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We propose a novel approach to image segmentation based on combining implicit spline 
representations with deep convolutional neural networks. This is done by predicting the 
control points of a bivariate spline function whose zero-set represents the segmentation 
boundary. We adapt several existing neural network architectures and design novel loss 
functions that are tailored towards providing implicit spline curve approximations. The 
method is evaluated on a congenital heart disease computed tomography medical imaging 
dataset. Experiments are carried out by measuring performance in various standard metrics 
for different networks and loss functions. We determine that splines of bidegree (1, 1) with 
128 × 128 coefficient resolution performed optimally for 512 × 512 resolution CT images. 
For our best network, we achieve an average volumetric test Dice score of close to 92%, 
which reaches the state of the art for this congenital heart disease dataset.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Image segmentation is the process of partitioning an image of pixels into different regions according to shared attributes. 
It is a technology widely used in multiple fields ranging from self-driving vehicles and surveillance to medical imaging; see 
Minaee et al. (2020) for a recent comprehensive survey on image segmentation using deep learning.

Image segmentation techniques can be divided into three types: manual, semi-automatic, and fully automatic (Işın et 
al., 2016). In manual segmentation, trained people classify the region of interest one image at a time. An automatic image 
segmentation followed by a manual threshold or a manual seeding of a region growing algorithm is referred to as semi-
automatic image segmentation. Fully automatic segmentation, mainly based on machine learning (ML) methods, applies 
prior knowledge based on learned features to new unseen images.

Manual segmentation of images is a time-consuming and tedious job, so there is potentially great value in developing 
methods that can partially or fully automate the process. Semi-automatic and automatic methods for image segmenta-
tion date back several decades and include approaches such as thresholding, region growing, classifiers, clustering, Markov 
random-field models, deformable models, atlas-guided approaches and (artificial) neural networks (Pham et al., 2000). In 
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recent years, there has been an explosion in the use of neural networks, especially in the field of computer vision, where 
they typically significantly outperform other approaches.

One common feature of image segmentation is that the segmentation boundaries are often smooth, while at the same 
time exhibiting complex topological behaviour. This is particularly true in the case of medical imagery, but is also typical 
in many other types of image data. Complex topologies can occur, for example, when slicing a 3D object with a sim-
pler topology, or from objects being partially occluded in photographs. Spline representations are well known in the field 
of computer-aided design for providing excellent compact representations of smooth geometries. Implicit representations, 
which represent a curve or a surface by the zero-set of a multivariate function, are well suited for modelling complex 
topologies and for visualization by ray tracing. By using tensor-product splines as an implicit function, we combine the 
respective benefits and obtain a representation that compactly models a wide variety of segmentation boundaries.

Splines have previously been used in the context of deep learning, but as far as we are aware, not for implicitly represent-
ing segmentation boundaries. For example, Catmull-Rom splines are employed by Ling et al. (2019) to define segmentation 
boundaries as parametric curves. Deep learning has also been used to compute parametrizations that can be used for 
parametric spline approximation (Laube et al., 2018). One weakness of the parametric approach compared to the implicit 
approach is that it is difficult to model complex topologies with parametric geometries. Splines have also been used in 
a slightly different context, to extend convolutional neural networks (CNNs) (see Section 2.2) to irregular and geometric 
datasets (Fey et al., 2018) by defining continuous B-spline kernels. Similarly, more general continuous spline representations 
of the weight space have been considered (Keskin and Izadi, 2018), using splines to compactly model entire filter banks and 
fully connected layers.

The use of implicit representations in deep learning has appeared in a number of recent works involving a variety 
of problems. The problem of recovering a 3D model from a single image of an object using implicit representations has 
been investigated by several authors (Xu et al., 2019a; Michalkiewicz et al., 2019), achieving state-of-the-art performance 
on certain datasets. Implicit representations based on neural networks with periodic activation functions have also been 
considered for modelling images, videos and sounds along with their derivatives (Sitzmann et al., 2020), addressing issues 
with the level of detail provided by conventional implementations. Other works using levels sets of spline functions for the 
purpose of image segmentation have appeared in the context of evolutionary processes (Yang et al., 2006).

Within the field of medical imaging, segmentation is used for studying anatomical structures, estimating the volume 
of certain tissues, planning treatments and post-treatment follow-ups, and identifying and monitoring the development of 
tumors, lesions and abnormalities (Sharma and Aggarwal, 2010). There exist a number of non-invasive imaging techniques 
that can be subject to segmentation, including ultrasound, magnetic resonance imaging (MRI) and computed tomography 
(CT) imaging. In this paper, we focus on the problem of segmenting CT images from a dataset of congenital heart disease 
(CHD) patients (Xu et al., 2019b). A CHD is a structural birth defect in the heart, or blood vessels near the heart, that can 
disrupt the normal flow of blood.

In this paper we combine implicit representations and deep convolutional neural networks into a new method for image 
segmentation. The method is applicable to general image segmentation problems, and we show that it reaches state-of-the-
art results on a CHD CT image dataset. The novelties of this paper include:

• A new end-to-end procedure, based on deep convolutional neural networks, for segmenting images with implicitly 
represented splines that compactly represent smooth and topologically complex segmentation boundaries.

• Several neural network architectures based on existing networks, including truncated VGG-style networks (Simonyan 
and Zisserman, 2014) and an adaptive version of UNet (Ronneberger et al., 2015). This new network is adaptive both in 
the sense of being able to take variable size input for fixed output (via repeated application of adaptive average pooling) 
and in the sense that it can adapt to different gridded basis functions (in our case, tensor-product splines).

• New loss functions that are tailored to the specific problem of modelling implicit splines, by mapping control points to 
a binary inside-outside mask.

