Formal Methods in System Design (2021) 57:211-245
https://doi.org/10.1007/510703-021-00368-2

®

Check for
updates

SAT modulo discrete event simulation applied to railway
design capacity analysis

Bjornar Luteberget' - Koen Claessen? - Christian Johansen? - Martin Steffen*

Accepted: 19 March 2021 / Published online: 31 March 2021
© The Author(s) 2021

Abstract

This paper proposes a new method of combining SAT with discrete event simulation. This new
integration proved useful for designing a solver for capacity analysis in early phase railway
construction design. Railway capacity is complex to define and analyze, and existing tools and
methods used in practice require comprehensive models of the railway network and its timeta-
bles. Design engineers working within the limited scope of construction projects report that
only ad-hoc, experience-based methods of capacity analysis are available to them. Designs
often have subtle capacity pitfalls which are discovered too late, only when network-wide
timetables are made—there is a mismatch between the scope of construction projects and the
scope of capacity analysis, as currently practiced. We suggest a language for capacity spec-
ifications suited for construction projects, expressing properties such as running time, train
frequency, overtaking and crossing. Such specifications can be used as contracts in the inter-
face between construction projects and network-wide capacity analysis. We show how these
properties can be verified fully automatically by building a special-purpose solver which splits
the problem into two: an abstracted SAT-based dispatch planning, and a continuous-domain
dynamics with timing constraints evaluated using discrete event simulation. The two compo-
nents communicate in a CEGAR loop (counterexample-guided abstraction refinement). This
architecture is beneficial because it clearly distinguishes the combinatorial choices on the
one hand from continuous calculations on the other, so that the simulation can be extended
by relevant details as needed. We describe how loops in the infrastructure can be handled to
eliminate repeating dispatch plans, and use case studies based on data from existing infras-
tructure and ongoing construction projects to show that our method is fast enough at relevant
scales to provide agile verification in a design setting. Similar SAT modulo discrete event
simulation combinations could also be useful elsewhere where one or both of these methods
are already applicable such as in bioinformatics or hardware/software verification.

Keywords SAT - Discrete event simulation - Capacity analysis - specification language -
Railway designs - SMT

The first author was partially supported by the project RailCons,—Automated Methods and Tools for
Ensuring Consistency of Railway Designs, with number 248714 funded by the Norwegian Research Council
and Railcomplete AS.

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-021-00368-2&domain=pdf

212 Formal Methods in System Design (2021) 57:211-245

1 Introduction
1.1 SAT modulo discrete event simulation

Solvers for the Boolean satisfiability problem (SAT) are today efficiently solving many prob-
lems of practical significance, especially in electronic hardware and software verification.
For problems that are inexpressible or inefficiently solved in propositional logic, satisfiabil-
ity modulo theory (SMT) solvers allow richer expressions, and leverage the algorithms in
SAT solvers by combining them with specialized solvers for other logics, called theories
(introductory texts can be found in e.g. [2,3,43]).

The theories supported by SMT solvers are typically related to theorem proving (uninter-
preted functions, integer arithmetic, real arithmetic), program verification (bitvectors, arrays,
algebraic data types, strings), or mathematical programming (linear and non-linear arith-
metic). In principle, however, the SMT solver architecture can be applied to any problem
where solving a Boolean abstraction of the problem can contribute a major part of the solu-
tion. A theory solver must, as a minimum requirement, be able to assess an assignment to
the Boolean abstraction of the given problem and decide whether that assignment makes the
formula satisfiable in the theory’s interpretation of the Boolean values, and if so, produce
an assignment for the theory variables. To get an efficient solver, the following features of a
theory solver are beneficial:

— Explanations: when a Boolean assignment is found unsatisfiable in the theory, the theory
solver must be able to express a Boolean constraint that excludes that assignment. In the
worst case, this constraint is just the negation of the whole assignment, but more succinct
explanations give better pruning of the search tree.

— Early pruning: if the theory solver can check consistency of a partial Boolean assignment,
while the SAT solver is building its variable assignment, the theory can prune the search
tree more efficiently.

— Incrementality: if the theory solver can cheaply maintain the consistency check when
adding new parts of the partial assignment, the early pruning is more efficient.

— Deduction: if the theory solver can take a partial Boolean assignment and deduce other
Boolean assignments that necessarily follow from the current assignment, this also prunes
the search tree without needing to keep track of more Boolean constraints.

Even if one cannot fulfill these criteria to get the optimal symbiosis effect of the SAT
solver with the theory, the SMT method can still be worthwhile as a way to build solvers for
hard problems as long as the Boolean abstraction in some way represents essential features
of the solution space. Even some problems that are well-suited for propositional logic, such
as hardware model checking problems, can benefit from starting from a Boolean abstraction
of the problem. The technique of counterexample-guided abstraction refinement (CEGAR)
[8] can make solving model checking problems more efficient by abstracting away parts of
the system being verified, and only adding it to the propositional formula when it is found to
be necessary for drawing a conclusion.

In most engineering disciplines, exact mathematical models and solutions such as the
ones used in SMT solvers are used for some analysis tasks, while other tasks are better suited
for simulation. Computer-based simulation tools offer a different trade-oft: they typically
work by mimicking a system locally, going forward in time, and can more easily account
for complex behavior without requiring a complete global description. In return, simulation
can only tell where a system ends up after starting from a specific state, and not what to do
to end up with a specific outcome. Discrete event simulation (DES) is a specific simulation

@ Springer

Formal Methods in System Design (2021) 57:211-245 213

Instructions
Z~ A

Mathematical Discrete event
abstraction simulation

Ne——

Explanations

Fig. 1 Extending an exact but abstract mathematical model with a richer simulation model. A solution to the
mathematical model is evaluated by sending instructions to a discrete event simulator. The simulator sends
back explanations of shortcomings in the instructions in terms of the mathematical abstraction

technique used in many application areas for simulating multiple processes or agents that
interact with a common environment [14,17]. For example in transportation, each vehicle is
modeled as a process, traffic light systems are processes, and these interact though shared
resources in a common environment.

To produce a detailed model of moving vehicles at small time scales, acceleration and
braking effects are essential. Since acceleration and braking are described mathematically by
second order derivatives, the resulting mathematical model is necessarily non-linear and large
systems of this type cannot be solved efficiently in general. An approach for solving complex
vehicle movement problems can be to consider acceleration and braking to be instantaneous
(SMT using linear arithmetic), or even abstracting away all continuous variables and repre-
senting only the sequencing of operations as a SAT problem (e.g., which vehicle first reserves
a shared resource). Using DES as a theory solver for evaluating the abstracted solutions in
detail can still lead to good solver performance for the overall problem if the abstracted prob-
lem represents the essential choices to be made, and the output from DES can be analyzed
to produce explanations for failures as Boolean constraints (see Fig. 1).

This paper shows how to use discrete event simulation to extend exact mathematical mod-
eling in propositional logic, focusing on applying SAT modulo DES to solve the problem of
capacity analysis in railway construction planning. The SAT abstraction is used for handling
the planning part of our problem, whereas the DES is used for evaluating timing constraints
taking realistic dynamics of trains into account. We thus separate our problem into a discrete
domain and a continuous domain part, and SAT modulo DES proves to be especially well
suited for such a separation.

1.2 Motivations from railway construction planning

Railway design and construction planning are old engineering disciplines with long-standing
traditions. Demands for the highest safety, compatibility with existing infrastructure and
practices, and high investment costs, make railway engineering a conservative domain. The
design process of railways is in practice highly sequential, leading to the known advantages
and disadvantages of so-called waterfall process models.

Waterfall-style design processes require that high-level specifications can be written up-
front and implemented afterwards without feedback from the implementation process back
to the high-level specifications. This also means that verification and validation in waterfall-
style design processes is confined to the scope of each separate design activity, or destined
to have little hope of improving the design when weaknesses are uncovered.

Unfounded design assumptions made in the early process stages have been known to
trickle all the way down to the final stages and require new rounds of design starting from
the top, a process which typically takes several years.

@ Springer

214 Formal Methods in System Design (2021) 57:211-245

These negative effects are typically mitigated by:

(a) Re-using proven design concepts, i.e., doing something the same way as somewhere else,
where it has already turned out to work well.

(b) Allowing sizable margins, e.g., planning the track with more than enough space for safety
distances so that it is highly likely that control system engineers will later be able to come
up with a safe and performant design.

These mitigations exploit railway engineers’ traditions, experiences, and cross-discipline
knowledge, which in turn contributes to making the engineering community slow-moving
and conservative.

Modern construction practice, however, expects and demands optimization. When space
requirements, performance requirements, and costs are squeezed to the limits, the tradition-
based railway engineering approach lacks the methods to accurately reason about the
limitations of the finished system on the basis of partially finished designs.

1.3 Capacity analysis at railway design time

The planning and engineering of a railway control system has safety as primary requirement.
Safety is ensured through the so-called signaling principles, and detailed requirements have
been put in place for station layouts, controller implementations, and operation procedures.

Secondary to safety, the notion of performance and capacity of a railway control sys-
tem remains more elusive. The capacity of a railway control system, and thus of railway
infrastructure in general, is hard to define precisely (see [1,20,28]). Any capacity measure
will necessarily make assumptions about the operation of the railway. One can say that the
railway infrastructure does not have an inherent capacity, only capacity for specific use cases.
A fully accurate assessment of capacity can only be made under a fully specified timetable,
meaning that every train’s arrival and departure times at all stations in the network must
be known. This makes for a highly coupled analysis, as constructing an actual timetable
requires bringing together details about infrastructure, rolling stock, transportation demands,
and crew schedules. Systematic capacity analysis for railways is typically performed on the
scale of national railway networks, using comprehensive input on infrastructure and timeta-
bles, and only after planning and engineering has produced a final design. Moreover, the
widely used methods and tools for capacity analysis are heavy-duty methods, consisting of
complicated simulations, and require specialized knowledge. Thus they are unsuitable for
more agile design-time verification of railway stations.

For construction projects and control system engineering, it is not feasible to use a fully
specified timetable for verifying that the control system will be able to provide the required
capacity, because (1) detailed timetabling and capacity analysis takes too much effort and
specialized knowledge, and is usually saved for later stages of design, and (2) the design of
a control system cannot or should not depend too heavily on other parts of the network, as
these parts may also change in the future.

