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1. Introduction

The interest of using large spacecraft structures
(expandable or inflatable) involving thin film surface has
been identified since the 1950s. The first inflatable space
structures were the communication balloons of the
Echo series. The larger one was a 30 m diameter balloon
deployed using inflation gas. Since, technology develop-
ments have been made to demonstrate the potential
of space inflatable structures [1,2]. Then in 1996 the
Jet Propulsion Laboratory (JPL) performed the first experi-
ment of deploying in space an inflatable lenticular
antenna [3,4]. The structure is a 14 m parabolic reflector
table torus. The
tan satellite by
ts (see Fig. 1).
sign optimally
this kind of reflector that could be used as solar concen-
trator or radiometer system.

Compared to traditional spacecraft structures, these
gossamer structures could provide many advantages such
as reduced mass and package volume. However several
serious difficulties limit their massive development:
�
 The finding of the neutral shape of the non-stressed
membrane (non-pressurized structure).

�
 The choice of the pressure level in the different parts of

the structure.

�
 The definition of the inflation technique for controlla-

ble deployment.

�
 The rigidization mechanism.

Even if the design optimization (pressure and shape) of
the inflatable antenna is on current technological interest,
only few works have been published on the topic [5]. Some
applications (such as solar reflectors) require to obtain an
inflatable parabolic shape of good accuracy. Analytical
models can be found in the literature to approximate the
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Fig. 1. Inflatable parabolic circular antenna.

Table 1
Geometry and material data.

Data Lens Torus

Young modulus (GPa) 6.0 15

Poisson ratio 0.3 0.3

Thickness (mmÞ 6.3 300

Radius (m) 1 0.1

Focal length 1 m

2

deformed shape of a circular membrane clamped at the rim
and subjected to uniform pressure. The first one was
published by Hencky in the 1910s [6] and remains
of interest today. Since, subsequent contributions have
been brought [7,1] but are generally restricted to initially
flat membranes. The problem studied here involves the
coupling between the deformations in the torus and in the
reflector, large deformations and the possible wrinkling of
the membrane. Even if the analytical solutions are more
attractive means than the finite element models, in the
present case it seems to be not realistic to built such
solutions.

This paper is concerned with initial form finding and
load optimization of an inflatable parabolic reflector with
an efficient inverse method.

The initial shape of the antenna is represented by a
series of parameters defining an axisymmetric shape of
the lenticular reflector. We also considered the inflating
pressure as an optimizing parameter. The inverse method
uses a simplex defined in the parameters space and needs
the evaluation of the cost function (RMSE) at each vertex
of the simplex. The Nelder–Mead method or downhill
simplex method is used to find a local minimum of the
RMSE function. The RMSE computation is done thanks to
a robust finite element model which is the key point of
the procedure.

Indeed, the simulation of inflatable membrane structures
having very small bending stiffness is a very challenging
task. This is essentially due to the highly non-linear nature
of the involved phenomena, including large deflection, large
rotation and followers pressure. Moreover some instabil-
ities, such as torus buckling and membrane wrinkling,
might occur leading to unwanted shapes.

Over the last years, significant contributions to the
non-linear analysis including buckling have been brought.
Nevertheless, the simulation of membrane wrinkling
remains difficult and consequently a current research
area. It is obvious that this phenomenon must be con-
sidered in order to compute the deformed shape of the
reflector and therefore be able to accurately evaluate the
RMSE function. It is essential to take into account all these
specificities of lightweight structures in order to expect
sufficient precision of the deployed structure.

Here the finite element analysis is performed by using
a true membrane element. The numerical solution of the
direct problem is carried out by direct minimization of the
total potential energy. This is done by the means of an
iterative method such as the conjugate gradient. Although
the proposed approach is theoretically equivalent to the
traditional finite element method, it proves to be an
attractive alternative which is particularly efficient for
thin wrinkled structures. The main interest is that no
specific buckling analysis is carried out during the solving
procedure which is well adapted to the case of an
optimization process.

