eiω0(z + dz ∧ dw)〉 on C

2 × R
2n−4, with ω0 the standard symplectic form on R

2n−4, and
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〈z + dz ∧ dw〉 the structure on C
2 of Example 2.7 with DJ = {z = 0}, see [9, Section 3.4].

On DJ there is an induced type-1 generalized Calabi–Yau structure [9, Theorem 2.13].
Any compact type-1 generalized Calabi–Yau manifold, such as DJ , fibers over the torus

T 2 [2]. Moreover, the semilocal form of a stable generalized complex structure around its
type change locus is given by its linearization along DJ , which is the stable generalized
complex structure naturally present on the normal bundle to this type-1 generalized Calabi–Yau
manifold. We will not elaborate on this further here and instead refer to [2, 9].

The anticanonical bundle K∗
J of a stable generalized complex manifold together with its

natural section s are a particular example of a divisor, which we will introduce shortly. As the
theory of divisors permeates much of this work, we now turn to developing this concept.

2.3. Real and complex divisors

In this section we introduce real and complex divisors, which are extensions to the smooth
setting of the notion of a divisor used in complex geometry. We further discuss the relation
between the ideals they define, and define morphisms between divisors. See also [9, 22].

Definition 2.9. Let X be a manifold. A divisor on X is a pair (U, σ) where U → X is a
real/complex line bundle and σ ∈ Γ(U) is a section whose zero set is nowhere dense.

In this paper we will mostly focus on real divisors. As such, we will often drop the prefix
‘real’, while explicitly stating when divisors are instead complex. Examples of divisors will be
discussed in upcoming subsections.

Given a divisor (U, σ), viewing σ : Γ(U∗) → C∞(X) specifies a locally principal ideal Iσ :=
σ(Γ(U∗)) which is locally generated by a function with nowhere dense zero set. Letting α be
a local trivialization of U∗, we have α(σ) = g for some local function g. Then locally Iσ =
〈α(σ)〉 = 〈g〉. Conversely, out of any such ideal we can construct a divisor, which recovers
the ideal via this evaluation process. This extends the correspondence between divisors and
holomorphic line bundles in complex geometry.

Proposition 2.10 [22]. Let I be a locally principal ideal on X generated by functions
with nowhere dense zero set. Then there exists a divisor (UI , σ) on X such that Iσ = I.

Proof. Let {Uα} be an open cover of X and fα ∈ I(Uα) be generators. Then on Uα ∩ Uβ we
have fα = gαβfβ with gαβ ∈ C∞(Uα ∩ Uβ). Since fα = gαβgβαfα, and fα has nowhere dense
support, we see that each gαβ is a nonvanishing function and gβα = g−1

αβ . Similarly the identity
fα = gαβgβγgγαfα on Uα ∩ Uβ ∩ Uγ implies that the functions gαβ satisfy the cocycle condition.
We conclude that {(Uαβ , gαβ)} defines a line bundle UI on X. Further, setting σ|Uα

= fα on
Uα specifies a section σ of this bundle with the desired properties. �

The section σ constructed in the proof of the above proposition is unique up to multiplication
by a smooth nonvanishing function. We next define morphisms between divisors in terms of
the ideals they give rise to. Denote by f∗I ⊆ C∞(X) the ideal generated by the pullback of an
ideal I ⊆ C∞(Y ) along a map f : X → Y .

Definition 2.11. Let (UX , σX) be a divisor on X and (UY , σY ) a divisor on Y . A map
f : X → Y is a morphism of divisors if f∗IσY

= IσX
.

Equivalently, one can require that (UX , σX) = (f∗UY , gf
∗σY ) for some g ∈ C∞(X; R∗). Two

divisors are diffeomorphic (denoted using ∼=) if there exists a morphism of divisors between
them which is in addition a diffeomorphism. Two divisors on a fixed manifold X are isomorphic
(denoted using =) if the identity map on X is a morphism of divisors.
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2.3.1. Log divisors. The simplest type of divisor is that of a log divisor. These are divisors
whose zero set will be a smooth codimension-one submanifold, or hypersurface.

Definition 2.12. A log divisor is a divisor (L, s) whose zero set Zs = s−1(0) is a smooth
hypersurface along which s is transverse to the zero section.

It follows from the definition that the first Stiefel–Whitney class of L is the Z2-Poincaré dual
of Z. Further, the intrinsic derivative ds|Z : NZ → L|Z is an isomorphism.

There is also a complex analogue of a (real) log divisor.

Definition 2.13. A complex log divisor is a complex divisor (U, σ) whose zero set
Dσ = σ−1(0) is a smooth codimension-two submanifold with σ transverse to the zero section.

Any complex log divisor (U, σ) has a complex conjugate (U, σ) with the same zero locus.

Example 2.14. By definition the anticanonical bundle K∗
J of a stable generalized complex

structure together with its natural section s is an example of a complex log divisor.

Let (L, s) be a log divisor. The associated ideal IZ := Is is exactly the vanishing ideal of the
hypersurface Z. Any hypersurface naturally gives rise to a unique log divisor.

Proposition 2.15. Let X be a manifold and Z ⊂ X a hypersurface. Then Z carries a
unique log divisor structure, that is, there exists a unique log divisor (L, s) with s−1(0) = Z.

Proof. Apply Proposition 2.10 to the vanishing ideal IZ , giving a divisor (UIZ , σ) =: (L, s).
The section s vanishes transversely along Z as it is equal to a local defining function for Z in
any trivializing open Uα of L containing Z. We conclude that (L, s) is a log divisor. �

Because of this result we often identify a log divisor with the associated submanifold Z.

2.3.2. Elliptic divisors. More directly relevant to our study of stable generalized complex
structures is the notion of an elliptic divisor.

Definition 2.16. An elliptic divisor is a divisor (R, q) whose zero set Dq = q−1(0) is a
smooth codimension-two critical submanifold of q along which its normal Hessian is definite.

We denote an elliptic divisor by |D|. The normal Hessian Hess(q) ∈ Γ(D; Sym2N∗D ⊗R) of
q is the leading term of its Taylor expansion. There is more information available in the elliptic
divisor than just the zero set of q. The ideal I|D| := Iq is called an elliptic ideal, and both R
and q (up to a nonzero smooth function) can be recovered from I|D| by Proposition 2.10.

Example 2.17. Let D = (U, σ) be a complex log divisor. Then ((U ⊗ U)R, σ ⊗ σ) is an
elliptic divisor |D|. Using Proposition 2.20 below and the factorization x2 + y2 = (x + iy)(x−
iy) = ww, any elliptic divisor with coorientable zero set arises from a complex log divisor in
this way, with (U, σ) being determined up to diffeomorphism by the choice of coorientation.

Note that ID is not the vanishing ideal of D, but instead is locally generated by an even
index Morse–Bott function in coordinates normal to D, as we now explain.

Definition 2.18. Let g ∈ C∞(X) be given. A compact connected submanifold S ⊂ X is a
nondegenerate critical submanifold of g if S ⊂ Crit(g) and ker Hess(g) = TpS for all p ∈ S. If
Crit(g) consists of nondegenerate critical submanifolds, then g is a Morse–Bott function.
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Let g ∈ C∞(X) and take S a nondegenerate critical submanifold of g. Consider the exact
sequence 0 → TS → TX|S → NS → 0. For p ∈ S we have Hess(g)(p) ∈ Sym2T ∗

pX, and this
vanishes when restricted to TpS. But then Hess(g)(p) ∈ Sym2N∗

pS, giving a nondegenerate
bilinear form Qg ∈ Γ(S; Sym2N∗S). The semi-global version of the Morse–Bott lemma says
that g is diffeomorphic to this quadratic approximation in a tubular neighborhood of S.

Lemma 2.19 [29, Proposition 2.6.2]. Let g ∈ C∞(X) be a Morse–Bott function and S a
nondegenerate critical submanifold of g. Then there exists a neighborhood U of the zero section
S ⊂ NS and an open embedding Φ: U → X such that Φ|S = idS and Φ∗g = Qg.

Let |D| = (R, q) be an elliptic divisor. Then R is orientable by q as it is a trivialization away
from a codimension-two submanifold. Consequently R is always a trivial line bundle and if
one were to orient R using q, the normal Hessian of q along D is positive definite. In other
words, let α be a trivialization of R∗. Then g := α(q) ∈ C∞(X) is a function with g−1(0) = D
and Hess(g) = α(Hess(q)). Moreover, D is a nondegenerate critical submanifold of g, and g is
locally Morse–Bott around D. As D is codimension two, X\D is connected, so that the sign
of g on X\D is fixed. Replace α by −α if necessary so that this sign is positive, and then
q and α induce compatible orientations. Call such a trivialization α compatible with q. For
compatible trivializations we have g � 0 so that Hess(g) is positive definite. As a consequence
of Lemma 2.19 we obtain the following.

Proposition 2.20. Let |D| = (R, q) be an elliptic divisor and α a compatible trivialization.
Then there exists a neighborhood U of the zero section D ⊂ ND and an open embedding
Φ: U → X such that Φ|D = idD and (Φ∗α)(Φ∗q) = Qg, where g = α(q) ∈ C∞(X).

Given p ∈ D we can locally trivialize the bundles R and ND, so that using Proposition 2.20
the section q can be written locally as q(x1, . . . , xn) = ±(x2

1 + x2
2) in normal bundle coordinates

such that ND = 〈∂x1 , ∂x2〉. Consequently, the elliptic ideal I|D| is locally generated by r2, where
r2 = x2

1 + x2
2 is the squared radial distance from D inside ND.

Remark 2.21. While Proposition 2.15 shows that hypersurfaces carry a unique log divisor
structure, the same is not true for codimension-two submanifolds and elliptic divisors. A simple
example is provided by X = R

2 with D = {(0, 0)} and coordinates (x, y). Equip D with the
elliptic ideals I = 〈x2 + y2〉 and I ′ = 〈x2 + 2y2〉. As these ideals are distinct, they supply D
with two nonisomorphic yet diffeomorphic elliptic divisor structures.

2.4. Divisors and geometric structures

Divisors provide a convenient way to define and study specific classes of Poisson structures.
We first describe the general way in which divisors relate to Poisson geometry. Let X be a
2n-dimensional manifold and π a Poisson structure on X. The Pfaffian ∧nπ of π is a section
of the real line bundle ∧2nTX.

Definition 2.22. A Poisson structure π is of divisor-type if (∧2nTX,∧nπ) is a divisor.

Note that this condition is equivalent to asking that π is generically symplectic. However, it
is useful to encode using a divisor exactly what type of degeneracy π has. Poisson structures of
divisor-type are more thoroughly explored in [21]. In this paper we will restrict our attention
to the two types associated to log and elliptic divisors.
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2.4.1. Log-Poisson and log-symplectic structures. In this section we discuss Poisson
structures built out of log divisors. We refer to [10, 19, 21] for a more comprehensive treatment.

Definition 2.23. Let X be a 2n-dimensional manifold. A log-Poisson structure is a Poisson
structure π on X that is of log divisor-type.

While the name ‘log-Poisson structure’ is most consistent with other Poisson structures built
out of divisors, these Poisson structures also carry the name of b-Poisson, b-symplectic, and
log-symplectic structures [6, 18, 19, 25, 26, 28]. The latter two names emphasize the ability
to view log-Poisson structures as suitably degenerate symplectic forms, see Proposition 3.33.

Let (X,Z) be a log pair, that is, a manifold X together with a log divisor Z. We say the
pair (X,Z) admits a log-Poisson structure if there exists a log-Poisson structure π on X such
that Z∧nπ = Z. We will also denote Z∧nπ as Zπ.

The rank of a log-Poisson structure π is equal to 2n on X\Z, and 2n− 2 on Z. By the
Weinstein splitting theorem [35], any log-Poisson structure π on X2n is locally equivalent
around points in Zπ to x∂x ∧ ∂y + ω−1

0 on R
2 × R

2n−2, where ω0 is the standard symplectic
structure, and Zπ = {x = 0} (see [19, 28]). On Zπ, a log-symplectic structure π induces an
equivalence class of cosymplectic structures, which is a pair (α, β) of closed one- and two-
forms on Z such that α ∧ βn−1 �= 0. Here the equivalence relation is generated by addition of
two-forms df ∧ α, with f ∈ C∞(Z). The one-form α is canonically determined by π, while the
two-form β requires a choice of defining function for Zπ (better: a distance function |z| on NZπ

from its zero section). In particular, Zπ carries a codimension-one symplectic foliation.
Any compact cosymplectic manifold, such as Zπ, fibers over S1 [18, 23, 26, 30]. As can be

read in [6, 26], a log-symplectic structure π is said to be proper if the induced folation on Zπ

is given by a submersion onto S1. This is determined by whether the cohomology class [α] of
the one-form above is a real multiple of an integral class. Any log-symplectic structure can be
perturbed slightly to become proper. The following innocuous result will be important later in
Section 5. Recall that a hypersurface Z is separating if [Z] = 0 ∈ H2n−1(X; Z2).

Proposition 2.24. Let (X,Z) be an orientable log-Poisson pair. Then Z is separating.

Proof. As X is orientable, ∧2nTX is trivial. The section ∧nπ has transverse zeros, hence
its zero set Z is Poincaré dual to the first Stiefel–Whitney class of the trivial line bundle. �

Any trivialization σ ∈ Γ(∧2nTX) produces a global defining function h for Z via ∧nπ = hσ.

2.4.2. Elliptic Poisson and stable generalized complex structures. We can also construct
Poisson structures out of elliptic divisors, obtaining the notion of an elliptic Poisson structure.
These are called Poisson structures of elliptic log-symplectic type in [9].

Definition 2.25 [9, Definition 3.3]. Let X be a 2n-dimensional manifold. An elliptic
Poisson structure is a Poisson structure π on X that is of elliptic divisor-type.

Let (X, |D|) be an elliptic pair, that is, a manifold equipped with an elliptic divisor |D|.
An elliptic pair (X, |D|) admits an elliptic Poisson structure if there exists an elliptic Poisson
structure π on X such that |D∧nπ| = |D|. When there is no elliptic divisor structure on D,
we say that (X,D) admits an elliptic Poisson structure if there exists some elliptic divisor
structure |D| on D such that (X, |D|) admits an elliptic Poisson structure.

The underlying Poisson structure of a stable generalized complex structure J can be shown
to belong to this class, which in fact characterizes when J is stable.
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Proposition 2.26 [9, Theorem 3.7]. Let (X,H,J ) be a generalized complex manifold.
Then J is a stable generalized complex structure if and only if πJ is an elliptic Poisson
structure.

In Section 3.4 we will see that this proposition can be pushed further. Namely, gauge
equivalence classes of stable generalized complex structures J on X are in one-to-one
correspondence with certain types of elliptic Poisson structures π via the map J 	→ πJ (see
Theorem 3.32). Moreover, the closed three-form H required to state integrability of J is
determined by π.