On the other hand, analytical approaches to railway capacity analysis, such as queueing
network theory and maximum flow calculations, abstract away too much information to be
useful for low-level infrastructure design engineering. Simplifying assumptions, which can
be suitable for network-scale capacity analysis, such as instantaneous speed changes, or fixed
traveling times between different locations, are usually not suitable for infrastructure design.
Specifically, disregarding the discrete allocation logic of the interlocking system and the
position and velocities of individual trains makes these methods unsuitable for analysis of
signalling design. The detailed optimization of signal and detector locations needs to account

@ Springer

Formal Methods in System Design (2021) 57:211-245 215

Dispatch plan 1: Dispatch plan 2:
Step 1 o1 e o Step 1 or mR o
— o /S N\ o

o o +O v :n-o o O v
\\ o+ \, o+ i
Step 2

é%

<
«

Step 2
o+ i (2]

R N

Fig. 2 Two alternative dispatch plans for achieving a crossing of two trains on a small example station. The
green areas show track segments which are currently allocated to a train going from left to right, while the
pink areas show track segments which are currently allocated to a train going from right to left. After each
step of the plan, segments behind the front of each train are freed if they are not still occupied by the length
of the train. In the last step, the trains are exiting the model boundary and all their allocated sections are freed

o+ o

o+ O
(2]

for a detailed model of train dynamics and control system behavior exactly because higher-
level analysis requires this assumption of local optimization to the simplified behaviors used
in network-global analysis.

As none of these techniques are particularly well-suited for agile design-time verification
of railway stations, engineers working on construction projects usually rely on informal,
vague, or even non-existent capacity specifications, and need to make ad-hoc analyses of
how the control system might provide this capacity.

Using agile verification of high-level properties from the beginning of a design project, and
in every step of the process, allows engineers to better see the consequences of each decision
and immediately uncover errors and shortcomings that would otherwise be discovered only
months or years later.

Our goal is to develop a verification technique and tool to help engineers specify capacity
properties at design time and to check these automatically. To be agile, the tool needs to

(a) have reasonable response times so that the verification can be run on the fly as the design
is being updated by an engineer working in a drafting CAD application, and

(b) keep the required input to the minimum of information needed to verify relevant proper-
ties.

This style of verification gives engineers immediate feedback on their design decisions while
requiring small amounts of specification and verification work.

1.3.1 Problem definition

We address the following problem: in the context of designing the layout and control systems
for railway stations, does the station infrastructure have the capacity to handle the amount of
trains and the desired traveling times to provide adequate service in transportation of goods
and passengers? (See exact definition below.)

As an example, consider the question of crossing trains on a railway station. Fig. 2 shows
two sequences of movements which result in such a crossing. Details of the railway design
(such as signal placement, detector placement, correct allocation and freeing of resources,
track lengths, train lengths, etc.) may render this scenario infeasible, or cause it to take an
unacceptably long time.

@ Springer

216 Formal Methods in System Design (2021) 57:211-245

We consider the low-level railway infrastructure capacity verification problem, which
we define as follows:

Given a railway station track plan, including signaling components, rolling stock
dynamic characteristics, and a performance/capacity specification, verify whether the
specification can be satisfied and find a dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway infrastructure design activities:

(a) Low-level running time analysis—verify that getting from point A to point B can be
achieved within a given time.

(b) Low-level schedulability analysis—verify that the infrastructure can handle given fre-
quencies of trains arriving and departing at a station, and simultaneous opportunities for
crossing, parking, loading, etc.

(¢) Combinations of the above—verify running time requirements on schedulable opera-
tions.

1.4 SAT modulo DES applied to low-level railway infrastructure capacity verification

We suggest a formalization of capacity requirements as a set of operational scenarios involv-
ing a set of trains, a set of locations to visit, and a set of timing constraints.

Verification in this domain can in principle be encoded into the SMT [3,9,37] or PDDL+
[15] languages, essentially resulting in a SAT modulo non-linear real arithmetic problem
[16,25]. The PDDL+ language has been designed to express planning problems in mixed
discrete/continuous domains. We were able to use the SMTPIlan+ solver to solve only the most
trivial test cases in less than one second, which is the time bound that we consider a reasonable
running-time constraint for agile verification. Translating the railway capacity problem as
a whole into a PDDL+ instance makes SMTPlan+ create a high number of planning steps
for any combination of train control events and interlocking events. There are several SMT
solvers that can handle SAT modulo non-linear real arithmetic problems [10,11,18], but we
found these solvers insufficiently scalable for real-world problem sizes. Using SMT solvers
directly suffers from the same problem of having a high number of planning steps (some
improvements can be made, such as making train driver choices implicit in constraints on the
relation between velocity, distance and time). Moreover, assuming that the train dynamics are
given by an explicit expression over real numbers may be too simplistic for some engineering
applications. We would like to have the opportunity to extend the dynamics equations in the
future using, e.g., numerical integration.

We have developed a verification tool chain that uses a CEGAR loop [8] between a SAT-
based planning tool that works on a discrete abstraction of the control system commands,
and a discrete event simulation engine (DES) [42] that calculates detailed continuous results
for a specific plan, taking the physics of moving trains into account.

The SAT-based planner uses bounded model checking (BMC) [4] where time is reduced
to a series of partially ordered actions with unknown durations, and the choice of actions are
the available commands in the control system. The DES component verifies the continuous
time/space results given the Boolean decisions of control system commands, and adds new
SAT constraints excluding unsatisfactory solutions.

The separation of discrete and continuous domains also has the advantage that the sim-
ulation component can be extended to handle more complex models, such as engine power
curves, tunnel air resistance, curve rolling resistance, train weight distribution, etc., without
affecting the planning logic or its computational complexity.

@ Springer

F E
O—! @ !_O Switch Z

Switch Y @ . ®/ B

Formal Methods in System Design (2021) 57:211-245 217
~. O+ La

o

L (D / . ~ .

‘ ;_o ;with O_I;D (;:_O@\O_T .@.I V
. 1

Fig. 3 Schematic presentation of railway infrastructure. Signals are shown as symbols labeled A-G, though
G is not an actual signal but marks the end of a siding track (implicitly signalling stop). The arrows, labeled
La and L, indicate that the track continues, but outside the scope of the model. Short vertical bars indicate
detectors. The detector arrangement forms sections of the track labeled with circled numbers 1-9

A

We have developed a prototype DES engine for our specific simulation needs, but the
flexibility of the proposed method of SAT modulo DES allows for other (off-the-shelve)
DES engines to be used, maybe adapted or with an interface to handle the interactions with
the SAT engine. The application domain and running time requirements would dictate the
choice of specific DES method and engine.

1.5 Contributions and organization of the paper

This paper extends our work from [32] in the following ways: (i) We provide an expanded
introduction to railway control systems and dynamics in Sect. 2, to make the work self-
contained. (iii) We have added new results for handling safety zones in Sect. 3.2. (iv) We
have added new results for handling loops in infrastructure and eliminating repetition in
dispatch plans in Sect. 3.3 and Sect. 3.4. (i) We give more detailed descriptions of the
implementation of discrete event simulation in Sect. 4.

The paper is organized as follows. Sect. 2 contains an overview of the railway design
process and the principles for analysis of these designs. In Sect. 2.2 we present a language
for capacity specifications, together with examples of how it can be used in construction
projects. Sect. 3 describes the tool chain and the solver architecture that we propose to verify
performance properties in an agile verification style, integrated in the construction project
workflow. We present in detail in Sect. 3.2 how the planner component of our solver is imple-
mented. The simulator component is described in Sect. 4. Section 5 contains performance
evaluations in a set of relevant case studies. Section 6 discusses further related work and
presents our conclusions.

We have tested our method and tool on practical examples from existing infrastructure
and ongoing construction projects in collaboration with engineers from Railcomplete AS.
The tool can be found online! and can be used either standalone or integrated in a railway
design framework to provide on-the-fly capacity analysis.

! Source code: https://github.com/koengit/trainspotting and Documentation: https://luteberget.github.io/
rollingdocs.

@ Springer

https://github.com/koengit/trainspotting
https://luteberget.github.io/rollingdocs
https://luteberget.github.io/rollingdocs

Formal Methods in System Design (2021) 57:211-245

218

4qgv OV 1 Yo X a7 d 474

4y gV OV 1C WS X 47 a 410

adg ‘v ‘Do Ov €s s X a H aH

ag ‘v1a ‘v ‘av v°9°L‘6 WSz d q A4

449 V714 V1D ‘DD OV €CL6 oIz a q adg
49 °ddg V1o 6°L°9 Wz V1 q V1a

dH {49 ‘ad V14 ‘00 6°L*S YOI Z YT K V1 o) V1O
dH ‘adg ‘v 8°C wsu X) o) 20

474 *97q 49 OV Tl I X l v av

471 970 ‘aH ‘a9 ‘av €TT s X o) v ov
bliilile) syuaw3as yorly, uonisod yoyms [eusis yxg [eusis Anug 9Inol Arejusworg

¢ 31 ur 2IJONNSEIJUI Y} JOJ SUONIPUOD 1Y) PUE SAINOI A[qR[IeAR SUIMOYS ‘UOYDILidads Surydoliaiul 4pngpy e Jo Jdwexy | ajqel

pringer

as

Formal Methods in System Design (2021) 57:211-245 219

Fig.4 A dispatcher (1) requests routes from the interlocking control system. The interlocking decides whether
to accept the command (2), and signals the resulting movement authority to the train driver (3). The control
system itself is responsible for the safety of the resulting movements. A railway construction project often
concerns the design of only one or a few of these control systems, so the scope of the interlocking acts as a
module boundary in the larger railway network

2 Railway construction capacity analysis problem background

The signalling and interlocking design problem for a railway station takes the track plan
as input, typically containing tracks, switches and platforms, and produces the following
artifacts:

— Track and trackside component layout, describing the locations of tracks, switches, sig-
nals and detectors (see Fig. 3).

— Interlocking specifications, describing the requirements for the logic of the control system
(see Table 1).

These design artifacts are the subject of verification, i.e., they constitute the model. Ensur-
ing performance in the context of a construction project consists of verifying properties
describing a set of trains moving on the tracks and the goals which need to be accomplished
by these movements. The design should (1) ensure safe movement while also (2) fulfilling
performance requirements. We describe each of these aspects in the sections below.

To verify performance properties, we need to find a sequence of trains and elementary
routes for the train dispatcher, i.e., a dispatch plan, which, when executed under safety and
correctness constraints (described in Sect. 2.1 below), satisfies the properties described in
the performance requirements (detailed in Sect. 2.2 below).

Train movements along the railway are coordinated by a train dispatcher, whose task it is
to choose which trains go where, and communicate this to the train drivers. The dispatcher
uses a control system to perform this task, called the interlocking, which receives input from
trackside train detectors and controls movable track elements and signals (see Fig. 4).

2.1 Safe and correct train movements
Low-level analysis of train movements covers a wide range of constraints given by the
track layout, the control system, and operational procedures. The following subsections give

an overview of these constraints, divided into four classes. See [39] for a more in-depth
description of railway operation principles.

