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Abstract
Marine microalgae are a promising sustainable source of lipids, omega-3 fatty acids, and carbohydrates. Selected microalgae 
species belonging to the Bacillariophyceae, Haptophyceae, Eustigmatophyceae, and Prasinophyceae were characterised for 
cellular content of carbon and nitrogen, and for production yields of lipids, fatty acids, total carbohydrates, and β-glucans. 
Carbon and nitrogen content showed a hyperbolic decrease with increasing cell numbers for Chaetoceros calcitrans, C. 
muelleri, Skeletonema costatum, Tetraselmis sp., and Nannochloropsis oculata. Cultures of Pavlova lutheri and Tisochrysis 
lutea showed an increase in carbon content per cell, but a decrease in nitrogen content. The total lipid content of C. muelleri, 
C. calcitrans, N. oculata, and T. lutea increased with decreasing relative growth rate; however, the highest productivity of 
lipids was found in T. lutea grown at 40% of the maximum specific growth rate. The highest content of eicosapentaenoic 
acid was found in C. muelleri, C. calcitrans, and N. oculata, and the highest content of docosahexaenoic acid was found 
in T. lutea. The β-glucan fraction of the carbohydrates was highest in C. muelleri and C. calcitrans and was very low in N. 
oculata. Out of the species investigated, C. muelleri had the highest production yield of β-glucans, obtained when cultivated 
at a 40% relative growth rate.
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Introduction

Microalgae are a natural source of n-3 fatty acids, especially 
eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA), which are accumulated in the marine food chain 
(Reitan et al. 1994, 1997; Brown et al. 1997; Shah et al. 
2018). The chemical composition of microalgae varies with 
species and classes, and the lipid content typically ranges 
from 10 to 60% of dry matter (Reitan et al. 1994; Brown 
et al. 1997; Chiu et al. 2009; Rodolfi et al. 2009; Doan et al. 
2011; Wang et al. 2019). In addition, growth conditions such 

as nutrient limitation and light intensity have been observed 
to influence significantly the growth rate and chemical 
composition of various microalgae species (Reitan et al. 
1994; Tzovenis et al. 2003; Guedes et al. 2010; Vu et al. 
2016). Temperature was found to have a pronounced effect 
on the growth rate, lipid content, and fatty acid profiles of 
microalgae (Roleda et al. 2013; Chaisutyakorn et al. 2018). 
The maximum specific grow rate increases with increasing 
temperatures to the optimal growth temperature, whereas 
it decreases for increasing temperatures above this point 
(Converti et al. 2009). Microalgae also differ in carbohy-
drate composition, again depending on both species and 
cultivation conditions (Pernet et al. 2003; Størseth et al. 
2005). Microalgae species have been shown to accumulate 
carbohydrates as well as lipids when cultivated under nitro-
gen limitation (Harrison et al. 1990; Yang et al. 2013). The 
carbohydrates in microalgae may contain a high fraction of 
β-1,3-glucan (Størseth et al. 2004), and several studies sug-
gest that β-1,3-glucan may act as an immunostimulant in 
fish and shellfish (Dahlmo et al. 1996; Chang et al. 2000; 
Vetvicka et al. 2013).
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Because of their balanced composition of proteins and 
lipids (Brown et al. 1997), microalgae have been suggested 
as an alternative future feed resource, especially for use in 
aquafeed (Chauton et al. 2014). De novo synthesis of n-3 
fatty acids can only take place in plant cells, and long-chain 
polyunsaturated fatty acids, such as EPA (Eicosapentaenoic 
acid) and DHA (Docosahexaenoic acid), are frequently 
found in high concentrations in marine microalgae (Brown 
et al. 1997; Patil et al. 2006; Shah et al. 2018). This makes 
marine microalgae a promising source for fish feed (Tacon 
1996; Carter et al. 2003; Burr et al. 2011; Skrede et al. 2011; 
Sørensen et al. 2016). A further increase in the aquaculture 
production would require a supply of alternatives to fish 
meal and fish oil (Chauton et al. 2014).

The aim of this study was to provide comprehensive infor-
mation on variation in cellular contents of carbon, nitrogen 
and phosphorous during the growth cycle of seven micro-
algae species in batch cultures. Furthermore, four species 
with potential for use as a feed resource were selected and 
cultivated at three different growth rates in semi-continuous 
culture in order to characterise the content of total lipids, 
fatty acids, carbohydrates, and β-glucans. The productivity 
of the different compounds in the selected four microalgae 
species was also evaluated. The chemical composition of the 
microalgae was reviewed for potential use as a feed resource.

