
Engineering Geology 297 (2022) 106484

Available online 4 December 2021
0013-7952/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Integrated bedrock model combining airborne geophysics and sparse 
drillings based on an artificial neural network 

Asgeir Kydland Lysdahl a, Craig William Christensen a,b,*, Andreas Aspmo Pfaffhuber a,b, 
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A B S T R A C T   

Cost overruns caused by unforeseen geological challenges are commonplace for large infrastructure projects. 
Thorough ground investigations can reduce this risk, but geotechnical drillings and laboratory test are expensive 
and time consuming. Airborne electromagnetics (AEM) is a low-cost geophysical method being increasingly used 
for geotechnical ground investigations. However, extracting engineering parameters from these complex data is 
challenging. We present a novel approach of extracting depth to bedrock from AEM data using artificial neural 
networks (ANN) and sparse drillings. Using synthetic models, we test its theoretical performance and analyse 
sources of error. We find that geological complexity is the main limitation on performance. We also test the 
algorithm on real field data from a complex geological setting. Results show that ANNs produce bedrock models 
that rival the accuracy of manual interpretations by experts and that are markedly more accurate than existing 
automated resistivity model interpretation methods. Using ANN based bedrock interpretation, one needs 2 to 3.5 
times fewer geotechnical drillings (i.e., a reduction of 50–70%) in the early phases of a project compared to 
ground investigations using only borehole data. Further improvements may be possible with strategic planning of 
drilling campaigns and careful data pre-processing.   

1. Introduction 

Cost overruns and delivery delays are an ever-present challenge for 
engineers and project owners. Average overruns of between 20 and 50% 
are typical for linear infrastructure projects (Flyvbjerg et al., 2002). 
Geological risk is a significant part of planning uncertainties and a key 
contributor to these cost adjustments (Beckers et al., 2013). The high 
costs and extensive time of detailed ground investigation and laboratory 
testing using traditional approaches, consisting primarily of geotech
nical drillings and to some extent ground geophysics, complicate the 
management of this risk. 

Airborne geo-scanning is an emerging application that is increasingly 
being used to reduce the geological risk in early project phases (Pfaff
huber et al., 2016). In the context of this paper, we define airborne geo- 
scanning as the technique combining airborne geophysics and ground 
truth data to produce ground models. It often relies on a method first 
established for mineral exploration in the 1950s – airborne 

electromagnetics (AEM) (Palacky and West, 1991) – that has been 
adapted for geotechnical purposes. The development of high-resolution 
time-domain AEM survey equipment (Sørensen and Auken, 2004) and 
specialized processing and inversion techniques (Viezzoli et al., 2008) 
were critical for providing the high-resolution, shallow imaging needed 
for engineering applications. The earth resistivity models derived from 
this type of survey have since proven valuable for bedrock topography 
mapping (Christensen et al., 2015, 2020), soil type characterization (He 
et al., 2014; Christiansen et al., 2014; Anschütz et al., 2017a; Lysdahl 
et al., 2017; Pfaffhuber et al., 2017b), fracture zone mapping (Okazaki 
et al., 2011; Pfaffhuber et al., 2016) and rock type delineation (Pfaff
huber et al., 2017a). 

However, translating complex geophysical data into parameters and 
models valuable to engineers is challenging. Traditional techniques, 
such as qualitative data attribute analysis and geophysical data inver
sion, are time consuming and often produce inadequate and ambiguous 
results. Manual interpretation of the geophysical data and inverted 
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parameter models is often very subjective. Machine learning (ML) based 
techniques offer a promising path forward for complex geophysical and 
geotechnical data analysis problems. ML algorithms are superior in 
recognizing patterns in large amounts of multidimensional data, 
compared to humans. These algorithms are also fast and objective since 
they are not biased by the skillset or preferences of a human interpreter. 
That has been demonstrated in multiple examples, including clustering 
of geophysical data (e.g., Gunnink and Siemon, 2015) as well as finding 
discrete boundaries such as peat thickness (Dewar et al., 2018) or 
delineation of hydrogeological units (Korus et al., 2018). Within the 
realm of geotechnics, a special type of machine learning algorithms, 
called artificial neural networks (ANNs) have been successfully used in a 
variety of applications, including modelling of bedrock elevation, pile 
capacity, foundation settlements, liquefaction, slope stability, and 
various soil parameters (Zhou and Wu, 1994; Shahin et al., 2001). 

In the past, ANNs have occasionally been used interpreting AEM data 
(e.g., Gunnink et al., 2012). More recently, ANNs are increasingly being 
employed. Lysdahl et al. (2018) and Pfaffhuber et al. (2019) used AEM- 
derived resistivity models and sparse geotechnical drilling data as input 
to ANNs to produce depth to bedrock models. Despite promising results, 
those works did not address several questions regarding how robust this 
method can estimate depth to bedrock. This paper aims at advancing the 
state of the art by addressing the following questions:  

1. What are the theoretical performance limits of this ANN-based 
method?  

2. Can this performance be achieved with real field data?  
3. Does this method still perform well in very complex geological 

environments?  
4. Are ANNs quantifiably better compared to earlier traditional data 

analysis methods?  
5. How does the preparation of non-colocated datasets affect 

performance? 

By addressing these unknowns, we aim to assess whether ANN based 
data analysis can enhance the value of AEM data in engineering projects. 

First, we use synthetic models of varying complexity to evaluate the 
theoretical performance of the ANN based bedrock interpretation 
method and investigate the sources of error. We then revisit a field data 
example, first considered by Lysdahl et al. (2018), which had a partic
ularly complex geological setting. Extensive drilling data has now 
become available, which we use to evaluate the performance of this 
method. 