2.1.1 Physical infrastructure

Trains travel on a network of railway tracks with physical properties such as length, gradient,
curvature, etc. Tracks branch off using switches, whose setting determines where the train

@ Springer

220 Formal Methods in System Design (2021) 57:211-245

goes. Detectors on the track are used by the control system to determine whether track
segments are occupied. The physical infrastructure also determines the sight areas: the set
of locations where a train receives information from a given signal. The different visual
appearances that a signal can have are called aspects. For example, the “proceed aspect”
displays a green light to indicate that the train should proceed, though the aspect may not
necessarily be (only) one green light and there are more and quite more complex aspects
for signals compared to the traffic lights used in road traffic. The exact list of visual aspects
depends on national regulations and does not matter very much for the content of the work.

Tracks which are not connected to switches end in either (1) a dead end (e.g., the location
labeled G in Fig. 3) where the train cannot travel further, or (2) a model boundary where
trains can appear and disappear from the model (e.g. the locations labeled L and Ly in
Fig. 3).

2.1.2 Interlocking: allocation of resources

The safety-critical control systems for railway infrastructure are called interlockings. An
interlocking takes requests for activating routes from a dispatcher. When a route is activated,
switches are moved into correct positions and signals are set to show the proceed aspect. The
interlocking is also responsible for assuring that activating the route, i.e., allowing the train
to travel the route, is safe.

The safety of train movements is ensured through the following requirements:

(a) Routes require the exclusive allocation of track segments, so that two routes which use
some of the same track segments cannot be activated at the same time. Routes must be
allocated as a unit, i.e., all segments must be free at the time of allocation. However, track
segments may be de-allocated (and then used in other routes) as soon as the train has
passed a segment. The whole of the route being allocated is called a elementary route,
while the parts that can be de-allocated separately are called partial routes.

(b) Switches need to be in the correct position for the train to travel along the route. Also,
the switches must be locked, so that they cannot accidentally be moved while the train
is traveling, and detectors on the switch must report that the switch is actually locked in
the correct position.

(c) A safety zone (also called overlap) beyond the end of the route must be vacant, but not
necessarily exclusively allocated, i.e., two safety zones may share track segments. The
safety zone is released after a given time which is long enough that it is unlikely that the
train is still moving forward. This timeout is calculated based on the length of the route.

(d) Routes which pass through switches require specific track elements to cover any potential
movements into the route path. This is known as flank protection, and can typically be
provided by signals, switches, or other objects.

(e) Signals can only show the “proceed” aspect when it is the starting point for a currently
active route; in all other states, the signal must show the “stop” aspect. Distant signals,
i.e., additional signals showing information about the next upcoming route, must give
information consistent with the upcoming signal.

These constraints are explicitly expressed for a given railway station through the interlocking
specification, which is an artifact of the design process.

Avoiding collisions by exclusive use of resources is the responsibility of the interlocking,
which takes requests from the dispatcher for activating elementary routes. An elementary
route is the smallest unit of resources that can be allocated to a train, see Fig. 5. Route
activation can be modeled as a process which executes as follows:

@ Springer

Formal Methods in System Design (2021) 57:211-245 221

- o
O
¢ oH
Fig.5 Elementary route AC from signal A to the adjacent signal C. The thick line indicates parts of the track

on the train’s path which are reserved for this movement, and the dashed lines indicate parts of the track outside
the path which are also exclusively allocated

Route 1

{k

Safety zone 2

Fig.6 Elementary route 1, ending in signal C, can protect trains from overrunning the signal by allocating one
of the safety zones (shown as safety zone 1 and 2). In some situations, safety zone 1 might be preferred so that
the switch following signal C is in the correct position for letting the train in route 1 proceed quickly. However,
allocating safety zone 1 blocks route 2 from use. So in other situations, safety zone 2 might be preferred, for
example for two trains to concurrently enter a station. Some control systems may allow one safety zone to be
replaced by another after the route has been allocated

(a) Wait for all required resources, such as track segments and switches, to be free.
Resources required by a route are typically any resource in the train path (or some-
times outside of it), which ensure that all movements are performed at a safe distance
from each other.

(b) Movable elements (e.g. switches) must be set to correct positions. If they are not, start
a sub-process which moves the element into place, and wait for this process to finish
before proceeding.

(c) Signals are then set to show the “proceed” aspect to the train when the above steps are
finished. When the front of the train has passed the signal, it is immediately reset to show
the “stop” aspect.

(d) Arelease process is started, which waits for the train to finish using the allocated resources
(i.e., to travel over them) and frees them when this has happened.

2.1.3 Influence of safety zones on capacity

The safety zone, as described above, is a set of track sections and switches allocated
together with a route to ensure that slightly overrunning a signal showing the stop aspect
is safe (see Fig. 6). Different manufacturers and national regulations have various ways of
specifying how a safety zone is released and how alternative safety zones are implemented.
The main variations are:

(a) The safety zone from a route end point persists until a route is allocated from the end
point. This can be problematic if the safety zone blocks other traffic or if the train is

@ Springer

222 Formal Methods in System Design (2021) 57:211-245

HO FO FO FO FO

Fig.7 Signal information only carries across two signals (so-called distant signals)

changing directions and not proceeding past the end point. The following two methods
are the usual mitigations for these problems.

(b) The safety zone is released after a pre-set time. This time should be long enough so that
the probability that the train is still running towards the end point is very low.

(c) The safety zone it not released, but can be replaced by another safety zone from the same
route end point. This method is called swinging overlap in the United Kingdom.

2.1.4 Communication constraints

After movement has been allowed by the control system, the driver must be informed of this
fact. When a route is activated, a train inside the sight area of the route’s entry signal reads
the signal’s message that movement authority is given. The train driver may then drive the
train forward until the next signal.

The following types of signalling systems are common in railways:

(a) Traditional signaling with trackside lamps. Communication is limited by how many
different aspects the lamps can show. To avoid high-speed trains slowing down at every
signal, several consecutive elementary routes can be signaled in advance using so-called
distant signals.

(b) Automatic train protection systems (ATP) work similarly to signals, but may give more
information. Many ATP systems communicate information through magnets or short-
range radio at specific locations on the track, corresponding to a signal sight area of zero
length.

(c) The European Rail Traffic Management System (ERTMS) currently being implemented
in many European countries replaces lamp signals with trackside marker boards, and
uses long-range radio for communication. This effectively removes the communication
constraint, as the radio can be used to update any train’s movement authority at any time.

The amount of information that can be transmitted to the train drivers through the signaling
puts a constraint on how many consecutive routes ahead it is possible to give movement
authority for. Traditional signaling can typically show information about either one or two
routes, but some countries have extended to information about three or four consecutive
routes. Itis also common to extend the information given by signals using track-side electronic
communication. See Fig. 7.

@ Springer

Formal Methods in System Design (2021) 57:211-245 223

2.1.5 Laws of motion

Trains move within the limits of given maximum acceleration and braking power, so train
drivers need to plan ahead for braking so that the train respects its given movement authority
and speed restrictions at all times.
The speed increase from vy to v over a time interval At is limited by the train’s maximum
acceleration a:
v—vy <aAt.

However, when there is a more restrictive speed restriction ahead, the driver must start
braking in time to meet the restriction. A signal showing the ’stop’ aspect can be treated
as a speed restriction of zero. Since speed restrictions change with time, the driver must
re-evaluate their actions whenever new information is received.

A train has the following constraint on its velocity v for each restriction,

v — vi2 < 2bs; ,

where v; is the maximum allowed speed, s; is the distance to the location where the restric-
tion starts, and b is the maximum deceleration achieved by braking. These restrictions are
given as (1) constant maximum velocity restrictions given by signs beside the track, or (2)
dynamical velocity restriction given by the distance to the next stop signal (i.e., the length of
the movement authority).

2.2 Performance requirements specifications language

To capture typical performance and capacity requirements in construction projects, we define
an operational scenario S = (V, M, C) as follows:

(a) A set of vehicle types V, each defined by a length /, a maximum velocity vmax, @
maximum acceleration a, and a maximum braking deceleration b.

(b) A set of movements M, each defined by a vehicle type and an ordered sequence of visits.
Each visit ¢ is a set of alternative locations {/;} and an optional dwelling time 7.

(c) A set of timing constraints C, each constraint consisting of two visits ¢, g», and an
optional numerical constraint 7. on the maximum time between visit g, and g,. The two
visits can come from different movements. ¢, is required to occur before ¢p, and g is
required to occur within a time ¢, after ¢,:

tqa = tqb’ Z‘Ia T+l = t%
If the time constraint 7. is omitted, the visits are only required to be ordered (effectively
to = Q).

To demonstrate how an operational scenario captures requirements of railway construction
projects, we give some examples using the syntax of the file format used in our tool.? First,
we define the following vehicle types:

vehicle passengertrain length 220.0 accel 1.0 brake 0.9 maxspeed 55.0
vehicle freighttrain length 850.0 accel 0.5 brake 0.5 maxspeed 20.0

The following types of performance requirements are typical examples from our collab-
oration with railway engineers from Railcomplete AS:

2 For details of the input file formats, see https://luteberget.github.io/rollingdocs/usage.html.

@ Springer

https://luteberget.github.io/rollingdocs/usage.html

224 Formal Methods in System Design (2021) 57:211-245

(a) Running time: expresses an expectation of how long it should take for a train to travel
between two locations. To specify this, we simply require that a train visits some location
b1l and later visits some other location b2. A timing constraint of 90.0s between these
visits sets the running time requirement.
movement passengertrain {

visit #a [bl]l; visit #b [b2] }
timing a <90.0 b

The notation timing a <90.0 b indicates that a should happen before b, with b
happening no later than 90.0 seconds after a.

(b) Train frequency: a train station processes a set of trains arriving and departing with a
fixed frequency. On a two-track station, we exemplify a sequence of four trains and their
relative departure times as:
movement passengertrain {

visit [Dbl]
visit [platforml,platform2] wait 60.0
visit #el [b2] 1}
// ...3 more trains with visits e2, e3, ed.
timing el <90.0 e2

timing e2 <90.0 e3
timing e3 <90.0 e4

(c) Overtaking: trains traveling in the same direction can be reordered. For example, we
specify a passenger train traveling from b1 to b2, and a freight train with the same visits.
Timing constraints ensure that the passenger train enters first while the freight train exits

first.
movement passengertrain {

visit #p_in [bl]; wvisit #p_out [b2] }
movement freighttrain {

visit #g_in [bl]; wvisit #g_out [b2] 1}

timing p_in < g_in
timing g_out < p_out

(d) Crossing: trains traveling in opposite directions can visit this station simultaneously.
This example is similar to the previous one, but the freight train now travels in the
opposite direction, and the timing constraints require that the trains are inside the model

simultaneously.
movement passengertrain {

visit #p_in [bl]; wvisit #p_out [b2] }
movement freighttrain {

visit #g_in [b2]; wvisit #g_out [bl] 1}

timing p_in < g_out
timing g_in < p_out

Similar specifications, and combinations of such specifications, are relevant in most railway
construction projects. Since we typically only need to refer to locations such as model bound-
aries and loading/unloading locations, these specifications are not tied to a specific design,
and can often be re-used even when the design of the station changes drastically.