Materials and methods

Culture method for microalgae

The following microalgae were used: the Bacillariophyceae 
Chaetoceros muelleri Lemmermann (CCAP, strain 1010/3), 
Chaetoceros calcitrans (Paulsen) H.Takano (CCMP strain 
1315), and Skeletonema costatum (Greville) Cleve 1873, 
clone Skel-5, isolated from the Trondheimsfjord (Myklestad 
1974); the Haptopyceae Pavlova lutheri (Droop) Green 
(CCMP strain 1325) and Tisochrysis lutea El M.Bendif & 
I.Probert (Tahitian) (CCAP strain 927/14); the Eustigma-
tophyceae Nannochloropsis oculata (Droop) D.J. Hibberd 
(CCAP strain 849/1); and the Prasinophyceae Tetraselmis sp. 
(own isolate). They were grown in 1-L glass cylinders. The 
cultures were grown at five different temperatures (16, 20, 
24, 27, and 32 °C) to determine the effect of temperature on 
the growth rate. The microalgae were cultivated in batch cul-
tures and continuously illuminated (Phillips TLD 36 W/33 
and Phillips TL 40 W/55) at an irradiance of 70–90 µmol 
photons m−2 s−1 at the culture surface. The cultures were 
aerated with filtered air with added 0.1% CO2 using a purge 
Rotameter model 10A 6100. The F/2 growth medium (Guil-
lard and Ryther 1962) was prepared using sand filtered and 
particle filtered (pore size of 1 µm) seawater taken from a 
depth of 70 m and autoclaved before use.

The increase in biomass of the microalgae cultures was 
monitored by sampling of 5 mL volumes for regular optical 
density measurements using a spectrophotometer at a wave-
length of 750 nm. The specific growth rate (µ, day−1) of the 
batch cultures was calculated as

where N0 is the biomass at time t0, and Nt is the biomass at 
time t. The maximum specific growth rate (µmax, day−1) was 
calculated in the initial exponential growth phase before the 
growth started to decline, when ln(N) versus time was linear.

The cell densities of the cultures were estimated 
using a Bürkner chamber and counted in microscope at 
100 × magnification.

Cultures of C. muelleri, C. calcitrans, N. oculata, and T. 
lutea were then grown semi-continuously at 20 °C in 200-L 
Plexiglas cylinders at the same irradiance as for batch cul-
tivation for determination of content and productivity of 
total lipids, fatty acids, carbohydrates, and β-glucans. The 
individual cultures were grown until steady state and each 
culture continued in steady state for 4–5 days (Kilham 1978) 
at dilution rates that corresponded to 4, 40, and 60% relative 
growth rate (% µ of µmax). The cultures were sampled when 
the biomass of the cultures was in a steady state, meaning 
that the biomass did not vary by more than 5% between days.

Chemical analysis

The carbon, nitrogen, and phosphorous content of algae cells 
was analysed in batch cultures (20 °C) for all species. Precise 
volumes of the microalgae cultures were filtered using What-
man GF/F filters in six replicates for each culture at each 
sampling time during the growth phase of individual cul-
tures: Three filters were used to measure carbon and nitrogen 
content. The filters were dried at 60 °C for 24 h and analysed 
with a Carlo Erba element analyser, model 1106, with acet-
anilide as standard. Phosphorus was analysed as described 
by Koroleff (1976) in the three remaining filter replicates.

Biomass for analysing the total lipids, fatty acids, car-
bohydrates, and β-glucans was harvested when the semi-
continuous cultures had reached the steady state. Volumes 
of 2 L from each culture were harvested at dilution time 
during steady state and centrifuged at 3000–5000 rpm for 
15 min (Wifug 400 E, and Heraeus Cryophuge 8000). The 
biomasses were frozen at − 80 °C under a N2 atmosphere 
before further analysis. The total lipid content was analysed 
gravimetrically (n = 2–3) after extraction by a modified 
Bligh and Dyer (1959) method as described by Rainuzzo 
et al. (1994). The fatty acid methyl esters were prepared 
and analysed as described by Rainuzzo et al. (1994) using 
a Carlo Erba HRGC 5160 gas chromatograph equipped 
with a SP-2330 glass capillary column with an on-column 

� = ln(N
t
∕N

0
)∕t
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injection and flame ionization detector. The fatty acids were 
identified and quantified by comparison with known stand-
ards (NU-Chek Prep, USA) and use of response factors to 
internal standard (21:0). The total carbohydrate content was 
analysed using the phenol–sulphuric acid method (Dubois 
et al. 1956), and the β-glucan content was analysed using 
a method described by Myklestad and Haug (1972). The 
method is based on extraction with 0.1 N sulphuric acid, 
which omits the polysaccharides.

The productivity of the total lipid, fatty acid, carbohy-
drate, and β-glucan content of the biomass was calculated as

where Content is the weight of the different chemical com-
pounds per litre, and V is the daily harvested volume of the 
culture.

Statistical analysis

Means ± standard errors of the means are given through-
out the text, tables, and graphs. Means were tested statisti-
cally using one-way ANOVA, followed by a Student–New-
man–Keuls test using SigmaPlot for Windows version 13.0 
(Systat Software Inc., USA). The 5% confidence level was 
used throughout the experiment.