The inverse problem is based on zero-order minimiza-
tion method of Nelder–Mead which does not needs the
gradient of the cost function. The zero-order methods
have the advantage that only cost function evaluation is
needed in the minimization process.

The paper is organized as follows: Section 2 presents
the aim and scope of the study. Section 3 proposes a
parameterization of the reflector shape. In Section 4, the
finite element model is described and the minimization
algorithm is discussed. The results of the study and
validation tests are presented in Section 5, then Section
6 concludes the paper.
2. Aim and scope

The aim of this study is to design a reflector of a 2 m
diameter according to the material data and the geometry
depicted in Table 1. The structure is formed of two parts
pressurized at different levels: the lens and the torus.

The reflector is similar to the IAE experiment [3,4]
with different dimensions. It is made with a 6:3 mm film.
The lens is supported around its perimeter by a 0.2 m
diameter torus made with a 300 mm neoprene coated
Kevlar. The material and the diameter of the torus could
be optimization parameters. Nevertheless in this study
the choice was made to fix their values.

The problem to solve is formulated as follow: What are
the pressures (in the reflector and in the torus) and the
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neutral shape which lead to a perfect parabolic shape for
the reflector once inflated?

The set of m optimizing parameters fpg includes the
initial shape coefficients, noted ai, and also the pressures
in the reflector and in the torus supporting structure.
The initial shape coefficients define the neutral shape of
the reflective surface. The shape of the reflector zðfpgÞ

after inflation is thus a function of fpg. The RMSE,
which quantifies the gap between zðfpgÞ and the target
parabolic shape zth, is computed. The previous problem
becomes a minimization study whose aim is to find
the set of parameters fpg which minimize the function
RMSEðfpgÞ.

The function RMSEðfpgÞ is highly nonlinear which
might include bifurcated solutions. It is then very difficult
to built its analytical derivatives with respect to fpg. Its
minimization is achieved by zero-order downhill method.
The simplex method of Nelder–Mead [8] has been used
here. This method consists of evolving a simplex of mþ1
vertices, in the optimizing parameters space of m dimen-
sions. This iterative process is repeated until the simplex
size becomes inferior to an objective value e. This method
requires only to evaluate the cost function RMSE values at
the simplex vertices and leads to a local optimum. The
RMSE evaluation is achieved using a finite element
analysis. The flowchart of the optimization procedure is
shown in Fig. 2.
Start

Parameterization:
Z ({p}), RMSE ({p})

Evaluation of the RMSE
for each vertex of the simplex

Using FE analysis

Evolve the simplex to a
new one

Convergence ?
Simplex size <�

Optimal parameters

end

Yes

No

Initialization
(definition of the initial simplex)

Fig. 2. Flowchart of the optimization procedure.
3. Optimization of the shape reflector

In this section, we discuss the representation of the
initial shape of the lens. It corresponds to the configura-
tion for which the membrane is not stressed and defines
the geometry to be designed.
3.1. Formulation of the cost function

The deformed shape, due to the internal pressure,
should be as close as possible of a perfect parabola
defined in the expression (1) giving the deflection from
the median plane

zthðrÞ ¼
R2

4f
ð1�r2Þ ð1Þ

The formulation of the objective function zth depends
on the lens radius R, the focal length f, and the adimen-
sional radius r¼ r=R.

The initial deflection Z of the neutral shape i.e. without
pressurization is defined using an odd power series
polynomial expansion such as

Z ¼
R2

4f

Xn

i ¼ 1

aið1�r2iÞ ð2Þ

Using this formulation, the initial shape is defined only
with a finite number of shape parameters fag ¼ a1, . . . ,an.
This is an arbitrary parameterization which is used to
guarantee the axial symmetry of the reflector.