• A parameter study that determines the uniform tensor-product spline spaces with optimal performance for the CHD CT 
image dataset.

Our implementation of the networks, loss functions, and training and data processing procedures is based on PyTorch. 
This code is open source and available as a GitHub repository (Barrowclough et al., 2020).

2. Background

2.1. Deep learning based whole heart segmentation

There have been some attempts to obtain ML-based automatic CT and MRI cardiac image segmentation for full blood 
volume or for heart chambers. Xu et al. (2019b) used a UNet-based deep learning network for CHD CT images of 68 
volumes and obtained an average Dice score of 0.7843 and 0.773 for blood volume and myocardium, respectively (2D UNet 
for blood volume segmentation, 3D UNet for chambers and myocardium segmentation). Varatharajan et al. (2020) used a 
3D DenseVNet CNN model from Gibson et al. (2018) for the same CHD CT image dataset, and obtained a mean Dice score 
of 0.9183 and 0.8519 for blood volume and myocardium, respectively. A few authors have used the cardiac CT angiography 
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dataset from the MICCAI 2017 Multi-Modality Whole Heart Segmentation Challenge, consisting of seven structures of heart, 
including the left ventricle, myocardium of the left ventricle, left atrium, right ventricle, right atrium, pulmonary artery and 
the ascending aorta. Payer et al. (2018) used a 3D UNet architecture model with bounding box around all heart structures, 
and obtained a mean Dice score of 0.889 for the whole heart CT image segmentation. Wang and Smedby (2018) used a 2D 
UNet with shape context estimation. Xu et al. (2018) used a faster R-CNN and 3D UNet networks for the whole heart CT 
image segmentation. Habijan et al. (2019) used a 3D UNet architecture CNN model with principal component analysis as a 
data augmentation technique, and obtained an average Dice score of 0.89 for the whole heart CT image segmentation.

2.2. Convolutional neural networks

In this section, we recall the basics of CNNs, necessary for describing the truncated VGG-style (Simonyan and Zisserman, 
2014) and UNet-style (Ronneberger et al., 2015) architectures used in this paper.

Given an image I and a kernel (or filter) K , each taking real values on a finite subset of R2, their (discrete) convolution is 
defined as a new image

O = I ∗ K :=
(∑

m

∑
n

K (m,n)I(i − m, j − n)

)
i, j

. (1)

Flipping the minus signs one obtains a cross-correlation. In our setting, the kernel typically has small support, and the cross-
correlation measures, in each location in the image, to what extent the image locally correlates with the kernel. A simple 
example is the kernel K whose only nonzero values are K (0, 0) = −1 and K (1, 0) = 1, compactly denoted by K = [−1, 1], 
measuring the forward difference of the image in the first coordinate. The resulting output image O then measures, at each 
pixel, the presence of a vertical edge (called a feature) in the input image. The values of K are often called weights.

Many neural network libraries implement cross-correlations but call them convolutions, and this is the core ingredient 
of a CNN. A convolutional layer typically takes many convolutions (with different filters) of the same input image in parallel, 
with resulting output images stacked as channels of a triple array, each measuring the presence of a different feature in the 
input image. The input image can also consist of multiple channels, as is the case for instance for RGB images. In our case, 
each filter is a triple array, with two spatial dimensions and one channel dimension. Confusingly, it is common practice to 
omit the channel dimension in describing the size of the filter. For instance, a kernel of size 1 × 1 actually has a single 
entry for every channel, and it is used to take linear combinations between image channel values in corresponding spatial 
locations. In particular in the case of RGB images, the kernel K = [1, 0, 0] ∈ R1,1,3 would measure the presence of the 
“redness feature” in each pixel.

In theory, it is possible to consider a single convolutional layer (shallow learning) with a vast number of filters that 
together account for any conceivable pattern in the image, but in practice this is not very efficient. The success of CNNs is 
to instead consider hierarchies of features that build complex features out of simple features (deep learning). For instance, if 
our first convolutional layer measures the presence of a horizontal line − and a vertical line | in separate channels, then in 
a subsequent layer the 1 × 1 kernel K = [1, 1] ∈ R1,1,2 is able to measure the presence of a +. Being linear maps, simply 
composing filters just yields another filter, typically with fewer degrees of freedom than the sum of those of the individual 
filters. Instead, features of higher complexity are obtained by adding a non-linearity (an activation function) in-between 
subsequent layers, such as the Rectified Linear Unit (ReLU, defined as 1>0 · x) or the hyperbolic tangent (tanh).

Instead of hand-crafting these filters (called feature engineering), deep learning obtains them by minimizing a loss func-
tion expressing the discrepancy between the network prediction and a given label (the ground truth). The loss function is 
often minimized using a stochastic variant of gradient descent, where the gradient of the loss for the entire dataset is esti-
mated by the loss for a representative subset (mini-batch). Such noisy gradients are desirable for escaping local minima and, 
more importantly, saddle points, which are prevalent in high-dimensional weight space. This gradient is then distributed 
across the weights using the chain-rule, in a process called back-propagation. When ‘unfolding’ the gradient in this man-
ner, earlier layers can sometimes receive too little (vanishing gradient) or too much (exploding gradients). This is resolved by 
adding a batch normalization layer in between convolutional layers, which shifts the distribution of a batch of inputs to each 
layer by applying a normalizing filter. Another technique for making the gradient propagate more effectively through the 
network are skip connections, which connect early layers (almost) directly to deeper layers (cf. Fig. 2, bottom).

While deep hierarchical representations dramatically reduce the number filters required for solving many tasks, still 
an enormous number of activation function values (activations) need to be stored in memory for learning these filters, 
especially when images are processed in parallel in (mini-)batches. In order to make deep networks feasible on existing 
hardware, the spatial resolution can be reduced. This is further justified by effectively increasing the receptive field of deeper 
features, referring to the pixels in the input image that are involved in its computation. In addition, it makes the features 
invariant to local perturbations, which is often considered a positive side effect.