3 Agile capacity analysis in railway designs

In this section, we describe our approach to verifying capacity properties using the formal-
ization of capacity given in the previous section.

@ Springer

Formal Methods in System Design (2021) 57:211-245 225

Fig.8 Conceptual diagram of our

CEGAR architecture. Inputl

Infrastructure, routes, train types,

and movement specifications are Pre-processor:
transformed into (1) the planner’s convert model representation for
abstract representation, each solver component

containing only elementary
routes and train lengths, and (2)
the detailed graph representation
used in the simulator component

Route/conflict Infrastructure graph

abstraction Candidate plan representation
Planner (SAT): Simulator (DES):
generate route execute planned
activation sequence sequence up to time limit
UNSATl Eliminate plan prefix lSAT
1
User 'crea.tes ailML Infrastr.:
design in > tracks and
CAD program components mm—
. l | | Simulator
Deri Routes:
erive 1, control tables
LOHIES w/ safety
Y

History of

events as
performance
witness

scenarios N Dls.pa(tcl(;.
(verification > train an
properties) route events

Fig. 9 Capacity verification tool chain overview. Yellow boxes represent input documents. Note that only
infrastructure and operational scenarios are strictly required—interlocking tables can be derived, and dispatch
plans can be synthesized. Blue boxes represent programs. The green box represents the output document from
the simulator, which is a history of events which is the witness that proves the performance requirements

3.1 SAT modulo DES tool-chain for capacity analysis in railway designs

We developed a CEGAR-style tool which exploits the limited number of control system
commands to make an abstraction of the planning problem, see Fig. 8. Towards the end of the
section this tool-chain is extended to include handling of loops and repetitions culminating in
the diagram from Fig. 15 on page 27. Our overall tool chain for solving the low-level railway
infrastructure capacity verification is outlined in Fig. 9 along with information flow between
the components. The manual, source code and test cases are available online.? The tool uses
the MiniSAT v2.2.0 solver.

3 https://luteberget.github.io/rollingdocs and https://github.com/koengit/trainspotting.

@ Springer

https://luteberget.github.io/rollingdocs
https://github.com/koengit/trainspotting

226 Formal Methods in System Design (2021) 57:211-245

The tool is complementary to other verification techniques in railway design, such as static
layout verification [31,33,34], static interlocking verification [22,33], interlocking program
verification [5], and timetable analysis [21].

The following input documents are used:

(a) Operational scenarios defining the performance properties to verify. Examples are given
in Sect. 2.2.

(b) Infrastructure given in the railML format [36,41]. In our case studies, railML was
generated using the RailCOMPLETE software, a plugin for the widely used AutoCAD
drafting software. In this way the model is taken directly from the engineers’ drafting
program with no additional model preparation needed.

(c) Elementary routes (optional), given in a custom format which is compatible with the
upcoming railML interlocking format. Although subject to design, a decent guess of the
content can be straight-forwardly derived from the infrastructure by listing resources on
paths between adjacent signals, so this input is optional.

(d) Dispatch plans (optional) corresponding to each operational scenario. The verification
tool can produce dispatch plans fulfilling the performance specification, so this input is
optional.

The verification program works by first running the planner, which generates and solves a
SAT problem representing a discrete abstraction of the overall verification problem to produce
candidate dispatch plans. The simulator component, which evaluates the time consumption
of plans, reports which parts of the plan fail the timing constraints, and the negation of this
partial plan is added to the SAT instance. Since the timing calculations are path dependent, we
use the part of the plan starting from the beginning and going up to the step where the timing
specification violation occurs. This way of refining the abstraction can cause performance
problems when many different choices are possible early in the plan, and the timing violation
can only be found near the end of the plan, as demonstrated in Sect. 5. Finding a way to make
more precise refinements could be necessary for larger problem instances.

An advantage of the separation of planner and simulator is that each component can be
used separately. The planner alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing situation. The simulator alone
may be used to debug the execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings of the railway system. Put
together, the two components provide automated verification, which is the main goal of our
efforts. It would also, in principle, be possible to use one of the commercial simulation
packages, such as OpenTrack or RailSys, provided that all input and simulation control can
be given though a programmable interface (API).

3.2 Dispatch planning using SAT

The planner solves the abstracted discrete planning problem of finding a dispatch plan, i.e.,
determining a sequence of trains and elementary routes which ensure that the trains visit
locations according to the movements specification.

We encode an instance of the abstracted planning problem into an instance of the Boolean
satisfiability problem (SAT). We consider the problem a model checking problem, and use the
technique of bounded model checking (BMC) to unroll the transition relation of the system
for a number of k steps, expressing state and transitions in propositional logic.

Using BMC for planning works by asserting the existence of a plan, so that satisfiability
of the corresponding SAT instance shows that the performance requirements can be fulfilled

@ Springer

Formal Methods in System Design (2021) 57:211-245 227

exit(r1) = entry(rz) = d2 € Delims

oH HO

entry(r1) = dy € Delims + $ }
JL v {r1,m2,r3} € ElemRoutes
. - EREEEEEEEN ..'..ig

O o_i O z1 € szénes(d4)

r1 € PRoutes ro € PRoutes r3 € PRoutes

A

.Q_| EEEEEER D

.) - - zg € szones(da)

routeLength(r1) = 50.0 routeLength(rz) = 250.0 exit(r3) = dg € Delims
routeLength(r2) = 50.0

Fig. 10 Abstracted infrastructure input used for converting a part of the infrastructure into the planning SAT
problem. The elementary route AC (see Fig. 5) consists of three partial routes, rq, 12, r3, connected through
their shared delimiters (exit(r;) = entry(rp), etc.). The exit signal of the elementary route, shown here as
delimiter dy (signal C in Fig. 5), can have two alternative safety zones z1, z (see Fig. 6)

and gives an example plan for it. When unsatisfiable, we are ensured that there is no plan
within the number of steps k. We pick a bound k based on practical considerations (letting k
be twice the number of trains was sufficient in our case studies), and we are not interested in
searching for plans longer than that. The SAT instance is built incrementally by solving first
with only one step and then adding new steps when the formula is found to be unsatisfiable,
adding up to k steps if necessary.

The planner needs only to work on an abstracted infrastructure containing information
about routes and their connectedness and conflicts, and does not directly make considerations
such as setting the positions of switches. The smallest pieces of the infrastructure that the
planner needs to know about are the partial routes, which are the units of de-allocation for
elementary routes. The following input structures are used when converting the infrastructure
into the planning SAT problem (see also examples in Fig. 10):

— A set of partial routes, PRoutes.

— A set of route delimiters, Delims. Each such delimiter element represents either a signal
or a detector in the original infrastructure model.

— A set of safety zones, SZones.

— Each partial route’s entry and exit delimiters, which take the null value at the boundaries
of the model. L.e. entry(r) = null if partial route r starts from the model boundary and
exit(r) = null it ends at the model boundary,

entry, exit : PRoutes — Delims U {null} .
— Each route delimiter’s choice of safety zones,
szones : Delim — P(SZones).

— A set of pairs of routes which are conflicting, i.e. they are not allowed to be used at the
same time,
RConflicts € PRoutes x PRoutes,

and a set of safety zones conflicting with partial routes,
SZConflicts € SZones x PRoutes.
— Each partial route’s length,

routeLength : PRoutes — R.

@ Springer

228 Formal Methods in System Design (2021) 57:211-245

— A set of elementary routes, each represented as a set of partial routes,
ElemRoutes C P(PRoutes).

In addition to the infrastructure, we also need to represent the operational scenario. Here,
the planner abstraction needs to know only about train visits as a set of partial routes containing
the specified visit locations. Also, the ordering constraints on visits is needed, along with
the length of the trains. The operational scenario is structured as follows when input to the
planner:

— A set of trains, Trains.
— A set of specified visits, Visits.
— Each train’s length,

trainLength : Trains — R.
— Each train’s ordered list of specified visits,
trainVisits : Trains — Visits™,

where a visit is a set of alternative partial routes, each of which contain at least one of
the locations from the specifications defined in Sect. 2.2:

visitRoutes : Visits — P(PRoutes).

— An ordering of visits representing both the ordering given by timing constraints and the
ordering given by the train’s sequence of visits:

VisitOrd C Visits x Visits.

The objective of the planning algorithm is to produce a set of dispatch plans, consisting
of an ordered sequence of commands,

Plans = Cmd*, Cmd = TrainCmd U RouteCmd,

where train commands describe trains entering the model from a boundary using an elemen-
tary route, i.e. TrainCmd = Trains x RouteCmd. Route commands are given by a route and
a safety zone: RouteCmd = ElemRoutes x SZones.

The abstracted planning problem is encoded as a SAT instance by representing states,
constraints on each state, and constraints on consecutive states. We use variables taking
values from finite sets, and encode this into a SAT problem using a one-hot encoding.

State i of the system in the planner component is represented as:

(a) Each partial route r has an occupancy status oi which is either free (oi = Free) or
occupied by a specific train ¢ (oi =1).

(b) Each route delimiter d has a safety zone status ufi which is either unused (ufi = None)
or set to one of the delimiter’s safety zones (uil = z), where z € szones(d).

(c) Eachtraint has a Boolean representing appearance status 5!, used to propagate to future
states that a train has started (used in constraint C1 below).

(d) Each visit v has a Boolean representing required visits status ¢/, which is used to
propagate to future states that a visit requirement has been fulfilled (used in constraint
Co).

(e) Each combination of route r and train ¢ has a Boolean representing deferred progress
pi’ ;» used to propagate to future states that a train is not progressing, and must resolve
the conflict in the future (used in constraint C9).

@ Springer

Formal Methods in System Design (2021) 57:211-245 229

RN
l\¥

Fig. 11 The planner component takes an abstracted view of the railway infrastructure. Lines represent ele-
mentary routes with traveling direction given by the arrows. Boxes indicate routes in conflict, i.e. only one of
them can be in use at a time

A dispatch plan is produced directly from the occupancy status oi and safety zone choices u ’r
of states by taking the difference between consecutive states and then dispatching any trains
and elementary routes (with safety zones) which become active from one state to the next.
Note that many elementary routes may be allocated to a train in a single planning step, and
this (in most instances) greatly reduces the total number of planning steps required.
Constraints are applied to each state and each pair of consecutive states to ensure that:

— The plan is viable for execution (i.e., correctness):

(C1) Each train takes one valid, contiguous path.

(C2) Safety zones are active at the end of each train’s current path.

(C3) Conflicting routes are not activated simultaneously.

(C4) Elementary route are allocated as a unit.

(C5) Partial routes are deallocated only after a train has fully passed over them.

— The plan fulfills capacity specifications:

(C6) Trains perform their specified visits.
(C7) Visits happen in specified order.