An elliptic pair (X, |D|) admits a stable generalized complex structure if there exists a
closed three-form H ∈ Ω3

cl(X) and a stable generalized complex structure J on (X,H) such
that |DJ | = |D|. When no elliptic divisor structure is specified on D, we say that (X,D) admits
a stable generalized complex structure if there exists some elliptic divisor structure |D| on D
such that (X, |D|) admits a stable generalized complex structure.

3. Lie algebroids and Lie algebroid symplectic structures

In this section we deal with some aspects of the general theory of symplectic forms in a
Lie algebroid. For interesting applications, the Lie algebroid should be chosen so that such
symplectic forms describe a certain type of geometric structure. The main examples relevant
to this paper are the elliptic tangent bundle and the log-tangent bundle, describing stable
generalized complex structures and log-symplectic structures respectively. More examples of
Lie algebroids with interesting symplectic geometry can be found in [21].

Definition 3.1. A Lie algebroid is a vector bundle A → X together with a Lie bracket
[·, ·]A on Γ(A) and a vector bundle map ρA : A → TX called the anchor, satisfying the Leibniz
rule [v, fw]A = f [v, w]A + LρA(v)f · w for all v, w ∈ Γ(A) and f ∈ C∞(X).

We think of Lie algebroids as generalizations of the tangent bundle TX, chosen such that
geometric constructions done using A are more suitable to the situation at hand. This should
be kept in mind especially when we define Lie algebroid fibrations in Section 3.3, as we will
replace many usual notions by their Lie algebroid counterparts. The Lie algebroids we consider
will be isomorphic via their anchor to the tangent bundle outside of a submanifold of positive
codimension. We introduce the following subset to keep track of this.

Definition 3.2. Let A → X be a Lie algebroid with anchor ρA : A → TX. The isomorphism
locus of A is the open set XA ⊆ X where ρA is an isomorphism.

Any Lie algebroid gives rise to a graded algebra Ω•(A) = Γ(∧•A∗) of differential A-forms.
This algebra comes equipped with a differential dA squaring to zero, constructed using the
bracket [·, ·]A by means of the Koszul formula. This defines a cohomology theory for A.

Definition 3.3. The Lie algebroid cohomology of A → X is Hk
A(X) := Hk(Ω•(A), dA).

For notational convenience we denote by Ωk
A(U), for an open subset U ⊂ X, the set of

A-k-forms defined on U , so that Ωk
A(X) = Ωk(A). The inclusion i : XA ↪→ X of the isomor-

phism locus induces a bijection ρ∗A : Ωk(XA) → Ωk
A(XA).

3.1. The log-tangent bundle and elliptic tangent bundle

In this section we discuss the Lie algebroids that are of primary concern to us. These are
the log-tangent bundle and the elliptic tangent bundle, constructed out of log divisors and
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elliptic divisors respectively. Both are examples of ideal Lie algebroids [21], which we now
introduce.

Let X be an n-dimensional manifold and let I be an ideal sheaf, and denote by VX the sheaf
of vector fields on X. Let VX(I) := {v ∈ VX | LvI ⊂ I} be the sheaf of derivations preserving
I. This is a subsheaf of Lie algebras of VX . If VX(I) is in addition locally finitely generated
projective, it gives rise to a Lie algebroid AI with Γ(AI) = VX(I) by the Serre–Swan theorem.

Definition 3.4. The Lie algebroid AI is called the ideal Lie algebroid associated to I.

As VX(I) is a submodule of Γ(TX), the anchor of any ideal Lie algebroid is the natural
inclusion on sections. However, as vector bundle map the anchor of AI need not be an iso-
morphism. More precisely, the isomorphism locus XAI

of AI is the complement of the support
supp(C∞(X)/I) of the quotient sheaf, or equivalently, the complement of supp(VX/VX(I)).

3.1.1. The log-tangent bundle. Let Z = (L, s) be a log divisor on X with associated ideal
IZ = s(Γ(L∗)). This ideal is exactly the vanishing ideal of Z, and VX(IZ) is the locally free
sheaf of vector fields tangent to Z [27]. In local adapted coordinates (z, x2, . . . , xn) around
Z = {z = 0} with Iz = 〈z〉, one has VX(IZ) = 〈z∂z, ∂x2 , . . . , ∂xn

〉.

Definition 3.5. The log-tangent bundle TX(− logZ) → X is the ideal Lie algebroid on X
with Γ(TX(− logZ)) = VX(IZ).

It is immediate that the isomorphism locus of TX(− logZ) is given by X \ Z. In analogy
with the holomorphic case, denote Ωk(logZ) = Ωk(TX(− logZ)).

Remark 3.6. The log-tangent bundle is also called the b-tangent bundle [27] and is then
denoted by bTX. We use the name log-tangent bundle as it shows the similarities with the
elliptic tangent bundle defined below, and its notation allows us to keep track of Z.

The log-tangent bundle admits a residue map. The restriction of TX(− logZ) to Z surjects
onto TZ via the anchor map ρ, giving the following exact sequence

0 → LZ → TX(− logZ)|Z ρ→ TZ → 0,

where LZ → Z is the kernel of ρ. Dualizing gives a projection map ResZ : Ωk(logZ) → Ωk−1(Z),
which fits in the residue sequence

0 → Ω•(X)
ρ∗
→ Ω•(logZ) ResZ→ Ω•−1(Z) → 0.

In terms of the local coordinate system above, with Γ(TX(− logZ)) = 〈z∂z, ∂x2 , . . . , ∂xn
〉, a

given log k-form α ∈ Ωk(logZ) can be expressed as

α = d log z ∧ α0 + α1,

with αi smooth forms. The inclusion jZ : Z ↪→ X gives ResZ(α) = j∗Zα0. The following result
referred to as the Mazzeo–Melrose theorem shows the above sequence splits, and identifies the
Lie algebroid cohomology of the log-tangent bundle TX(− logZ) in terms of X and Z.

Theorem 3.7 [27]. Let (X,Z) be a log pair. Then Hk(TX(− logZ)) ∼= Hk(X) ⊕Hk−1(Z).

3.1.2. The elliptic tangent bundle. Similarly, let (X, |D|) be an elliptic pair with associated
ideal I|D| = q(Γ(R∗)). Note this is not the vanishing ideal of D. The associated submodule
VX(I|D|) defines a sheaf of locally constant rank [9], locally generated in appropriate polar coor-
dinates (r, θ, x3, . . . , xn) around D = {r = 0} such that I|D| = 〈r2〉 by 〈r∂r, ∂θ, ∂x3 , . . . , ∂xn

〉.
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Definition 3.8. The elliptic tangent bundle TX(− log |D|) → X is the ideal Lie algebroid
on X with Γ(TX(− log |D|)) = VX(I|D|).

The isomorphism locus of TX(− log |D|) is given by X \D. As for the log-tangent bundle,
we denote Ωk(log |D|) = Ωk(TX(− log |D|)).

Remark 3.9. There is another ideal Lie algebroid defined in [9], namely the complex
log-tangent bundle TX(− logD) (there called the logarithmic tangent bundle). These are
associated to complex log divisors D = (U, σ). This Lie algebroid is a generalization of the
log-tangent bundle one can define on complex manifolds equipped with a divisor. We will not
directly use this Lie algebroid in this paper, hence we will not elaborate on its properties.

The elliptic tangent bundle admits several residue maps [9], three of which we will now
describe. The elliptic residue Resq comes from considering the restriction of TX(− log |D|) to
D, which fits in an exact sequence

0 → R ⊕ k → TX(− log |D|)|D → TD → 0, (3.1)

with R generated by the Euler vector field of ND, and k ∼= ∧2N∗D ⊗R. Choosing a
coorientation for D, that is, a trivialization of ND, also trivializes k. Dualizing the above
sequence we obtain a projection map Resq : Ωk(log |D|) → Ωk−2(D, k∗), with kernel Ω•

0(log |D|)
the subcomplex of Ω•(log |D|) of zero elliptic residue forms.

Denote by S1ND the circle bundle associated to ND. The radial residue Resr arises from
quotienting (3.1) by the Euler vector field of ND, giving the extension

0 → k → At(S1ND) → TD → 0,

where At(S1ND) is the associated Atiyah algebroid of S1ND. Noting that TX(− log |D|)|D
is a trivial extension of At(S1ND), the elliptic residue factors through the radial residue
map Resr : Ωk(log |D|) → Γ(D,∧k−1At(S1ND)∗). When the elliptic residue vanishes, the radial
residue naturally maps to Ωk−1(D) without needing a coorientation. Finally, there is also a
θ-residue Resθ : Ωk

0(log |D|) → Ωk−1(D), which we will only define for forms with zero elliptic
residue. We provide a description of these residue maps in local coordinates. In the adapted
coordinate system around D as above, where Γ(TX(− log |D|)) = 〈r∂r, ∂θ, ∂x3 , . . . , ∂xn

〉, a
given elliptic k-form α ∈ Ωk(log |D|) can be locally written as

α = d log r ∧ dθ ∧ α0 + d log r ∧ α1 + dθ ∧ α2 + α3,

where each αi is a smooth form. Using the inclusion jD : D ↪→ X we have Resq(α) = j∗Dα0,
Resr(α) = (dθ ∧ α0 + α1)|D, and we set Resθ(α) := j∗Dα2. Moreover, we see that using these
coordinates we have Resq(α) = ι∂θ

Resr(α).
As for the log-tangent bundle, the Lie algebroid cohomology of the elliptic tangent bundle

as well as its zero elliptic residue version can be expressed in terms of X and D.

Theorem 3.10 [9, Theorems 1.8, 1.12]. Let (X, |D|) be an elliptic pair. Then one has
Hk(log |D|) ∼= Hk(X \D) ⊕Hk−1(S1ND). Moreover, Hk

0 (log |D|) ∼= Hk(X \D) ⊕Hk−1(D).

The above isomorphisms are induced by the maps (i∗,Resr) with i : X \D ↪→ X the inclusion
of the divisor complement, noting Resr naturally maps to Ωk−1(D) when the elliptic residue
vanishes (in that case, Resr(α) = α1|D in the above local coordinates). For later purposes we
describe how the radial residue of representatives of classes in Hk

0 (log |D|) can be controlled.
Let Ωk

0,0(log |D|) ⊆ Ωk
0(log |D|) be defined as the kernel ker(Resr : Ωk

0(log |D|) → Ωk−1(D)).
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Lemma 3.11. Let (X, |D|) be an elliptic pair. The short exact sequences of complexes of
sheaves

0 → Ω•
0,0(log |D|) → Ω•

0(log |D|) Resr→ Ω•−1(D) → 0 (3.2)

induces short exact sequences in cohomology, that is,

0 → Hk
0,0(log |D|) → Hk

0 (log |D|) Resr→ Hk−1(D) → 0. (3.3)

Moreover, Hk
0,0(log |D|) ∼= ker(Resr : Hk

0 (log |D|) → Hk−1(D)) ∼= Hk(X \D).

Proof. To show that the sequence in equation (3.2) is exact, we only have to show that Resr
surjects onto Ω•−1(D). This is indeed the case, as will now argue. Fix a choice of appropriate
tubular neighborhood embedding p : U ⊆ ND → D for D provided by Proposition 2.20 (in
which TX(− log |D|) is trivialized as in Section 3.1.2). Moreover, choose a bump function
ψ : R�0 → [0, 1] for which ψ ≡ 1 near 0, and let r be a radial distance function from D. Given
α ∈ Ωk−1(D), note that the form p∗(α) ∧ d(ψ(r) log r) ∈ Ωk

0(log |D|) maps onto α via Resr.
To show there are induced short exact sequences in cohomology, we have to show that the

induced map Hk
0 (log |D|) → Hk−1(D) is surjective. This follows from Theorem 3.10.

Finally, the isomorphism Hk
0,0(log |D|) ∼= ker(Resr : Hk

0 (log |D|) → Hk−1(D)) follows imme-
diately from exactness of the sequence in equation (3.3). �

3.2. Lie algebroid morphisms

In this section we discuss morphisms between Lie algebroids, focusing specifically on those
between the elliptic and log-tangent bundle.

Definition 3.12. Let A,A′ → X be Lie algebroids over the same base X. A Lie algebroid
morphism is a vector bundle map (ϕ, f) : A → A′ such that df ◦ ρA = ρA′ ◦ ϕ and ϕ[v, w]A =
[ϕ(v), ϕ(w)]A′ for all v, w ∈ Γ(A).

The above definition does not immediately generalize to varying base, as a vector bundle
map does not give a map on the space of sections, as is required in order to state the bracket
condition. There is a description of bracket compatibility in terms of the pullback bundle f∗A′,
but we will instead use the following equivalent definition in terms of their duals.

Let A → X and A′ → X ′ be Lie algebroids. Vector bundle maps (ϕ, f) : A → A′ are in one-
to-one correspondence with algebra morphisms ϕ∗ : Ω•(A′) → Ω•(A). Using this we can phrase
the conditions that ϕ preserves anchors and brackets in terms of ϕ∗.

Definition 3.13. A vector bundle map (ϕ, f) : A → A′ is a Lie algebroid morphism if
ϕ∗ : Ω•(A′) → Ω•(A) is a chain map, that is dA′ ◦ ϕ∗ = ϕ∗ ◦ dA.

A Lie algebroid morphism (ϕ, f) : A → A′ is in particular a morphism of anchored vector
bundles, that is, satisfies df ◦ ρA = ρA′ ◦ ϕ. Moreover, a Lie algebroid morphism restricts
pointwise to a linear map ϕ : ker ρA → ker ρA′ between kernels of the respective anchor maps.
Furthermore, ρA gives an isomorphism between kerϕ and ker df when in the isomorphism
locus. For the Lie algebroids we will consider, smooth maps of the underlying manifolds give
rise to Lie algebroid morphisms, as long as they intertwine the anchor maps. This is true in
general for anchored vector bundle morphisms between Lie algebroids with dense isomorphism
loci.
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Proposition 3.14. Let AX → X and AY → Y be Lie algebroids such that XAX
is dense.

Suppose that (ϕ, f) : AX → AY is an anchored bundle morphism and f−1(YAY
) = XAX

. Then
(ϕ, f) : AX → AY is a Lie algebroid morphism.

Proof. As ϕ is a vector bundle morphism, ϕ∗ is an algebra morphism. In the isomorphism
loci, ϕ must equal df , and (df, f) is a Lie algebroid morphism between TX and TY , that is,
f∗ is a chain map. By density of XAX

, the map ϕ∗ is a chain map everywhere. �

Consequently, for such Lie algebroids one can determine whether there is a Lie algebroid
morphism (ϕ, f) by checking that f∗ extends to a map ϕ∗ on forms. This in turn will follow by
the universal property of the exterior algebra if it holds on generators, so it suffices to check
that f∗ extends to ϕ∗ : Ω1(AY ) → Ω1(AX). We will now perform such a check to obtain a Lie
algebroid morphism between the elliptic and log tangent bundles.