Results

Growth parameters

The maximum specific growth rates of the seven microal-
gae investigated varied with the temperature (Fig. 1). The 
optimum growth temperature is the temperature that gives 
the highest maximum growth rate, and highest maximum 
specific growth rate of C. calcitrans and N. oculata was 
observed at 16 °C, for S. costatum at 20 °C, while Tet-
raselmis sp., C. muelleri, P. lutheri, and T. lutea obtained 
highest maximum specific growth rates at 24 °C. All species 
investigated showed decreased growth rates at temperatures 
above 24 °C and no growth at 32 °C.

The content of carbon and nitrogen per cell of each of the 
seven microalgae species grown in batch cultures is shown in 
Fig. 2. Both the carbon and nitrogen content per cell showed 
a hyperbolic decrease with increasing cell numbers for C. 
calcitrans, C. muelleri, S. costatum, Tetraselmis sp., and N. 
oculata. For P. lutheri and T. lutea, the carbon content per 
cell hyperbolically increased with increasing cell numbers, 
while the nitrogen content per cell decreased with increasing 
cell numbers.

The nitrogen to carbon ratio (N/C ratio) decreased in 
all algae species, except in N. oculata, where the ratio was 
roughly similar at all cell densities (Figs. 2). The reduced 

P = Content ∗ V

N/C ratio with increasing cell density shows that the nitrogen 
content was reduced more than the carbon content when the 
cultures grew and the cell density increased. In the station-
ary phase, at high cell densities, the N/C weight ratio varied 
between 0.051 (for T. lutea) and 0.126 (for C. calcitrans; 
Fig. 3), being significantly higher for the Bacillariophyceae 
than for the other algae groups. The P/C ratio at the station-
ary growth phase varied between 0.004 (P. lutheri, T. lutea, 
and N. oculata) and 0.011 (C. calcitrans; Fig. 3). The N/P 
ratios at the stationary phase ranged from 10.7 to 18.0.

Lipids and fatty acids

The total lipid content for all four microalgae species 
increased with reduced relative growth rate in semi-contin-
uous cultures, meaning that the lipid content was highest in 
cultures with the strongest growth limitation for all species 
investigated (Fig. 4). The highest lipid content was found in 
N. oculata, at 335 mg g−1 DW at 4% relative growth rate. 
Somewhat lower lipid content was observed in C. muelleri 
and T. lutea, at 313 and 290 mg g−1 DW, respectively. The 
fatty acids accounted for 40% of the total lipids on aver-
age, without any systematic variation between species or 
growth conditions. The variation in total lipid content of 
the microalgae suggests that the species investigated stored 
lipids while the growth was limited.

Fatty acid composition

The diatoms C. calcitrans and C. muelleri had relatively 
similar fatty acid profiles, with high content of 14:0, 16:0, 
16:1, and 20:5 n-3, and somewhat lower content of 16:3 
(Table 1). Chaetoceros muelleri also had a significantly 
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Fig. 1   The maximum specific growth rate (µmax) of the seven micro-
algae species grown at different cultivation temperatures
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Fig. 2   Content of carbon (C, pg cell−1) and nitrogen (N, pg cell−1) per algae cells and the N/C weight ratio at increasing cell density of the cul-
ture of A C. calcitrans, B C. muelleri, C S. costatum, D Tetraselmis sp., E T. lutea, F P. lutheri, and G N. oculata. Means with SE bars (n = 3)
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higher content of 20:4 n-6 compared to C. calcitrans. 
The fatty acid composition of T. lutea was dominated by 
14:0, 16:0, 16:1, 18:1 n-9, 18:3 n-3, 18:4 n-3, and 22:6 

n-3. Nannochloropsis oculata had high content of 14:0, 16:0, 
16:1, 20:4 n-6, and 20:5 n-3.

The reduction in specific growth rate from 60 to 4% in 
C. muelleri resulted in higher relative content of 16:0 and 

Fig. 3   The average N/C, P/C, 
and N/P weight ratios of the 
seven microalgae species 
sampled at the stationary phase. 
Means with SE bars (n = 3). Dif-
ferent letters indicate significant 
differences (p < 0.05)
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20:4 n-6 and lower percentage of 20:5 n-3, whereas the 
rest of the fatty acids remained relatively constant with 
reduced growth rates (Table 2). Tisochrysis lutea’s relative 
content of 16:1 and 18:2 n-6 increased, while its content 
of 16:0 (not significant) and 22:6 n-3 decreased, when the 
growth rate was reduced. Reduced growth rate of N. ocu-
lata yielded increased content of 16:0 and 18:1, whereas 
the relative content of 20:5 n-3 was reduced.

These findings show that 14:0 and 16:0 were the main 
saturated fatty acids, and 16:1 was the main unsaturated 
fatty acid. The content of polyunsaturated fatty acids var-
ied between the species investigated, with high content 
of EPA (20:5 n-3) in C. muelleri, C. calcitrans, and N. 
oculata, and high content of DHA (22:6 n-3) in T. lutea. 
Both C. muelleri and N. oculata had high content of 20:4 
n-6 (AA), at 4.4–10.7% and 6.0–7.3%, respectively.