— Equivalent solutions are eliminated (for increased solver performance):

(C8) Routes are deallocated immediately after the train has fully passed over them.
(C9) A train’s path is extended as far as possible in the current time step, unless hindered
by a conflicting train (i.e., we want maximal progress in each step).

Equivalent plans, which result in the same trains traversing the same paths and conflicting in
the same locations, should have the same representation so that enumeration of different plans
produces meaningful alternatives. For example, the two dispatch plans for crossing shown
in Fig. 2 are the only two alternatives given by the planner for this operational scenario. See
Fig. 12 for other dispatch plans which fulfill the correctness constraints (C1-7) but which do
not have maximal progress in each state.

The implementation of each of these constraints as propositional logic statements is
described below. Constraints apply separately to all states i unless noted otherwise.

3.2.1 Train path (C1)

At most one route is taken by a train in a single state. First, ensure that only one route from
a given start delimiter may be taken at any time:

V¢t € Trains : Vd € Delims U {null} : atMostOne([oi =t |entry(r) = d}) .

@ Springer

230 Formal Methods in System Design (2021) 57:211-245

We use a standard sequential encoding to encode atMostOne and other similar constraints,
as explained in e.g. [44]. Note that entry delimiters for all routes entering from a model
boundary share the same null value, so that this constraint also excludes plans where a single
train appears in several positions at once. Each train should only enter the plan once, thus if
the appearance variable has become true then it will stay true for all subsequent states:

Vt € Trains : bﬁ = bﬁ'H.
A train’s appearance status changes when an entry boundary route is allocated:
P o i+1 i i+1
V¢ € Trains : Vr € {r € PRoutes | entry(r) = null} : (o’r ALA0T = l) = (=b; AbT).

Routes which are not entry routes can only be allocated to a train when they extend some
other route which was already allocated to the same train, i.e., consecutive routes must match
so that the exit delimiter of one is the entry delimiter of the next:

Vt € Trains : Va € {a € PRoutes | entry(a) # null} :

(02 £tnot! = t> = \/ {02+1 =1 | b € PRoutes, entry(a) = exit(b)})

Note that this constraint ensures that the trains’ allocation to routes locally forms a path
in the graph of routes. In the presence of cycles, this constraint does not rule out cyclic
allocations disjoint from the rest of the train’s path. This problem is handled separately in
Sect. 3.3 below.

3.2.2 Safety zones (C2)

A partial route delimiter needs a safety zone to be active only when the delimiter is the end
point of a train movement:

Vd € Delims : (\/ {o, # Free | exit(r) = d} A /\ {o, = Free | entry(r) = d})
= (ui, # None).

Safety zones are also involved in (C3) and (C9) below.

3.2.3 Resource conflicts (C3)

Any two routes which require the same resources cannot both be allocated in the same state.
V(a, b) € RConflicts : oil = Free v 05) = Free.
Safety zones also have conflicts with routes:

Vd € Delims : V(u, r) € {(u, r) € SZConflicts | u € szones(d) A exit(r) = d} :

ug #*z \/oi = Free.

@ Springer

Formal Methods in System Design (2021) 57:211-245 231

3.2.4 Partial release (C4)

Partial release is handled by splitting each elementary route into separate routes for each
component which is released separately. The set ElemRoutes contains such sets of routes.
The set of partial routes forming an elementary route must be allocated together:

Vt € Trains : Vx € ElemRoutes : allEqual([oi 1A oi"'l =t]|re x]).

3.2.5 Deallocation (C5, C8)

Routes are freed when sufficient length has been allocated ahead to fully contain the train.
Vt € Trains : Vr € PRoutes : (oi =1t) = ((ofrl #1) & freeablei(r, trainLength(t))) .

Note that the bidirectional implication sign on the right hand side means that deallocation is
both allowed (C5) and required (C8).
The freeable formulas are produced by the following recursive function:

freeablei (a,l) = if exit(a) = null then T else

\/ (01}7 =HA (if lp > [then T else freeableﬁ (b, — lb)) ,
bePRoutes
exit(a)=entry(b)
where [, = routeLength(b). Note that the freeable function itself is not part of the SAT
problem, but is used to compute a formula based on the static infrastructure data.

3.2.6 Visits (C6, C7)

The fulfillment of a visit constraint is indicated in the system state by the required visits
status g, , for each of the visit requirements v € Visits. Like the train’s appearance status b}
described above, the visit constraint needs only be fulfilled once:

i+1
-

Yv € Visits : qi =q
A visit v is only fulfilled when a train is allocated to one of the partial routes given by
visitRoutes(v):

Vt € Trains : v € trainVisits(z) : (—|qf) A qH'l) = \/ {oi"'l =t|re VisitRoutes(v)] .

v
Finally, visits must happen in the correct order:
Y(a, b) € VisitOrd : g}, = ¢’

For the last state i, ¢/ is given as a retractable assumption to the solver, which forces all visits
to be fulfilled before the plan ends.

Note that nothing prevents a train which has already fulfilled a visit constraint from later
using routes that could fulfill the visit constraint again. Visit constraints may be fulfilled by
any of these route allocations. For acyclic infrastructure, this is fact is usually not relevant
since a train cannot return to a previous location. See also the notion of repetition defined in
Sect. 3.3 below.

@ Springer

232 Formal Methods in System Design (2021) 57:211-245

Dispatch plan without (C8)/(C9): Dispatch plan without (C9):
Step 1 o1 Summ o Step 1 or fomm 1o
< o < - o1
o o l-o\ . O o O \ o
k Path not extended as }
far as possible (C9)
Step 2 or fomm o Step 2 or S o

P / - \ o4 / / — \ o
s = »-o\ > <= >
Route not freed when r-}-‘_ ’_| Path not extended as) o

train has passed (C8) far as possible (C9)
Step 3 o1 fumm o Step 3 o o
« = || = -
O, o o \ %3] o o\ o
Route not freed when =1
train has passed (C8)
Step 4 o -
i /.W&‘ >
T FO oH O v
\, o+

Fig. 12 Examples of dispatch plans which are correct plans (constraints (C1-7)), but which have better equiv-
alent descriptions that allocate and deallocate as soon as possible. These plans do not fulfill constraints (C8)
and (C9). Compare with plan 1 in Fig. 2

3.2.7 Forced progress (C9)

In addition to the constraints on allocation and freeing required to produce a valid plan,
we also add constraints which force each train to proceed further along a path forward unless
there is a conflict. Routes ahead are either allocated, or the train is deferred p:

Vt € Trains : Ya € PRoutes :
(02 =1t)= pi,a \% \/ {(02 =1) | b € PRoutes, entry(b) = exit(a)} .
Deferred progress can only be resolved by freeing a conflicting route and then allocating it
to the train in the following step:
Vt € Trains : Vr €PRoutes :

pf’r = pi:’;l \ \/{ofl 1A oZ'H =tA oé7 # Free

| (a, b) € RConflicts, exit(r) = entry(a)}.

For the last state i + 1, — pff,?l is given as a retractable assumption to the solver, which
forces the deferred progress to be resolved before the end plan ends. Note that it is not required
that the conflicting trains are distinct.

@ Springer

Formal Methods in System Design (2021) 57:211-245 233

oo—

=

Route 1

Route 2

0O Q0
Fig. 13 Example of cyclic infrastructure. Here, to ensure train path consistency (C1), additional constraints are

needed over the acyclic case. Route 1 and route 2 both provide each other’s justification for a train appearing
there, possibly making an error of circular reasoning

Similarly, safety zones should only be changed from one value to another if this causes a
route which was previously in conflict to be used:

Vd € Delims : Vz € szones(d) : (uil =27) =
(u™" = None) v (', =z) v \/ {oi+1 # Free | (z,7) € SZConﬂicts} .

3.3 Handling turning and loops

Many railway construction projects have only acyclic infrastructure, in the sense that trains
enter from one side of the station and exit on the other side, and all paths from one side to
the other are acyclic.

However, if the infrastructure has a same-directed cycle which can be allocated without
conflicting with other routes, the constraints C1 above are insufficient to ensure train path
consistency, see Fig. 13. The train path consistency constraints described in the previous
section require each active route to have a route before it already being active. This works in
the acyclic case, because the chain of routes always leads back to either a model boundary or
aroute already allocated in the previous step. With cyclic infrastructure, however, a sequence
of routes can justify each other, which would lead to a train appearing out of nowhere. It
is a known problem that expressing this kind of constraints in SAT can be very inefficient
(see e.g. [19,29]), and to handle same-directed cycles in the infrastructure, we add instead
a refinement step around the SAT solver which searches each state for this kind of circular
reasoning and adds a single constraint each time this situation appears.

The loop check procedure checks for each train #; and for each state s, whether the set

of routes Rl.j allocated to the train has any strongly connected components scc*l.i - R;/ with

|sccl{ | > 1, and in that case adds a new constraint to the SAT problem:

\/{—-(o{ :tl.j)|rescc{} .

Fixing these consistency errors gives valid plans even in the presence of same-directed
infrastructure cycles, but even planning on infrastructure without cycles may cause repetition
to appear in the dispatch plans. For example, at the end of a railway corridor, trains must be
able to switch directions and go back to where they came from. In the description of dispatch
planning above, if trains are allowed to stop and reverse their direction, the directed graph

@ Springer

234 Formal Methods in System Design (2021) 57:211-245

of routes becomes cyclic, and there is in principle an infinite number of different possible
dispatch plans for any train movement.

Allowing trains to turn and/or allowing loops in the infrastructure, will lead to the bounded
model checking procedure finding more and more solutions when increasing the number of
steps. Most of these solutions will exhibit some amount of repetition in the movement of
trains, and this makes them of little value to the railway engineer. We suggest some different
solutions to this challenge below, roughly ordered by how complex the implementation would
be and how much quality would be improved:

— Unlimited it could be feasible to have no limit on turning of trains, and no limit on the
use of loops in the infrastructure. Since the bounded model checking procedure will find
the shortest plans first, they will often be the most valuable plans for the engineer, and the
planner can be aborted when plans get too long and repetitive and as such are no longer
valuable for the verification of the design. However, the fully automated verification tool
would have to set a carefully considered upper bound on the number of plan steps.

— Specified turning the specifications of the operational scenarios can be extended to
include turning explicitly at visits. This increases the specification burden on the engineer,
but ensures that there cannot be an unbounded number of distinct plans. However, it could
also cause some plans to stay undetected if they require turning and the engineer did not
think of it. Also, this method does not help the situation with loops in the infrastructure.

— Bounded number of turns instead of writing out each turn explicitly, the capacity specifi-
cations could be extended to include an upper bound on the number of turns. The bound
would have to be adjusted to balance running time and plan quality (low bound) with the
possibility of detecting more complex plans (high bound).

— State space repetition constraint to ensure that the whole state of the system does not
repeat from one stage to another. This requires adding a constraint on each pair of states,
which could make the SAT instance significantly larger.