One method for downscaling the spatial resolution is pooling spatial groups of features. The standard example involves 
dividing the image spatially into blocks, and replacing each block by the maximum (max pooling) or average (average pooling) 
of its feature values. This can be done either directly by specifying the block size, or adaptively by specifying the desired 
output resolution. Alternatively, the spatial resolution can be reduced using strided convolutions, which compute (1) only at 
pixels (i, j) in some lattice in Z2, for instance 2Z × 2Z.
3
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Fig. 1. A CT slice segmentation represented as an implicit function, here shown with outside as negative for visualization purposes.

Repeatedly down-scaling is useful in object detection, where one desires a single scalar output interpreted as the prob-
ability of the presence of an object in the input image. However, for segmentation, an output resolution comparable to 
the input resolution is required. Observe that all convolutions are linear maps, with sparsity pattern determined by the 
support of the kernel and stride. Hence the adjoint of a strided convolution (i.e., the linear map with transposed matrix) 
maps to a higher dimensional space corresponding to a larger image. These learnable up-scalings are called up-convolutions
(or transposed convolutions or convolutions with fractional stride). The UNet incorporates these convolutional layers, first in a 
contracting path with d down-scalings (the depth) resulting in a layer with the (bottleneck) b × b spatial resolution, followed 
by an expanding path involving d up-scalings. More detail is provided in Section 3.2.

2.3. Geometric representations for segmentation

Previously, segmentation data has been discretely represented as boundary polygons (Castrejón et al., 2017) or as graphs 
(Acuna et al., 2018). Binary segmentation masks, or full segmentation maps with resolution corresponding to the input 
image have also been considered (Ronneberger et al., 2015). In the situation that the underlying topology is known, active 
contouring has also been used for boundary segmentation (Aubert et al., 2003).

Alternatively, a smooth geometric representation for segmentation boundaries of unknown topology can be provided by 
implicit functions F . Here the boundary is not modelled using an explicit parametrization, but implicitly as the points (x, y)

in the plane for which F (x, y) = 0. In addition, the points (x, y) inside the segmentation satisfy F (x, y) < 0, while those 
outside the segmentation satisfy F (x, y) > 0; sometimes this convention is reversed, see Fig. 1.

The function F can be modelled in many ways, including with multivariate polynomials, radial basis functions, (signed) 
distance fields and with splines. In this paper, we choose such implicit functions from appropriate tensor product spline 
spaces, which, due to their gridded nature, are well suited for representing smooth geometries implicitly as the output of 
fully convolutional neural networks. The implicit spline representation has the following additional features:

• Representation: It is compact, capable of representing complex topology, has a built-in degree-dependent continuity 
establishing a smoothness prior on the segmentation. It can also represent features of arbitrarily small size, and is thus 
not limited by pixel resolution.

• Processing: Inside/outside computations are reduced to mere function evaluations, allowing for instance for swift volume 
computation; manipulation of the shape and comparison between shapes is efficient in terms of the spline control 
net; derivatives, tangent vectors and normal vectors are readily computed from the implicit form, yielding offsets and 
confidence bounds for the modelled shapes.

2.4. Spline modelling

Bivariate tensor-product splines are widely used for smooth surface approximation, due to their high approximation 
order and intuitive control net-based representation. For a given degree p and number of basis functions O (to be used 
for the output representation), consider a non-decreasing sequence (ti)

O+p+1
i=1 , whose entries are called knots. The constant 

B-spline basis functions B1,0, . . . , B O ,0 are defined by

Bi,0(x) :=
{

1 ti ≤ x < ti+1,

0 otherwise.

The higher-degree B-spline basis functions Bi,p(x) are defined recursively as
4
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x − ti

ti+p − ti
Bi,p−1(x) + ti+p+1 − x

ti+p+1 − ti+1
Bi+1,p−1(x),

with the convention that 0/0 evaluates to 0.
For a fixed degree p and (open) knot vector

t1 = · · · = tp+1 < tp+2 < · · · < tO < tO+1 = · · · = tO+p+1,

the set

B := {Bi,p(x) : 1 ≤ i ≤ O }
forms a basis of the vector space of C p−1-smooth functions on the interval [t1, tO+p+1] restricting to polynomials of degree 
p on the intervals [ti, ti+1].

Using the tensor-product construction, the above univariate B-spline basis gives rise to a bivariate B-spline basis

B ⊗ B := {Bi,p1(x)B j,p2(y) : 1 ≤ i, j ≤ O }
of the vector space of C p1−1,p2−1-smooth functions restricting to polynomials of bidegree (p1, p2) on the rectangles 
[ti, ti+1] × [t j, t j+1].

In this paper we consider several different bidegrees, but due to the nature of the data, we restrict our attention to 
symmetric bidegrees of the form (p, p). We also consider different resolutions O  × O of output spline coefficients, focusing 
on the cases O  = 64, 128 and using open uniform knot vectors

(ti)
O+p+1
i=1 = [0, . . . ,0︸ ︷︷ ︸

p+1 times

,1,2, . . . , O − p − 1, O − p, . . . , O − p︸ ︷︷ ︸
p+1 times

].

Any C p−1,p−1-smooth piecewise polynomial of bidegree (p, p) on this knot vector takes the form

F (x, y) =
O∑

i=1

O∑
j=1

ci, j Bi,p(x)B j,p(y), (2)

for certain spline coefficients ci, j arranged in a rectangular grid of control points, also known as a control net. Our imple-

mentation works with batches of such coefficient grids, arranged as a triple array C = (cb,i, j)
B,O ,O
b=1,i=1, j=1 for a batch of size 

B .