For all species investigated, reduced growth rates led 
to a general lower relative content of the polyunsaturated 
fatty acids 20:5 n-3 and 22:6 n-3 (Table 2). However, the 
relative content of 20:4 n-6 was not influenced in the same 

manner, being constant in N. oculata and increasing in C. 
muelleri with decreasing growth rates.

Content of carbohydrates and β‑glucans

The total carbohydrates in the microalgae varied from 
54 mg g−1 DW (for T. lutea at 40% relative specific growth 
rate) to 235 mg g−1 DW (for C. muelleri at 4% relative spe-
cific growth rate) (Fig. 5). The total carbohydrate content 
varied with the change in the relative growth rate to a dif-
ferent extent in the different microalgae species. C. muel-
leri was the only species that yielded significantly increased 
content with reduced growth rate. The carbohydrate content 
of C. calcitrans and N. oculata did not vary significantly 
with the growth rate, and T. lutea had highest carbohydrate 
content at the highest growth rate (p < 0.05; Fig. 5).

The β-glucan content varied greatly between species, 
being highest in C. calcitrans and C. muelleri, and some-
what lower in T. lutea (Fig. 5). Nannochloropsis oculata had 
very low β-glucan content compared to the other microalgae 

Table 1   Fatty acid content (mg g−1 DW) in microalgae grown at different relative growth rate (4%. 40%, and 60% of µmax). Mean ± SE of two or 
three replicates (C. muelleri at 60% only n = 1). Open is not detected or < 0.1. Asterisks indicate significant difference within species

Fatty acid Bacillariophyceae Prymnesiophyceae Eustigmatophyceae

C. calcitrans C. muelleri T. lutea N. oculata

40% 60% 4% 40% 60% 4% 40% 60% 4% 40% 60%

14:00 7.1 ± 0.4 4.4 ± 0.1* 11.8 ± 1.3 4.8 ± 0.6* 3.2 16.0 ± 3.2 12.2 ± 0.2 9.7 ± 1.2 10.4 ± 0.9 5.5 ± 0.1* 5.6 ± 0.2*
16:00 7.9 ± 0.1 6.8 ± 0.1* 35.2 ± 4.5 11.3 ± 2.0* 8.9 1.4 ± 0.1 4.6 ± 4.9 7.5 ± 0.1 35.6 ± 8.6 18.9 ± 0.6* 17.2 ± 2.8*
18:00 0.2 ±  −  0.2 ± 0.1 2.6 ± 0.1 1.0 ± 0.1* 0.6 0.2 ± 0.1 4.0 ± 5.4 0.3 ± 0.1 0.9 ± 0.1 0.2 ± 0.1 0.3 ± 0.1
20:00 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
22:00 0.1 ± 0.1 0.1 ± 0.1
16:01 13.5 ± 1.5 15.1 ± 1.0 42.6 ± 4.5 15.1 ± 2.3* 15 14.2 ± 0.2 7.4 ± 1.1* 3.2 ± 0.4* 36.3 ± 6.9 26.6 ± 2.2 23.9 ± 4.3
18:1 n-9 0.4 ± 0.1 0.4 ± 0.1 1.2 ± 0.1 0.4 ± 0.1 0.3 12.1 ± 0.1 4.7 ± 4.5 8.3 ± 0.1 9.5 ± 0.3 1.5 ± 0.1* 2.3 ± 0.4*
18:1 n-7 0.9 ± 0.1 0.9 ± 0.1 2.6 ± 0.1 0.5 ± 0.1 0.3 2.1 ± 0.1 1.0 ± 1.2 1.2 ± 0.1 1.4 ± 0.3 0.8 ± 0.1 0.7 ± 0.2
22:01 0.1 ± 0.1 0.5 ± 0.1 0.1 ± 0.1
16:2 n-4 2.9 ± 0.1 1.9 ± 0.1 4.6 ± 1.7 2.1 ± 1.6 0.8 0.6 ± 0.1 1.0 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 1.2 ± 0.1 0.9 ± 0.9
16:3 n-4 9.3 ± 0.3 5.4 ± 0.1* 0.3 ± 0.4 1.7 ± 2.2 2.6 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.3 ± 0.1
16:04 1.4 ± 0.1 1.4 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 0.9 ± 0.1 0.6 ± 0.8 0.7 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
18:2 n-6 0.2 ± 0.1 0.2 ± 0.1 1.2 ± 0.1 0.4 ± 0.1 0.4 15.6 ± 0.6 3.5 ± 0.1* 2.3 ± 0.1* 4.8 ± 0.3 2.1 ± 0.1* 3.1 ± 0.1*
18:3 n-6 0.1 ± 0.1 0.1 ± 0.1 2.9 ± 0.1 1.3 ± 0.1* 0.9 0.9 ± 0.1 0.3 ± 0.1 0.1 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 0.5 ± 0.1
20:3 n-6 0.5 ± 0.1 0.1 ± 0.1 0.1 2.7 ± 0.2 0.5 ± 0.1 0.3 ± 0.1
20:4 n-6 0.1 ± 0.1 0.1 ± 0.1 15.0 ± 0.3 2.3 ± 0.1* 2.6 1.4 ± 0.1 1.9 ± 0.1 2.8 ± 0.1* 11.3 ± 1.1 8.5 ± 0.1* 6.1 ± 0.2*
18:3 n − 3 0.4 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 8.4 ± 0.1 7.3 ± 0.1 4.0 ± 0.1* 0.9 ± 0.1 1.1 ± 0.1 1.0 ± 0.1
18:4 n-3 1.1 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.4 10.2 ± 0.2 16.6 ± 0.1* 12.0 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2
20.4 n-3 0.2 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
20:5 n-3 20.5 ± 0.4 12.5 ± 0.3* 16.5 ± 0.1 9.1 ± 0.1* 7.4 0.5 ± 0.1 0.7 ± 0.1 0.4 ± 0.3 49.6 ± 1.4 48.2 ± 1.1 38.4 ± 4.9
22:5 n-3 0.7 ± 0.9
22:6 n-3 1.4 ± 0.1 0.9 ± 0.1 2.2 ± 0.1 1.3 ± 0.1 0.9 10.8 ± 1.2 13.8 ± 0.3 15.4 ± 0.3*
EPA + DHA 21.8 ± 0.4 13.4 ± 0.1* 18.7 ± 0.1 10.3 ± 0.1* 8.3 11.2 ± 3.2 14.5 ± 0.3 15.8 ± 1.1 49.6 ± 1.4 48.2 ± 1.1 38.4 ± 4.9
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Table 2   Fatty acid content (% of sum) in microalgae grown at different relative growth rate (4%. 40%, and 60% of µmax). Mean ± SE of two or 
three replicates (C. muelleri at 60% only n = 1). Open is not detected or < 0.1. Asterisks indicate significant difference within species