2. Methods 

In this section, we briefly introduce the geophysical background and 
revisit traditional methods for geophysical data analysis to illustrate 
their shortcomings. Then, we describe the setup and training of the 
applied artificial neural network (ANN) method and the validation 
procedure employed. 

2.1. Field data and processing and inversion 

The geophysical data that form the basis of our analysis are re
sistivity models derived from airborne geo-scanning, more specifically, 
time-domain airborne electromagnetic (AEM) data. In such airborne 
surveys, a set of transmitter and receiver coils are carried by a fixed- or 
rotary-wing aircraft flying at low altitude. The transmitting coil carries a 
time-varying electric current, which causes a time varying primary 
magnetic field. This primary magnetic field continues into the subsur
face and induces a time varying electric current in the ground. The 
strength of these eddy currents is a function of the resistivity distribution 
in the subsurface. A highly sensitive and accurate receiver coil system 
measures then a small, secondary magnetic field which correlates with 
the strength of the eddy currents in the subsurface. Two broad families 

of instruments exist: time-domain and frequency-domain systems. Time- 
domain systems transmit a discrete pulse and record the resultant sec
ondary magnetic field as a function of time. Frequency-domain systems 
continuously transmit one or several waveforms and record the ampli
tude and phase shift of the secondary magnetic field. For this study, we 
utilize a time-domain, helicopter-towed AEM system called SkyTEM 304 
(Sørensen and Auken, 2004), shown in Fig. 1. 

Unlike seismic reflection or ground-penetrating radar (GPR), one 
cannot acquire a subsurface geometry model (i.e., discrete interfaces, 
reflectors) by simple processing of raw AEM data. This is due to the 
diffusive nature of the electromagnetic fields at the frequencies 
employed. Instead, one must indirectly infer a geophysical parameter 
model, in this case a resistivity model, that can explain the measured 
data within the observed data uncertainty. This is a very computation
ally intensive, non-linear process called inverse modelling or inversion. 
The AEM inverse problem is strongly non-unique, which means that 
there are many different resistivity models that can explain the 
measured data equally well. Additional constraints must be employed, 
to stabilize the inverse problem and to ensure a geologically plausible 
model. 

There are many different approaches for constraining, or regular
izing, a non-linear inverse problem. One possibility is to limit the 
number of resistivity layers in the subsurface, also referred to as 
(layered) inversion. The resulting resistivity models have often just a very few 
layers but often show strong resistivity contrasts between the distinct layers, 
which can be easily interpreted. With such an approach, one could, for 
example, produce a simple two-layer model in which the layer boundary 
can be interpreted directly as the soil-bedrock boundary (e.g., Chouteau 
et al., 2013). Another alternative to stabilize the AEM inverse problem is 
to seek for a smooth subsurface resistivity model, also referred to as 
Occam inversion or multi-layer, smooth inversion. Engineering parameters, 
like depth to bedrock, are then obtained by integrating ground truth 
data (e.g., Christensen et al., 2015; Chambers et al., 2014). 

Smooth, Occam-type multi-layer inversions are often preferred, for 
several reasons. First, constrained, layered inversions are usually inad
equate because they cannot account for more complexity than two to 
three slabs with homogeneous properties (Sengpiel and Siemon, 1998). 

Fig. 1. Photo of a helicopter geo-scanning (time domain AEM) system along 
with illustrative sketch of the fundamental physics: A strong electric current in 
the carrier frame (white dashed circle) creates a magnetic field (white stippled 
lines) which in turn induces electric currents in the ground (orange dashed 
circles). The secondary magnetic field (orange stippled lines) caused by those 
eddy ground currents is measured by an electromagnetic receiver on the carrier 
frame as a function of time after the transmitter current is switched off. 
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Second, although layered inversions can work well in some more com
plex geological environments, they are dependent on good a priori in
formation (Auken and Christiansen, 2004), something that is not always 
available in new, poorly understood, or highly heterogeneous geological 
environments. Third, in some cases, real resistivity changes are gradual 
rather than sharp at these scales of investigation. This is for instance the 
case for gradual changes in salt content due to leaching in marine clay 
deposits common in Scandinavia (Bazin and Pfaffhuber, 2013). Smooth 
inversions are usually more robust in complex geological settings as they 
do not require extensive apriori information about the subsurface. 

For all the examples discussed in this study we use the processing and 
inversion software Aarhus Workbench(Auken et al., 2009), which utilizes 
the inversion kernel AarhusInv (Auken et al., 2015). We use a spatially 
constrained inversion (SCI) (Viezzoli et al., 2008), which seeks a smooth 
quasi-3D resistivity model, with a fixed number of model layers (usually 
25 to 30) at all AEM sounding locations. The layer thickness is fix and 
increases from a few meters at the surface to tens of meters at the bottom 
of the model, reflecting the depth dependent resolution limit and the 
depth penetration of the AEM method. The layer thicknesses are the 

same for any given x-y position of the resistivity model. 