3.2.1. Morphisms between elliptic and log-tangent bundles. Let (X, |D|) be an elliptic pair
and (Y, Z) a log pair, with associated ideals I|D| ⊂ C∞(X) and IZ ⊂ C∞(Y ). A morphism of
the corresponding divisors gives rise to a Lie algebroid morphism.

Proposition 3.15. Let f : (X, |D|) → (Y, Z) be a morphism of divisors. Then df induces a
Lie algebroid morphism (ϕ, f) : TX(− log |D|) → TY (− logZ) such that ϕ = df on sections.

Proof. It is immediate that f−1(Z) = D. Note that the isomorphism loci of the elliptic
tangent bundle and the log-tangent bundle are dense. By Proposition 3.14 it thus suffices
to show that df induces a vector bundle morphism, which in turn is equivalent to showing
that f∗ extends to an algebra morphism from Ω•(Y ; logZ) to Ω•(X; log |D|). Let x ∈ D and
denote y = f(x) ∈ Z. Consider suitable tubular neighborhood coordinates (r, θ, x3, . . . , xn) in
a neighborhood U of x such that U ∩D = {r = 0} with I|D| = 〈r2〉, and (z, y2, . . . , ym) in a
neighborhood V of y such that V ∩ Z = {z = 0} and IZ = 〈z〉. In these coordinates we have
Ω1(U ;− log |D|) = 〈d log r, dθ, dx3, . . . , dxn〉 and Ω1(V ;− logZ) = 〈d log z, dy2, . . . , dym〉.

The Lie algebroid one-forms dyi can be pulled back using f∗ as these are smooth. Moreover,
the smooth one-forms inject into Ω1(U ;− logD) using the anchor. We are left with checking
that d log z is pulled back to a Lie algebroid one-form. As f is a morphism of divisors we have
f∗IZ = I|D|, so that f∗(z) = gr2 for g a smooth nonvanishing function on U . Consequently,

f∗d log z = d log f∗(z) = d log(gr2) = d log |g| + 2d log r ∈ Ω1(U ;− log |D|).
We conclude that df induces a Lie algebroid morphism as desired. �

Remark 3.16. Lie algebroid morphisms between log-tangent bundles arise out of so-called
b-maps, which are maps f : (X,ZX) → (Y, ZY ) between log pairs such that f−1(ZY ) = ZX

and f is transverse to ZY . Alternatively, they are exactly the corresponding morphisms of
divisors, that is, those maps satisfying f∗IZY

= IZX
[21]. Similarly, morphisms between elliptic

tangent bundles arise from those maps f : (X, |DX |) → (Y, |DY |) between elliptic pairs for
which f−1(DY ) = DX and f is transverse to DY . Again, these can be alternatively described
as maps satisfying f∗I|DY | = I|DX |.

3.2.2. Lie algebroid morphisms and residue maps. A Lie algebroid morphism from the
elliptic tangent bundle TX(− log |D|) to the log tangent bundle TY (− logZ) intertwines the
residue maps that were discussed in Section 3.1.

Proposition 3.17. Let (ϕ, f) : TX(− log |D|) → TY (− logZ) be a Lie algebroid morphism.
Then Resq ◦ ϕ∗ = 0. Moreover, (Resr + Resθ) ◦ ϕ∗ = f∗ ◦ ResZ .
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To prove the above proposition, we briefly elaborate on how the residue maps come about.
Given a short exact sequence S : 0 → E → W → V → 0 of vector spaces, there is an associated
dual sequence S∗ : 0 → V ∗ → W ∗ → E∗ → 0. For a given k ∈ N, by taking kth exterior powers
we obtain a filtration of spaces F i := {ρ ∈ ∧kW ∗ | ιxρ = 0 for all x ∈ ∧iE}, for i = 0, . . . , k + 1.
These spaces satisfy

F0 = 0, F1 = ∧kV ∗, F i ⊂ F i+1, and F i+1/F i ∼= ∧k−iV ∗ ⊗ ∧iE∗.

Setting � := dimE, we have F+1 = ∧kW ∗. This allows for the following definition.

Definition 3.18. The residue of ρ ∈ ∧kW ∗ is Res(ρ) = [ρ] ∈ F+1/F ∼= ∧k−V ∗ ⊗ ∧E∗.

Upon a choice of trivialization of ∧E∗, that is, a choice of orientation for E, one can
view the residue Res(ρ) as an element of ∧k−V ∗. One can further consider lower residue
maps Res−m : ∧k W ∗ → F+1/F−m for m > 0. These are always defined but have a better
description for forms ρ ∈ ∧kW ∗ whose higher residues vanish, because in this case we have

Res−m(ρ) ∈ F−m+1/F−m ∼= ∧k−+mV ∗ ⊗ ∧−mE∗.

Given a map of short exact sequences Ψ: S̃ → S with dual map Ψ∗ : S∗ → S̃∗, there is a
corresponding map of filtrations Ψ∗ : F i → F̃ i. Setting �̃ := dim Ẽ, we have the following.

Lemma 3.19. In the above setting, assume �̃ > �. Then R̃es(Ψ∗ρ) = 0 for all ρ ∈ ∧kW ∗.

Proof. We have ρ ∈ F+1 so that Ψ∗ρ ∈ F̃+1. As �̃ > �, we have F̃+1 ⊂ F̃˜ ⊂ F̃˜+1, so
that R̃es(Ψ∗ρ) = [Ψ∗ρ] ∈ F̃˜+1/F̃˜ vanishes as desired. �

Assuming �̃ > �, all lower residues automatically vanish by degree reasons until considering
Ψ∗ρ ∈ F̃+1. Hence the first possibly nonzero residue is

R̃es−˜(Ψ
∗ρ) = [Ψ∗ρ] ∈ F̃+1/F̃ ∼= ∧k−Ṽ ∗ ⊗ ∧Ẽ∗.

Similarly to Lemma 3.19 we obtain the following.

Lemma 3.20. In the above setting, assuming �̃ � �, we have Ψ∗ ◦ Res = R̃es−˜ ◦ Ψ∗.

With this understood, we can turn to proving Proposition 3.17.

Proof of Proposition 3.17. By assumption we have f−1(Z) = D so that df : TD → TZ.
Restricting TX(− log |D|) to D and TY (− logZ) to Z gives the following commutative
diagram.

Consequently, we obtain a map ϕ∗ : S∗ → S̃∗ between dual sequences, and also between spaces
of sections. Using the notation preceding this proof we have E = LZ so that � = dim(E) = 1,
and Ẽ = R ⊕ k so that �̃ = dim(Ẽ) = 2. Recall that LZ carries a canonical trivialization. Given
a form α ∈ Ωk(logZ), we can identify Res(α) ∈ Γ(Z;∧k−1T ∗Z ⊗ L

∗
Z) with ResZ(α) ∈ Ωk−1(Z).

Similarly, a choice of coorientation for ND trivializes k = ∧2N∗D ⊗R. Given β ∈ Ωk(log |D|)
this identifies R̃es(β) ∈ Γ(D;∧k−2T ∗D ⊗ k∗) with Resq(β) ∈ Ωk−2(D), using that ∧2(R ⊕ k) ∼=
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k. Moreover, for β with Resq(β) = 0, the radial residue Resr(β) ∈ Ωk−1(D) together with the
θ-residue Resθ(β) ∈ Ωk−1(D) is identified with R̃es−1(β) ∈ Ωk−1(D; R ⊕ t). As 2 = �̃ � � = 1
with �− �̃ = −1 we obtain immediately from Lemma 3.19 and Lemma 3.20 that Resq(ϕ∗α) = 0
and that (Resr + Resθ)(ϕ∗α) = f∗(ResZ(α)). �

Remark 3.21. The proof of Proposition 3.17 shows that the residue maps are also
intertwined for morphisms between log-tangent bundles, and between elliptic tangent bundles.

3.3. Lie algebroid Lefschetz fibrations

In this section we introduce the appropriate notions of fibration and Lefschetz fibration in the
context of Lie algebroid morphisms.

Definition 3.22. A Lie algebroid fibration is a Lie algebroid morphism (ϕ, f) : A → A′ for
which ϕ : A → f∗A′ is surjective. Equivalently, ϕ should be fiberwise surjective.

Note that if f : X → Y is a fibration, then (df, f) : TX → TY is a Lie algebroid fibration.

Remark 3.23. Our notion of a Lie algebroid fibration differs from the one used by other
authors, notably Mackenzie [24]. Our Lie algebroid fibrations are not required to cover a
surjective submersion. In other words, only ϕ should be fiberwise surjective, not both ϕ and
df . This is in line with viewing A as the replacement of TX.

We next introduce Lie algebroid Lefschetz fibrations, which are a simultaneous generalization
of Lefschetz fibrations, as well as of Lie algebroid fibrations. We first recall the notion of a
Lefschetz fibration. See [13] for more information.

Definition 3.24. A Lefschetz fibration is a proper map f : X2n → Σ2 between oriented
connected manifolds which is injective on critical points and such that for each critical point
x ∈ X there exist orientation preserving complex coordinate charts centered at x and f(x) in
which f takes the form f : C

n → C, f(z1, . . . , zn) = z2
1 + · · · + z2

n.

Remark 3.25. The requirement that Lefschetz fibrations are injective on critical points is
convenient but not essential. If it is not satisfied it can be ensured by a small perturbation.

Next we essentially separate two types of singular behavior, namely that of the anchors of
the Lie algebroids, and that of the morphism between them. In the isomorphism locus of the
Lie algebroid, the condition of being a Lie algebroid fibration is just that it be a fibration. We
can weaken this condition here, and only here, to allow for Lefschetz-type singularities.

Definition 3.26. A Lie algebroid Lefschetz fibration (ϕ, f) : A2n
X → A2

Σ is a Lie algebroid
morphism where AX has dense isomorphism locus and f−1(ΣAΣ) = XAX

, for which there is a
discrete set Δ ⊂ XAX

with f(Δ) ⊂ ΣAΣ and

• f |XAX
: XAX

→ ΣAΣ is a Lefschetz fibration with Crit(f |XAX
) = Δ;

• (ϕ, f) : X \ f−1(f(Δ)) → Σ \ f(Δ) is a Lie algebroid fibration.

Remark 3.27. Note that there are no Lefschetz singularities outside of XAX
. Moreover,

whenever Δ is nonempty, both XAX
and ΣAΣ are nonempty, and hence dim(X) = 2n and

dim(Σ) = 2.
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In Section 4, we will use Lie algebroid Lefschetz fibrations whose generic fibers in XAX
are

connected. Unlike for usual Lefschetz fibrations [13], for Lie algebroid Lefschetz fibrations there
is in general no exact sequence in homotopy by which we can ensure connected fibers.

3.4. Lie algebroid symplectic structures

In this section we discuss symplectic structures for a Lie algebroid. We start by defining Poisson
structures for Lie algebroids, as the symplectic forms we consider in this paper will be obtained
through their bivector counterparts. Throughout, let A → X be a Lie algebroid. The bracket
[·, ·]A extends in the natural way to an A-Schouten bracket on Γ(∧•A), again denoted by [·, ·]A.

Definition 3.28. An A-Poisson structure is an A-bivector πA ∈ Γ(∧2A) with
[πA, πA]A = 0.

Definition 3.29. A Poisson structure π on X is said to be of A-type for a Lie algebroid
ρA : A → X if there exists an A-bivector πA ∈ Γ(∧2A) such that ρA(πA) = π.

In the above situation we call πA an A-lift of π. Such a lift need not be unique if it exists
(consider the zero Poisson structure and any A with zero anchor), but it is unique if XA is
dense, as will be the case for us. Moreover, when XA is dense, any A-lift of a Poisson structure
is automatically A-Poisson. Note that we have π� = ρA ◦ π�

A ◦ ρ∗A as maps.

Definition 3.30. An A-symplectic structure is a closed and nondegenerate A-two-form
ωA ∈ Ω2

A(X). Denote the space of A-symplectic forms by Symp(A).

An A-Poisson structure πA is called nondegenerate if π�
A is an isomorphism. As when

A = TX, for any Lie algebroid of even rank there is a bijection between A-symplectic
forms and nondegenerate A-Poisson structures. Namely, given an A-symplectic structure ωA,
nondegeneracy implies we can invert the map ω�

A : A → A∗ to (ω�
A)−1 = π�

A : A∗ → A for an
A-Poisson structure πA. The conditions dAωA = 0 and [πA, πA]A = 0 are equivalent.

Given an A-symplectic structure ωA, we call π = ρA(πA) the dual bivector to ωA. We say π
is of nondegenerate A-type if it admits a nondegenerate A-lift πA. In this paper we will focus
on nondegenerate A-Poisson structures, as we wish to use symplectic techniques.

The elliptic Poisson structures from Section 2.4 are in one-to-one correspondence with
symplectic forms in the associated elliptic tangent bundle, that is, elliptic symplectic structures.

Proposition 3.31 [9, Lemma 3.4]. A Poisson structure π on X2n is elliptic if and only if it
is of nondegenerate A-type, for A = TX(− log |D|) with elliptic divisor |D| = (∧2nTX,∧nπ).

We can now state the extension of Proposition 2.26, giving a characterization of stable
generalized complex structure purely in terms of elliptic symplectic structures.

Theorem 3.32 [9, Theorem 3.7]. Let X be a compact manifold. There is a bijection
(J , H) → (π−1

J , o) between stable generalized complex structures up to gauge equivalence and
elliptic symplectic structures with vanishing elliptic residue and cooriented degeneracy locus.

The associated closed three-form H in the definition of a generalized complex structure can be
determined via [H] = Resr([ωA]) ∧ PDX [D], where ωA is the Lie algebroid symplectic structure
for A = TX(− log |DJ |) whose dual bivector is πJ , and D = (∧nπJ )−1(0). The Poincaré dual
of D requires a choice of coorientation.
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Similarly to Proposition 3.31, there is a bijective correspondence between log-Poisson
structures, and log-symplectic structures. This was used in [10] to construct log-Poisson
structures.

Proposition 3.33 [19, Proposition 20]. A Poisson structure π on X2n is log if and only if
it is of nondegenerate A-type, where A = TX(− logZ) with log divisor Z = (∧2nTX,∧nπ).

In this correspondence, the one-form α discussed in Section 2.4.1 is obtained from π as
α = ResZ(ω), and thus is canonically determined by ω (or π). Finally, we note that a Lie
algebroid A → X of rank 2 admits an A-symplectic structure if and only if A is orientable,
that is, when w1(A) = 0. Namely, any nonvanishing section of ∧2A is a nondegenerate A-
Poisson structure by dimension reasons. For later use we record the following, also noted in
[10].