3. Methodology

In this paper, we propose a method for image segmentation, by combining implicit spline representations with fully 
convolutional neural networks. Due to the gridded nature of the coefficients, tensor-product splines are well suited for 
representing smooth geometries implicitly as the output of fully convolutional neural networks.

3.1. Data preparation pipeline

The medical image CT dataset we consider consists of 66 volumes that capture images of and around patients’ hearts 
(Xu et al., 2019b). The data has resolution 512 × 512 with a varying number of slices from 130–340 in the z-direction. The 
pixel spacing is 0.25 mm × 0.25 mm in each slice and 0.5 mm between slices. Manually labelled segmentation maps are 
available for each volume for two tissue categories: blood volume and myocardium. We divide the segmentation maps into 
binary masks, one set for each of the categories. Based on Varatharajan et al. (2020), we have split the 66 volume dataset 
into 13 volumes for validation (volumes 3, 6, 8, 10, 17, 31, 32, 33, 45, 50, 52, 54, 68), 14 volumes for testing (volumes 2, 
12, 18, 23, 25, 27, 40, 44, 48, 51, 53, 55, 57, 60), and the remaining 39 volumes (except for volumes 43 and 62, which have 
different resolution and slightly erroneous labels) for training. Each volume is converted to a set of two-dimensional slices, 
each of resolution 512 × 512. This is done both for the image and mask volumes.

Our initial experiments involved an extra step, where we computed new spline coefficient ground truths as approxi-
mations of the original mask data. To do this, we performed a weighted least-squares approximation on a signed distance 
field computed directly from the mask using a fast marching method. However, this approach made experimentation cum-
bersome, as each change in spline resolution or degree required a computationally heavy recompute of distance fields and 
spline approximations. Eventually, we abandoned this approach in favour of one that includes spline evaluation as part of 
the loss function. In this way the masks provide the ground truth, despite the network outputting spline coefficients of a 
lower resolution. This approach will be described in more detail in Section 3.3.
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Fig. 2. The VGG-Implicit1 (top left), VGG-Implicit2 (top right) and UNetImplicit with depth d = 3 (bottom) network architectures, mapping CT slices to a 
spline coefficient grid. The yellow blocks are convolutional layers, with 3 × 3 kernel and stride 1 followed by batch normalization and a ReLU (ochre), or 
with 1 × 1 kernel and tanh (green) or linear activation, the latter in the final block. The lightblue blocks are up-convolutions. Each (up-)convolutional block 
is labelled with its number of filters (upright) and output spatial resolution (slanted). Each orange block is a 2 × 2 max pooling, while the darkblue blocks 
are adaptive average poolings.

3.2. Network architecture

We have experimented with three different neural network architectures, adapted from existing models. These are shown 
in Fig. 2. We summarize the networks as follows:

• VGG-Implicit1: This network is a simple truncation of the VGG-16 network from Simonyan and Zisserman (2014) after 
the third convolutional block. Two new convolutional layers are then added to reduce the number of channels first 
from 256 to 16, and then from 16 to one, the first of which has batch normalization and tanh activations. These added 
convolutional layers use a kernel of size 1 × 1, introducing a non-linear combination of the features in each location 
to predict the value of the corresponding spline control point. Given that this network is heavily truncated, the extra 
non-linear activation is used to slightly increase the expressiveness of the network. VGG-Implicit1 is a very compact 
network, which can be used for fast evaluation. The output resolution is constrained to be one quarter of the size of 
the input in each direction, so 512 × 512 input gives an output grid of 128 × 128 coefficients.

• VGG-Implicit2: This network is similarly truncated, but this time after the fourth convolutional block. Again a convolu-
tional layer with batch normalization and tanh activation is added to reduce the number of channels from 512 to 32, 
followed by a final convolutional layer that reduces the number of channels to 1. Both these layers use 1 × 1 kernels. 
This provides a deeper network with larger receptive field. The output resolution of VGG-Implicit2 is constrained to be 
one eighth of the size of the input in each direction, so 512 × 512 input gives an output grid of 64 × 64 coefficients.

• UNetImplicit: To further increase the receptive field and depth of the network, we also adapt the UNet architecture from 
Ronneberger et al. (2015) to our setting. Since, in principle, we are interested in arbitrary resolution input (images) but 
fixed resolution output (spline coefficients), we have implemented changes that make the network adaptive. This is 
done through several applications of adaptive average pooling layers.
In the original UNet paper, ‘copy and crop’ skip connections are used to attach the outputs of the convolutional blocks 
on the contracting path to the corresponding blocks on the expansive path. In UNetImplicit, we use adaptive average 
pooling instead of cropping to allow for freedom of choice in the output resolution. We also add an adaptive average 
pooling layer (of size b × b) at the bottleneck of the UNet, before the first up-convolution. Each up-convolution on the 
expansive path then doubles the resolutions until we reach the desired output resolution. In order to adapt this network 
to different output resolutions, we can vary both the bottleneck size b and the depth d, which we define as the number 
of down-scalings (max-poolings), which we always keep the same as the number of up-scalings (up-convolutions). For 
example, setting b = 8 and d = 4, an input of 512 × 512 will produce an output of 128 × 128. To reduce the output to 
64 × 64, we can either set b = 4 or set d = 3. Another change from the original UNet is that padding is used throughout 
6
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to ensure consistent down- and up-scaling of the input tensor. We also experiment with reducing the number of filters 
in each convolutional layer, which vastly reduces the total number of training parameters in the network.

In addition to these networks, we experimented with bottleneck architectures of encoder-decoder type, but these yielded 
sub-optimal results, likely due to a lack of spatial awareness. Further details of the network implementation can be found 
in the code repository (Barrowclough et al., 2020).