2.2. Traditional interpretation of resistivity models from AEM data 
inversion 

To illustrate the resolution that we can expect from a helicopter- 
derived resistivity model, we built a conceptual 3D geological model 
illustrating soil and rock layers with geometries and resistivity contrasts 
typical of projects in Norway (Fig. 2a). The model includes the three 
most common targets for helicopter geo-scanning in Norway:  

1) Multiple bedrock units with varying resistivities (gneiss, shale and 
limestone)  

2) Multiple soil units with varying resistivities, including pockets of 
quick clay within regular clay  

3) A bedrock-sediment interface with varying depth and varying 
bedrock-sediment resistivity contrasts 

Water-saturated weakness zones in bedrock are also a common target 

Fig. 2. A.) Cross section of a 3D synthetic geological model with soil and rock layers of varying resistivity, used to compute synthetic AEM data. B) Resistivity model 
from the AEM data inversion, illustrating resolution and depth penetration of a AEM survey encountering complex geology. Note that the inverted resistivity model is 
a smooth representation of the synthetic model and would be difficult to interpret without additional subsurface information. 
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for geo-scanning. Though not explicitly included in the model, they are 
dipping structures of lower resistivity than the surrounding host rock. In 
practice, they may appear essentially identical to the dipping shale unit 
in Fig. 2a, which has a lower resistivity than the surrounding gneiss and 
limestone. 

From the conceptual model in Fig. 2a, we computed synthetic AEM 
data for a SkyTEM 304 survey configuration using AarhusInv (Auken 
et al., 2015). Note that the forward model has a a limited number of 
layers. The synthetic AEM data were then inverted using a continuously 
discretized parameter model with a large number of layers, resulting in a 
smooth resistivity model (Fig. 2b). The resultant model resembles the 
resolution we could be expected from such a geo-scanning survey. 

The inverted resistivity model is smoother than the conceptual model 
but retains its main features and structures. In some areas, the signal 
does not penetrate deep enough to resolve the deepest layers because the 
electromagnetic signal is quickly dissipated by shallow, conductive 
material (e.g., at 200 to 375 m along the profile in Fig. 2). At this 
location, there is a strong resistivity contrast at the boundary between 
clay and gneiss in the conceptual model. However, the inversion is not 
able to reconstruct this contrast, only a weak increase in resistivity can 
be observed. Manually interpreting such subtle resistivity variations can 
be challenging, even for a trained and experienced interpreter. Building 
a seamless bedrock model can therefore not be based on this geophysical 
model alone and integration with additional subsurface information is 
required. 

2.3. Artificial neural networks for interpretation of resistivity models from 
AEM data inversion 

Many different automated methods of extracting depth to litholog
ical boundaries, like depth to bedrock, from resistivity models have been 
tested in the past, but each had a particular weakness. The simplest 
approach is to select threshold parameters that correspond to mean
ingful isosurfaces like the bedrock-soil interface (Chambers et al., 2013; 
Anschütz et al., 2014). However, both the smoothness of inverted 
geophysical models and the spatial variability in bedrock and sediment 
resistivity limit the effectiveness of this method (Christensen et al., 
2015; Anschütz et al., 2017b). Linear statistical methods provided a 
significant improvement over the threshold approach because ground 
truth data may be used as training data (Gulbrandsen et al., 2015; 
Anschütz et al., 2017b). However, linear statistical methods have diffi
culties in handling differing geological environments (Lysdahl et al., 
2018). A neural network with non-linear activation functions is a more 
effective solution to this data analysis problem. 

The ultimate goal is to create a depth-surface or, more fundamen
tally, a depth prediction at all xy-surface locations where an AEM 
measurement was made. This can be done by finding an operator f that 
maps the AEM-derived subsurface attributes, onto bedrock depth values: 

d = f (M) (1) 

Here, d is a column vector of bedrock depth predictions at AEM 
sounding locations and M is a matrix where each row represents a single 
AEM sounding, with the columns representing AEM sounding attributes. 
In our case, these attributes include surface terrain elevation and 
inverted subsurface resistivity values at each AEM sounding location. 
More precisely, we use the logarithm of the resistivity values to better 
resemble the sensitivity of the AEM method. We also include the x- and 
y- coordinates of the sounding location so that the mapping operator f 
can adapt to different geological environments within a project area, a 
common practice in geological applications of machine learning-based 
predictive modelling (e.g. Cracknell and Reading, 2014; Kovacevic 
et al., 2009). 

To construct a suitable operator f, we need training data. This refers to 
collocated AEM soundings and known depth values dtrain. We generally 
use known depths to bedrocks from total soundings (TS), a type of 
geotechnical drilling where drillers continue 3 m after reaching harder 

material to confirm that it is bedrock (as opposed to a glacial erratic or 
blocks). We also limit ourselves to drillings that are within 75 m of a 
AEM sounding; this is roughly the radius of the footprint of an AEM 
measurement. Known depth to bedrock values are seldom located 
exactly at an AEM sounding location and there are several ways of 
resolving this. In Lysdahl et al. (2018), depth points were simply 
assigned (projected) to the nearest AEM flightline. However, we choose 
to interpolate the inverted resistivity model to the depth points' surface 
location. We use an interpolation method similar to Pryet et al. (2011), 
where variogram modelling and kriging interpolation are done for each 
individual layer of the AEM based resistivity model. We suspect that this 
interpolation step introduces less error than projecting drillings to AEM 
sounding locations because the resistivity model is smooth in all spatial 
directions. The resulting pairs of co-located known-depth points and 
resistivity data are called the training points. 