Fatty acid Bacillariophyceae Prymnesiophyceae Eustigmatophyceae

C. calcitrans C. muelleri T. lutea N. oculata

40% 60% 4% 40% 60% 4% 40% 60% 4% 40% 60%

14:00 10.7 ± 2.9 8.5 ± 0.1 8.4 ± 0.4 9.1 ± 0.5 7.2 16.7 ± 3.2 15.3 ± 1.2 14.1 ± 1.8 6.3 ± 0.1 4.8 ± 0.3 5.6 ± 0.5
16:00 11.9 ± 2.7 13.2 ± 0.3 24.9 ± 1.7 21.5 ± 2.1 20 1.4 ± 0.1 5.6 ± 5.8 10.9 ± 0.1 21.3 ± 3.2 16.3 ± 0.1* 17.1 ± 0.8*
18:00 0.3 ± 0.1 0.4 ± 0.1 1.8 ± 0.1 1.9 ± 0.1 1.3 0.2 ± 0.1 5.2 ± 7.1 0.4 ± 0.1 0.5 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
20:00 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
22:00 0.1 ± 0.1 0.1 ± 0.1
16:01 17.8 ± 1.8 29.4 ± 2.0* 30.2 ± 1.4 28.7 ± 2.3 33.7 14.9 ± 0.1 9.3 ± 1.9* 4.7 ± 0.6* 21.8 ± 2.2 22.9 ± 1.1 23.7 ± 1.4
18:1 n-9 0.5 ± 0.2 0.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.7 12.7 ± 0.3 5.7 ± 5.3 12.1 ± 0.1 5.8 ± 0.7 1.3 ± 0.1* 2.2 ± 0.1*
18:1 n-7 1.4 ± 0.3 1.7 ± 0.0 1.8 ± 0.1 1.0 ± 0.1 0.7 2.2 ± 0.1 1.2 ± 1.4 1.7 ± 0.1 0.9 ± 0.3 0.6 ± 0.1 0.6 ± 0.1
22:01 0.1 ± 0.1 0.4 ± 0.0 0.1 ± 0.1
16:2 n-4 4.4 ± 1.2 3.7 ± 0.1 3.3 ± 1.4 3.9 ± 2.7 1.8 0.6 ± 0.1 1.3 ± 0.1 0.9 ± 0.1 0.4 ± 0.1 1.0 ± 0.1 0.9 ± 1.0
16:3 n-4 14.1 ± 3.5 10.4 ± 0.1 0.2 ± 0.3 3.3 ± 4.4 5.8 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1
16:04 2.1 ± 0.6 2.6 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.2 0.9 ± 0.1 0.7 ± 0.9 0.9 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
18:2 n-6 0.3 ± 0.1 0.4 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.9 16.4 ± 0.8 4.4 ± 0.3* 3.4 ± 0.1* 2.9 ± 0.4 1.8 ± 0.1 3.1 ± 0.2
18:3 n-6 0.2 ± 0.0 0.1 ± 0.1 2.1 ± 0.1 2.5 ± 0.2 2 0.9 ± 0.1 0.4 ± 0.1 0.1 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.5 ± 0.1
20:3 n-6 0.4 ± 0.1 0.2 ± 0.1 0.2 0.1 ± 0.1 1.6 ± 0.3 0.4 ± 0.0 0.3 ± 0.1
20:4 n-6 0.2 ± 0.1 0.2 ± 0.1 10.7 ± 0.4 4.4 ± 0.6* 5.8 1.5 ± 0.2 2.4 ± 0.1 4.0 ± 0.1 6.9 ± 1.3 7.3 ± 0.2 6.1 ± 0.5
18:3 n-3 0.6 ± 0.1 0.4 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 8.8 ± 0.2 9.2 ± 0.4 5.8 ± 0.1 0.5 ± 0.1 0.9 ± 0.1 1.0 ± 0.1
18:4 n-3 1.7 ± 0.4 1.7 ± 0.0 0.5 ± 0.1 1.5 ± 0.1 0.9 10.7 ± 0.3 20.9 ± 1.4* 17.4 ± 0.1* 0.1 ± 0.1 0.2 ± 0.2
20.4 n-3 0.3 ± 0.4 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
20:5 n-3 31.0 ± 7.3 24.3 ± 0.5 11.7 ± 0.7 17.3 ± 1.5* 16.6 0.5 ± 0.1 0.9 ± 0.1 0.6 ± 0.4 30.1 ± 1.9 41.6 ± 0.5* 38.2 ± 0.3*
22:5 n-3 0.8 ± 1.2 0.1 ± 0.1
22:6 n-3 2.1 ± 0.6 1.7 ± 0.3 1.5 ± 0.1 2.4 ± 0.1 2 11.3 ± 1.4 17.4 ± 1.4* 22.5 ± 0.4*
EPA + DHA 33.1 ± 7.9 26.0 ± 0.8 13.2 ± 0.8 19.7 ± 1.6* 18.6 11.8 ± 1.5 18.3 ± 1.5* 23.1 ± 0.8* 30.1 ± 1.9 41.6 ± 0.5* 38.2 ± 0.3*