3.3. Loss functions

Because the networks we use are designed to output a specific spline coefficient resolution O (in each direction) that is 
smaller than the ground truth mask resolution I = 512, the first step in each loss function is to evaluate the spline specified 
by the predicted coefficients at uniformly spaced parameters. This makes it possible to compare arrays of the same shape. 
The general approach to spline evaluation as presented in Section 2.4 can be implemented as a recursive algorithm, known 
as the Cox-De Boor algorithm. However, spline evaluation can also be reduced to a simple matrix multiplication, which is 
much easier to implement in a way that is compatible with the automatic differentiation used to compute the gradient 
during back-propagation. This is particularly simple for open uniform knot vectors and repeated evaluation of the same 
points. To implement this evaluation, we first precompute a single univariate collocation matrix (assuming both the spline 
coefficient arrays and the masks have identical length in each direction):

U := (
Bk(si)

)I,O
i=1,k=1, si := (O − p)(i − 1)

I − 1
, i = 1, . . . , I.

This collocation matrix is computed on the CPU a single time before training, after which it is passed to the GPU for all 
future evaluations.

Remark. For certain special combinations of the input resolution I , output resolution O and degree p, the collocation matrix 
has a repeating structure. In these cases, the spline evaluation becomes a special case of an up-convolution in which the 
weights are cardinal B-splines evaluated at uniformly spaced intervals. We have chosen to use a precomputed collocation 
matrix rather than adding an up-convolutional layer with fixed weights for the reasons described in Section 2.3, and to 
allow for flexible combinations of I, O , and p.

The actual application of the collocation matrix U to evaluation of a batch of B bivariate spline coefficient arrays, rep-
resented as a triple array C ∈ RB,O ,O , is done using a two-stage application of Einstein summation, which is available in 
PyTorch. The first application creates an intermediate tensor Z̃ ∈RB,I,O as

Z̃mil =
∑

k

UikCmkl,

followed by creation of the final tensor Z ∈RB,I,I as

Zmij =
∑

l

U jl Z̃mil.

Here m indexes a single element in the current batch of predicted coefficient arrays. Note that applying the tensor con-
traction in two stages via use of a univariate collocation matrix is necessary to ensure both memory and computational 
efficiency.

Once the predicted tensor C has been converted to a new tensor Z that matches the dimensions of the batch of ground 
truth masks, we can apply a number of different loss functions.

The simplest approach is to apply traditional loss functions such as mean average error (MAE) loss or mean squared 
error (MSE) loss. Since we are interested in the zero set of the spline function, it is natural to first transform the mask 
to contain values in {−1, 1} before applying MAE or MSE loss. We thus name our loss functions mask-MAE (MMAE) and 
mask-MSE (MMSE), in order to distinguish from a direct MAE/MSE loss on the coefficients. After mapping the ground truth 
mask Y ∈ {0, 1}I,I to Ŷ := 2Y − 1 ∈ {−1, 1}I,I , these loss functions, with mean reduction over the entire tensor, can be given 
as

LMMAE := mean
(|Z − Ŷ |),

and

LMMSE := mean
(
(Z − Ŷ )2),

respectively. Here, all tensor operations are applied elementwise.
7
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Alternatively, we can base the loss functions on relevant metrics that are used for image segmentation, such as the 
Jaccard index, the Dice similarity coefficient, and the accuracy. The predicted binary segmentation is readily deduced from 
the predicted implicit form as the sign of the evaluated implicit form in each pixel. Hence, the resulting segmentations can 
be evaluated on a pixel-by-pixel basis; in each pixel, the prediction can be classified into four different categories as true 
positive (TP), true negative (TN), false positive (FP) and false negative (FN). The Jaccard index (Jaccard), also known as the 
intersection over union, is defined as the intersection between the predicted image and the manual reference segmentation 
divided by their union, that is:

Jaccard := T P

T P + F P + F N
. (3)

The Dice similarity coefficient (Dice) is a measure of the spatial overlap between the predicted image and the manual refer-
ence segmentation, written as:

Dice := 2T P

2T P + F P + F N
. (4)

The accuracy (Accuracy) is a measure of the closeness between the predicted image and the manual reference segmentation, 
written as:

Accuracy := T P + T N

T P + F P + F N + T N
. (5)

Based on these metrics, we define three new loss functions LJaccard, LDice, and LAccuracy. These definitions are compat-
ible with the automatic differentiation used during back-propagation. The first stage in computing these losses is to first 
transform the tensor Z into a tensor Ẑ only containing zeros and ones:

Ẑ := 1

2

(
Z

ε + |Z | + 1

)
,

where ε is a small number (typically 0.0001) used to avoid numerical issues with potential division by zero. We can now 
define the losses as:

LJaccard := 1 − sum(Y Ẑ)

sum(Y + Ẑ − Y Ẑ)
,

LDice := 1 − sum(2Y Ẑ)

sum(Y + Ẑ)
, (6)

LAccuracy := 1 − sum(1 − Y − Ẑ + 2Y Ẑ)

sum(1)
,

where sums are taken over the entire tensor and 1 denotes the tensor with dimensions identical to Y and Ẑ and all entries 
equal to 1.

3.4. Training

For training the model, we have used an Intel(R) Core (TM) i7-7700K CPU 4.20 GHz (8 cores), 64 GB RAM, and NVIDIA 
Geforce GTX 1080 Ti - PCIE - 11 GB of VRAM. We chose a batch size of 10, in order to have a consistent batch size 
between experiments. The limiting factor for the batch size was the GPU memory available for the higher resolution inputs 
and outputs. The networks were trained with a stochastic gradient descent optimizer with Nesterov momentum (Sutskever 
et al., 2013) of 0.9 and a learning rate of 0.001. These values were set after some early experimentation to determine 
parameters that generally worked well. The loss functions used were as described in the previous section.