The mapping operator f is derived using a supervised multi-layer 
perceptron network, a specific type ANN structure from the Python li
brary scikit-learn (Pedregosa et al., 2011). The weighting parameters 
within the ANN are randomly assigned starting values when initialized, 
and a stochastic gradient-descent Limited-memory Broyden-Fletcher- 
Goldfarb-Shanno (L-BFGS) optimization algorithm (Byrd et al., 1995) 
is used to adjust these weights, thereby fitting the ANN to the training 
points. The loss function to be minimized is dependent on both the de
viation between true and predicted bedrock depth (at training points) as 
well as the L2 norm (‖W‖) of the weighting parameters within the neural 
network: 

Loss =
⃦
⃦dpred − dtrain

⃦
⃦2

2 + α‖W‖
2
2 (2)  

‖W‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1

∑n

j=1

⃒
⃒wij

⃒
⃒2

√
√
√
√ (3) 

Generally, a high loss value (Eq. 2) indicates that the misfit between 
predictions and training data are large, whereas small loss values mean a 
close match with training data. However, a low loss value may also 
mean overfitting, resulting in an unstable and poorly performing map
ping operator f (in Eq. 1). The regularization parameter α is tuned to 
reduce the effect of overfitting by constraining the allowed variation 
among feature weights. This tuning is done manually, with α being set 
just high enough to avoid noticeable prediction artefacts when 
inspecting 2D vertical profiles. 

Once the network has been trained, resulting in a stable mapping 
operator f, it can be used to predict the depth to bedrock at all AEM 
sounding locations. This application of the mapping operator f to the 
AEM sounding attributes is comparable to a simple forward calculation 
and is numerically very cheap. 

In order to evaluate the ANN based prediction method, the set of 
available known depths to bedrock is usually divided into two subsets: 
one training and one validation set. The training set is used to train the 
network, as described above. The validation set is then used to evaluate 
the accuracy of the prediction. We refer to the difference between a 
prediction and a validation data point as the validation error. We increase 
the number of training data from just a very few to all available depth to 
bedrock data in steps, and evaluate both the loss and the validation 
error. In this way, we can also study the effect of training data size on the 
performance of the algorithm. This evaluation sequence is repeated at 
least 10 times for every number of training points, with a randomized 
subset of training and validation points. This is done for two reasons. 
First, the optimization algorithm used during the training of the ANN 
may end at a local minimum rather than a global minimum of the loss 
function. Second, the validation error is somewhat dependent on the 
choice of training data, especially for small training sets and complex 
AEM models. The median of the resulting training misfits and validation 
errors over all sequences is recorded and allows us to evaluate the per
formance and to optimize the construction of the training dataset. 
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3. Results 

To study the performance of the depth prediction algorithm, we first 
analyse the theoretically achievable accuracy with simple synthetic 3D 
models, before testing a complex real field case. The synthetic tests are 
named ST1 to ST5 and are summarized in Table 1. 

3.1. ANN based interpretation of synthetic resistivity models 

In test ST1, a simple two-layer resistivity model with a dipping 
interface was discretized into 900 AEM sounding locations (30 in both x 
and y directions) with 25 resistivity layers at each location (Fig. 3a). One 
synthetic borehole was placed at each AEM sounding location, with a 
depth to bedrock exactly matching the discretized layer interface. Re
sistivity values above and below the interface were constant across the 
model. The ANN was trained and evaluated with an increasing number 
of training data points and converged to a median validation error 
magnitude of below 0.3 m. 

To demonstrate the effect of increased complexity in test ST2, we 
separated the model in two parts: one with decreasing resistivities across 
the interface and one part with increasing resistivities over the interface, 
representing a change in the geologic setting (Fig. 3b). The depth to 
bedrock data were still matching the discretized interface. After training 
and evaluating the ANN again with an increasing number of training 
data points, the validation error converged to 1 m with the loss 
increasing to 1 m. 

In synthetic test ST3, the synthetic boreholes were then changed to 
describe a continuous slope rather than the discretized staircase-like 
model boundary, to evaluate the performance for a more realistic 
geologic scenario and the effect of an inversion result with a too coarse 
model discretization on the ANN prediction (Fig. 3c). This increased the 
average validation error to 3 m and the loss to 4.5 m. 

The discrete models with sharp resistivity contrasts only provide 
theoretical, best-case scenarios that are unrealistic for processed field 
data. Often the subsurface consists of more than two layers and realistic 
AEM data inversion results are often rather smooth due to the limited 
resolution of the AEM method, like illustrated in Fig. 2. Therefore, we 
compute synthetic AEM data based on the two-layer models from ST1 
and ST2/ST3 and invert these data, resulting in rather smooth resistivity 
models ST4 and ST5. Again, the ANN was trained and evaluated with 
these smooth models and an increasing number of training data, 
converging to a validation error of less than 1 m and 1.5 m, for ST4 and 
ST5 respectively (Fig. 3d and Fig. 3e). 

Finally, after considering these simple synthetic models, we test the 
ANN based bedrock interpretation with the most complex synthetic 
model that we might realistically expect, the conceptual model intro
duced in the methods section (Fig. 2). This model includes many chal
lenging features to interpret, including undulating bedrock, dipping 
rock layers, and a complex mix of clay sand, and moraine soil layers. The 
strength of our integrated interpretation becomes most evident with this 
complex model. With only 20 boreholes that are consequently used as 
training points, a plausible bedrock interface can be reproduced (Fig. 4). 
The validation error is higher given the high variability along the short 
profile and converges to around 6 m (Fig. 5). 