N Si#S;.

O<i<j<k

Such constraints may also be added lazily, i.e. by incrementally adding the constraints
only when they are violated in a SAT solution (see [12]). This constraint would eliminate
the possibility for an infinite number of distinct plans, but could still cause unnecessary
repetition locally, since repetition in one part of the model could be accompanied by
progress in another part of the model.

— Repetition filtering: even when the state as a whole does not repeat, there may be
sequences of allocation to a subset of trains which can be considered repeating. We
would like a more domain-specific definition of repetition, based on a graph analysis
of the dispatch plans produced. This can be implemented by rejecting solutions which
exhibit such repetition. We define this more carefully in the section below.

As we find the last option to be the most complete solution requiring no change to the
specifications, we describe its implementation here in more detail.

3.4 Filtering out unnecessary repetitions

We now define the notion of unnecessary repetitions and show how to identify them on a
given dispatch plan. First, we define the notions of yield and repetition.

A train #; yields to another train t, if #; is occupying a route whose resources are needed
for #; to proceed (thereby allowing #; to defer its progress as defined in constraint (C9),

@ Springer

Formal Methods in System Design (2021) 57:211-245 235

o E OH p O

F C
A S ~—~—— > Ny B
Conflict " O Conflict "
Example 1: No repetition (acceptable) Example 2: Single train looping (unnecessary)
S1 S1 S2
——————— Yo .
t1 A,B t1 A;_C,D,E EB Yields only to itself
SRFREEE
Example 3: Let another train pass (acceptable) Example 3: Two trains looping (unnecessary)
S1 EP) 83 S1 S2 83 S4
t1| AICDE ni 'i "EB, t1| AICDE 71 B\ ns—n
t AB YYieldn; — © to o AICD ~ m2” 'EEB,
nygy —-ng ' —-—-—~-——--=-——-----

Fig. 14 Examples of repetition justification using yields, demonstrating acceptable and unnecessary repeti-
tions. Each of the routes A, B, C, D, E, and F shown in the infrastructure route graph is long enough to contain
each train completely. Examples use trains 71, # and states s1, 52, §3, s4. Repetitions are shown as red dashed
boxes, and yields are shown as arrows between repetitions

Sect. 3.2.7). More precisely, if ; occupies some route r; in state s, and #; allocates a route
r1 in state s + 1, where ry conflicts with r, we say that #; yielded to 7, in state s.

Now, consider a train ¢ that enters the model from some model boundary and exits through
another boundary by traveling a sequence of routes r1, ..., 1, +1, which we call the train’s
path. For each pair of consecutive routes r;, rj+1, the exit signal of 7; is the same as the entry
signal for r; 1 (described as constraint C1 in Sect. 3.2.1), which we call the delimiting signal
u; = delim(r;, ri+1) between the routes r; and r; ;1. We say that the train visits the sequence
of signals uy, ..., u,;, defined in this way.

A signal appearing several times in this sequence (u; = u; withi < j)indicates a cyclein
the train path. Let s, = alloc_state’ (r;) be the state where route r; starting in u; is allocated
to ¢, and let 5, = alloc_state! (r j—1) be the state where route r;_| ending in u is allocated
to . We say that the train ¢ repeats on the interval s, to s, and write repeat(z, sq, Sp)-

In most cases, we would like to disallow such repetitions, but there are two exceptions.
Firstly, if the train fulfills a specified visit on the state interval s, to s (see constraint (C6),
Sect. 3.2.6), the repetition is acceptable. Secondly, if the train yields to another train in a state
sy such thats, < s, < sp,, we say that the yield justifies the repetition. For example, if a train
goes into a siding track to allow another train to pass by, the first train could reverse into the
main track again to proceed, thereby performing a repetition that is acceptable. See Fig. 14
for a few examples. However, if one repetition is justified by yielding to another train in a
state which also has a repetition that is justified by yielding back to the first train, this does
not make these repetitions acceptable. We would like to disallow such circular justifications,
and we formalize this using the yield justification graph, G = (V, E), defined as the directed
graph where:

@ Springer

236 Formal Methods in System Design (2021) 57:211-245

Dispatch plan prefix
Set of related repetitions
SCC in train path
Input ¢ ¢ y Spurious Unnecessary)) Success
> SAT > paths ™ repetitions | Simulation
(Sec. 3.2) (Sec. 3.3) (Sec.3.4) (Sec. 4)

Fig. 15 Main algorithm for local capacity verification (extended from Fig. 8) with two more tests for handling
loops and repetitions

— The setof nodes N contains each repetition, repeat(z, s,, Sp), and a special non-repetition
node 2.

— The set of edges E contains the edge ny — n», where n; = repeat(t1, 54, sp) and
ny = repeat(fy, s¢, S4), whenever these nodes n1, ny exist in N and #; yields to #; in a
state s where ¢ < s < b and ¢ < s < d. However, if repeat(ty, s,, sp) exists, and
yields to £, in state s, < s < sp, but there are no matching repetitions n, then the edge
np — $£2 is included instead.

We say that a repetition is acceptable if §2 is reachable from the repetition’s corresponding
node in the yield justification graph. A repetition that is not acceptable by these two criteria, is
an unnecessary repetition, and we discard the candidate dispatch plan and add a new constraint
to the SAT problem to disallow it using the relevant component of the yield justification graph.
This adds another kind of abstraction refinement to our algorithm, see Fig. 15.

The methods for handling both loops and repetitions described here may cause per-
formance problems on certain inputs. However, we have not encountered any real-world
examples where this dominates the solver’s performance.

4 Timing evaluation using discrete event simulation

There are various well-known simulation approaches which are routinely and successfully
used to analyze railway capacity. A simulation works by starting in a known state and,
applying known input to the system, proceeds by executing imperative code to change the
system state and to register event handlers to processes. Deterministic simulation models can
handle very complex models efficiently, but unlike a planning model, one cannot prescribe
which state the simulation will end up in, only measure the outcome. Simulation methods are
commonly used to develop and assess railway timetables. By introducing stochastic elements
in the model and repeating the simulation a large number of times, also the robustness of a
timetable can be analyzed (e.g., see [38]).

Discrete event simulation (DES) is based on the assumption that state changes happen
only at discrete points in time, so that the simulation can progress efficiently by jumping
from one point in time to the next where an event is scheduled. This can be made to work
even for the continuous dynamics of train movements, as we assume that the dynamics of
individual trains do not interact with each other directly: Trains are connected only through
the control system, which has only discrete state changes. Each train acts separately on the
information received from signals so far, and needs only to predict how long it will take to
reach the next signal or sensor where it interacts with the control system.

@ Springer

Formal Methods in System Design (2021) 57:211-245 237

ol ool o

(a) (b) (©

Fig. 16 a On the railway network, paths p-g-r and p-g-s exist, in both directions. b In a conventional
undirected graph representation, there would also be a path r-g-s. ¢ When the graph is extended to include
two sides of each node, there is no longer a path r-g-s

o|—|@e|«»

Balloon As directed graph: As double node graph:
loop

Fig. 17 The balloon loop infrastructure is an example where directionality of travel cannot be suitably captured
as a directed graph

In our tool architecture, the planner component works on an abstraction just detailed
enough to ensure that trains end up where they are specified to go, and that the system does
not enter a dead-lock state. This is the reason why the planning model must include safety
zones, partial release, and the lengths of routes and trains—the sequences of routes and trains
are represented precisely so that we know what to expect during the simulation. If it turns
out that the planner’s assumptions about where the trains end up do not work out correctly
in the simulator, the correspondence between planning and simulation is broken, which may
be a modeling error in the simulator or in the route specifications, e.g., if the switches are
configured to turn in the wrong direction. Running the capacity verification assumes that the
route specifications are correct, and this may be verified by other means (e.g., see [45]).

For the work in this paper, we have implemented a simulation system for railways con-
taining main signals, detector, switches, routes, trains, partial release, safety zones and more.

4.1 The double-node graph

The input of railway infrastructure consists of nodes, representing locations on the tracks
where transfer of information between the infrastructure and the train can happen. Objects
include switches, detectors, signal sighting locations, and points of discrete changes in track
properties such as radius and gradient. Nodes are connected by edges of a specified length.

A more suitable data structure is the double node graph described in [35] where each node
of a conventional graph is represented as two linked nodes representing each of the two sides
for approaching each track location, see Fig. 16. A train reaching a node may only proceed
by traveling on edges starting in the opposite node. Also, signals typically only apply in one
of the traveling directions, so a train passing a pair of nodes only reacts to the objects that are
located on the exit side of the node pair. This model allows for a local notion of directedness,
and avoids deciding on a global direction concept such as up/down or outgoing/incoming
often used in railway engineering. A global directionality requires considering special cases
to handle railway networks where a train’s up/down direction may change without the train
reversing its direction, such as the balloon loop example which is commonly seen on tram
lines, see Fig. 17.

@ Springer

238 Formal Methods in System Design (2021) 57:211-245

Fig. 18 The train driver’s Velocity

decision about when to ‘ ‘ ‘ B k
accelerate/brake/coast happens at Velocity restriction raxking
intersections between == — curve

acceleration curves, braking Sag -l /' targets
curves and velocity restriction ~ /

&

O

. . \e’ﬁ <
curves. In this example, the train o® P
can accelerate until the critical 39 fa&e

time where the acceleration I 4 J
intersects with the braking curve Critical time

towards the second velocity
restriction ahead (the first one is Distance
not critical)

4.2 Dispatch plans

From the SAT-based planner component described in Sect. 3.2 we extract dispatch plans
as the external events given as input to the simulation, which involves events like starting
a train, activating a route, or swinging a safety zone (i.e., replace an active safety zone by
another). Note that the times at which these events happen are not given by the planner, only
their order in time. All the rest of the simulation output is determined from these inputs. The
inputs start processes in the simulator, which may in turn trigger other processes.

Each train’s driver is represented as a process in the simulation system. We calculate a
guaranteed minimum time until further action is required from the driver. This involves taking
the minimum time until one of different relevant events happening, including that the train
arrives at a new node or reaches maximum velocity (see Fig. 18)

4.3 Extensions and alternative simulators

In our simulation model, trains re-calculate braking curves analytically on every possibly
relevant event. This makes for a high-performance system, but in real-world engineering
there are other complexities that we do not yet handle in this system, such as:

— More complex signaling and automated train protection systems.

— Local variations and details of infrastructure, such as the inner workings of components
from different vendors performing various tasks like route allocation, de-allocation, safety
zones, partial release, level crossings, etc.

— Train dynamics models using curve radius, gradient, air/tunnel resistance, weight distri-
bution, etc.

— Stochastic variation in simulation output.