4. Experiments and results

We evaluate our approach under several different metrics in order to compare and determine optimal parameters for this 
dataset. The data parameters we consider are bidegree (p, p) and output resolution O , as well as parameters that determine 
the architecture of the UNetImplicit network (bottleneck size b = 4, 8, number of spatial down- and up-scalings d = 3, 4, 5
and number of filters per convolutional layer). We also compare our approach with state-of-the-art results.
8
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Fig. 3. Randomly selected images that show the variability of the test dataset, together with manually labelled masks and predictions using UNetImplicit 
with depth d = 4, bottleneck size b = 8, and degree p = 1, trained for 100 epochs.

4.1. Evaluation metrics

We now turn our attention to the metrics used for evaluating our networks. Above we have described the accuracy, 
Dice index and Jaccard index. Contrary to the Dice and Jaccard scores, the accuracy is symmetric in true positives and true 
negatives. However, the dataset we consider contains large regions of negatives, meaning that in many cases high accuracy 
scores can be achieved just by predicting blank masks. Thus the high accuracies achieved should only be considered relative 
to other methods implemented on this dataset.

Next we consider another evaluation metric not mentioned in Section 3.3, as its computation is too slow for effective 
use as a loss function. For any subsets Y, Z of a metric space with metric d, one defines the Hausdorff distance (HD) as

HD(Y,Z) = max

[
sup
y∈Y

inf
z∈Z d(x, y), sup

z∈Z
inf
y∈Y d(x, y)

]
, (7)

where sup and inf represent the supremum and infimum, respectively; see Karimi and Salcudean (2020). In our experiments, 
for the Euclidean distance d of R3, we compute the (3D) Hausdorff distance HD(Y, Z) of

Y := {(i, j, �) : Y �
i j = 1}

and

Z := {(i, j, �) : F �(i, j) < 0},
where Y � is the mask of the �-th layer in a single volume and F � is the tensor-product spline function defined by the 
predicted spline coefficients C� on that layer. Smaller values of Hausdorff distance correspond to better segmentation accu-
racy. However, it should be noted that even small regions of false positives can cause large Hausdorff distances, if the false 
positive is far from the ground truth in pixel space.

4.2. Model selection

We have performed a hyperparameter study to identify the contribution of the individual network hyperparameters to 
the performance of the network, as well as their optimal values. The hyperparameters considered were the spline degree p, 
network depth d, bottleneck size b (or equivalently output resolution O  = b · 2d), as well as the number of filters in the first 
layer (which we use to determine the number of filters in subsequent layers).

We observed that in almost all training runs, the validation curve has flattened out after 100 epochs. In addition, the 
validation curve did not significantly increase during any of our training runs, indicating that any overfitting is minimal. We 
9
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Table 1
A hyperparameter study of the performance (highest emphasized) for various UNetImplicit network architectures trained with LDice loss (6) for 100 epochs, 
for input resolution I = 512, output coefficient resolutions O  = 64, 128, depth d = 3, 4, 5, and spline degrees p = 0, 1, 2. All scores are for batches of 
validation data.

Output resolution Depth #Parameters Size (Mb) Degree Val. Accuracy Val. Dice Val. Jaccard

O = 64 d = 3 7,701,825 29.44 p = 0 0.9854 0.8659 0.7647
p = 1 0.9918 0.9250 0.8610
p = 2 0.9908 0.9195 0.8515

d = 4 31,042,369 118.51 p = 0 0.9860 0.8741 0.7778
p = 1 0.9916 0.9238 0.8591
p = 2 0.9914 0.9242 0.8597

O = 128 d = 4 31,042,369 118.51 p = 0 0.9907 0.9162 0.8460
p = 1 0.9926 0.9332 0.8754
p = 2 0.9920 0.9310 0.8715

d = 5 124,385,089 474.64 p = 0 0.9898 0.9128 0.8404
p = 1 0.9925 0.9320 0.8733
p = 2 0.9923 0.9311 0.8718

Table 2
3D (volumetric) Accuracy, Dice, Jaccard and Hausdorff scores for UNetImplicit (trained for 320 epochs) applied to each of the test volumes, considered 
individually.

Test volume Vol. Accuracy Vol. Dice Vol. Jaccard Vol. Hausdorff

Volume 02 0.9961 0.9516 0.9076 48.6
Volume 12 0.9852 0.8866 0.7963 104.4
Volume 18 0.9975 0.9656 0.9335 25.8
Volume 23 0.9915 0.9412 0.8890 104.0
Volume 25 0.9955 0.9250 0.8605 53.8
Volume 27 0.9937 0.9341 0.8763 74.1
Volume 40 0.9850 0.8222 0.6980 199.8
Volume 44 0.9903 0.9331 0.8747 173.6
Volume 48 0.9958 0.9024 0.8221 74.4
Volume 51 0.9919 0.9271 0.8641 58.7
Volume 53 0.9912 0.9068 0.8295 87.8
Volume 55 0.9956 0.9465 0.8984 31.6
Volume 57 0.9944 0.9414 0.8894 94.2
Volume 60 0.9846 0.8657 0.7633 145.1

Average 0.9920 0.9178 0.8502 91.1

Standard deviation 0.0042 0.0370 0.0609 49.7

thus performed most of our experiments by training the networks for 100 epochs, which takes approximately 11–15 hours 
on our hardware, depending on the network configuration.

Our early experiments showed that UNetImplicit generally provided better results than the VGG-inspired networks. The 
UNetImplicit network can be defined with different depth d and bottleneck size b, and we performed a study to determine 
the optimal parameters. In Table 1, we summarize our experiments on the performance of UNetImplicit under these different 
parameters. Note that varying the depths and bottleneck size changes the coefficient output resolution. In this table, we also 
consider the performance over different B-spline bidegrees p = 0, 1, 2.