3.2. Field data example 

In this section we present the interpretation of a real field dataset 
using the described artificial neuronal network. The field data were 
acquired by the Norwegian Geotechnical Institute (NGI) in 2016 near 
the city of Hønefoss some 30–40 km northwest of Norway's capital Oslo 
(Fig. 6). The helicopter geo-scanning survey and drilling campaigns 
were acquired for the design of a new highway and high-speed railway 
connecting Oslo with these regions and more distant cities such as 
Bergen. A total of 431 geotechnical drillings were accessible, indicating 
the sediment stratification and depth to bedrock at the drilling location 
(NGU, 2019). The drillings were used for training and validation of the 
ANN based bedrock interface detection. AEM data were acquired with a 
SkyTEM 304 system (Sørensen and Auken, 2004) and covered 70 km2 

with a 100 m line spacing, within one week in June 2016. The data was 
processed manually removing potential noise and coupling effects and 
inverted, as described in the methods Section 2.1, resulting in a smooth 
quasi-3D resistivity model. 

3.2.1. Geological setting 
The survey covers post-glacial geomorphology typical for the low

lands of southeastern Norway (Fig. 6). In some areas, one finds exposed 
bedrock, and in others, valleys are filled with massive glaciofluvial de
posits up to tens of meters in thickness. Coarse-grained alluvial deposits 
(medium resistivity, 100–500 Ωm) are found alongside fine-grained 
marine clay deposits (which are now above sea level due to post
glacial heave). These marine clay deposits are in parts saline (very low 
resistivity, <10 Ωm) and in other parts have had their salt content 
leached and are potentially hazardous quick clay (low resistivity, 
10–100 Ωm). Some moraine material is also found and is typically 
highly compacted and is either coarse-grained or has a mix of grain sizes 
(very high resistivity, >500 Ωm). The indicated resistivity ranges (after 
Palacky, 1987) are approximate and may overlap as the formation re
sistivity depends on multiple factors such as porosity, fluid saturation 
and properties, formation factors and other parameters (Keller, 1987), 
which make a manual analysis of the resistivity models difficult, even for 
a trained interpreter. 

Northwest of the river Storelva (Fig. 6), the bedrock consists of 
Precambrian meta-sediments and local intrusions that are very resistive 
(>4000 Ωm). In the southeast, one finds instead Cambro-Silurian, 
limestone-rich shales and limestones with medium-high resistivity 
(200–1000 Ωm). Within this volume of Cambro-Ordovician rocks, near 
the river Storelva, there are more frequent occurrences of sulphide-rich 
black shales (as low as 1 Ωm). 

3.2.2. Bedrock detection: Qualitative comparison of methods 
In this subsection, we compare initial manual interpretations and 

new automated methods for estimating the depth to bedrock depth. At 
the time of the airborne survey only a limited number of geotechnical 
drillings were available. 

First, a simple manual triangulation and interpretation between the 
geotechnical drilling locations is used to find the lateral depth to 
bedrock distribution, mimicking current state of practice in geotechnical 
projects that often rely only on drilling and lack geo-scanning data 

Table 1 
Summary of the tests using synthetic models.  

Test 
name 

Features Validation error at 
convergence (m) 

Loss at convergence 
(m) 

Figure 

Two 
layers 

Two geological 
areas 

Bedrock fixed to resistivity 
boundary 

Smooth 
Inversion 

Complex 
geology 

ST1 x  x   0.3 – 3a 
ST2 x x x   1 1 3b 
ST3 x x    3 5 3c 
ST4 x   x  1 4 3d 
ST5 x x  x  1 4 3e  
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(Fig. 7a). We also apply a linear statistical Localized Smart Interpreta
tion (LSI) algorithm (Gulbrandsen et al., 2015) to the resistivity models 
and validated with a subset of the available boreholes (Fig. 7b). Finally, 
we use a trained ANN to interpret the depth to bedrock utilizing both 
local information from geotechnical drillings and a AEM based re
sistivity model that covers the entire survey area (Fig. 7c). 

To illustrate the differences between the manual, linear and neural 
network method, we examine one profile that spans over the highly 
varying geology (Fig. 7). The profile consists of an area with weak 
contrast between sediments and bedrock the first 2000 m, a central part 
with shallow bedrock, a transition from conductive to resistive gravel- 
type sediments (3500 m–4300 m) and finally a deep paleochannel fil
led with both resistive and conductive sediments. 

The deep paleochannel between (4300 and 6500 m) is the most 
difficult location to interpret depth to bedrock. Very conductive sedi
ments (below 4 Ωm, dark blue) lie above a less conductive unit (~10 
Ωm, greenish blue), the boundary between these is smooth and indis
tinct. It is known that there is a transition from resistive, pre-Cambrian 
magmatic bedrock to more conductive Cambro-Silurian shales towards 
the south, but the position of this transition is uncertain (Fig. 6). It could 
be that the underlaying bedrock in the paleochannel is more conductive 
shale which has a weak resistivity contrast with the overlying conduc
tive sediments. However, based on the synthetic modelling and inver
sion study for a complex geological setting (Fig. 2), it is reasonable to 
assume that the thick conductive sediments are limiting the inversion's 
ability to accurately reconstruct the absolute resistivity value for the 

Fig. 3. Synthetic algorithm training and assessment models along with corresponding validation error and loss curves: a) and b) two-layer models with training 
points at discrete layer interfaces; c) two-layer models with points at discrete depth values; d) realistic smooth models with homogeneous contrast and e) smooth 
models with changing contrast. 
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underlaying rock which may instead be a resistive, hard magmatic rock 
unit. 

We observe that the linear LSI-algorithm seeks to find a relation 
between the AEM-derived resistivity models, the topography and the 
known depth points at drilled locations, but the LSI algorithm is unable 
to match every known depth point with satisfactory accuracy while 
keeping a somewhat smooth, consistent surface (Fig. 7b). The linear LSI 
prediction results are reasonable at homogeneous parts of the survey (e. 
g., from 2000 to 3500 m in Fig. 7b) but inconsistent when the geological 
setting and thus the resistivity contrast changes as under the gravel 
plateau (3500 to 4300 m) or in the deep paleochannel (4300 to 6500 m). 
It also generally misses the correct bedrock height between 0 and 2000 
m, as indicated by the newer drillings from 2019 and 2020, that became 
available after the data analysis. 