Lemma 3.34. Let Σ2 be a compact oriented surface. Then (Σ, ∂Σ) admits a log-symplectic
structure. For a hypersurface Z, the log pair (Σ, Z) admits a log-symplectic structure if and
only if [Z] = 0 ∈ H1(Σ; Z2).

Proof. By the previous discussion, the pair (Σ, Z) carries a log-symplectic structure
if and only if TΣ(− logZ) is orientable. Note that w1(TΣ(− logZ)) = w1(Σ) + w1(L) via
the bundle isomorphism TΣ(− logZ) ⊕ L ∼= TΣ ⊕ R [21], where L = LIZ in the notation of
Proposition 2.10. As an orientable manifold with boundary has orientable boundary, the result
follows, noting that w1(L) = PDZ2(Z), the Poincaré dual of [Z] with Z2-coefficients. �

4. Constructing Lie algebroid symplectic structures

In this section we consider the Thurston argument [31] for constructing symplectic structures
extended by Gompf [12], and adapt it to the context of Lie algebroid symplectic forms. The
case of the log-tangent bundle can be found in [10]. The guiding principle is to combine suitably
symplectic-type structures from the base of a fibration-like map with a form that is symplectic
on the tangent spaces of the fibers of that map. In the Lie algebroid case one uses Lie algebroid
morphisms (ϕ, f) : AX → AY . Special attention is required because ρAX

: kerϕ → ker df need
not be an isomorphism (nor injective or surjective), hence one should interpret the tangent
space to the fibers suitably.

We will use Lie algebroid almost-complex structures as certificates for nondegeneracy of
forms, by using the notion of tameness. Let AX → X be a Lie algebroid and ω ∈ Symp(AX).

Definition 4.1. An AX -almost-complex structure is a vector bundle complex structure
J for AX . An AX -almost-complex structure J is ω-tame if ω(v, Jv) > 0 for all v ∈ Γ(AX).
Given (ϕ, f) : AX → AY a Lie algebroid morphism and ωY ∈ Symp(AY ), J is (ωY , ϕ)-tame if
(ϕ∗

xωY )(v, Jv) > 0 for all v ∈ AX,x\ kerϕx and x ∈ X.

As usual, the space of taming AX -almost-complex structures for ω is convex and nonempty
and is denoted by J (ω). Note that any ω ∈ Ω2

AX
(X) taming an AX -almost-complex structure

J is necessarily nondegenerate. Hence if ω is a closed AX -two-form taming some J , then ω
is AX -symplectic and J induces the same AX -orientation as ω. Note moreover that if J is
(ωY , ϕ)-tame, then kerϕ is a J-complex subspace of AX . Indeed, if v ∈ kerϕ and Jv �∈ kerϕ,
we would have 0 = ϕ∗ωY (v, Jv) = ϕ∗ωY (Jv, J(Jv)) > 0, which is a contradiction.

Proposition 4.2. The taming condition is open, that is, it is preserved under sufficiently
small perturbations of ω and J , and of varying the point in X.
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Proof. The taming condition ω(v, Jv) > 0 for the pair (ω, J) holds provided it holds for
all v ∈ ΣAX ⊂ AX , the unit sphere bundle with respect to some preassigned metric, as X is
compact. As ΣAX is also compact, the continuous map ω̃ : ΣAX → R given by ω̃(v) := ω(v, Jv)
for v ∈ ΣAX is bounded from below by a positive constant on ΣAX . But then ω̃ will remain
positive under small perturbations of ω and J . Similarly the condition of ω taming J on kerϕ
is open. Consider x ∈ X so that ω(v, Jv) > 0 for all v ∈ kerϕx. As ω̃ is continuous and ΣAX

is compact, there exists a neighborhood U of kerϕx ∩ ΣAX in ΣAX on which ω̃ is positive.
Points x′ ∈ X close to x will then have kerϕx′ ⊂ U because kerϕ is closed. �

We will not use the associated notion of compatibility, where J further leaves ω invariant,
as we use almost-complex structures as auxiliary structures to show nondegeneracy, and make
use of the openness of this condition. For this reason, all almost-complex structures will only
be required to be continuous as this avoids arguments to ensure smoothness.

The following is the Lie algebroid version of [12, Theorem 3.1] and is our main tool to
construct AX -symplectic structures; see [10, Theorem 3.4] for the log-tangent version.

Theorem 4.3. Let (ϕ, f) : (X,AX) → (Y,AY ) be a Lie algebroid morphism between
compact connected manifolds, J an AX -almost-complex structure, ωY an AY -symplectic form
and η a closed AX -two-form. Assume that

(i) J is (ωY , ϕ)-tame;
(ii) η tames J |kerϕx

for all x ∈ X.

Then ωX := ϕ∗ωY + tη is an AX -symplectic structure on X for t > 0 sufficiently small.

The proof of this result is modeled on that by Gompf of [12, Theorem 3.1].

Proof. Let t > 0 and consider the form ωt := ϕ∗ωY + tη. We show J is ωt-tame for t small
enough. By Proposition 4.2 it is enough to show that there exists a t0 > 0 so that ωt(v, Jv) > 0
for every t ∈ (0, t0) and v in the unit sphere bundle ΣAX ⊂ AX with respect to some metric.
For v ∈ AX we have ωt(v, Jv) = ϕ∗ωY (v, Jv) + tη(v, Jv). As J is (ωY , ϕ)-tame, the first term
is positive for v ∈ AX\ kerϕ and is zero otherwise. The second term η(v, Jv) is positive on
kerϕ because J |kerϕ is η-tame, hence is also positive for all v in some neighborhood U of
kerϕ ∩ ΣAX in AX by openness of the taming condition. We conclude that ωt(v, Jv) > 0 for
all t > 0 when v ∈ U . The function v 	→ η(v, Jv) is bounded on the compact set ΣAX\U .
Furthermore, ϕ∗ωY (v, Jv) is also bounded from below there by a positive constant, as it is
positive away from kerϕ, and thus also away from kerϕ ∩ ΣAX ⊂ U . But then ωt(v, Jv) > 0
for all 0 < t < t0 for t0 sufficiently small, so that ωt is AX -symplectic for t small enough. �

Given a map f : X → Y we denote by Fy = f−1(y) for y ∈ Y the level set, or fiber, of f over
y. In order to meaningfully apply Theorem 4.3 we must be able to construct closed AX -forms η
as in (ii) of the statement. Note first that it suffices to have such closed forms in neighborhoods
of fibers, all lying in the same global Lie algebroid cohomology class.

Proposition 4.4. Assume that there exists a class c ∈ H2
AX

(X; R) and that for each y ∈ Y ,
Fy has a neighborhood Wy with a closed AX -two-form ηy ∈ Ω2

AX
(Wy) such that [ηy] = c|Wy

∈
H2

AX
(Wy; R), and ηy tames J |kerϕx

for all x ∈ Wy. Then there exists a closed AX -two-form η
such that [η] = c and η tames J |kerϕx

for all x ∈ X.

Proof. Let ξ ∈ Ω2
AX

(X) be closed and such that [ξ] = c. Then for each y ∈ Y we have
[ηy] = c|Wy

= [ξ]|Wy
, so on Wy we have ηy = ξ + dAX

αy for some αy ∈ Ω1
AX

(Wy). As each
X\Wy and hence f(X\Wy) is compact, each y ∈ Y has a neighborhood disjoint from f(X\Wy).
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Cover Y by a finite amount of such open sets Ui so that each f−1(Ui) is contained in some
Wyi

. Let {ψi} be a partition of unity subordinate to the cover {Ui} of Y , so that {ψi ◦ f} is a
partition of unity of X. Define an AX -two-form η ∈ Ω2

AX
(X) on X via

η := ξ + dAX
(
∑
i

(ψi ◦ f)αyi
) = ξ +

∑
i

(ψi ◦ f)dAX
αyi

+
∑
i

ρ∗AX
(dψi ◦ df) ∧ αyi

.

Then dAX
η = 0 and [η] = c. As ρ∗AX

(dψi ◦ df) = dψi ◦ df ◦ ρAX
= dg ◦ ρAY

◦ ϕ using that ϕ is
a Lie algebroid morphism, the last of the above three terms vanishes when applied to a pair of
vectors in kerϕx for any x ∈ X, so on each kerϕx we have

η = ξ +
∑
i

(ψi ◦ f)dAX
αyi

=
∑
i

(ψi ◦ f)(ξ + dAX
αyi

) =
∑
i

(ψi ◦ f)ηyi
.

From the above we see that on kerϕ, the AX -form η is a convex combination of J-taming
AX -forms, so J |kerϕ is η-tame. �

One can further look for (local or global) closed two-forms η̃ ∈ Ω2(X) so that η = ρ∗AX
η̃

satisfies hypothesis (ii) of Theorem 4.3. When using such AX -forms which are pullbacks of
regular forms, the behavior of the map ρAX

: kerϕx → ker dfx is important. In Section 7 we
will see an example where there cannot be an η of the form η = ρ∗AX

η̃ making kerϕ symplectic.
This is unlike the situation for log-symplectic forms as studied in [10], where the anchor of the
log-tangent bundle provides a pointwise isomorphism between kerϕ and ker df .

Using Theorem 4.3 we can prove the Lie algebroid version of Thurston’s result for symplectic
fiber bundles with two-dimensional fibers [31], adapting the proof by Gompf in [11].

Theorem 4.5. Let (ϕ, f) : (X,A2n
X ) → (Y,A2n−2

Y ) be a Lie algebroid fibration between
compact connected manifolds. Assume that Y is AY -symplectic and there exists a closed AX -
two-form η which is nondegenerate on kerϕ. Then ωX := ϕ∗ωY + tη for ωY ∈ Symp(AY ) is an
AX -symplectic structure on X for t > 0 sufficiently small.

Proof. Let ωY ∈ Symp(AY ) and choose JY ∈ J(ωY ). Fix the orientation for kerϕ so that
η is positive. Let g be a metric on AX and let H ⊂ AX be the subbundle of orthogonal
complements to kerϕ, so that ϕ : H → AY is a fiberwise isomorphism. Define an AX -almost-
complex structure J by letting J |H = ϕ∗JY , and on kerϕ, use the metric and define J by π

2 -
counterclockwise rotation, demanding ϕ is orientation preserving via the fiber-first convention.
This determines J uniquely on AX by linearity. Moreover, J is (ωY , ϕ)-tame as ϕ∗ωY (v, Jv) =
ωY (ϕv, JY ϕv) > 0, for all v ∈ AX\ kerϕ ∼= H. Further, η tames J on kerϕ as J is compatible
with the orientation on kerϕ determined by η. By Theorem 4.3 we obtain an AX -symplectic
structure. �

Remark 4.6. One can combine Theorem 4.5 with Proposition 4.4 to obtain a statement
requiring only the existence of local forms ηy governed by a global cohomology class.

Sadly for general Lie algebroid morphisms there is no direct analogue of homological
essentialness of generic fibers to replace the hypothesis of the existence of η as in Theorem 4.3
and Theorem 4.5. In other words, we cannot replace the condition on the existence of η by
demanding that the generic fiber F satisfies [F ] �= 0 ∈ H2(X; R). This is a well-known necessary
condition when constructing symplectic-like structures out of Lefschetz-type fibrations using
Gompf–Thurston techniques. The reason for the lack of such an analogue is again the behavior
of the map ρAX

: kerϕ → ker df . While the codomain can be seen as the tangent space to the
fiber at regular points, the domain cannot. For Lie algebroid submersions, surjectivity is only
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demanded of ϕ, not of df , and there is no duality pairing between homology and Lie algebroid
cohomology in general.

Remark 4.7. In the special cases of the log-tangent bundle and the elliptic tangent bundle
one can state such an analogue (see Theorems 7.1 and 7.2, and [10]), precisely because we
understand their respective Lie algebroid cohomologies (see Theorem 3.7 and Theorem 3.10).

Recall that we defined a Lie algebroid Lefschetz fibration to be a Lie algebroid fibration
away from the set of Lefschetz singularities, which must be a subset of the isomorphism
locus of AX . Note that XAX

is either empty or of codimension zero, so that we can
restrict AX to XAX

and again obtain a Lie algebroid. In this way the inclusion i : XAX
↪→

X covers a Lie algebroid morphism ι, and we obtain a restriction map in cohomology
ι∗ : HAX

(X) → HAX
(XAX

). The anchor gives a bijection ρ∗AX
: Ω•(XAX

) → Ω•
AX

(XAX
) and

hence an isomorphism ρ∗AX
: HdR(XAX

) → HAX
(XAX

) in cohomology over XAX
.

Assuming rank(AX) = rank(AY ) + 2, the second hypothesis in Theorem 4.3 demands the
existence of a class c ∈ HAX

(X) such that the de Rham class (ρ∗AX
)−1ι∗(c) evaluates nonzero

on each generic fiber. Even if such a class exists, a similar statement must hold over X\XAX
.

Hence, we need the existence of a two-form η ∈ Ω2
cl(X;AX) such that (ρ∗AX

)−1ι∗[η] evaluates
nonzero on the fibers, and η|kerϕ is nowhere zero over X\XAX

.
The notion of a Lie algebroid Lefschetz fibration is such that the hypotheses of Theorem 4.3

are still satisfied, when in dimension 4.

Theorem 4.8. Let (ϕ, f) : A4
X → A2

Σ be a Lie algebroid Lefschetz fibration with connected
fibers between compact connected manifolds. Assume that AΣ admits a symplectic structure
ωAΣ and there exists η ∈ Ω2

cl(AX) such that (ρ∗AX
)−1ι∗[η] evaluates nonzero on the fibers,

and η|kerϕ is nondegenerate over X\XAX
. Then, for t > 0 sufficiently small, X admits an

AX -symplectic structure that is equal to ϕ∗ωΣ + tη in a neighborhood of X\XAX
.

The proof of this result is similar to [10, Theorem 4.7], which in turn is based on Gompf’s
proof of [13, Theorem 10.2.18] using almost-complex structures. We will use Proposition 4.4
to glue together the given form η with a suitable adaptation in the isomorphism locus of AX .
Recall that by assumption we assume that Lefschetz fibrations are injective on critical points.
Given a critical value y ∈ Σ, we write x = f−1(y) for the unique critical point mapping to y.

Remark 4.9. Note that if AX = TX, then XAX
= X and we are demanding that the

generic fiber is homologically essential, recovering the result by Gompf [13, Theorem 10.2.18].

Proof. If XAX
is empty, η|kerϕ is nondegenerate everywhere and ϕ is a Lie algebroid

fibration, so that the result follows from Theorem 4.5. If not, then X is four dimensional.
Denote ξ := (ρ∗AX

)−1ι∗η ∈ Ω2(XAX
) and c = [ξ] ∈ H2

dR(XAX
). Note that ξ orients the generic

fibers F , as these are two dimensional. Recall that Δ ⊂ XAX
is the set of Lefschetz singularities,

and let Δ′ := f(Δ) be the set of singular values of f |XAX
.