The optimization target becomes the minimization
problem of a function quantifying the gap between the
pressurized shape and the perfect parabola whose deflec-
tion are respectively z and zth (see Fig. 3). This function is
the RMSE (Root Mean Square Error) written in Eq. (3)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i ¼ 1

ðzi�zi
thÞ

2

vuut ð3Þ
Fig. 3. Neutral, pressurized and perfect shape of the lens.
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The deflection difference zi�zi
th is evaluated for each

vertex i of the whole mesh vertices n of the discretized
shape of the lens.
A3
X3

Reference
3.2. Optimizing parameters

A pertinent choice of the optimizing parameters
requires the identification of the physical parameters
having an influence on the value of the RMSE i.e. on the
deformed shape. Among these influent parameters we can
list the torus pressure Pt, the lens pressure Pl, the material
data (Young modulus and Poisson ratio) and the coeffi-
cients ai. Technological constraints have led to fix the
material data.

As first set, the following optimizing parameters can
be selected fpg ¼ fPt ,Pl,a1,a2, . . .g. but the optimization
without constraints on the lens pressure leads to the
obvious solution given in fPg ¼ f0;0,1;0, . . .g. This set of
parameters corresponds to an initial non-pressurized
reflector having perfect parabola shape with zero pressure
in the lens and in the torus. This is obviously a trivial
result. Indeed, the membrane is characterized by very
small bending stiffness. So it is necessary to pressurize
slightly the structure in order to maintain a minimal
stiffness.

We have tested different numbers of shape para-
meters. Three parameters have been used in the first
analysis: fag ¼ a1,a2,a3. We added a fourth one a4 in
the second analysis. This point has been discussed in
Section 5.

The solution proposed here has been to impose the
pressure in the lens at the value of 30 Pa. It has been
specified thanks to preliminary finite element analysis
(see Fig. 4) performed with a1 ¼ 1,a2 ¼ 0,a3 ¼ 0,pl ¼ 30 Pa.
Only the lens was considered and the vertex on the lens
perimeter was clamped.

This pressure level allows to obtain an acceptable
von Mises stress in the membrane reflector inferior to
6.5 MPa. So the optimizing parameters set become

fpg ¼ fpt ,a1,a2,a3g ð4Þ
Fig. 4. von Mises stresses in the lens for a1 ¼ 1,a2 ¼ 0,a3 ¼ 0,pl ¼ 30 Pa.
4. Finite element analysis

The deformed shape used to evaluate the RMSE func-
tion is computed using a finite element analysis based on
the energy minimization principle.

The total potential P energy of the inflatable structure
is the sum of the internal energy of the body Pint and the
external potential energy Pext

P¼Pint
þPext

ð5Þ

The expressions of the two energies are discretized
using the three nodes true membrane element depicted in
Fig. 5. The nodal coordinates Xi

!
and the material basis

vectors Ai

!
refer to the initial configuration while xi

!
and

ai
!

are the corresponding nodal coordinates and material
basis vectors in the current configuration.

4.1. Discretization of internal potential energy

The internal potential energy is

Pint
¼

Z
V0

c dV0 ð6Þ

V0 is the initial volume of the body and c the strain
energy density.

The material is assumed elastic and governed by a
quadratic potential of strain tensor E such as

c¼
l
2
ðtr E Þ2þmE : E ð7Þ

This is the classical expression of the Saint–Venant
Kirchhoff model where E refers to the Green Lagrange
strain tensor while l and m are the Lamé constants.

The components of E are

Eab ¼
1

2
ð aa
�!
� ab
�!
� Aa
�!
� Ab
�!
Þ ð8Þ

where Greek indices take the values 1 or 2. We can see
that the strain tensor is constant over a triangular finite
element.
e1

e2

e3

x
X

2A

A1 a2

a1

a3

X1 X2

X1

X2

configuration

Current
configuration

X3

Fig. 5. Triangular finite element discretization of the membrane.



Fig. 6. A sample of bifurcated solution computed using conjugate

gradient algorithm.
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As shown in Fig. 5, the material basis vectors on the
mid-surface are computed with the help of reference Xj

i

and deformed xj
i vertices coordinates of triangular finite

elements such as

A1

�!
¼ X2
�!
� X1
�!