Fig. 5   Content of total carbo-
hydrates and β-glucans of the 
microalgae cultivated by semi-
continuous culture at different 
relative growth rates (4%, 40%, 
and 60% of µmax). Means with 
SE bars (n = 3). Asterix indicate 
significant differences (p < 0.05)
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species investigated. As for total carbohydrates, only in C. 
muelleri, the β-glucan content increased with the reduced 
relative growth rate.

Productivity of lipids, EPA, DHA, carbohydrates, 
and β‑glucans

The productivity of total lipids in all species investigated 
varied with the relative growth rate and was highest when 
the algae were cultivated at 40% of the maximum specific 
growth rate (Fig. 6). Highest production yield of lipids was 
found in T. lutea cultivated at 40% relative growth rate, 
with 14 mg total lipid L−1 culture volume per day.

Similarly to the total lipids, highest production yield 
of both EPA and DHA was obtained when the algae were 
cultivated at 40% relative growth rate (Fig. 6). The highest 
production yield of EPA was found in N. oculata at 40% 
relative growth rate, with 1.7 mg L−1 culture volume per 
day. The highest production yield of DHA was found in T. 
lutea at 40% relative growth rate, with 0.8 mg L−1 culture 
volume per day.

The production yield of total carbohydrates and 
β-glucans varied with the species and the growth rate 

(Fig. 7). The two diatoms, C. calcitrans and C. muelleri, 
showed different patterns of production yields of total car-
bohydrates and β-glucans with different relative growth 
rates. Chaetoceros calcitrans obtained similar total carbo-
hydrate content at 40 and 60% relative growth rates, while 
C. muelleri got significant highest production yield of both 
total carbohydrates and β-glucans at medium (40%) rela-
tive growth rate, and lower yields at 4% and 60%. A simi-
lar pattern was observed for total carbohydrates in N. ocu-
lata as well, with the highest yield at 40% relative growth 
rate. T. lutea had an increased yield of both total carbohy-
drates and β-glucans with increasing relative growth rates.