Use the proof of Theorem 4.5 to obtain a (ϕ, ωΣ)-tame almost-complex structure J on AX

over X\f−1(Δ′) compatible with the orientation on kerϕ, noting that f : X\f−1(Δ′) → Σ\Δ′

is a Lie algebroid fibration. As Δ′ is contained in ΣAΣ , let V ⊆ Σ be the disjoint union of
open balls Vy disjoint from Σ\ΣAΣ and centered at each point y ∈ Δ′. Let W := f−1(V ) ⊂ X
be the union of the neighborhoods Wy := f−1(Vy) of singular fibers Fy. Let C ⊂ X be the
disjoint union of open balls Cy ⊆ ΣAΣ centered at each critical point f−1(y) = x for all y ∈ Δ′

so that on each ball f takes on the local form in Definition 3.24. Possibly shrink C so that
Cy ⊂ Wy. The local description of f gives an almost-complex structure on C with fibers being
holomorphic, and we glue this to the existing almost-complex structure J on X\C (this is
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possible by holomorphicity of the fibers in the coordinates on C, see [12, Lemma 3.2; 13,
Exercise 8.1.6]). This gives a global (ωΣ, ϕ)-tame AX -almost-complex structure J .

As η|kerϕ is nondegenerate over X\XAX
, the same is true in a neighborhood S around

X\XAX
disjoint from Δ. Let y ∈ Y \f(S) be given. If y �∈ Δ′, let Dy ⊂ Y \f(S) disjoint

from Δ′ be a disc containing y, fully contained in a trivializing neighborhood of f around
y. Define Wy := f−1(Dy) ∼= Dy × Fy, with projection map p : Wy → Dy. Let η′y be an area
form on Fy compatible with the preimage orientation. Define ηy := λyρ

∗
Xp∗η′y, where λy ∈ R

is chosen such that 〈[F ], c〉 = 〈[F ], ηy〉. As H2(Wy; R) is generated by [Fy], it follows that
[ηy] = c|Wy

∈ H2(Wy; R). But then ηy tames J on kerϕ ∼= ker df for all x ∈ Wy, as the
restriction of (ρ∗X)−1ηy = λyp

∗η′y is an area form for that fiber.
If y ∈ Δ′, the singular fiber Fy either is indecomposable or consists of two irreducible

components F±
y which satisfy [F+

y ] · [F−
y ] = 1 and [F±

y ]2 = −1, see [13, p. 289]. In the latter
case, note that 0 < λ = 〈c, [F ]〉 = 〈c, [Fy]〉 = 〈c, [F+

y ]〉 + 〈c, [F−
y ]〉. If either term is nonpositive

assume without loss of generality that 〈c, [F−
y ]〉 = r � 0. Define c′ := c + (λ2 − r)c+y , where

c+y ∈ H2(X; R) is a class dual to [F+
y ]. As [Fy] · [F±

y ] = 0 we then have 〈c′, [F ]〉 = 〈c, [F ]〉 > 0,
and furthermore

〈c′, [F+
y ]〉 = 〈c, [F+

y ]〉 −
(
λ

2
− r

)
= (λ− r) − λ

2
+ r =

λ

2
> 0 and 〈c′, [F−

y ]〉 =
λ

2
> 0.

Moreover, as different fibers do not intersect, we have c|Wy′ = c′|Wy′ for y′ �= y. After finitely
many repetitions, at most once for each y ∈ Δ′, one obtains a class, again denoted by c, pairing
positively with every fiber component (see [13, Exercise 10.2.19]).

Return to y ∈ Δ′ and let σ be the standard symplectic form on Cy given locally in real
coordinates by σ = dx1 ∧ dy1 + dx2 ∧ dy2, where zi = xi + iyi. As all fibers F ′

y in Cy are
holomorphic, ρ∗Xσ|Fy′∩Cy

tames J for all y′ ∈ f(Cy), so that ρ∗Xσ tames J on Cy. Let σy

be an extension of σ to Fy as a positive area form with total area 〈σy, [Fy]〉 equal to 〈c, [Fy]〉.
Let p : Wy → Fy be a retraction and let ψ : Cy → [0, 1] be a smooth radial function so that
ψ ≡ 0 in a neighborhood of x = f−1(y) ∈ Δ and ψ ≡ 1 in a neighborhood of ∂Cy, which is
smoothly extended to Wy by being identically 1 outside Cy. On the ball Cy, the form σ is
exact, say equal to σ = dα for α ∈ Ω1(Cy).

Define a two-form η′y on Wy by η′y := p∗(ψσy) + d((1 − ψ)α), which is closed as ψσy is a
closed area form on Fy. Near x we have ψ ≡ 0 so that η′y = dα = σ. Set ηy := ρ∗Xη′y. Then
there ηy = ρ∗Xσ tames J , hence in particular tames J |kerϕ. Similarly, σy is an area form on
Fy\{x} for the orientation given by J under the isomorphism by ρX . But then ρ∗Xσy tames J
on kerϕy

∼= ker df = TFy on Fy, so that the same holds for ηy as this condition is convex. By
openness of the taming condition, shrinking Vy and hence Wy and possibly Cy we can ensure
that ηy tames J |kerϕ on Wy. Finally, note that [η′y] = c|Wy

∈ H2(Wy; R) by construction. For
points y ∈ f(S), take the Lie algebroid two-form ηy := η on the neighborhood Wy := S of Fy.

This gives the required neighborhoods Wy and forms ηy for all y ∈ Y to apply Proposition 4.4
and we obtain a Lie algebroid closed two-form again denoted by η such that η tames J on kerϕx

for all x ∈ X. By Theorem 4.3 we obtain an AX -symplectic structure on X. �

Remark 4.10. When both AX and AΣ are log-tangent bundles, Theorem 4.8 recovers [10,
Theorem 4.7], upon combination with the fact that kerϕ and ker df are pointwise isomorphic.

5. Boundary maps and boundary Lefschetz fibrations

In this section we introduce the notion of a boundary map, which is a map degenerating
suitably on a submanifold. When this submanifold has codimension two these will supply us
with morphisms from elliptic to log divisors, and hence with Lie algebroid morphisms from the
respective elliptic to log-tangent bundles by Proposition 3.15. After this we define the notion
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of a boundary Lefschetz fibration, which is a Lefschetz-type fibration that can be interpreted
as a Lie algebroid Lefschetz fibration between these Lie algebroids.

5.1. The normal Hessian

Let (X,D) be a pair, that is, D ⊆ X is a submanifold of X.

Definition 5.1. A map of pairs f : (X,D) → (Y, Z) is a map f : X → Y such that f(D) ⊆
Z. A strong map of pairs is a map of pairs f : (X,D) → (Y, Z) such that f−1(Z) = D.

Given a map of pairs f : (X,D) → (Y, Z), note that df(TD) ⊆ TZ, so that df induces a
map ν(df) : ND → NZ between normal bundles. When f is a strong map of pairs and f is
transverse to Z, the map ν(df) is a fiberwise isomorphism.

Consider a map of pairs f : (X,D) → (Y, Z) such that ν(df) : ND → NZ is the zero map.
Equivalently, one can assume that im df ⊂ TZ. Let z1, . . . , z be local defining functions for
Z and consider their pullbacks hi := f∗(zi) for i = 1, . . . , �. As f(D) ⊆ Z, the functions hi

vanish on D. Moreover, because ν(df) is the zero map, the derivatives dhi vanish on D as
well. Consequently, we can consider their Hessians H(hi) : Sym2(TX) → R, which descend to
maps H(hi) : Sym2(ND) → R. As the differentials dzi span N∗Z, these combine to give a map
Hν(f) : Sym2(ND) → f∗(NZ), which one checks to be invariantly defined.

Definition 5.2. Let f : (X,D) → (Y, Z) such that im df ⊂ TZ. The normal Hessian of f
along D is the map Hν(f) : Sym2(ND) → f∗(NZ) over D.

When codim(Z) = 1, the normal Hessian Hν(f) can be viewed as the matrix of second
partial derivatives of the coordinate function of f normal to Z in directions normal to D.

5.2. Boundary maps

Let f : (X,D) → (Y, Z) be a strong map of pairs with Z a hypersurface and codim(D) � 2.
Then f cannot be transverse to Z, as then f−1(Z) = D would be of codimension one. As Z is
of codimension one, f being transverse to Z is equivalent to ν(df) : ND → NZ being nonzero,
hence in this case ν(df) : ND → NZ is the zero map. Equivalently we have im df ⊂ TZ, so
that the normal Hessian of f along D is well defined.

Definition 5.3. Let f : (X,D) → (Y, Z) be a strong map of pairs, Z a hypersurface and
codim(D) � 2. Then f is a boundary map if its normal Hessian Hν(f) is definite along D.

As Z is a hypersurface, NZ is one dimensional. Because of this, Hν(f) being definite makes
sense, as locally it is a map Hν(f) : Sym2(Rd) → R where d = codim(D). The choice of the
name will become clearer after establishing some properties (see Remark 5.20). We will also
call f a codimension-k boundary map if codim(D) = k, and sometimes implicitly assume that
codim(D) = 2 when dim(X) = 4. Indeed, the main reason for introducing the notion of a
boundary map comes from Proposition 5.6, where codim(D) = 2.

Remark 5.4. Let f : (X,D) → (Y, Z) be a codimension-k boundary map and further let
f ′′ : (X ′, D′) → (X,D) and f ′ : (Y, Z) → (Y ′, Z ′) strong maps of pairs with f ′ and f ′′ transverse
to Z ′ and D. Then f ′′ ◦ f ◦ f ′ : (X ′, D′) → (Y ′, Z ′) is a codimension-k boundary map.

Remark 5.5. Assuming that codim(D) � 2 is only done to ensure that ν(df) is the zero
map, as is required for the definition of the normal Hessian. If codim(D) = 1 yet this condition
holds, it makes sense to talk about codimension-one boundary maps.
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Codimension-two boundary maps naturally give rise to morphisms of divisors between elliptic
and log divisors respectively, and hence to Lie algebroid morphisms by Proposition 3.15.

Proposition 5.6. Let f : (X,D) → (Y, Z) be a map of pairs with Z a hypersurface and
codim(D) = 2. Then f is a boundary map if and only if I|D| := f∗IZ is an elliptic ideal and f
a morphism of divisors.

In other words, a codimension-two boundary map uniquely specifies a compatible elliptic
divisor structure on D.

Proof. Assume that f is a boundary map and consider I|D| = f∗IZ . Let z be a local defining
function for Z so that locally IZ = 〈z〉, and hence I|D| = 〈f∗(z)〉. As f is a boundary map,
Hν(f) is definite, so that f∗z specifies the germ of a definite Morse–Bott function around D.
By the discussion above Proposition 2.20 we see that I|D| is an elliptic ideal specifying an
elliptic divisor structure on D by Proposition 2.10. The map f is a morphism of divisors by
construction. Alternatively, one shows that for (L, s) the log divisor determined by Z, the pair
(R, q) := (f∗L, f∗s) is an elliptic divisor with Dq = D. The converse is similar, using again that
f has definite normal Hessian if and only if f∗(z) is locally Morse–Bott of even index around
D, where z is a local defining function for Z. �

Corollary 5.7. Let f : (X,D) → (Y, Z) be a codimension-two boundary map. Then
df induces a Lie algebroid morphism (ϕ, f) : TX(− log |D|) → TY (− logZ) for the divisor
structures of Proposition 5.6.

The pointwise conclusion of the Morse–Bott lemma, Lemma 2.19, provides a local form for
boundary maps around points in D.

Proposition 5.8. Let f : (Xn, Dk) → (Y m, Zm−1) be a boundary map and x ∈ D. Then
around x and f(x) ∈ Z there exist coordinates (x1, . . . , xn) and (z, y2, . . . , ym) for which
{x1 = · · · = xn−k = 0} = D and {z = 0} = Z such that for some map g : R

n → R
k−1 we have

f(x1, . . . , xn) = (x2
1 + · · · + x2

n−k, g(x1, . . . , xn)).

Proof. Let x ∈ D and z be a local defining function for Z around f(x) ∈ Z. As f is a
boundary map, the proof of Proposition 5.6 shows that f∗(z) is a local Morse–Bott function of
index zero around x, after possibly replacing z by −z. By Lemma 2.19, after trivializing ND,
there exist coordinates (x1, . . . , xn) of X around x with {x1 = · · · = xn−k = 0} = D such that
f∗(z)(x1, . . . , xn) = x2

1 + · · · + x2
n−k. Complete z to a coordinate system (z, y2, . . . , ym) of Y

around f(x). Then in these coordinates for some map g : R
n → R

k−1 we have

f(x1, . . . , xn) = (f∗(z)(x1, . . . , xn), g(x1, . . . , xn)) = (x2
1 + · · · + x2

n−k, g(x1, . . . , xn)). �

Using either Proposition 5.8 or the proof Proposition 5.6, the Lie algebroid morphisms
(ϕ, f) : TX(− log |D|) → TY (− logZ) obtained from boundary maps f : (X,D) → (Y, Z) using
Corollary 5.7 have the following extra property: for any k-form α ∈ Ωk(logZ), we have
Resθ(ϕ∗α) = 0, because Resθ(d log f∗(z)) = 0 for any local defining function z for Z.

5.3. Fibrating boundary maps

We next introduce specific boundary maps by demanding submersiveness on D.

Definition 5.9. A fibrating boundary map is a boundary map f : (X,D) → (Y, Z) such
that f |D : D → Z is submersive.
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Note that it is not required that D surjects onto Z. For fibrating boundary maps we can
improve upon Proposition 5.8, obtaining again a local form around points in D.

Proposition 5.10. Let f : (Xn, Dk) → (Y m, Zm−1) be a fibrating boundary map and z be
a (local) defining function for Z. Then there exist coordinates (x1, . . . , xn) and (±z, y2, . . . , ym)
with {x1 = · · · = xn−k = 0} = D such that f(x1, . . . , xn) = (x2

1 + · · · + x2
n−k, xn−m+1, . . . , xn).

In other words, we can simultaneously put both the components of f normal and tangent
to D in standard form, and obtain a commuting diagram of normal bundles near points x ∈ D
and f(x) ∈ Z, viewing f as giving a map f : ND → NZ using a tubular neighborhood:

In fact, the condition that f is a fibrating boundary map is equivalent to the existence
of coordinates as in Proposition 5.10 around each point x ∈ D. Call a finite collection of
functions an independent set at p if their differentials are linearly independent at p. By the
implicit function theorem, an independent set can be completed to a coordinate system in a
neighborhood of p. Independence is preserved under pulling back along a submersion.