Our system can be extended with these features. Alternatively it would be possible to swap
out our simulation module with a more comprehensive solution or a commercially available
offering (see [30,38]), as long as this simulation program can be run in batch mode using
the range of input described above. Also, implementing a discrete event simulation is most
elegantly done through co-routines, such as in the SimPy* Python library, or though spe-
cialized languages for simulation such as ABS.> For the simple simulation system we have
implemented, however, the number of distinct states in each type of process is small enough
to managed by explicit state machine logic.

4 See https://en.wikipedia.org/wiki/SimPy.
5 See http://abs-models.org/.

@ Springer

https://en.wikipedia.org/wiki/SimPy
http://abs-models.org/

Formal Methods in System Design (2021) 57:211-245

239

Table 2 Verification performance on test cases, including Bane NOR (BN) and RailCOMPLETE (CAD)

infrastructure models

Infrastructure Property Result NDES ISAT DES tiotal
Simple (3 elem.) Run.time Sat. 1 0.00 0.00 0.00
Crossing Unsat. 0 0.00 0.00 0.00
Running ex. (12 elem.) Run.time Sat. 1 0.01 0.00 0.01
Frequency Sat. 1 0.01 0.00 0.01
Overtaking 2 Sat. 1 0.00 0.00 0.01
Overtaking 3 Unsat. 0 0.01 0.00 0.01
Crossing 3 Unsat. 0 0.01 0.00 0.01
Kolbotn (BN) (56 elem.) Run. time Sat. 2 0.01 0.00 0.02
Overtake 4 Sat. 1 0.05 0.00 0.06
Overtake 3 Unsat. 0 0.05 0.00 0.06
Eidsvoll (BN) (64 elem.) Run. time Sat. 2 0.01 0.00 0.02
Overtake 2 Sat. 1 0.08 0.00 0.08
Crossing 3 Sat. 1 0.04 0.00 0.04
Crossing 4 Unsat. 0 0.21 0.00 0.21
Asker (BN) (170 elem.) Overtaking 2 Sat. 1 0.20 0.00 0.21
Overtaking 3 Unsat. 1 0.73 0.00 0.74
Crossing 4 Sat. 0 0.75 0.00 0.77
Arna (CAD) (258 elem.) Run. time Sat. 1 0.02 0.00 0.04
Overtaking 2 Sat. 1 0.50 0.00 0.51
Overtaking 3 Sat. 1 1.43 0.00 1.45
Crossing 4 Sat. 1 1.73 0.00 1.74
Gen. 3x3 (74 elem.) High time Sat. 1 0.01 0.00 0.01
Low time Unsat. 27 0.18 0.01 0.19
Gen. 4x4 (196 elem.) High time Sat. 1 0.01 0.00 0.03
Low time Unsat. 256 2.08 0.26 2.34
Gen. 5x5 (437 elem.) High time Sat. 1 0.06 0.00 0.09
Low time Unsat. 3125 38.89 4.35 43.24

The number of elementary routes (elem.) is shown for each infrastructure to indicate the model’s size. npgs
is the number simulator runs, fgaT the time in seconds spent in SAT solver, fpgs the time in seconds spent in

DES, and #q4] the total calculation time in seconds

5 Case studies and performance

This section presents empirical evaluation of the running time of our tool on several examples.
We picked representative examples based on real-world construction projects and existing
infrastructure. Verification performance on various test examples as well as real stations is
presented in Table 2. The table shows the time spent in each solver component, and also
the number of invocations npgs of the simulator, which is very low in most of the practical
cases. This supports our hypothesis that the chosen abstraction and CEGAR loop is efficient.
The running example used in previous sections of this paper (see Fig. 3) is not too complex,
having only 12 elementary routes (the 10 routes Table 1 plus two model boundary entry
routes). Even so, this scale is still interesting for verification in practice, since there are many

@ Springer

240 Formal Methods in System Design (2021) 57:211-245

== J Kolbotn St |
e

794.&@
625 628
> - o
e, O+ o
627b pumad® 626a
— S a e Ommu p—
627a M 7 626b
694 o+ a3 693
m B
B
Eidsvoll [EEETRLE jres) 0 “~
o+ & & B} D e 1823L
o+ & ETl o

T .

3 a 1 B E—— E._.N ET
1836 §| ¥ IR —
12 ﬂ"'\
10
1843P =

1853T

B e 1865

£] 4606
agps aet G’ Hen 317 —
N [——
B 342
— &
331 308 o 320 3¢9
r 3] 4|+ 2
Ikl) kol o e L IERERE]
312 329 4625 H H319 4616 B -D@IN 322 313
A ———ny A — O
- P S— astacgan
T 3 B
@304 310 30 314 323 WOCH@s g sc2@ 324 ¥ 315 326
N g
L L . " D
\ a2 e uey ss@ HOeIK6
fep—— P ST T
a 5]
4623HOCH 325 318 K] 311 328
oo 316 PO
306 H . pewss 4655 4 oen
 com— " N B 4656

<- SPB

Fig. 19 Stations Kolbotn, Eidsvoll, and Asker from Bane NOR’s model of the Norwegian national network
[6]

possible mistakes to uncover. The “Running ex.” infrastructure in Table 2 demonstrates the
running times of the typical scenario specifications presented in Sect. 2.2. For example,
“Overtaking 2” is the overtaking example from Sect. 2.2 where one train overtakes another,
while “Overtaking 3” is a similar scenario where two trains arrive first, and then a third train
overtakes them both. This is not possible on the example infrastructure without turning, as
there are only two tracks available.

The Norwegian railway infrastructure manager Bane NOR has supplied a railML infras-
tructure model of the whole national railway network [6] from which we have extracted some
more complex examples. Fig. 19 shows cut-outs from the visual representation of these mod-
els, i.e., the stations Kolbotn, Eidsvoll, and Asker were converted from the railML models.
We have also tested against an infrastructure model from the Arna construction project that
uses the RailCOMPLETE CAD design software, a realistic use case for agile verification.

@ Springer

Formal Methods in System Design (2021) 57:211-245 241

All of the realistic examples we constructed in our case study showed acceptable perfor-
mance, with only two examples exceeding the target running time of 1 second and all of
them finishing within 2 seconds. However, such low running times depends heavily on the
fact that within the typical construction project there is not a high number of different paths
that achieve very similar movements with very similar traveling times. For a property which
has a high number of available dispatch plans (satisfying the abstracted requirements in the
planner) where none of them satisfy the numerical timing constraints, the planner will have to
try out all of them. To demonstrate this limitation of scalability in our method, we construct
a set of examples where m stations each with n parallel tracks each are serially connected by
a single track, show in the table as the infrastructures “Gen 3x3”, “Gen 4x4”, and “Gen 5x5”.
In this case, when a timing bound is slightly too small to be satisfiable, the planner will have
to come up with n”” plans for timing evaluation.

These scaling scenarios are, however, outside the intended use case for the method
described in this paper and instead puts us back in the realm of timetable analysis, where the
infrastructure’s influence on acceleration and braking behavior should be assumed to already
be correctly designed at the station level, and/or a representative subset of possible plans can
be analyzed stochastically. The Gen examples are included here to illustrate our method’s
limitations.

6 Conclusions and related work

We have proposed the combination of SAT with a discrete event simulation engine in a
similar fashion as SAT modulo theories. This new combination differs from SMT mainly in
the weaker form of interaction and the kind of help that the DES engine can give to the SAT
solver. However, for particular problems, SAT modulo DES can be a successful combination
allowing for fast running times on problems that are out of reach for both SAT or SMT.
This is the case for the problem that we have investigated in this paper, coming from the
railway design area. However, we think that SAT modulo DES combinations can prove fast
for realistic problems in other domains where already one can find variants of both SAT and
DES methods being used, such as in bioinformatics (e.g., haplotype inference or regulatory
networks) or in hardware and software verification.

Using SAT modulo DES, we have proposed a solution and tool for automating the analysis
of specific capacity aspects for railway infrastructure designs (defined in Sect. 1.3 as the
low-level railway infrastructure capacity verification problem). The quite general types of
capacity specifications that we can verify with our tool are those definable in the language
proposed in Sect. 2.2.

The benefits for railway engineering that our suggested tool chain brings are twofold: (1)
allow fully automated performance verification and (2) use minimal input documentation for
the verification. Both of these aspects are needed in order to bring performance verification
into the frequently changing early-stage design projects, thus avoiding the costly and time-
consuming backtracking interactions required when later-stage analysis reveals unacceptable
performance.

The control system design phase is lacking tools for rapid prototyping, namely tools
anticipating to some extent the verification that is to be performed in later stages.

In response, we have demonstrated a control system design tool that can verify per-
formance properties in the scope of a single project from high-level specifications by
synthesizing schedules. Our work thus automates the following activities:

@ Springer

242 Formal Methods in System Design (2021) 57:211-245

— Detailed running time analysis—verify the time required for getting from point A to
point B, taking into account train dynamic characteristics, communication constraints,
and control system logic and latency.

— Detailed schedulability analysis—verify frequency of trains arriving at a station, and
simultaneous opportunities for crossing, parking, loading, etc.

Our introduction of SAT modulo DES to the railway design field opens up for new automation
applications in the following sense: the level of detail supported by our tool is much greater
than the traditional by-hand approaches for running time and schedulability analysis—and
the amount of background data and work is much less than the whole-network stochastic
operational analysis typically used in later-stage verification. To make our method approach-
able for engineers, the required input is the minimum of information needed to verify the
relevant properties. For example, the specific paths each train takes through the station is not
an input, but different possibilities for realizing paths are explored by the verification pro-
cedure. This thus makes our method appropriate for early-stage design, where track lengths,
topology, and component placement might be adjusted to achieve design goals, and engineers
can in this way get feedback on design choices without requiring large efforts to repeat the
verification.

7 Related work

Railway timetabling and capacity analysis has often been posed as a planning problem and
solved using mixed integer programming (MIP) and similar approaches. Zwaneveld et al. [46]
use integer programming on a problem closely related to our low-level railway infrastructure
capacity verification. Isobe et al. [24] formulate a similar model in timed CSP, representing
train locations, velocities, and control logic. Lamorgese et al. [27] describe a MIP-based
approach for real-time decision support for dispatchers. Fedeli et al. [13] describe a MIP-
based approach to line planning, i.e. making a selection from a set of alternatives lines that
can satisfy high-level transportation demands. Our approach differs from all of the literature
above in that our definition of the problem in this paper includes non-linear constraints on
train dynamics (acceleration/braking power) and communication constraints (trains must
slow down if they have not been informed of movement authority), which are relevant in
construction projects but less relevant in high-level planning, real-time dispatching, and
timetabling.

Many variations on discrete event simulation are used in railway dynamic analysis. A
comprehensive account of object-oriented modeling and simulation of railway infrastructure
is given in D. Hiirlimann’s Ph.D. thesis [23] (also based on M. Montigel’s thesis [35]), which
was later developed into the commerical simulation software OpenTrack. A similar approach
presented in [26] uses futures and resource analysis support in the ABS programming lan-
guage to simulate operational procedures.