, a1
!
¼ x2
!
�x1
!

A2

�!
¼ X3
�!
� X1
�!

, a2
!
¼ x3
!
�x1
!

ð9Þ

The internal energy of the structure is obtained by a
summation over the e elements

Pint
¼
X

e

V0c
e

ð10Þ

4.2. Discretization of external potential energy

The potential energy of the applied pressure is given
by

Pext
¼�PV ð11Þ

where P is the assumed constant internal pressure, and V

is the actual volume of the pressurized body. The expres-
sion (11) takes a discrete form as a summation over the
finite elements

Pext
¼�P

X
e

ða1
!4a2
!
Þ � e
!

3

X3

i ¼ 1

x
!

i � e
!

3

3
ð12Þ

e
!

3 is the unit vector along the Z-axis.

4.3. Minimization of the total potential energy using

conjugate gradient method

The nonlinear finite element formulation presented
here accounts large displacement, large rotation and
follower pressures. To be efficient especially in the case
of a membrane shape optimization, the solving algorithm
has to converge on a bifurcated path even if buckling or
wrinkling occurs. Indeed the wrinkling of membrane
happens when compressive stress is imposed. It is a really
common phenomenon affecting the performance and the
reliability of space structure. Nevertheless the wrinkling
prediction during a finite element analysis stays a chal-
lenging problem.

The energy minimization can be achieved either by first-
order methods, like descent methods, or second-order
methods, like quasi-Newtonian ones. The most common
approach in finite element analysis is to use second-order
methods which require computing the stiffness matrix. This
matrix may be ill-conditioned when a significant loss of
stiffness occurs. At a bifurcation point, the stiffness matrix is
singular and ill-conditioned in their neighborhood. This is
why corrective solution methods, like the Newton–Raphson
method, may run into difficulties at or near critical points.
This ill-conditioning may introduce noise which makes the
solution procedure unstable. Sometimes traversing critical
points may become computationally overwhelming and
may require either specialized techniques or intensive
human interventions.

To enable the computational simulation to predict the
wrinkle patterns, two methods are classically used. The
first one involves the treatment of bifurcation points with
asymptotic expansion or a similar process [9]. This
method involves the detection of critical points based on
the singularity of the tangent stiffness matrix, then the
switching on a bifurcated branch. Its detailed develop-
ments can be found in [10–12].

The second one is the post buckling analysis [13]. To
enable the computational method to predict the wrinkle
patterns, an eigenvalue buckling analysis is performed
before the calculation. It gives the membrane mode
shapes, introduced as geometrical imperfections in the
post buckling analysis. Several recent computational
studies have employed the post buckling analysis with
geometrically non-linear shell finite element models, see
[13–15]

Here the simulations have been performed by directly
minimizing the total potential energy using a first-order
descent method, instead of satisfying the equilibrium
equations as done with the usual finite element method.
It proves to be an attractive alternative which is particu-
larly efficient for thin structures. Indeed, the proposed
solving procedure has been first validated on the Hencky’s
problem in [16]. Then the ability of the solving procedure
to predict wrinkling has been discussed in [17] through
the study of two well-known problems: the wrinkling
prediction of rectangular membrane under transverse in-
plane displacements and the wrinkling prediction in a
square membrane under corner loads. The numerical
developments are implemented in the Surface Evolver
code developed by K. Brakke and presented in [18].
A sample of bifurcated solution obtained for the parabolic
reflector is shown in Fig. 6. In this sample, the boundary
conditions are completely free. Rigid body displacements
are correctly handled by the solver used here which is
based on the conjugate gradient method.

The main interest of the minimization algorithm is
that no specific buckling analysis is carried out during the
calculation.

The first-order minimization algorithm used here is a
classical conjugate gradient algorithm proposed by
Fletcher and Reeves in [19]. It is based on the descent
method. Nevertheless, we insist on the fact that the
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gradient of the total potential, which gives the opposite
descent direction, must be exactly computed. Thus, it is
necessary to provide the analytical expression of the
potential gradient in order to obtain the sufficient accu-
racy and to correctly handle some phenomena like bifur-
cation. The nine components of the finite element energy
gradient are the partial derivatives of P with respect to
the coordinates of the vertices xj

i i.e.