Proof. Choose a tubular neighborhood embedding Φ: NZ → V ⊂ Y for prZ : NZ → Z
and let z be a local defining function for Z on an open subset V ′ ⊂ V of f(x). Let
U := f−1(V ′) ⊂ X. Choose coordinate functions y2, . . . , ym : V ′ → R for Z. Then {y2, . . . , ym}
forms an independent set on Z, and because prZ is a submersion, the same is true for
{z,pr∗Z(y2), . . . ,pr∗Z(ym)} on Y . By Proposition 5.8, after possibly shrinking U and V ′ and
changing z to −z, there are tubular neighborhood coordinates (x1, . . . , xn) such that f∗(z) =
x2

1 + · · · + x2
n−k. Consider {x1, . . . , xn−k, f

∗pr∗Z(yj)}, which is an independent set on X, using
submersiveness of f |D. Complete this to a coordinate system {x1, . . . , xn−m+1, f

∗pr∗Z(yj)} on
X, and relabel to (x1, . . . , xn). Using these coordinates on X and the coordinates (z, π∗

Z(yj))
on Y , the map f is given by f(x1, . . . , xn) = (x2

1 + · · · + x2
n−k, xn−m+1, . . . , xn) as desired. �

The normal form result of Proposition 5.10 immediately implies the following.

Corollary 5.11. Let f : (X,D) → (Y, Z) be a fibrating boundary map. Then f is
submersive in a punctured neighborhood around D.

Consequently, fibrating boundary maps have well-defined fibers of dimension dim(X) −
dim(Y ) near D, and of dimension dim(X) − dim(Y ) − codim(D) + 1 on D. In particular, when
f is a fibrating boundary map, D will be a fiber bundle over certain components of Z.

Remark 5.12. An alternative way of viewing the proof of Corollary 5.11 when codim(D) = 2
uses Proposition 5.6. Namely, let f : (X,D) → (Y, Z) give rise to a Lie algebroid morphism
(ϕ, f) : TX(− log |D|) → TY (− logZ). While df : ND → NZ is the zero map, ϕ|D is surjective
because f is fibrating. This is an open condition, so that ϕ is surjective in a neighborhood
around D. On X\D, the Lie algebroid TX(− log |D|) is isomorphic to TX, hence f is
submersive there. We see that fibrating boundary maps lead to Lie algebroid morphisms which
are fibrations near D.
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We proceed to obtain similar normal bundle commutativity around components of D whose
image is coorientable. To prove this, we use a result by Bursztyn–Lima–Meinrenken [5] on
normal bundle embeddings, which we now describe. Let M ⊆ X be a submanifold and NM its
normal bundle. Denote by EM ∈ X(NM) the associated Euler vector field and given V ∈ X(X)
tangent to M , let ν(V ) ∈ X(NM) be its linear approximation.

Definition 5.13. Let M ⊆ X be a submanifold. A vector field V ∈ X(X) is Euler-like along
M if it is complete, and satisfies V |M = 0 and ν(V ) = EM .

A strong tubular neighborhood embedding for M ⊆ X is an embedding Φ: NM → X taking
the zero section of NM to M , and such that the linear approximation ν(Φ): ν(NM,M) →
ν(X,M) is the identity map. The following proposition says that Euler-like vector fields give
rise to strong tubular neighborhood embeddings.

Proposition 5.14 [5, Proposition 2.6]. Let M ⊆ X be a submanifold and V ∈ X(X) Euler-
like along M . Then there exists a unique strong tubular neighborhood embedding Φ: NM → X
such that Φ∗(EM ) = V .

We use this result to construct compatible tubular neighborhood embeddings for fibrating
boundary maps around components of D whose image is coorientable.

Proposition 5.15. Let f : (X,D) → (Y, Z) be a fibrating boundary map and Dj ⊆ D a
connected component such that f(Dj) =: Zj ⊂ Z is coorientable. Then there exist a defining

function z for Zj and tubular neighborhood embeddings ΦDj
: Ũ → U ⊂ X for Dj and

ΦZj
: Ṽ → V ⊂ Y for Zj such that Φ∗

Dj
f∗(z) = Qf∗(z) ∈ Γ(Dj ; Sym2N∗Dj) and the following

diagram commutes:

Proof. Let z : V → R be a defining function for Zj and let U ′ ⊂ f−1(V ) be the connected
component containing Dj . Using Lemma 2.19 applied to f∗(z), shrink U ′ so that U ′ = ΦDj

(Ũ ′)
for some tubular neighborhood embedding ΦDj

: Ũ ′ → U of Dj . Choose a tubular neighborhood
embedding ΦZj

: Ṽ → V for Zj . For x ∈ Dj , use Proposition 5.10 (possibly changing z to
−z) to obtain an open Ux ⊂ U ′ containing x and coordinates (x1, . . . , xn) so that f∗(z) =
x2

1 + · · · + x2
n−k. Note that U ′ is connected so that f∗(z) has a fixed sign. Consider U :=

∪x∈Dj
Ux ⊂ U ′ and extract a finite subcover {Uα}α∈I . On each set Uα, define the vector field

Eα := x1∂x1 + · · · + xn−k∂xn−k
. It satisfies LEα

f∗(z) = 2f∗(z), and f∗Φα∗Eα = z∂z = EZj
. Let

{ψα}α∈I be a partition of unity subordinate to {Uα}α∈I and define E :=
∑

α∈I ψαEα on U ′.
Then E|Dj

=
∑

α∈I ψαEα|Dj
=

∑
α∈I ψα · 0 = 0, and ν(E) =

∑
α∈I ψαν(Eα) =

∑
α∈I ψαEDj

=
EDj

. Ensure that E is complete by multiplying by a bump function and shrinking U ′, so that
E ∈ X(U) is Euler-like along Dj . Moreover, we now have that

LEf∗(z) =
∑
α∈I

LψαEα
f∗(z) =

∑
α∈I

ψαLEα
f∗(z) =

∑
α∈I

ψα2f∗(z) = 2f∗(z),
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and similarly

f∗E =
∑
α∈I

f∗(ψαEα) =
∑
α∈I

ψαEZ = EZ .

Use Proposition 5.14 and possibly shrink U to obtain a tubular neighborhood embedding
Φ′

Dj
: Ũ → U such that Φ∗EDj

= E , f∗E = EZ , and LEf∗(z) = 2f∗(z). This embedding satisfies

all desired properties. Moreover, upon pulling back f∗(z) to Ũ we have

Φ
′∗
Dj

f∗(z) = Qf∗(z) ∈ Γ(Dj ; Sym2(N∗Dj)),

as g := Φ
′∗
Dj

f∗(z) is smooth and satisfies LEg = 2g. �

As a consequence of the above proposition, when Z is coorientable this result implies a
normal form for f around any point in Z and its entire inverse image, as then a semi-global
defining function for Z can be used. We can summarize the above discussion as follows.

Corollary 5.16. Let f : (X2n, D2n−2) → (Σ2, Z1) be a fibrating boundary map for which
Z is coorientable. Then there are

• neighborhoods U of D and V of Z and diffeomorphisms between these sets and
neighborhoods of the zero sections of the corresponding normal bundles, ΦD : U → ND
and ΦZ : V → R × Z, and

• a bundle metric g on ND,

such that the following diagram commutes, where prD : ND → D is the bundle projection:

We can now obtain topological information about the generic fibers of f near D. The following
result is the main reason for wanting compatible tubular neighborhood embeddings.

Proposition 5.17. Let f : (Xn, Dk) → (Y m, Zm−1) be a fibrating boundary map with Z
coorientable. Denote the fiber of f |D : D → Z by F k−m+1

D . Then the fiber Fn−m of f near D
is an Sn−k−1-sphere bundle over FD.

Proof. Apply Corollary 5.16 using a semi-global defining function for Z, setting Ũ = ΦD(U)
and similarly for Ṽ . Let y ∈ Ṽ \Z. As f is submersive on Ũ\D, consider Fy = ΦD ◦ f−1 ◦
Φ−1

Z (y), which is of dimension n−m. Consider prZ(y) ∈ Z and its (k −m + 1)-dimensional
fiber FD,prZ(y) = f |−1

D (prZ(y)). Because the tubular neighborhood embeddings are compatible
with f , we have Fy = pr−1

D (FD,prZ(y)), noting that prD is submersive. As a point in Ṽ ⊂ NZ
is given by a point in Z together with a distance, the fiber of prD : Fy → FD,prZ(y) is given by
a sphere, consisting of all points with fixed distance above the corresponding point in D. �

Corollary 5.18. Let f : (X4, D2) → (Y 2, Z1) be a codimension-two fibrating boundary
map with Z coorientable. Then the connected components of the generic fibers of f near D
are tori or Klein bottles. If either X is orientable or D is coorientable, only tori can occur.
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Proof. This follows from Proposition 5.17 using n = 4 and k = m = 2 by a dimension count.
The generic fibers F of f near D satisfy dim(F ) = 4 − 2 = 2, and are S1-bundles over fibers
of f |D, which in turn are one dimensional. Thus F is a union of tori and Klein bottles.

Whether the fibers are tori or Klein bottles is determined by their orientability. Assuming
the fibers of the fibrating boundary map near D are connected, let Dj ⊆ D be a connected
component and y ∈ Zj = f(Dj). Consider the pairing 〈w1(NDj), [f−1(y)]〉, which determines
whether the fiber F is the trivial S1-bundle over FD or not. We see that if Dj is coorientable,
then w1(NDj) = 0 and the fiber F near Dj is a torus. If X is orientable, then F is orientable,
as there is a splitting TX|F ∼= TF ⊕ f∗TY |F and the latter factor is trivial on F . This means
that F inherits an orientation from X, so that the fiber F must again be a torus. �

Recall that when Z is separating it admits a global defining function z ∈ C∞(Y ). In this
case, any boundary map f to (Y, Z) must map onto one component of Y with respect to Z.
More precisely, given such a generator z ∈ IZ , consider Y+ := z−1([0,∞)) ⊂ Y , a manifold with
boundary given by Z = z−1(0). Then we have the following.

Proposition 5.19. Let f : (X,D) → (Y, Z) be a boundary map with X connected, and
assume that Z is separating. Then there exists a global defining function z for Z so that
f(X) ⊂ Y+, and f defines a boundary map f : (X,D) → (Y ′, ∂Y ′), where Y ′ consists of the
connected component of Y+ which contains points in the image of the map f .

Proof. Let z be a defining function for Z. Then f∗(z) is globally defined on X, with zero
set D = f−1(Z). As D has codimension at least two in X, its complement X\D is connected,
so that f∗(z) has fixed sign on X\D. Consequently, by changing z to −z if necessary, the
function f∗(z) is nonnegative. But then for all points x ∈ X, z(f(x)) = f∗(z)(x) � 0, so that
f(X) ⊂ Y+. Moreover, f is still a boundary map when restricting its codomain. �

Remark 5.20. The previous proposition explains the name ‘boundary map’, as the defining
condition specifies the behavior of f normal to Z, the boundary of its restricted codomain.

5.4. Boundary (Lefschetz) fibrations

We introduce further submersiveness assumptions.

Definition 5.21. A boundary fibration is a fibrating boundary map f : (X,D) → (Y, Z)
such that f |X\D : X\D → Y \Z is a fibration.

Definition 5.22. A boundary Lefschetz fibration is a fibrating boundary map
f : (X2n, D) → (Σ2, Z) such that f |X\D : X\D → Σ\Z is a Lefschetz fibration.

The following is immediate from Corollary 5.7 together with Remark 5.12.

Corollary 5.23. Let f : (X,D) → (Y, Z) be a codimension-two boundary (Lefschetz)
fibration. Then f induces a Lie algebroid (Lefschetz) fibration (ϕ, f) : TX(− log |D|) →
TY (− logZ).

The statement that f induces a Lie algebroid morphism is to be interpreted as in
Proposition 3.15, namely that there is a Lie algebroid morphism (ϕ, f) such that ϕ = df
on sections. Moreover, the elliptic divisor structure on D is the one induced from f and Z.
By adapting the usual argument, we can ensure that boundary (Lefschetz) fibrations have
connected fibers.
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Proposition 5.24. Let f : (X,D) → (Y, Z) be a codimension-two boundary (Lefschetz)
fibration, and suppose that Z is separating. Define (Y ′, ∂Y ′) as in Proposition 5.19. Then there

exists a cover g : Ỹ ′ → Y ′ of Y ′ and a boundary (Lefschetz) fibration f̃ : (X,D) → (Ỹ ′, ∂Ỹ ′)
with connected generic fibers such that f = g ◦ f̃ .

Proof. As f is a global boundary map, by Proposition 5.19 we obtain a boundary
map f : (X,D) → (Y ′, ∂Y ′) which immediately is also a boundary (Lefschetz) fibration. By
definition, f : X\D → Y ′\∂Y ′ is a (Lefschetz) fibration. Consequently, denoting its generic
fiber by F , there is a sequence in homotopy π1(F ) → π1(X\D) → π1(Y ′\∂Y ′) → π0(F ) → 0
[13, Proposition 8.1.9]. Applying Van Kampen’s theorem for each connected component of
D shows that π1(X\D) surjects onto π1(X) via the natural inclusion. Note that we have
π1(Y ′\∂Y ′) ∼= π1(Y ′). We obtain the following commutative diagram.

The generic fiber F of f : X\D → Y ′\∂Y ′ is compact, hence π0(F ) is finite. But then
f∗(π1(X\D)) ⊂ π1(Y ′\∂Y ′) is a subgroup of finite index. Making use of the isomorphism
π1(Y ′\∂Y ′) ∼= π1(Y ′), let G denote the corresponding finite index subgroup inside π1(Y ′),
and let g : Ỹ ′ → Y ′ be the associated cover. Then f : X → Y ′ lifts to f̃ : X → Ỹ ′ if and only if
f∗(π1(X)) ⊂ G, but this is an equality because the map π1(X\D) → π1(X) surjects. For f̃ we
have that its restriction f̃ : X\D → Ỹ ′\∂Ỹ ′ induces a surjection f̃∗ : π1(X\D) → π1(Ỹ ′\∂Ỹ ′).
But then π0(F̃ ) is trivial, so that the generic fibers F̃ of f̃ are connected. �

By the above we can replace a boundary Lefschetz fibration on (X,D) with Z separating
by one for which the generic fibers in X\D are connected. We next study the fibrating case,
concluding that the fibers of f |D : D → Z are connected if those of f near D are.

Proposition 5.25. Let f : (X,D) → (Y, Z) be a fibrating boundary map whose generic
fibers near D are connected, and suppose that Z is separating. Then the fibers of f |D : D → Z
are connected.

Proof. Using Proposition 5.19, replace (Y, Z) by (Y ′, ∂Y ′), where Y ′ is connected, and let
V ⊂ Y ′ be a connected open neighborhood of a point y ∈ Z ′ so that V \V ∩ Z ′ is connected,
and f |f−1(V )\D is a fibration by Corollary 5.11. Let F be the generic fiber of f near D and
denote Fy := f−1(y) = f |−1

D (y). Let Fy,i be the connected components of Fy, and let Ui be
disjoint opens around Fy,i in X. Note that for each i, the set f(Ui) ⊂ Y ′ contains y in its
interior. In fact, it follows from the normal form for f around D that if x ∈ Fy and U is a
neighborhood of x, then f(U) contains y in its interior.