In the planning literature, the PDDL+ language [15] has been introduced to capture mixed
discrete/continuous planning problems such as the one studied in this paper. General-purpose
solvers have recently been developed, using time domain discretization (DiNo [40]) or the
SMT theory of non-linear real arithmetic (SMTPlan+ [7]).

Acknowledgements We thank the engineers at Railcomplete AS, especially senior engineer Claus Feyling,
for guidance on railway operations and design methodology.

Funding Open access funding provided by SINTEF AS.

@ Springer

Formal Methods in System Design (2021) 57:211-245 243

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abril, M., Barber, F., Ingolotti, L.P., Salido, M.A., Tormos, P., Lova, A.L.: An assessment of railway
capacity. Transp. Res. Part E Logis. Transp. Rev. 44(5), 774-806 (2008)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule,
M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, IOS Press, pp. 825-885 (2009)

3. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem,
R. (eds.) Handbook of Model Checking, Springer, pp. 305-343 (2018)

4. Biere A, Alessandro C, Clarke Edmund M, Ofer S, Yunshan Z et al (2003) Bounded model checking.
Adv. Comput. 58(11):117-148

5. Borily, A., Stalmarck, G.: Formal verification in railways. In: Hinchey, M.G., Bowen, J.P. (eds.) Industrial-
Strength Formal Methods in Practice, Springer, pp. 329-350 (1999)

6. Bane NOR: Model of the Norwegian rail network (2016). http://www.banenor.no/en/startpage 1/Market1/
Model-of-the-national-rail-network/

7. Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+ language into SMT.
In: Jane Coles, A., Coles, A., Edelkamp, S., Magazzeni, D., Sanner, S. (eds.) International Conference
on Automated Planning and Scheduling, ICAPS 2016, AAAI Press, pp. 79-87 (2016)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In:
Emerson, E.A., Sistla, A.P. (eds.) Proceedings of the 12th International Conference on Computer-Aided
Verification (CAV ’00), Lecture Notes in Computer Science, vol. 1855, Springer, pp. 154-169 (2000)

9. De Moura L, Nikolaj B (2011) Satisfiability modulo theories: introduction and applications. Commun.
ACM 54(9):69-77

10. de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2008), Lecture Notes in Computer
Science, vol. 4963, Springer, pp. 337-340 (2008)

11. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) 26th Computer Aided Verification (CAC)

12. Eén N, Niklas S (2003) Temporal induction by incremental SAT solving. Electron. Notes Theor. Comput.
Sci. 89(4):543-560

13. Francesca F, Roberto M, Carlo M, Paolo O, Gianpaolo O, Andrea P, Veronica P (2017) Optimal design
of a regional railway service in Italy. J. Rail Transp. Plan. Manag. 7(4):308-319

14. Fishman, G.S.: Discrete-Event Simulation: Modeling, Programming, and Analysis. Springer Series in
Operations Research, Springer (2001)

15. Fox M, Derek L (2006) Modelling mixed discrete-continuous domains for planning. J Artif Intell Res
27:235-297

16. Frinzle M, Christian H, Tino T, Stefan R, Tobias S (2007) Efficient solving of large non-linear arithmetic
constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling and
Computation 1:209-236

17. Fujimoto RM (2000) Parallel and distributed simulation systems, Wiley

18. Gao S, Kong S, Clarke EM (2013) dReal: an SMT solver for nonlinear theories over the reals. In: Paola
Bonacina M (ed) 24th International conference on automated deduction (CADE)

19. Gebser M, Janhunen T, Rintanen J (2014) SAT modulo graphs: acyclicity. InL. Fermé E, Leite J (eds) 14th
European conference on logics in artificial intelligence (JELIA)

20. Hansen IA, Pachl J (2014) Railway timetabling and operations, Eurailpress

21. Harrod Steven S (2012) A tutorial on fundamental model structures for railway timetable optimization.
Surv Oper Res Manag Sci 17(2):85-96

22. Haxthausen AE, @stergaard PH (2016) On the use of static checking in the verification of interlocking
systems. In: Margaria T, Steffen B (eds) Leveraging applications of formal methods, verification and
validation: discussion, dissemination, applications, Springer, pp 266278

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://www.banenor.no/en/startpage1/Market1/Model-of-the-national-rail-network/
http://www.banenor.no/en/startpage1/Market1/Model-of-the-national-rail-network/

244

Formal Methods in System Design (2021) 57:211-245

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.
38.

39.
40.

41.

45.

46.

Hiirlimann D (2002) Objektorientierte Modellierung von Infrastrukturelementen und Betriebsvorgngen
im Eisenbahnwesen. PhD thesis, ETH Zurich

Isobe Y, Moller F, Nguyen HN, Roggenbach M (2012) Safety and line capacity in railways—an approach
intimed CSP. In: Derrick J, Gnesi S, Latella D, Treharne H (eds) 9th International conference on integrated
formal methods (iFM), Lecture notes in computer science, Springer, pp 54-68

Jovanovic D, de Moura L (2012) Solving non-linear arithmetic. ACM Commun Comput Algebra
46(3/4):104-105

Kamburjan E, Hihnle R (2016) Uniform modeling of railway operations. In: Formal techniques for safety-
critical systems FTSCS 2016, Communications in computer and information science, vol 694, Springer,
pp 55-71

Leonardo L, Carlo M (2015) An exact decomposition approach for the real-time train dispatching problem.
Oper Res 63(1):48-64

Landex A (2008) Methods to estimate railway capacity and passenger delays. PhD thesis, Technical
University of Denmark (DTU)

Lin F, Yuting Z (2004) ASSAT: computing answer sets of a logic program by SAT solvers. Artif Intell
157(1-2):115-137

LUKS: Analysis of lines and junctions. Software web page: http://www.via-con.de/development/luks
(2018)

Luteberget B, Camilleri JJ, Johansen C, Schneider G (2017) Participatory verification of railway infras-
tructure by representing regulations in RailCNL. In: Cimatti A, Sirjani L (eds) International conference
on software engineering and formal methods (SEFM)

Luteberget B, Claessen K, Johansen C (2018) Design-time railway capacity verification using SAT modulo
discrete event simulation. In: Bjgrner N, Gurfinkel A (eds) Formal methods in computer aided design
(FMCAD), IEEE, pp 1-9

Luteberget, B, Christian J (2018) Efficient verification of railway infrastructure designs against standard
regulations. Formal Methods Syst. Des. 52(1):1-32

Luteberget B, Johansen C, Steffen M (2016) Rule-based consistency checking of railway infrastructure
designs. In: Abraham E, Huisman M (ed) Integrated formal methods 2016, Lecture notes in computer
science, vol 9681, Springer, pp 491-507

Montigel M (1994) Modellierung und Gewihrleistung von Abhingigkeiten in Eisenbahnsicherungsanla-
gen. PhD thesis, ETH Zurich

Nash A, Huerlimann D, Schiitte J, Krauss VP (2004) RailML—a standard data interface for railroad
applications. In: Computers in railways, vol IX, WIT Press, pp 233-240

Nieuwenhuis R, Albert O, Cesare T (2006) Solving SAT and SAT modulo theories: from an abstract
Davis—Putnam—Logemann—Loveland procedure to DPLL(T).] ACM 53(6):937-977

OpenTrack: Simulation of railway networks. Software web page: http://www.opentrack.ch/ (2018)
Pachl J (2015) Railway operation and control. VTD Rail Publishing

Piotrowski WM, Fox M, Long D, Magazzeni D, Mercorio F (2016) Heuristic planning for PDDL+
domains. In: Kambhampati S (ed) International joint conference on artificial intelligence, IJCAI 2016,
IJCAI/AAAI Press, pp 3213-3219

railML (2018) The XML interface for railway applications. Organization web page: http://www.railml.
org

. Stewart R (2004) Simulation: the practice of model development and use. Wiley, New York
. Sebastiani R (2007) Lazy satisability modulo theories. J Satis Boolean Model Comput 3(3—4):141-224
. Sinz C (2005) Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek P (ed)

Principles and practice of constraint programming. Lecture notes in computer science, vol 3709, Springer,
pp 827-831

Vu LH, Haxthausen AE, Peleska J (2014) A domain-specific language for railway interlocking systems.
In: 10th Symposium on formal methods for automation and safety in railway and automotive systems,
TU Braunschweig, pp 200-209

Zwaneveld PJ, Kroon LG, van Hoesel SPM (2001) Routing trains through a railway station based on a
node packing model. Eur J Oper Res 128(1):14-33

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://www.via-con.de/development/luks
http://www.opentrack.ch/
http://www.railml.org
http://www.railml.org

Formal Methods in System Design (2021) 57:211-245

245

Affiliations

Bjernar Luteberget’ - Koen Claessen? . Christian Johansen? . Martin Steffen®

Bd Bjgrnar Luteberget
bjornar.luteberget @sintef.no

Koen Claessen
koen@chalmers.se

Christian Johansen
christian.johansen@ntnu.no

Martin Steffen
msteffen @ifi.uio.no

I SINTEF Digital AS, Oslo, Norway

2 Chalmers University, Gothenburg, Sweden
3 Norwegian University of Science and Technology, Gjgvik, Norway
4

University of Oslo, Oslo, Norway

@ Springer

	SAT modulo discrete event simulation applied to railway design capacity analysis
	Abstract
	1 Introduction
	1.1 SAT modulo discrete event simulation
	1.2 Motivations from railway construction planning
	1.3 Capacity analysis at railway design time
	1.3.1 Problem definition

	1.4 SAT modulo DES applied to low-level railway infrastructure capacity verification
	1.5 Contributions and organization of the paper

	2 Railway construction capacity analysis problem background
	2.1 Safe and correct train movements
	2.1.1 Physical infrastructure
	2.1.2 Interlocking: allocation of resources
	2.1.3 Influence of safety zones on capacity
	2.1.4 Communication constraints
	2.1.5 Laws of motion

	2.2 Performance requirements specifications language

	3 Agile capacity analysis in railway designs
	3.1 SAT modulo DES tool-chain for capacity analysis in railway designs
	3.2 Dispatch planning using SAT
	3.2.1 Train path (C1)
	3.2.2 Safety zones (C2)
	3.2.3 Resource conflicts (C3)
	3.2.4 Partial release (C4)
	3.2.5 Deallocation (C5, C8)
	3.2.6 Visits (C6, C7)
	3.2.7 Forced progress (C9)

	3.3 Handling turning and loops
	3.4 Filtering out unnecessary repetitions

	4 Timing evaluation using discrete event simulation
	4.1 The double-node graph
	4.2 Dispatch plans
	4.3 Extensions and alternative simulators

	5 Case studies and performance
	6 Conclusions and related work
	7 Related work
	Acknowledgements
	References