In contrast, the ANN based bedrock interpretation algorithm can 
handle the increased complexity from 2000 m to 6500 m well (Fig. 7c). 
That is because we used resistivity depth-profiles and depth to bedrock 
measurements at different drilling locations to teach the ANN these 
varying resistivity trends, describing the sediment-bedrock interface. 
Nevertheless, between 0 and 2000 m (Fig. 7c) the ANN algorithm per
forms poorly, due to the lack of training data and significantly different 
resistivity depth-trends than at locations where we have training data. 
The human interpreter, however, can interpret the depth to bedrock 
using the existing contrast in the resistivity model (Fig. 7a). 

The ANN algorithm only successfully extrapolates beyond areas 
covered by geotechnical datasets when there are representative con
trasts, similar to locations with training data, in the resistivity model. 
For instance, in the section shown in Fig. 8, which is 500 m SW of the 
main railway alignment where most boreholes are located, the ANN is 
able to make reasonable depth to bedrock predictions at locations i, ii, 
iii, and iv. This is because geological conditions and resistivity contrast 
between the bedrock and overlying marine clays are similar to the lo
cations with training data along the railway alignment. However, if 
there is no contrast between bedrock and coarser sediments like 
moraine, glaciofluvial sediments, and beach sands (locations v and vi), 
the lack of nearby training data leads the ANN to a more uncertain 
bedrock prediction. 

We also compare bedrock models resulting from linear triangulation, 
LSI, and ANN in map view (Fig. 9). The magnitude of the difference 
between drilled, ground-truth depth and predicted depth is also plotted 
alongside these models. Comparing the linear triangulation (Fig. 9a) to 
the other two methods LSI (Fig. 9b) and ANN (Fig. 9c), the advantage of 
integrating AEM with borehole data becomes obvious; one obtains a 
much more nuanced and accurate view of subsurface structures, and the 
final model covers a larger areal extent. However, in areas where dril
lings are closely spaced, such as the zoomed view shown in the inset 
map, the simple triangulation performs well. Comparing the LSI and 
ANN models, it is evident that ANN is much more capable of predicting 
large variations in bedrock depth, which is most obvious at the deep 
channels in the zoomed area (Fig. 9a, b, & c). 

3.2.3. Bedrock detection: Quantitative performance evaluation 
In order to quantitatively assess the difference of performance be

tween the bedrock depth interpretation methods, we tested several 
randomized sub-sets of training points and validated the results against 
all remaining drillings. A new ANN was trained and evaluated for each 
set of training points, which varied in size from 10 to 200 random 
borehole locations. 

Validation errors varied significantly between the three methods and 
decreased with the number of training points (Fig. 10). The ANN algo
rithm converged to a median magnitude of around 4 m (Fig. 10a) cor
responding to approximately 30% of bedrock depth (Fig. 10b). The LSI 
algorithm notably fails to achieve a low validation error, even when 
including large numbers of borehole data. The ANN method offers a 
significant improvement compared to a simple triangulation when few 
boreholes are available. However, as borehole density increases, the 
advantage of AEM data decreases. At around 120 to 140 training points, 
simple triangulation and the ANN method give similar validation errors. 
This corresponds to an average inter-borehole distance of 150–200 m, 

Fig. 4. ANN based bedrock interpretation of a resistivity model from inversion of synthetic AEM data computed from the resistivity model in Fig. 2a.  
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which is similar to the footprint of a single AEM measurement. 
We also test a minor variation in how the input datasets – AEM- 

derived resistivity models and borehole-derived depth to bedrock 
measurements – are prepared. As described in 2.3, to account for the 
mismatch in location of the two datasets, we can either project drillings 
onto flightlines, or interpolate a resistivity model data onto the drilling 
locations. These variations were tested for both the LSI and the ANN 
method (Fig. 10). Interpolating the resistivity models to borehole loca
tions tends to reduce median validation error by a magnitude of 
approximately 0.5–1.0 m, for both methods. 

4. Discussion and conclusions 

4.1. Sources of error in depth to bedrock prediction 

The performed synthetic tests give a good picture of the strengths 
and limitations of using trained ANNs to extract depth to bedrock from 
resistivity models. Test ST3 showed that the ANN does not perform very 
well, with validation errors larger than 2.5 m, on resistivity models with 
sharp contrasts at discrete depths, as we could expect from an inversion 
favoring this kind of models (sharp or focussed inversion) and a discrete 
model parametrization. However, tests ST4 and ST5 show a much better 
performance, with validation errors of 0.5–1.5 m, when the ANN is 
applied to smooth resistivity models, reconstructed by an Occam-type 
AEM data inversion. We therefore prefer this type of inversion for real 
measured AEM field data. Synthetic tests on a more complex but not 
unrealistic sub-surface resistivity model (Fig. 4) show that the validation 
error converges to 5–6 m. Therefore, at the scales of investigation 
considered, geological complexity is the largest source of error. 