Choose a curve γ : [0, 1] → Y ′ such that γ([0, 1)) ∈ V \Z ′, f(1) = y and γ is transverse to Z ′.
Then M := f−1(γ([0, 1])) ⊂ f−1(V ) is a compact submanifold of X with boundary equal to
f−1(0). Choose a sequence of points (yn)n∈N ⊆ γ([0, 1]) converging to y such that yn �= y for
all n ∈ N. For each n, consider the set Wn := Fyn

\⊔i(Ui ∩ Fyn
). As each intersection Ui ∩M

is open in M , the sets Ui ∩ Fyn
are disjoint opens in Fyn

.
Assume that Fy is not connected. Then for n large enough, there will be at least two indices

i1 and i2 for which Uij ∩ Fyn
�= ∅. This is because f(Ui1) ∩ f(Ui2) has y in its interior. As

Fyn
is connected, we conclude that Wn �= ∅ for n large enough, as Fyn

cannot be covered by
disjoint opens. For each such n, let xn ∈ Wn be some element. By compactness of M , the
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sequence {xn}n∈N has a convergent subsequence, so that after relabeling we have xn → x for
some x ∈ M . By definition x ∈ M\(⋃i Ui), so that x �∈ Ui for all i, hence x �∈ Fy. However, by
continuity we have f(xn) = yn → y = f(x), which is a contradiction. We conclude that Fy is
connected, so that the fibers of f |D : D → Z ′ are connected. �

6. Constructing boundary Lefschetz fibrations

In this section we discuss how to obtain four-dimensional boundary Lefschetz fibrations. In
particular, we construct them out of genus one Lefschetz fibrations f : X4 → Σ2 by surgery,
replacing neighborhoods of fibers of points x ∈ Σ by a certain standard boundary map.

Given n ∈ Z, let p : Ln → T 2 be the complex line bundle over T 2 with first Chern class equal
to n ∈ H2(T 2; Z). Choose a Hermitian metric on Ln, which provides a fiberwise radial distance
r : Tot(Ln) → R�0. Further, let pr : T 2 → S1 be the projection onto the first factor.

Definition 6.1. The total space Tot(Ln) together with the map f : Tot(Ln) → S1 × R�0

given by f(x) := (pr(p(x)), r2(x)) for x ∈ Tot(Ln), is called the standard n-model.

The first thing to note is that f as defined above is an example of a boundary fibration.

Proposition 6.2. The map f : (Tot(Ln), T 2) → (S1 × R�0, S
1 × {0}) is a boundary

fibration, where T 2 is identified with the zero section in Tot(Ln).

Proof. Certainly f is a strong map of pairs, and the codimension of D = T 2 inside Tot(Ln)
is (at least) two. The normal Hessian Hν(f) of f along D is given by the quadratic form with
constant matrix given by 2 · Id in an appropriate orthonormal frame normal to D given by
(x, y) with x2 + y2 = r2, which is clearly definite. We conclude that f is a boundary map.
Both the bundle projection p : Ln → T 2 and the projection pr : T 2 → S1 are submersive, so
that f |D : T 2 → S1 × {0} is submersive, making f a fibrating boundary map. It is immediate
that f is submersive when r �= 0, that is, on Tot(Ln)\T 2, so that f is a boundary fibration. �

Let f : X → Y be a smooth map that is a fibration in a neighborhood of an embedded
oriented circle γ ⊂ Y . Recall that the monodromy of f around γ is the element in the mapping
class group of the fiber F corresponding to the mapping torus f |f−1(γ) : f−1(γ) → γ ∼= S1.

For the standard n-model, let ε > 0 be small and let γ := S1 × {ε} ⊂ S1 × R�0 with its
standard orientation. We compute the monodromy of f : Tot(Ln) → S1 × R�0 around γ.

Proposition 6.3. The monodromy of f around γ is the −nth power of a Dehn twist.

Proof. Let M := f−1(γ) be the T 2-bundle f : M → γ. To compute the monodromy of f
around γ, note that using p : M → T 2 we can view M as the principal ε-sphere bundle of Ln.
The Hermitian metric gives rise to a connection iθ ∈ Ω1(M ; R). As Ln → T 2 has Euler class
equal to n, its curvature equals dθ

2πi = nda ∧ db, where da and db are generators of H1(T 2).
Recall now that circle bundles are classified by their Euler class due to the Gysin sequence.
Consider M ′ := R

3/Γ, with Γ = 〈α1, α2, α3〉 the integral lattice generated by the following
group elements acting on R

3:

α1(x, y, z) = (x, y + 1, z), α2(x, y, z) = (x, y, z + 1), α3(x, y, z) = (x + 1, y, z − ny).

The projection pr12 : R
3 → R

2 given by (x, y, z) 	→ (x, y) descends to a map g : R
3/Γ → R

2/Z
2.

This is an S1-bundle over T 2, with invariant one-forms e1 = dx and e2 = dy, and connection
one-form e3 = dz + nxdy. As de3 = ne1 ∧ e2, we conclude that R

3/Γ has Euler class equal to
n, so that R

3/Γ ∼= M , as circle bundles over T 2. Note that the map pr1 : R
3 → R given by
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(x, y, z) 	→ x also descends and exhibits M ′ as a T 2-bundle over R/Z ∼= S1. To obtain a T 2-
bundle over S1 out of p : M → T 2, the choice of any projection T 2 → S1 gives isomorphic
bundles. Hence we can assume that the projection pr1 makes the following diagram commute.

We can thus compute the monodromy of f around γ by considering pr1 : M ′ → S1. Due to our
concrete description it is immediate that

M ′ = T 2 × S1/(x, 0) ∼ (f(x), 1), f ∈ Aut(T 2) with f∗ =
(

1 −n
0 1

)
: H2(T 2) → H2(T 2).

We conclude that M has monodromy equal to the −nth power of a Dehn twist as desired. �

We next describe the surgery process whereby we replace suitable neighborhoods of points
by the above standard models.

Definition 6.4. A punctured surface is an open surface Σ obtained from a closed surface
by removing a finite number of discs.

A punctured surface naturally has a compact closure Σ by adding the circle boundaries of
the removed discs. This closure comes with a natural isomorphism j : Σ

∼=→ Σ\∂Σ.

Proposition 6.5. Let f : X4 → Σ2 be a proper map over a punctured surface such that f
is a genus one fibration in a neighborhood of ∂Σ. Assume that the monodromy of f around
every boundary component is a power of a Dehn twist. Then there exists a compact elliptic

pair (X̃, |D|) with i : X
∼=→ X̃\D and a fibrating boundary map f̃ : (X̃, |D|) → (Σ, ∂Σ) such

that the following diagram commutes:

In the above situation, we say f : X → Σ can be completed to f̃ : (X̃, |D|) → (Σ, ∂Σ). These
completions are unique when the monodromy is not trivial.

Proof. At each boundary end Ei of Σ, glue in the standard n-model Tot(Lni
), where ni ∈ Z

is such that Mon(γi) = δni , with γi = ∂Ei. Here δ denotes a Dehn twist. As the monodromies
agree, the fibrations are isomorphic, hence can be glued together to a new fibration.

It only remains to argue that if the monodromy is nontrivial, the completion is unique. Since
the completion of each end of X is obtained by gluing Ln to the end of X, by identifying
M , the ε-sphere bundle of Ln, with the preimage of a loop around a boundary component
of Σ, we see that any other completion can be obtained by precomposing the gluing map by
a diffeomorphism of M . However, due to a result of Waldhausen [34, Theorem 5.5] any such
diffeomorphism is isotopic to a fiber-preserving diffeomorphism (covering a diffeomorphism of
the base) and therefore extends to the ε-disc bundle of Ln. Hence the completion of the end is
unique up to diffeomorphism. �



FIBRATIONS AND STABLE GENERALIZED COMPLEX STRUCTURES 1273

Corollary 6.6. Let f : X4 → Σ2 be a genus one Lefschetz fibration over a punctured
surface. Assume that the monodromy of f around every boundary component is a power of a
Dehn twist. Then f can be completed to a boundary Lefschetz fibration f̃ : (X̃, |D|) → (Σ, ∂Σ).

Proof. The Lefschetz singularities lie in the interior of Σ so that f is a genus one fibration
near ∂Σ. After completing using Proposition 6.5, f̃ is a fibrating boundary map and a genus
one Lefschetz fibration in the interior, so that it is a boundary Lefschetz fibration. �

Consequently, given a genus one Lefschetz fibration on X, removing several discs and their
inverse image and then completing as in Corollary 6.6 gives a boundary Lefschetz fibration on
X̃. Homological essentialness of generic fibers is preserved by the completion process.

Proposition 6.7. Let f : X4 → Σ2 be a genus one Lefschetz fibration with boundary
Lefschetz completion f̃ : (X̃, |D|) → (Σ, ∂Σ). Then the generic fibers of f are homologically

essential if and only if those of f̃ are.

A codimension-two boundary Lefschetz fibration on a four-manifold X has singular fibers
equal to the Euler characteristic of X, as is true for genus one Lefschetz fibrations.

Proposition 6.8. Let f : (X4, D) → (Σ2, Z) be a codimension-two boundary Lefschetz
fibration. Then we have χ(X) = μ, with μ the number of singular fibers of f |X\D.

Proof. Given two open sets U, V ⊆ X we have χ(U ∪ V ) = χ(U) + χ(V ) − χ(U ∩ V ). Let
U := X\D and take V ⊆ ND to be a tubular neighborhood of D. Then V is homotopy
equivalent to D, which is a union of tori, so that χ(V ) = χ(D) = 0. Moreover, U ∩ V is
deformation equivalent to S1ND, which is a principal circle bundle over D, hence χ(U ∩ V ) = 0
as well. Recall that if a manifold M admits a genus g Lefschetz fibration over a surface of genus
h, it satisfies χ(M) = (2 − 2h)(2 − 2g) + μ, where μ is the number of singular fibers. Applying
this to U = X\D with g = 1 we obtain that χ(X) = χ(X\D) = μ. �

7. Constructing stable generalized complex structures

In this section we combine the results from previous sections to construct stable generalized
complex structures using codimension-two boundary fibrations with two-dimensional fibers,
and from codimension-two boundary Lefschetz fibrations in dimension 4. For notational
convenience, we call a boundary map f : (X2n, D) → (Y 2n−2, Z) homologically essential
if the (generic) two-dimensional fibers F (near D) specify nonzero homology classes
[F ] �= 0 ∈ H2(X\D; R). We prove the following results stated in the introduction.

Theorem 7.1. Let f : (X4, D2) → (Σ2, Z1) be a homologically essential boundary Lefschetz
fibration between compact oriented manifolds with D coorientable and [Z] = 0 ∈ H1(Σ; Z2).
Then (X,D) admits a stable generalized complex structure.

Theorem 7.2. Let f : (X2n, D2n−2) → (Y 2n−2, Z2n−3) be a homologically essential bound-
ary fibration between compact oriented manifolds with D coorientable such that (Y, Z) admits
a log-symplectic structure. Then (X,D) admits a stable generalized complex structure.

In the remainder of this section, any mention of an elliptic divisor structure on (X,D), or the
Lie algebroid TX(− log |D|), will refer to the structure induced by a codimension-two boundary
map via Proposition 5.6. Similarly, we will without further mention have codimension-two
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boundary maps induce Lie algebroid morphisms between the appropriate elliptic and log-
tangent bundles using Corollary 5.23. Before proving the above two results, we first establish
that we can create a suitable closed Lie algebroid two-form on X.

Proposition 7.3. Let f : (X2n, D2n−2) → (Y 2n−2, Z2n−3) be a homologically essential
fibrating boundary map with f(D) coorientable. Then there exists a closed two-form η ∈
Ω2

0,0(log |D|), that is, Resq(η) = Resr(η) = 0, such that η|kerϕ is nondegenerate near D.

Proof. Note that f is submersive with fibers F around D by Corollary 5.11. As [F ] �= 0,
there exists c ∈ H2(X\D) such that 〈c, [F ]〉 = 1. We will first construct local Lie algebroid
two-forms around D as in Proposition 4.4. By Lemma 3.11, the cohomology H2(X\D) equals
H2

0,0(log |D|), the cohomology of the subcomplex of zero radial (and elliptic) residue forms.
Thus there exists a closed two-form ξ ∈ Ω2

0,0(log |D|) satisfying [ξ] = c.
Continuing, by Proposition 5.15 there exist open neighborhoods U and V around D and

f(D) and a defining function z for f(D) on V such that f and f |D commute with the tubular
neighborhood projections prD and prZ , and such that f∗(z) = Qf∗(z). Let y ∈ f(D) and let
V ′ ⊆ V be a small open disc containing y on which NZ is trivial, and set U ′ := f−1(V ′).
Then as in Proposition 5.10 we have f(reiθ, x, y) = (r2, x) using polar coordinates in normal
directions. Moreover, in these coordinates we have kerϕ = 〈∂θ, ∂y〉. Let {Vi} be a finite covering
extracted from such open sets and let Ui = f−1(Vi), which together cover a neighborhood
of D. Set U0 = X\D. As f : Ui\D → Vi\Z is a T 2-bundle it is necessarily trivial, so that
H2(Ui\D) = H2(T 2), with H1(T 2) generated by θi and γi say.

Define η0 = ξ|X\D and ηi ∈ Ω2
0,0(Ui; log |D|) for i � 1 via ηi = λiθi ∧ γi, where λi ∈ R

is chosen such that
∫
F
ηi = 〈c, [F ]〉. Then [ηi] = c|Ui

= [ξ|Ui
] ∈ H2

0,0(Ui; log |D|), so that by
Lemma 3.11 there exist one-forms αi ∈ Ω1

0,0(Ui; log |D|) such that ηi = ξ|Ui
+ dαi. As in

Proposition 4.4, define a closed Lie algebroid two-form η := ξ + d(
∑

i(ψi ◦ f)αi) using a
partition of unity {ψi} subordinate to {Vi}. Note that Resq(η) = Resr(η) = 0. Finally, near
D the form η is nondegenerate on kerϕ as there it is given by the convex combination of forms
η =

∑
i(ψ ◦ f)ηi, where each ηi is nondegenerate on kerϕ = 〈∂θ, ∂y〉 by construction. �

We can now prove Theorem 7.1 and Theorem 7.2 simultaneously, using Theorem 4.5 or
Theorem 4.8 respectively.