Discussion

The growth rates of microalgae are species-specific and 
also to a large extent depend on the cultivation conditions. 
Besides nutrients and light, temperature has been found 
to have a pronounced effect on the growth of microalgae, 
as shown in the present study. Most of the seven marine 
microalgae species grew between 16 and 24 °C, except 
for C. calcitrans. This is consistent with previous studies, 
which found that most microalgae species can tolerate a 
wide range of temperature between 15 and 30 °C (Ras 
et al. 2013; Chaisutyakorn et al. 2018). The maximum 
specific growth rate varied with the species and cultiva-
tion temperature. Out of the seven species investigated, 
S. costatum showed the highest specific growth, followed 
by Tetraselmis sp., indicating the great potential of these 
two species for commercial production. The optimal tem-
peratures for the two diatoms (C. calcitrans and C. muel-
leri) were found to be 16 and 24 °C, respectively, with 
specific growth rates at 1.6 and 2.1 day−1, respectively. 
These values are much higher than those found in a previ-
ous study for Chaetoceros sp. (0.54 day−1) (Chaisutya-
korn et al. 2018). Tisochrysis lutea was found to grew 
best at 24 °C, in agreement with Renaud et al. (1995), 
who found that the optimal temperature for T. lutea was 
25 °C. In the present study, the highest specific growth 
rate was 1.73 day−1, twice the value reported by Renaud 
et al. (1995). The optimal temperature for N. oculata was 
16 °C, while other studies showed that N. oculata grew 
best at 20–25 °C (Converti et al. 2009; Wei et al. 2015; 
Chaisutyakorn et al. 2018). This indicates that the adapt-
ability to temperature conditions may vary even within 
the same microalgae species. N. oculata showed a lower 
specific growth rate compared to other six species; how-
ever, this value is still much higher than those reported 
by Converti et al. (2009) and Chaisutyakorn et al. (2018) 
(0.13–0.33 day−1). The growth rate of the species was also 
found to affect the productivity of the species (Converti 
et al. 2009); therefore, choosing the optimal cultivation 
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Fig. 6   Production yields (mg L−1 culture volume day−1) of total 
lipids (upper panel), and EPA and DHA (lower panel) of the micro-
algae cultivated at different relative growth rates (4%, 40%, and 60% 
of µmax). Means with SE bars (n = 2–3). Asterisks indicate significant 
differences (p < 0.05)
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temperature for the strain of species is important for the 
production yield of the culture.

The cellular content of carbon and nitrogen varied 
with the density of the culture for all species investigated 
in this study, in agreement with earlier studies (Pérez-
Morales et al. 2015; Roopnarain et al. 2015). The N/C, 
P/C, and N/P ratios for the microalgae cells in the station-
ary phase in the present study were lower than what could 
be expected for nitrogen- and phosphorus-saturated cells 
(Sakshaug et al. 1983; Sakshaug and Olsen, 1986). The 
N/P ratio (by weight) of the growth medium used was 11 
(F/2: Guillard and Ryther 1962), with corresponding val-
ues of the microalgae cells in the stationary phase (rang-
ing 11–18) above the ratios for oceanic particulate matter, 
called the Redfield ratio (N/P = 7.1 by weight, Redfield 
et al. 1963). This indicates that the algae cultures in the 
present study were nutrient-limited and limited more by 
phosphorus than by nitrogen. The decreasing N/C ratio 
with increasing cell numbers was probably a result of 
constant lipid and carbohydrate synthesis, together with 
reduced protein synthesis due to exhaustion of nutrients 
in the growth media (Siron et al. 1989; Sukenik and Livne, 
1991). The N/C ratio of N. oculata behaved differently 
from that of the other species, increasing up to a certain 
density, and then decreasing with further cellular density 
increases. Similar results were reported by Flynn et al. 
(1993), suggesting that this species can assimilate and 
store available nitrogen.

The total lipid content of the algae species investigated 
varied between 10 and 34% of dry matter, and all species 
obtained increased lipid content with reduced relative 
growth rates due to nutrient limitation. This is in agreement 
with earlier reports (Reitan et al. 1994; Brown et al. 1997; 

Shokravi et al. 2020). The highest lipid content was found in 
N. oculata grown at 4% relative growth rate, followed by C. 
muelleri and T. lutea, both also at 4% relative growth rate. 
The lipid accumulation in the species investigated can be 
a result of reduced cell division and protein synthesis due 
to reduced availability of nutrients, as well as of increased 
neutral lipid synthesis when the algae became nutrient-lim-
ited (Sukenik and Livne 1991; Lombardi and Wangersky 
1995; Wang et al. 2019). This indicates the great potential 
of using these three species for lipid production under nutri-
ent limitation.

The content of n-3 PUFA in microalgae is of great interest 
when searching for aquafeed resources (Chauton et al 2014). 
The fatty acid profiles of the species investigated showed 
relatively close taxonomic similarities, where the two dia-
tom species (C. calcitrans and C. muelleri) obtained high 
content of 20:5 n-3, T. lutea had high content of 22:6 n-3; 
and N. oculata was rich in 20:5 n-3. Our results show that 
out of the species investigated, only T. lutea can be consid-
ered a source of DHA (22:6 n-3), with a quantitative DHA 
content of 11 to 15 mg g−1 DW. Our results show that N. 
oculata is a promising species for cultivation for EPA-rich 
biomass, with 38–50 mg g−1 DW, consistently with earlier 
reports (Delaunay et al. 1993; Reitan et al. 1994; Zhukova 
and Aizdaicher 1995).