4.2. Field data performance 

The test on real data from Norway demonstrates that the perfor
mance seen in the synthetic tests, can also be achieved in with field data, 
even in complex geological terrain. Qualitatively, we see that many 
aspects of the ANN-derived bedrock models from the synthetic tests and 
field data example are similar. For instance, areas with deep clay de
posits (Fig. 4, 200–250 m; Fig. 7c, 4500–6000 m) tend to predict 
bedrock above the point of the largest gradient in resistivity. In contrast, 
in areas where bedrock is shallow and below sediments with higher 
resistivity, the predicted bedrock depth is almost coincident with this 
sharp resistivity boundary (Fig. 4, beginning and end of profile; Fig. 7c, 
2000–3500 m). Quantitatively, the bedrock model from the field data 
example converges to a validation error of around 4 m (Fig. 10), which is 
below the 6 m error observed for the complex synthetic model (Fig. 5). 

The quantitative validation procedure used, does have one key lim
itation: training data (borehole) locations are randomly divided into 
training and validation subsets. Therefore, we observe a large variance 
in median validation error between repeated runs. For example, with 20 
borehole points, the median validation error for the ANN's predictions is 
7 m (Fig. 10a), but the standard deviation of median validation error 
across 100 trials is 11 m. We did not analyse which subsets led to the 
more accurate models. There may be an optimal strategy for choosing a 
set of boreholes (or, in a real project, designing a drilling campaign) that 
maximizes the accuracy of the bedrock model based on the resistivity 
model and existing boreholes. If so, then the potential performance of 
these methods may be greater than what is suggested by these averages. 

Nonetheless, the evaluation procedure still demonstrates how crit
ical the right interpretation method is for unlocking the value of the 
geophysical data. For such a complex field data example as presented in 
this paper, a linear operator (such as the first generation LSI tested here) 
is not suitable. Though it makes accurate predictions where bedrock 

Fig. 6. Combined sedimentary and geological map of the area near the city of Hønefoss some 30–40 km northwest of Norway's capital Oslo, showing the sediment 
type and the area covered by AEM. The exact position of boundary between Pre-Cambrian and Cambro-Silurian rocks (stippled line) is not precisely known (ranging 
between 1 and 4 km uncertainty) due to the thick accumulation of sediments below Storelva. Map data courtesy Norwegian Geological Survey. 
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depth and bedrock resistivity are mostly uniform (Fig. 7b, 2000–4000 
m), it fails to adjust predictions in contrasting geological environments 
like where the riverbank sediments overlay marine sediments 
(3800–4500 m) and sediment is very thick and conductive (4500–6000 
m). Manual interpretation can overcome this pitfall since a trained 
expert can integrate geological knowledge, experience with geophysical 
mapping, knowledge about inversion, measurement uncertainty, etc. 
However, manual interpretations are subjective and slow, meaning that 
ground models cannot be as easily updated once new drilling informa
tion becomes available over the duration of a site investigation project. 
It should be noted that the LSI method tested here has since been 
updated to include a non-linear operator (Gulbrandsen et al., 2017), but 
this version was not available at the time of analysis. 

The results also show that the way data are prepared does have an 
effect, regardless of the bedrock prediction method. We found that 
projecting drilling data onto nearby flightlines leads to less accurate 
bedrock predictions than interpolating resistivity models onto drilling 
locations (Fig. 10). The AEM-derived resistivity models are already 
smoothened, and interpolation to the drilling locations within ~100 m 
of an AEM measurement point does not seem to introduce significant 
loss in resolution. Additional data preparation, or integration of other 
spatial data like geological maps, may provide further, incremental 
improvements to the automated bedrock depth extraction from AEM 
data. 

Fig. 7. A cross-section of through the 3D resistivity model of the area south of Hønefoss (location indicated by the red line in Fig. 6). The three panels show various 
generations of bedrock interpretation approaches (black lines) starting with a) manual picking and triangulation, b) a linear statistical approach, and c) the ANN 
solution presented in this study. Red bars indicate bedrock depth confirmed by geotechnical drillings that were used as training data for LSI and ANN, whereas and 
grey bars are newer drillings that were not used for either. Only boreholes within 50 m of the plane of the cross-section are shown; boreholes between 20 and 50 m of 
the plane are shown with 60% transparency. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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4.3. Limitations of manual resistivity model interpretation 

The field data example and the complex synthetic model (Fig. 2) 
highlight scenarios where the resistivity model is less reliable and where 
it may not always be possible to interpret a bedrock interface directly 
from the resistivity model. This can occur where there is a weak re
sistivity contrast between sediment and bedrock. That applies especially 
for high-resistivity materials because the inductive EM method is less 
sensitive to changes in resistivity at the high range (>800 Ωm) versus 
the low range (<100 Ωm). We see two instances of this in the complex 
synthetic model (Fig. 2), where thin layers of moraine (0–80 m) and 
sand (375–450 m) lie atop gneiss. In the inverted model, there is little to 
no increase in resistivity visible at those locations. We see similar in
stances in the field data example where there is no obvious resistivity 
contrast between bedrock and medium- or high-resistivity sediments 
like sand, gravel, and moraine (Fig. 8, locations v and vi). 

In these cases, the ANN usually provides a reasonable prediction if 
provided nearby training data. Where there is a lack of contrast, the 
spatial attributes (i.e., x-, y-, and z-coordinates) have a greater weighting 
on the predicted depth to bedrock than the resistivity profile. In essence, 
the predicted bedrock surface reverts to an interpolation between 
boreholes guided by terrain and fails when making predictions outside 
the area sampled by the training data. This explains why the ANN suc
ceeds in making reasonable predictions for the complex synthetic 
example at between 400 and 500 m along in Fig. 4 thanks to the bore
hole at 440 m, but fails in the field data example at locations v and vi in 
Fig. 8. This finding is similar to Kovacevic et al.'s (2009) conclusion that 
spatial attributes have little useful information for making predictions 
outside the domain of training data. Ultimately, the ANN uses the re
sistivity model to improve predictions in most locations except for lo
cations where there is a lack of resistivity contrast outside the spatial 
domain of the training data. 

