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Abstract—In this contribution the use of ℓ1 weighted mini-
mization for the diagnosis of arrays from a reduced set of near-
field data is investigated. Numerical results show that reweighed
method gives a higher probability of an accurate estimation of
the failures compared to the classic ℓ1 minimization proposed in
the past literature.

I. INTRODUCTION

Near-field measurements are largely used in arrays diagno-

sis. In these measurement systems the data acquisition time

is an important factor, and investigation of algorithms able to

reduce the number of measured data is of interest [1], [2].

Recently, efficient sparse recovery technique was proposed

in the framework of antenna measurements in order to reduce

the number of measured data [4] - [6]. In particular, in [5]

an ℓ1 minimization technique was proposed to identify the

fault elements in large arrays from a highly reduced set of

measurements.

On the other hand, the reweighed ℓ1 minimization algorithm

proposed by Candes, Wakin and Boyd [7] was succesfully

applied in the framework of sparse array synthesis [8], [9],

showing better performance compared to the ℓ1 standard mini-

mization algorithm. Starting from these results, the application

of the reweighed ℓ1 minimization algorithm in array diagnosis

from near-field measurements is currently under investigation.

This contribution presents some preliminary results, that

confirm the effectiveness of the reweighed ℓ1 minimization

in antenna diagnosis.

II. THE MODEL

Let us consider an Array Under Test (AUT) consisting of

N radiating elements located in known positions rn. Let xn

and fn(θ, ϕ) be the excitation coefficient and the electric-field

radiation pattern of the n-th radiating element, respectively. A

probe having effective height h(θ, ϕ) is placed in M spatial

points rm, m = 1, ...,M . The voltage at the probe output can

be expressed by the linear system

Ax = y (1)

wherein y = (y1,y2, ...,yn)
T ∈ CM, ym being the probe

voltage measured at point rm, x = (x1, ...,xN)T ∈ CN,

A ∈ CM×N is a matrix whose element (m,n) is equal

to exp(−jβrm,n)/(4πrm,n)f(θm,n, ϕm,n) · h(θ′
m,n, ϕ

′
m,n),

rm,n = |rm − rn|, θm,n and ϕm,n are the relative angles

between the m-th measurement point and the n-th element

position in a reference system centered on the n-th array

radiating element.

In array diagnostic the goal is to to identify the fault

elements.

Following the approach proposed in [5], we suppose that

a reference failure-free array is available. As first step, we

characterize this array of reference, obtaining the vector xr ∈
CN containing the (failure-free) excitation coefficients, and

the vector yr ∈ CM containing the value of the probe voltage

in the measurement points.

Then the field radiated by the AUT is measured Let

xd = {x1, ..., xN}T be the vector of excitations of the AUT

and yd = {y1, ..., yM}T the vector collecting the far-field

measured data.

Now, let us consider the system

Ax = y (2)

wherein x = xd − xr and y = yd − yr.

If the number of fault elements S is small (as usually

happens) compared to the total number of elements N , i.e. if

S << N , we have an equivalent problem involving a highly

sparse array. It means that the x we are looking for is sparse.
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Fig. 1. Linear array, N=111, M=25, S=7, SNR=50 dB; occurrence of the
MSE, 500 trials; upper histogram: standard ℓ1 minimization algorithm; lower
histogram: weighted ℓ1 minimization algorithm (4 iterations).
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The above technique basically allows to decrease the

amount of information required to retrieve the unknown vector

by introducing a-priori information on the nominal excitation

in the model [10].

In [5] the sparse data were retrieved using the ℓ1 min-

imization proposed in sparse recovery/compressed sensing

literature. Recently, a reweighted version of this algorithm was

proposed by Candes, Wakin and Boyd [7].

Basically, the use of weighted ℓ1 norm allows to avoid to

penalize the highest entries of x, solving the following iterative

procedure:

argmin
N∑

i=1

wk
i |x

k
i | subject to ∥y −Axk∥

2
< ϵ (3)

wherein k is the iteration index, ϵ is fixed by the noise level

affecting the vector y of the measured data, wk
i = 1

|xk−1

i
|+η

and η is a small quantity greater than 0 to ensure the numerical

stability of the algorithm.

Note that at the first step the reweighed ℓ1 minimization

gives the same result of the standard ℓ1 minimization proce-

dure.

III. NUMERICAL RESULTS AND CONCLUSIONS

The AUT is a linear array of N = 111 isotropic radiating

elements. The nominal excitation is given by Chebyshev

coefficients giving a -30 dB equiripple far-field pattern. A

number of S = 7 failures, represented by zero amplitude

excitation coefficients, are randomly selected among the 111

coefficients. The radiated fields are measured in M = 25
points, placed on a uniform 12λ linear grid placed at d = 20λ
distance from the AUT. A Gaussian random noise is added to

the measured data. A number of 500 trails, considering random

failure positions and measurement positions, were carried out

for a given SNR.

The histogram of the occurrence of the Mean Square Error

of the excitations is plotted in Fig. 1 in case of standard

ℓ1 minimization algorithm (upper histogram) and weighed
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Fig. 2. Linear array, N=111, M=25, S=7,; black points=exact excitation co-
efficients; red points: excitation coefficients estimated using ℓ1 minimization;
MSE= -32 dB.

ℓ1 minimization after 4 iterations (lower histogram). The

histograms show a bi-modal behavior, with two maxima

respectively around -32 dB and -53 dB. In order to have

a qualitative indication of the effectiveness of the excitation

estimation as function of the MSE, the excitation in case of

MSE equal to -32 dB is plotted in Fig. 2. The plot shows

that, even if the most part of the failures are recognizable, the

solution is ’non accurate’ since the procedure is not able to

clearly identify all the failures associated to small excitation

coefficients. Numerical simulations indicated that an error

lower than about -38 dB makes highly likely to identify all

the failues.

Coming back to Fig. 1, the histograms show that the

weighed ℓ1 minimization is able to improve the accuracy of

the solutions assoaciated to an error lower than about -38

dB in the ℓ1 minimization. However, the number of trials

that give a MSE lower that -38 dB does not significantly

change with the number of iterations. As a consequence, the

figures suggest that the use of the reweighted ℓ1 algorithm is

advantageous provided that a preliminary study on the number

of measurements required to reduce the occurrence of ’non-

accurate’ reconstructions to a negligible value is carried out.

It is worth stressing that the results presented in this paper

are preliminary, and further studies are required to understand

the performance of reweighted ℓ1 minimization in the frame-

work of near-field antenna measurements.
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