Note that the scores presented in this table are based on the validation dataset and correspond to scores computed over 
a batch of input layers. Hence they are not directly comparable with the scores presented in Tables 2 and 4, which are 
taken over entire volumes. The timings presented in the table are averages and standard deviations of per-layer inference 
runtimes, when performed with a batch size of one. To compute these timings we utilized the same hardware as described 
in Section 3.4.

The results of Table 1 show that the UNetImplicit network with d = 4, b = 8, and p = (1, 1) performs better than the 
other networks. This network also performs better than both the VGG-inspired networks when tested with corresponding 
parameters, see Table 4. We have thus selected UNetImplicit with these parameters as the best model for this dataset. Fig. 3
shows the predictions made by this model for randomly selected images.

The box plots in Fig. 6 show the distribution of scores for the different networks, including the minimum, lower quantile, 
median, upper quantile and maximum scores over the test volumes. They confirm that, in general, UNetImplicit does indeed 
perform significantly better than the VGG-inspired networks. However, it should be noted that the lowest accuracy and the 
second-lowest Dice and Jaccard scores were obtained using UNetImplicit. This suggests that in some edge cases the VGG 
networks can perform better. It is interesting to note that VGG-Implicit2 on average performs slightly better than VGG-
Implicit1, despite it having output resolution O  = 64, which is half that of VGG-Implicit1. This could be explained by the 
10
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Fig. 4. Comparison of (a) manual segmentation and (b) UNetImplicit network prediction for Volume 18, which has highest Dice score in the test dataset.

Fig. 5. Comparison of (a) manual segmentation and (b) UNetImplicit network prediction for Volume 40, which has lowest Dice score in the test dataset.

fact that VGG-Implicit2 includes one convolutional block more than VGG-Implicit1, resulting in a deeper network with larger 
receptive field.

After training for 320 epochs, we managed to improve the results for UNetImplicit with d = 4, b = 8, even further (to an 
average Dice score of 0.936 on batches of the validation data). The results of this network for each individual test volume 
is shown in Table 2. For these results, the predicted 2D images corresponding to each CT volume are combined to make 
full 3D volumes. Figs. 4 and 5 show 3D views of the volumes with best Dice score (0.9656) and worst Dice score (0.8222), 
respectively.

The lowest Dice score and highest Hausdorff distance were observed for Volume 40 in the test dataset. However, in 
this case, the poor scores can be explained by the fact that the manual segmentation has not included all branches of 
the pulmonary artery, as shown in Fig. 5(a). Since our model is trained with CT images that include the blood vessels of 
the pulmonary artery, these are picked up in the predictions, see Fig. 5(b). Hence, the network exhibits over-segmentation, 
and the Dice score and Hausdorff distance suffer accordingly. We also observed some disconnected components in the 
predicted 3D model. Since the network is trained and tested on 2D images, some of the slices with few positives exhibit 
more variability in the quality of the predictions, which may be the main cause of these disconnected components.

We performed some experiments to examine the effect of reducing the number of filters. For the sake of brevity we 
avoid presenting detailed results here, but we observed that halving the number of filters at each convolution led to a 
modest reduction in the overall score. Reducing to one quarter of the original number of filters reduced the score further, 
11
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Fig. 6. For various networks and metrics, box plots of the values of these metrics for the volumes in the test data set.

Table 3
Performance of UNetImplicit (depth d = 4, bottleneck size b = 8, degree p = 1, trained for 100 epochs) evaluated in various metrics when varying the 
training loss function.

Training loss 1 − MMSEval 1 − MMAEval Accuracyval Diceval Jaccardval

MMSE 0.9744 0.9685 0.9919 0.9275 0.8654
MMAE 0.9734 0.9743 0.9916 0.9234 0.8583
1 − Accuracy 0.5506 0.5701 0.9921 0.9297 0.8691
1 − Dice −3.5035 −0.7471 0.9926 0.9336 0.8761
1 − Jaccard −7.5589 −1.3616 0.9927 0.9341 0.8768

but the results could still be considered reasonable. Given that reducing the number of filters vastly reduces the size of the 
networks, reducing the number of filters at a minor expense of accuracy could be considered beneficial in some applications 
(e.g. real-time segmentation for dynamic visualization).

Remark. Note that the results in this section are before applying many of the standard “tricks” for boosting performance. 
In particular, further improvements might be possible by applying appropriate data augmentation and ensemble modelling. 
Removing small components that are disconnected from the main structures may also improve the scores, especially with 
respect to Hausdorff distance.

4.3. Loss functions

We trained the UNetImplicit network with depth d = 4, bottleneck size b = 8, and degree p = 1 with the different 
loss functions described in Section 3.3. It is hard to compare the obtained validation losses directly, as validation loss will 
typically favour the loss function that it is trained on. However, besides a qualitative comparison, it is possible to train on 
each loss and then evaluate on all the other loss functions, as shown in Table 3. This approach is inspired by the principle 
of cross-validation.

Table 3 shows that training with accuracy, Dice and Jaccard loss all achieve high scores on each other’s evaluation 
metrics. Likely due to this, training on linear combinations of Dice and Jaccard loss did not improve the scores. However, 
training with accuracy, Dice and Jaccard loss does not give good scores with respect to the MMSE and MMAE evaluation 
metrics. This is expected, as the MMSE and MMAE metrics are tailored to approximating functions with values in {−1, 1}, 
and this constraint is not imposed on the results when using these loss functions. The MMSE and MMAE losses are also 
very similar, both achieving high scores in all evaluation metrics, albeit with slightly lower scores on the accuracy, Dice and 
Jaccard evaluation metrics. When training directly for MSE of the predicted coefficients and precomputed implicit spline 
approximations of the ground truth segmentation masks, a Jaccard score of around 0.8 was achieved on the validation set.