4.4. Limitations of ANN based resistivity model interpretation 

The results do show that ANNs have some weaknesses. To an expe
rienced geophysicist, the shallow, conductive lens at 4300 m in Fig. 7c, 
is obviously an artefact, or at the very least, a structure that is unrelated 
to the bedrock. However, for the ANN, which only looks at a single 
vertical strip of the resistivity model, this is not obvious, and the depth to 
bedrock predictions are therefore highly erratic here. A convoluted 

neural network, which would take into account several side-by-side 
strips of a model, may put less weight on this feature. In the mean
time, manual quality control of ANN outputs is warranted. 

Similarly, ANNs fail to make accurate predictions at locations where 
the resistivity models are not represented in the training dataset. This is 
the case for the segment between 0 and 2000 m in the field data example 
(Fig. 7). While there is a resistivity contrast between sediment and 
bedrock that the human interpreter was able to detect (Fig. 7a), the ANN 
lacked training data in this particular geological setting and hence failed 
to make reasonable predictions (Fig. 7c). Hence, to employ this method 
effectively, one must ensure that the training datasets contains a 
representative sample of all the geological settings represented in a 
geophysical dataset. If this is not possible, additional manual training 
points provided by an experienced geophysicist are needed to guide the 
ANN through areas with no actual ground truth. 

4.5. Implications for engineering workflows 

The field case data also demonstrated that the presented combina
tion of AEM data and geotechnical data using machine learning has 
potential to provide great value in reducing the risk caused by unknown 
or poorly understood ground conditions in engineering projects. For a 
given number of boreholes, the uncertainty in depth to bedrock can be 
reduced by as much as half, going from a bedrock model based on 
interpolated sparse boreholes only to a model based on combined 
interpretation of AEM data and boreholes using ANNs (Fig. 8). Similarly, 
to get a bedrock model with 40% error, one needs 90 boreholes when 
using triangulation but only approximately 35 when using AEM and an 
ANN, a reduction by a factor of 2.5 or a decrease of 60%. This reduction 
factor is plotted as a function of target bedrock model accuracy in 
Fig. 11. 

This supports the findings of Pfaffhuber et al. (2019), where two 
cases with simpler geology were studied. Our results also show that the 
added benefit of using AEM data diminishes once around 140–160 
boreholes are used. This corresponds to a density of 10–20 boreholes per 
km2 or average spacing of 200–300 m between boreholes. This average 
spacing is slightly more than the measurement footprint of the AEM 
measurements, which is about 150 m in diameter for the instrument 
used. Hence, AEM as a ground investigation tool add most value in the 
early phase of a development project when only a few boreholes are 
available. 

Fig. 8. Oblique view facing NE of the 3D model showing a vertical resistivity section in the south of the study area approximately 500 m SW of the planned railway 
alignment. Also shown are borehole locations (black cylinders) and sediment cover (as mapped by the Norwegian Geological Survey) draped on a terrain model. At 
locations where there is a clear resistivity contrast between bedrock and lacustrine (i) or marine clays (ii, iii, iv), the predictions from the ANN (white surface) track 
closely with this geophysical contrast. At other locations where there are beach sediments, glaciofluvial deposits, or weathered rock (v, vi), neither a clear resistivity 
contrast nor training boreholes are present to guide the ANN predictions. Vertical exaggeration of the scene is 3×. 
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Fig. 9. Integrated bedrock depth model at Ringerike area showing models derived from a) Triangulation or b) LSI projection and c) ANN interpolation. Surface 
topography are water features shown in the background. 
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In Norway, projects with a similar size to our field data example 
(Section 3.2) may spend millions or tens of millions of USD on 
geotechnical drillings and sampling over the course of months to years, 
whereas airborne investigations last days to weeks and cost some hun
dreds of thousands of USD. Hence, when employed early enough, 
airborne geo-scanning has potential to provide substantial savings in the 
direct costs of site investigations. The analysis in this article does not 
consider other indirect cost savings that may arise from optimizing 
ground investigation and drilling plans, refining design alternatives, or 
shortening project timelines, meaning that overall cost-savings may be 
greater than the pure cost savings due to reduced drilling. 

4.6. Summary and future directions 

In closing, ground models derived from integration of geophysical 
and geotechnical data via artificial neuronal networks are an enabler for 
introducing airborne electromagnetic data into engineering project 
workflows. Our results show that these ground models have clear value 
for early stages of a development project where limited number of 
drillings are available. The suggested integration approach reduces 

uncertainty and can guide engineers in designing the more cost-effective 
site investigation programs. The method we present aligns well with 
current industry trends. The use of 3D models and integrated data 
management systems like Building Information Modelling (BIM) are 
widespread in the construction sector (Mehrbod et al., 2019; Tezel et al., 
2019). However, the usage of such data management systems in 
geological and geotechnical engineering is still limited but the obvious 
benefits have made it an active area of discussion (Svensson, 2019). 
Being able to acquire a high-resolution bedrock model with good areal 
coverage early in a project phase with airborne geo-scanning will make 
such 3D workflows more attractive. Moreover, unlike the manual 
interpretation of the past, having an automated method to quickly up
date a bedrock model using new borehole information as it becomes 
available, will maintain the utility of the AEM data throughout a pro
ject's lifetime. 
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