The change in relative growth rate of the microalgae 
revealed different effects on the relative content of fatty 
acids. The per cent content of EPA in N. oculata and C. 
muelleri and content of DHA in T. lutea increased with 
increased relative growth rate.

Much attention has been paid to the content of total carbo-
hydrates and β-glucans in diatoms (Granum and Myklestad 
2002; Chiovitti et al. 2004). In the present study, the highest 

Fig. 7   Production yields of total 
carbohydrates and β-glucans 
(mg L−1 culture volume day−1) 
of the microalgae cultivated at 
different relative growth rates 
(4%, 40%, and 60% of µmax). 
Means with SE bars (n = 3). 
Asterisks indicate significant 
differences (p < 0.05)
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content of total carbohydrates was found in C. muelleri, and 
highest β-glucans was found in C. calcitrans. Among the 
species investigated, only C. muelleri accumulated both car-
bohydrates and β-glucans with decreasing relative growth 
rates. The other species did not accumulate carbohydrates 
with decreasing relative growth rates, as they had for total 
lipids, meaning that the accumulation of carbohydrates and 
that of lipids follow different metabolic pathways. The high 
content of β-glucans in C. muelleri was also reported by 
Størseth et al. (2004). β-glucans are increasingly used as 
immunostimulants in aquafeed because of their ability to 
be incorporated directly into aquafeeds and to enhance the 
immune system in finfish (Bruce and Brown 2017).

Microalgae are considered one of the most promising 
feedstocks for a sustainable supply of commodities and 
specialties for both food and non-food production (Singh 
and Gu 2010; Wijffels et al. 2010; Milledge 2011; Draaisma 
et al. 2013). Interestingly, all four microalgae species investi-
gated obtained the highest production yield of lipids, calcu-
lated as the content of lipids in the culture volume harvested 
per day, when cultivated at a relative growth rate 40% of the 
maximum specific growth rate. High productivity is a key 
factor when selecting species and cultivation conditions for 
producing biomass and lipids for use in fish feed and other 
commodities (Chauton et al. 2014). Microalgae cultivation is 
increasingly recognised as a suitable technology for the pro-
duction of the omega-3 PUFA, cultivated both under hetero-
trophic conditions (Oliver et al. 2020) and under traditional 
phototrophic conditions as well as photoheterotrophic and 
mixotrophic culture (Hamilton et al. 2014; Ryckebosch et al. 
2014; Piasecka et al. 2020). The production yield of EPA 
and DHA also varied with the growth rate, and the highest 
production yield of EPA was found in N. oculata cultivated 
at 40% µmax, whereas the highest production yield of DHA 
was found in T. lutea cultivated at 40% µmax. The Marine 
Ingredients Organization, IFFO, considers microalgae the 
most promising and sustainable alternative source of EPA 
and DHA for fish feed (Chauton et al. 2014). However, the 
productivity of EPA and DHA from microalgae depends on 
the biomass production and the fatty acid content in the dry 
matter of the algae. Therefore, production of EPA and DHA 
from microalgae is a compromise between maximising the 
lipid content by modulating growth conditions without low-
ering biomass production, as discussed by Chauton et al. 
(2014).

The productivity of carbohydrates and β-glucans again 
showed higher values in C. muelleri and N. oculata when 
grown at 40% µmax, while increasing with increased relative 
growth rate in C. calcitrans and T. lutea. Out of the four spe-
cies, C. calcitrans showed the highest productivity of both 
carbohydrates and β-glucans when grown at 60% µmax. Based 
on this result, C. calcitrans is a promising microalgae strains 
for producing β-glucans as immunostimulants for aquafeed. 

Again, it is essential to maximise the carbohydrate content 
by manipulating the growth conditions without lowering the 
biomass production to achieve the maximum production of 
β-glucans.

Conclusion

Selected microalgae species belonging to the Bacillariophy-
ceae, Haptophyceae, Eustigmatophyceae, and Prasinophyceae 
were characterised for cellular content of carbon and nitro-
gen, as well as production yields of lipids, fatty acids, total 
carbohydrates and β-glucans. Cellular content of carbon and 
nitrogen showed species-specific patterns with increasing cell 
numbers in the culture. The total lipid content of C. muelleri, 
C. calcitrans, N. oculata, and T. lutea increased with reduced 
relative growth rate in semi-continuous cultures and was high-
est in N. oculata. However, the highest productivity of lipids 
was found in T. lutea grown at a growth rate of 40% of the 
maximum specific growth rate. The content of polyunsaturated 
fatty acids varied between the species investigated, with high 
content of EPA in C. muelleri, C. calcitrans, and N. oculata, 
and high content of DHA in T. lutea. The β-glucan fraction of 
the carbohydrates was highest in C. muelleri and C. calcitrans 
and was very low in N. oculata. Among the species investi-
gated, C. muelleri is a promising strain for β-glucan production 
due to its high yield of β-glucans for cells cultivated at a 40% 
relative growth rate.
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