4.4. Comparison to state of the art

As far as we are aware, there exist two papers in the literature that make use of the same CHD CT dataset as us. We 
have organized the performances in terms of various metrics for our network and these networks in Table 4, bearing in 
mind that it is difficult to make entirely fair comparisons due to the reasons described below. Note that UNetImplicit (with 
optimal parameters) can process about 200 slices per second, roughly corresponding to a single CT volume per second. 
Increasing the batch size can be expected to yield a significant speed improvement, in particular for the smaller networks.

Xu et al. (2019b) have used a 2D UNet architecture, and observed the average Dice score 0.7843 for blood volume. 
However, in their approach, blood volume is split into several anatomically separate parts, and the average is taken over the 
individual Dice scores for these predicted parts. This appears to be a harder problem to solve, and may be the main cause 
of the lower score observed.

Varatharajan et al. (2020) considered a DenseVNet architecture, and obtained the average volumetric Dice score of 0.9183 
for blood volume, which is very similar to the results we obtain with UNetImplicit. The other scores for DenseVNet are also 
12
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Table 4
Model evaluation and comparison of 3D metrics and per-slice average inference time (mean ± standard deviation) on the blood volume test dataset. The 
top three networks are trained for 100 epochs, and the parameters used for UNetImplicit are b = 8, d = 4, and p = 1.

Model Vol. Accuracy Vol. Dice Vol. Jaccard Vol. Hausdorff Inference time (ms)

VGG-Implicit1 0.9902 0.8949 0.8112 139.04 1.14 ± 0.05
VGG-Implicit2 0.9904 0.8966 0.8143 130.40 1.49 ± 0.07
UNetImplicit 0.9920 0.9178 0.8502 91.10 5.56 ± 2.77
DenseVNet 0.9959 0.9183 0.8509 58.80 –

presented in Table 4. They achieve a lower average Hausdorff distance than in our approach, and this may in part be 
explained by the fact that the authors post-process the test results by removing components that are disconnected from the 
main structure. Since our approach is inherently 2D, we have chosen not to remove components that are disconnected in 
3D in this paper.

5. Conclusion

Summary of the paper

In this paper, we have introduced a new method for segmenting image data using implicit spline representations and 
deep learning. We have shown that our approach is effective at segmenting blood volume in a medical imaging dataset 
and that we are able to achieve state-of-the-art results by using a modified version of the UNet architecture, which we call 
UNetImplicit.

By modelling the segmentation boundaries implicitly, we are able to perform segmentation even in the presence of com-
plex topologies, and the use of spline representations ensures a compact representation that can be subsequently sampled 
at any desired resolution. In the case of our best network, the total number of output spline coefficients is one sixteenth 
of the total number of input pixels. Besides these representational advantages, our method is also amenable to geometric 
processing operations. In particular, inside/outside computations are reduced to mere function evaluations, and shapes can 
be efficiently manipulated and compared in terms of the spline control net.

While we have chosen to focus on medical imaging in this paper, the proposed method is not limited to this application 
domain. Early experiments performed on the Cityscapes dataset (Cordts et al., 2016) yielded promising results, in which we 
experienced that a spline grid of 14 × 14 coefficients was sufficient for most segmentations. Hence the resolution of the 
spline coefficients required to obtain good results depends on the input data, both with respect to variability of the data and 
the presence of sharp features. This also illustrates that in other application domains a further reduction in representation 
size is possible.

Limitations

One of the main limitations of our approach is that we need to use a fixed spline resolution for all samples. This imposes 
an upper limit on the number of oscillations the spline can have in a given region. Depending on the characteristics of the 
data, the spline resolution may need to be increased to capture all details. Our approach also has limited ability to model 
sharp features, in that splines are inherently smooth. However, this is more a theoretical than practical limitation due to 
uncertainty or blurring at the pixel level, which is typical for imaging datasets (including the CHD CT dataset). Another 
limitation of using implicit representations is that they can only deal with a single segmentation class per output channel. 
A potential solution to this is to output multiple segmented classes in separate channels using weight sharing and multitask 
learning.

Future work

We foresee several directions for future work based on our approach. In this paper, we have restricted our attention to 
B-spline basis functions, but the only requirement is that the basis can be evaluated by multiplication with a pre-computed 
collocation matrix. Thus the method can adopt any basis functions arranged in a grid compatible with adaptive average 
pooling of the contracting path. This opens up avenues for exploring how different types of basis functions perform on 
different datasets.

Thus far we have employed implicit functions solely for the purpose of determining the segmentation boundary. A richer 
form of implicit function is a signed distance function to the boundary. In that case, the gradient of the implicit function 
(projected to the plane z = 0) is the normal direction along the segmentation boundary. Hence different level sets of the 
implicit (signed distance) function can be used to generate offsets or confidence bounds of the segmentation boundary. 
While signed distance functions are not typically smooth everywhere, they can be approximated closely by spline functions.

Although we have only considered 2D segmentation in this paper, the approach is directly generalizable to 3D. A 3D 
implementation will allow us to take advantage of smoothness in the axial direction, which should lead to even more 
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compact representations. In particular, multislice methods could be employed to take advantage of gradients in the slice 
direction.

Finally, we envisage that our approach can be useful in other application areas. For example, reconstructing digital 
twins of 3D printed objects from images taken at each layer of the manufacturing process is one potential application. Our 
approach may also be applied to standard segmentation of photographs if the segmentation boundaries are of generally 
smooth nature.
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