Proof of Theorem 7.1 and Theorem 7.2. Let ωY be a log-symplectic structure on (Y, Z).
As Y is oriented, by Proposition 3.33 and Proposition 2.24 we know that Z is separating, and
in particular coorientable. Using Proposition 5.19, replace (Y, Z) by (Y ′, ∂Y ′), and then using
Proposition 5.24, lift to a cover g : Ỹ ′ → Y ′ so that f̃ : (X,D) → (Ỹ ′, ∂Ỹ ′) has connected fibers.
It is immediate that g∗ωY defines a log-symplectic structure on (Ỹ ′, ∂Ỹ ′), and moreover that f̃
is a boundary Lefschetz fibration. The generic fibers of f̃ : X → Ỹ ′ are either all homologically
essential, or none are. Let y ∈ Y ′\∂Y ′ be a regular point and let y1, . . . , yn ∈ g−1(y) ⊂ Ỹ ′ be
its inverse images under the covering, with Fy1 , . . . Fyn

their fibers under f̃ . Then for some
choice of signs we have ±[Fy1 ] ± · · · ± [Fyn

] = [F ]. However, we have [F ] �= 0 for the generic
fiber F by assumption, so there exists i ∈ {1, . . . , n} such that [Fyi

] �= 0. But then [Fyi
] �= 0 for

all i ∈ {1, . . . , n}, so f̃ is homologically essential.
Apply Proposition 7.3 to the boundary (Lefschetz) fibration f̃ . This yields a global closed Lie

algebroid two-form η ∈ Ω2
cl(X, log |D|) such that η|kerϕ is nondegenerate near D (and globally

so if f has no Lefschetz singularities). Moreover, its cohomology class c = [η] pairs nontrivally
with (generic) fibers in X\D. Now apply either Theorem 4.5 or Theorem 4.8, possibly changing
η to a form η′ nondegenerate on kerϕ everywhere, which agrees with η in a neighborhood of
D. We obtain an elliptic symplectic structure ωt = ϕ∗ωY + tη′ on (X, |D|) for t > 0 small. As
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Resq(η) = 0 and η′ agrees with η near D, we have Resq(η′) = 0 as well. Using Proposition 3.17
we see that Resq(ωt) = Resq(ϕ∗ωY ) + tResq(η′) = 0. But then the elliptic symplectic structure
ωt has zero elliptic residue. By Theorem 3.32, we conclude that ωt for t > 0 small determines
a stable generalized complex structure on (X, |D|). �

The stable generalized complex structure on (X,D) constructed in the proof of Theorem 7.1
and Theorem 7.2 arises as an elliptic log-symplectic forms ωX with zero elliptic residue through
the correspondence of Theorem 3.32. As mentioned below Theorem 3.32, the three-form H
required for integrability of the generalized complex structure is given by [H] = Resr([ωX ]) ∪
PDX [D]. The two-form η′ introduced during the proof satisfies Resr(η′) = 0, because this holds
for η. Using Proposition 3.17, together with the fact that ωX = ϕ∗ωY + tη′ for some t > 0, we
see that Resr(ωX) = Resr(ϕ∗ωY ) + tResr(η′) = f∗ResZ(ωY ).

Remark 7.4. Given a defining function z for Z we can locally write ωY = d log z ∧ α + β,
with (α, β) the induced cosymplectic structure on Z by the choice of z, and α = ResZ(ωY ).
Then ϕ∗ωY = d log r ∧ f∗(α) + f∗(β), and Resr(ϕ∗ωY ) = f∗(ResZ(ωY )) = f∗(α).

7.1. Fibering over T 2 and S1

Recall from Section 2 that in the compact case, for a stable generalized pair (X,D) and a log-
Poisson pair (Y, Z), the manifolds D and Z fiber over T 2 and S1 respectively. After perturbing
each structure, this can be achieved using one-forms on D and Z induced by the geometric
structures (that is, they can be made proper). For a stable generalized complex structure J on
X, these one-forms are (Resr,Resθ)(ωX) ∈ Ω1(D) × Ω1(D), where ωX is the elliptic symplectic
structure obtained from J using Theorem 3.32, see [2, 9]. In the log-Poisson case, the one-
form used instead is ResZ(ωY ) (see [6, 18, 19, 25, 30]), with ωY the log-symplectic structure
induced by the log-Poisson structure using Proposition 3.33.

Remark 7.5. If the log-symplectic structure is proper we improve upon Remark 7.4. Indeed,
when Z fibers over S1 using α := ResZ(ωY ), the form α is Poincaré dual on Z to the fiber Fp of
the induced fibration pZ : Z → S1. In this case we obtain that [H] = f∗(PDZ [Fp]) ∪ PDX [D].

The stable generalized complex structures we construct out of boundary (Lefschetz)
fibrations f : (X,D) → (Y, Z) are such that D fibers over Z. It is natural to ask whether
this can be made compatible with the above fibrations pD : D → T 2 and pZ : Z → S1. Note
that (Resr,Resθ)(ωX) = (f∗ResZ(ωY ), tResθ(η)) as ωX = ϕ∗ωY + tη, and Resθ(ϕ∗ωY ) = 0 by
the discussion below Proposition 5.8. This immediately shows we can make the fibrations
compatible, as we can choose η such that tResθ(η) and f∗ResZ(ωY ) determine a fibration,
instead of a just foliation. As in Section 6, let p : T 2 → S1 be projection onto the first factor.

Corollary 7.6. Under the assumptions of Theorem 7.1 or Theorem 7.2, given a log-
symplectic structure ωY on (Y, Z), the elliptic two-form ωX can be chosen such that p ◦ pD =
pZ ◦ f |D.

In other words, we have a full commutative diagram around D and Z as follows:
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8. Examples and applications

In this section we discuss some applications of the results obtained in this paper. For more
examples we refer to [4], which in particular contains the classification theorem for boundary
Lefschetz fibrations over D

2 degenerating over its boundary (see Theorem 1.4). We start with
the following immediate consequence of the results in Section 6 and Section 7.

Theorem 8.1. Let f : X → D
2 be a genus one Lefschetz fibration over the disc whose

monodromy around the boundary is a power of a Dehn twist. Then all possible completions
f̃ : (X̃,D) → (D2, ∂D

2) admit a stable generalized complex structure.

Proof. Any Lefschetz fibration over the disc D
2 is homologically essential, as it is obtained

from the trivial fibration by two-handle attachments, so that it homotopy equivalent to Σ2
g (here

g = 1) with some two-cells attached. By the monodromy assumption around the boundary, f
admits completions f̃ using Corollary 6.6. By Proposition 6.7, the map f̃ is a homologically
essential boundary Lefschetz fibration, so that (X̃,D) admits a stable generalized complex
structure by Theorem 7.1, as the completion has D coorientable. �

We now turn to exhibiting stable generalized complex structures on concrete four-manifolds
using boundary (Lefschetz) fibrations.

Example 8.2 (S1 × S3). Let I = [−1, 1] with coordinate t and view S2 ⊆ R
3 with north and

south pole pN and pS . Consider the standard height function p : (S2, pN ∪ pS) → (I, ∂I) given
by (x, y, z) 	→ z. The map h : (I, ∂I) → (R, 0) given by h(t) := 1 − t2 is a defining function
for ∂I. Then p∗(h)(x, y, z) = 1 − (1 − x2 − y2) = x2 + y2, so that p is a boundary map by
the description of Proposition 5.8. In fact, p is a boundary fibration. Let ϕ : S3 → S2 be
the Hopf fibration, making p ◦ ϕ : (S3, S1

N ∪ S1
S) → (I, ∂I) a boundary fibration, where S1

N =
ϕ−1(pN ) and similarly for S1

S . Finally, define the boundary fibration f : (S3 × S1, D) → (I ×
S1, Z), where Z = ∂I × S1 and D = (S1

N ∪ S1
S) × S1 = f−1(Z), by f(x, θ) := ((p ◦ ϕ)(x), θ).

Using Lemma 3.34, (I × S1, Z) admits a log-symplectic structure, while the fibers of f are
clearly homologically essential. By Theorem 7.2 applied to f , we conclude that (S1 × S3, D)
admits a stable generalized complex structure whose type-change locus has two connected
components. This structure is integrable with respect to the zero three-form due to Remark 7.4.

Remark 8.3. We can make the previous example more explicit by introducing coordinates.
On C

2\{0} with complex coordinates (z1, z2), we can deform the complex structure by the
holomorphic Poisson bivector P = z1z2∂z1∂z2 to obtain a stable generalized complex structure
(see Proposition 2.8). Since this structure is invariant under scalar multiplication, it descends
to a stable structure on the Hopf surface. This structure is compatible with the boundary
fibration of the previous example. Indeed, the boundary fibration is given by the composition

f : S3 × S1 → S2 × S1 → I × S1, (z1, z2) 	→
( |z1/z2|2 − 1
|z1/z2|2 + 1

, |z1|2 + |z2|2
)
.

The map then becomes a symplectic boundary fibration as one computes that

ω ∧ f∗(dx) ∧ f∗(dy) = −2
z1z̄1 + z2z̄2

|z2|4 dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2,

where ω = (z1z2)−1dz1dz2 is the associated singular two-form dual to P .

Using a slightly different map, we can ensure that the type change locus is connected.
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Example 8.4 (S1 × S3). View S3 ⊆ C
2 with coordinates (z1, z2) in the standard way and

consider the map ϕ : S3 → D
2 given by ϕ(z1, z2) = z2, viewing D

2 ⊆ C. In the interior D
2\∂D

2,
the map ϕ admits a section s(z) = (

√
1 − |z|2, z). As ϕ ◦ s = id, we see that ϕ is submersive

on S3\D, where D is the circle D = ϕ−1(∂D
2) = {(0, z2) ∈ C

2 : |z2| = 1}. Moreover, ϕ|D is
the identity from D to Z = ∂D

2, which in particular implies that ϕ|D is submersive. Let
h(z) := 1 − |z|2 be a defining function for ∂D

2 on D
2. Then ϕ∗(h)(z1, z2) = 1 − |z2|2, which

shows that ϕ is a boundary map using Proposition 5.8. But then ϕ is in fact a boundary
fibration. Noting that ϕ|S3\D admits a section, ϕ : S3\D → D

2\∂D
2 is a trivial S1-bundle. Now

define a map of pairs f : (S3 × S1, D × S1) → (D2, ∂D
2) by f(z1, z2, x) := ϕ(z1, z2). This is also

a boundary fibration, which is homologically essential as f |(S3\D)×S1 is given by the projection
S1 × (D2\∂D

2) × S1 → (D2, ∂D
2). Finally, (D2, ∂D

2) admits a log-symplectic structure by
Lemma 3.34. Using Theorem 7.2 we conclude that (S3 × S1, D × S1) admits a stable gen-
eralized complex structure with connected type-change locus which is integrable with respect
to a nonzero degree three cohomology class. This agrees with [7, Example 4.1].

Before we consider actual boundary Lefschetz fibrations, it is convenient to reinterpret
Proposition 6.5 with a Kirby calculus point of view. There, the completion of each end of
X was done by gluing in a copy of the total space of Ln, the disc bundle over the torus with
Euler class n. Observe that Tot(Ln) is a four-manifold built out of one 0-handle, two 1-handles
and one 2-handle. The process of capping off an end of X with Tot(Ln) amounts to inverting
the handle structure of Tot(Ln) and adding it to X. That is, to cap each end of X we add one
2-handle, two 3-handles and one 4-handle. Further, due to inversion, the 2-handle of Tot(Ln)
has its original core and co-core interchanged and once this 2-handle is added there is a unique
way to complete with the 3- and 4-handles, up to diffeomorphism. Therefore we only have to
describe how to attach the 2-handle, whose core is the circle fiber of the projection M → T 2,
where M is the ε-sphere bundle of Ln. From the discussion in Proposition 6.3, this fiber is a
circle left fixed by the monodromy map, which, if the monodromy is nontrivial, is determined
by the monodromy map and is essentially unique. Further, since the circle is the fiber of the
projection M → T 2, the framing, in double strand notation, is given by the nearby fibers.

Example 8.5 (S1 × S3#CP
2
). Consider the genus one Lefschetz fibration over D

2 with one
singular fiber with vanishing cycle b, where b ∈ H1(T 2) is a generator. Then the monodromy
around ∂D

2 is b, which is clearly the power of a Dehn twist. The resulting completion X̃ thus
admits a stable generalized complex structure by Theorem 8.1, and we are left with determining
its diffeomorphism type. Draw a Kirby diagram for the trivial T 2-bundle over D

2 in the standard
way (see [13]) and attach a −1-framed two-handle to represent the vanishing cycle b. The
completion process adds a single 0-framed two-handle along the same cycle (see Figure 1).
Slide the −1-framed two-handle over this to split off a −1-framed unknot, representing a copy
of CP

2
. The remaining diagram collapses to a single one-handle after two further handle slides,

which shows that X̃ = S1 × S3#CP
2
. For more details, see [4, 8].

We can also recover the examples of [8], showing that mCP 2#nCP
2

admits a stable
generalized complex structure if and only if m is odd (that is, if it admits an almost-complex
structure).

Example 8.6 (mCP 2#nCP
2
). Let m,n ∈ N and assume that m = 2k + 1 is odd. Choose

generators a, b ∈ H1(T 2) and consider (D2, ∂D
2) with counterclockwise assignment of singular

fibers given by a + (4k − 1)b, followed by a + 4jb for j from k − 1 up to 1 − k, then a− (4k −
1)b, and finally n copies of b. The monodromy around the boundary can be computed to be
(10k − 1 − n)b [8]. Therefore the associated genus one Lefschetz fibration admits a completion
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Figure 1. Figure (a) shows the base of a boundary Lefschetz fibration over the disc with a single
nodal fiber, a choice of regular fiber for reference and loop around the boundary used to compute
the monodromy and (b) shows the corresponding Kirby diagram.

Figure 2 (colour online). Figure (a) shows the base of a boundary Lefschetz fibration over the
disc with m + n singular fibers and a choice of regular fiber for reference at the center of disc.
Figure (b) shows the corresponding Kirby diagram.

to f : (X̃,D) → (D2, ∂D
2) (see Figure 2), resulting in a stable generalized complex structure

on X̃ by Theorem 8.1. As shown in [8, Proposition 5.4] we have X̃ = mCP 2#nCP
2
.

Note that not every stable generalized complex structure comes from a boundary Lef-
schetz fibration, similarly to the case for symplectic structures and Lefschetz fibrations, or
log-symplectic structures and achiral Lefschetz fibrations (see [10]).

Example 8.7. The symplectic manifold (CP 2, ωFS) carries a stable generalized complex
structure with D = ∅. As (CP 2, ωFS) is not a symplectic fibration over any surface, this stable
generalized complex structure cannot be obtained through our construction.

Example 8.8. Let Σg be the genus g surface and g > 1. Then X = S2 × Σg has negative
Euler characteristic so cannot admit a boundary Lefschetz fibration by Proposition 6.8. Hence
X does not admit a stable generalized complex structure obtained through our methods.
However, X is symplectic hence carries a stable generalized complex structure with D = ∅.
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