ðrPÞij ¼
@P
@xj

i

ð13Þ

This is the exact formulation of the gradient of the
membrane strain energy used for large scale problems.

The first-order methods were used to seek for a mini-
mum by successive line search. The descent direction is
computed thanks to the gradient which gives the direction
of greatest increase of P. The global convergence of the
conjugate gradient algorithm is demonstrated in the case of
convex potentials. In wrinkling problems, the potential is
non-convex and the algorithm converges toward an existing
minimum which may be either a local or a global minimum.
Further details about this subject will be found in [20]. The
main asset of first-order methods is that they allow to
converge toward a local or global minimum even in the
neighborhood of a bifurcation point.

The reader must distinguish the minimization of the
total potential energy which aims to solve the direct
problem – finding the pressurized configuration – and
the minimization of the RMSE function which aims to
seek for the optimal optimizing parameters. These two
minimizations processes are algorithmically nested.

5. Discussion and results

Before presenting the design optimization of a space
inflatable membrane reflector in Section 5.2, the pre-
viously described procedure has been first validated on
the Hencky’s problem for which a semi-analytical solu-
tion is given in Section 5.1.

5.1. Validation of the optimization process

Hencky [6] considers the inflation of a circular mem-
brane of initial radius R and thickness h, clamped on its
rim and subjected to a lateral pressure Pm. We used the
semi-analytical Hencky’s solution to validate of the opti-
mizing analysis proposed here. For this purpose, two
optimization procedures have been performed:
�
 The first one aims to find the inflation pressure Pm of
the lens surface by minimizing the gap between the
Fichter’s model and the FE model.

�
 The second one aims to provide the Young Modulus E

and the Poisson ratio n by minimizing the gap between
the Fichter’s model and the FE model for fixed pressure.

5.1.1. The Fichter’s semi-analytical solution

Analytical solutions for circular membranes made in
incompressible isotropic materials can be found in
[21,22]. For compressible materials, analytical solutions
are rather few since the absence of isochoric constraints
leads to more complicated kinematics. A review of solu-
tion strategies for compressible isotropic materials was
presented by Horgan [23, Chapter 4]. When solving a
circular membrane, Fichter [24] dropped some second-
order terms in the Green strain components and consid-
ered the pressure as a dead load. These approximations
led to a simplified solution which is chosen here for
comparison in moderate rotations. Let us summarize
Fichter’s semi-analytical solution given in [24]. The
deflection zth is searched in the form of a power series

zthðrÞ ¼ R
PmR

Eh

� �1=3X1
0

a2nð1�r2nþ2Þ ð14Þ

By replacing this expression in the equilibrium equa-
tion, one obtains the circumferential stress Syy

SyyðrÞ ¼
E

4

PmR

Eh

� �2=3X1
0

ð2nþ1Þb2nr2n ð15Þ

Taking into account the boundary condition z(R)¼0
enables one to determine the coefficients a2n and b2n. The
values up to n¼10 are given in [24]

b2 ¼�
1

b2
0

, b4 ¼�
2

3b5
0

, b6 ¼�
13

18b8
0

b8 ¼�
17

18b11
0

, b10 ¼�
37

27b14
0

, b12 ¼�
1205

567b17
0

b14 ¼�
219;241

63;504b20
0

, b16 ¼�
6;634,069

1;143,072b23
0

,

b18 ¼�
51;523,763

5;143,824b26
0

b20 ¼�
998;796,305

56;582,064b29
0

ð16Þ

and

a0 ¼
1

b1
0

, a2 ¼
1

2b4
0

, a4 ¼
5

9b7
0

a6 ¼
55

72b10
0

, a8 ¼
7

6b13
0

a10 ¼
205

108b16
0

a12 ¼
17;051

5292b19
0

, a14 ¼
2;864,485

508;032b22
0

, a16 ¼
103;863,265

10;287,648b25
0

a18 ¼
27;047,983

1;469,664b28
0

, a20 ¼
42;367,613;873

1;244,805;408b31
0

ð17Þ

It should be noted that all the coefficients depend on b0.
By using the boundary condition z(R)¼0, Fichter showed
that b0 is related to the Poisson’s ratio by the following
equation:

ð1�nÞb0þð3�nÞb2þð5�nÞb4þð7�nÞb6þ � � � ¼ 0 ð18Þ

It follows that all the other coefficients also depend on
the Poisson’s ratio only.
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Table 2
The initial simplex used for the material data optimization.

Vertex E (GPa) n

Vertex 1 8 0.6

Vertex 2 10.6 0.4

Vertex 3 13.5 0.65
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5.1.2. Validation 1: pressure optimization

A circular membrane initially flat of radius R¼1 m and
thickness h¼ 125 mm is considered. Its material data are
E¼6 GPa and n¼ 0:3. The inflation pressure chosen to
compute the Fichter semi-analytical solution zth is
Pm ¼ 1000 Pa. It is also the target value we expect to
obtain using the optimization process. A mesh of 2048
triangular membrane elements was used to model the
whole structure. The minimization procedure of the
RMSE function has been initialized using a two vertex
simplex where: vertex 1: Pm ¼ 1150 Pa and vertex 2:
Pm ¼ 1000 Pa. The evolution of the vertex values is given
in Fig. 7.

The convergence of the numerical optimization is
reached after 17 iterations. This test shows the efficiency
of the proposed algorithm since the difference between
the computed pressure (990.3 Pa) and the target value of
Pm is less than 1%.

5.1.3. Validation 2: material data optimization

A second validation test has been performed on the
circular membrane depicted in Section 5.1.2. It has been
discretized with the same number of triangular finite
elements. Here, the internal pressure and the geometry
have been imposed. The Fichter’s semi analytical solution
is computed considering the following material data:
E¼6 GPa and n¼ 0:3. These are the target values we
expect to obtain using the optimization procedure. The
minimization procedure of the RMSE function has been
initialized using the simplex given in Table 2.

The convergence history of the values of E and n are
respectively depicted in Figs. 8 and 9.

The optimization of the parameter E gives a value of
5.74 GPa. This is close (error of 4.3%) of the value chosen
to compute the reference solution. Nevertheless a notice-
able difference of 13.3% is observed between the opti-
mized value of n (0.34) and the reference one (0.3). This
gap is partially caused by the difference of formulation
between the semi-analytical and the numerical model.
The coefficients ai and bi used to compute the semi-
analytical solution depend only on the Poisson ratio. The
restriction on the order of polynomial series consequently
causes an error which affects the value of the Poisson’s
ratio. This discrepancy comes also from the semi-analy-
tical solution for a circular membrane developed by
Fichter, who dropped some second-order terms in the
Green strain components. These approximations led to a
simplified solution which must be valid in moderate
displacements and rotations.

The two previous tests show, thanks to comparison
with the semi-analytical solution, the ability of the
proposed algorithm to converge toward an acceptable
set of parameters in the case of nonlinear membrane
optimization problems. Consequently we expect to obtain
some good optimization results in more complicated case
as the optimization of the inflatable reflector.



Table 4
The initial simplex using four shape parameters.

Vertex Pt (Pa) a1 a2 a3 a4

Vertex 1 200 0.98 0.03 �0.02 �0.02

Vertex 2 250 0.98 0.03 �0.02 �0.02

Vertex 3 200 0.95 0.03 �0.02 �0.02

Vertex 4 200 0.98 0.05 �0.02 �0.02

Vertex 5 200 0.98 0.03 �0.04 �0.02

Vertex 6 200 0.98 0.03 �0.02 �0.04
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5.2. Inflatable reflector optimization

A mesh of 26,192 of the three-node membrane ele-
ment has been used to model the whole structure (see
Fig. 10). A z-symmetry condition has been imposed since
half structure is represented. In addition, to avoid rigid
body displacement in the xy-directions, the horizontal
displacement of the central node is prescribed to zero.

The optimization study has been performed using
three and four shape parameters ai. The minimization
procedure of the RMSE function has been initialized using
the simplex given in Tables 3 and 4 for respectively three
and four shape parameters. In the both case, the initial
simplex has been chosen thanks to preliminary simula-
tion results.

Then the procedure depicted in Fig. 2 has been per-
formed and the best set of parameters obtained are given
in Eqs. (19) and (20)

fpg ¼ f151:95,0:987,0:038,�0:029g ð19Þ

fpg ¼ f212Pa,1:065,�0:280,0:425,�0:211g ð20Þ

These results show that the addition of the parameter
a4 disturbs the values obtained with three shape para-
meters. The value attained for the best set of parameters
Fig. 10. The finite element model.

Table 3
The initial simplex using three shape parameters.

Vertex Pt (Pa) a1 a2 a3

Vertex 1 200 0.98 0.03 �0.02

Vertex 2 250 0.98 0.03 �0.02

Vertex 3 200 0.95 0.03 �0.02

Vertex 4 200 0.98 0.05 �0.02

Vertex 5 200 0.98 0.03 �0.04

-0.60

-0.40

Radius

Fig. 11. Gap between the target shape and the effective shapes attained

for three and four parameters.
seems therefore to be dependent on the number of shape
parameters used. This can be caused by the parameter-
ization chosen to describe the neutral shape. The shape
function basis f iðrÞ ¼ ð1�r2iÞ, i¼ 1, . . . ,n, presents a lack of
orthogonality in the sense that f iðrÞ � f iþ1ðrÞ when i-1.
With the polynomial series presented here, the conver-
gence would not be reached on the shape parameters
values. However the deviation of the optimized shape
relative to the target shape still very acceptable to both
cases as we can see in Fig. 11. For this set of parameters,
the gap between the target function and the actual shape
is given in Fig. 11. The RMSE evaluated for the whole
surface is about 175 mm for the two cases.

We could expect to improve the solution using a more
adequate shape functions and large number of parameters.

The comparison between the two initial shapes, corre-
sponding to the best sets of parameters with three and
four parameters, shows that they are close to each others,
even if the values of shape parameters are different (see
Fig. 12). Lastly, Fig. 13 shows the evolution of the cost
function simplex vs the iteration number.

In the both studies it is also possible that best set of
parameters exist because the simplex algorithm can
converge toward a local minimum of the RMSE function.
To avoid this matter, the use of a genetic algorithm (such
as proposed in [25] to study a similar problem) may
improve the procedure.
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6. Conclusion

This study presents a design tool of a parabolic
reflector made of inflatable lens supported by torus. The
optimization is done with a constant pressure of 30 Pa in
the lens. We seeked for the initial shape and pressure in
the torus that would permit to obtain a perfect parabola.

The neutral shape was defined thanks to a polynomial
odd power series expansion. The optimization consisted
in finding the first values of the power series and the torus
pressure. The direct problem is solved by a non linear
finite element analysis to compute the deformed shape of
the structure. The RMSE between the deformed shape and
the perfect parabola represents the cost function that
should be minimized by using the Nedler–Mead simplex
algorithm. The difficulty of this optimization is due to the
complex highly non-linear direct problem. In thin films,
wrinkling may occur which affects the shape of the
reflector. To be efficient in a design optimization issue,
the resolution algorithm of the direct problem has to
achieve the convergence automatically, even though it is
on a bifurcated path. In this paper the computation was
performed using the conjugate gradient algorithm which
proves to be robust. The proposed algorithm has been
firstly tested on the inflation of initial flat parabolic
structure for which a semi-analytical solution exists. Then
the influence of the chosen parameterization is discussed.
The results of the optimization show to be very satisfac-
tory, so that the space industry could take advantage of
this tool to design inflatable space structures.
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