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Abstract

The survey of consumer expenditure is a national survey conducted by Statistics
Norway (SSB) with the purpose of collecting detailed data about Norwegian house-
holds’ annual consumption of different goods and services. The survey has up until
its most recent publication in 2012 relied on employees at SSB to manually categorise
all registered expenditures into COICOP (Classification of Individual Consumption
by Purpose) item codes to produce consumption statistics. This has involved large
workloads and high implementation costs, and because of this, SSB wants to mod-
ernise and improve the efficiency of the survey for its next planned implementation
in 2022.

This study is the result of a 3-month collaboration with SSB to explore the appli-
cation of supervised machine learning for classification of consumer goods to 5-digit
COICOP codes. The purpose of this study has been to explore the potential of
using machine learning to automate parts of the survey of consumer expenditure.

This thesis demonstrates how different data sets from separate sources can be com-
bined into a COICOP training data set that can be used to develop and evaluate
COICOP classification models. Furthermore, this study explores how these models
can be incorporated into a ”human-in-the-loop” based classification system to fa-
cilitate automatic classification of consumer goods while also maintaining sufficient
levels of data quality.

The findings indicate that supervised machine learning is a suited method for clas-
sifying consumer goods into 5-digit COICOP codes. Additionally, the results show
that the models’ prediction probabilities are good indicators of where misclassifica-
tions occur. Together, these findings show a promising potential for implementation
of a ”human-in-the-loop”-based classification system for reliable classification of con-
sumer goods. At the same time, the findings uncover important limitations with
the data used in this thesis, as the models were trained on data that the survey
of consumer expenditure will not be based on. This thesis has used data sets that
were available, and these were not necessarily the most relevant. Therefore, it is not
expected that the developed models will provide immediate value to the objectives
of SSB without first being trained on more relevant data.
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Sammendrag

Forbruksundersøkelsen er en nasjonal undersøkelse som er utført av Statistisk Sen-
tralbyr̊a (SSB) med den hensikt å samle inn detaljert forbruksstatistikk om norske
husholdninger. Inntil dens foreløpig siste gjennomføring i 2012, har ansatte ved SSB
måttet manuelt kode alle registrerte varekjøp inn i COICOP (Classification of In-
dividual Consumption by Purpose) varekoder for å produsere forbruksstatistikk fra
undersøkelsen. Dette har medført store arbeidsmengder og høye kostnader, og SSB
ønsker derfor n̊a å modernisere og effektivisere undersøkelsen i forbindelse med dens
neste planlagte gjennomføring i 2022.

Denne oppgaven er et resultat av et 3 m̊aneders samarbeid med SSB for å ut-
forske anvendelse av veiledet maskinlæring for å klassifisere forbruksvarer i 5-sifrede
COICOP varegrupper. Dette har hatt som hensikt å kartlegge effektiviseringspoten-
sialet ved å bruke maskinlæring til å automatisere deler av forbruksundersøkelsen.

I denne oppgaven demonstreres det hvordan ulike datasett fra ulike kilder kan
kombineres til et COICOP treningsdatasett som kan brukes til å utvikle og eval-
urere COICOP klassifiseringsmodeller. Videre utforsker oppgaven hvordan disse
modellene kan brukes i kombinasjon med et ”human-in-the-loop”-basert klassifier-
ingssystem for å tilrettelegge for automatisk klassifiering av varer og samtidig ivareta
tilstrekkelig datakvalitet.

Funnene antyder at veiledet maskinlæring er en egnet metode for klassifisering av
varer til 5-sifrede COICOP varekoder, og i tillegg viser resultatene at modellenes
prediksjonssannsynligheter gir en god indikasjon for hvor feil oppst̊ar. Dette gir et
godt grunnlag for bruk av et ”human-in-the-loop”-basert klassifiseringssystem for
p̊alitelig klassifisering av forbruksvarer. Samtidig avdekker funnene sentrale begren-
sninger med dataen brukt i denne oppgaven, da modellene ble trent p̊a data som
forbruksundersøkelsen ikke vil basere seg p̊a. Bakgrunnen for dette er at oppgaven
har brukt de data som var tilgjengelige, og disse var ikke nødvendigvis de mest rel-
evante. Det kan dermed ikke forventes at de utviklede modellene gir umiddelbar
verdi til SSBs form̊al uten først å bli trent p̊a mer relevante data.
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Chapter 1

Introduction

1.1 Household Budget Surveys

The household budget surveys (HBS) are surveys that focus on household consump-
tion expenditure. These surveys are conducted in most countries of the world, and
they are key components in collecting data to produce household consumption and
expenditure statistics (Benedikt et al., 2020). These statistics are of interest to
many research institutions, and they contribute to different fields of research. They
are typically used in estimations of Gross Domestic Product and Consumer Price
Indices, and they are also relevant in research related to food consumption and
nutrition (Egge-Hoveid & Brændvang, 2020).

1.1.1 COICOP Classification System

A key part of the household budget survey is to categorise expenditures into corre-
sponding consumption categories. The Classification of Individual Consumption Ac-
cording to Purpose (COICOP) system was developed by the United Nations Statis-
tics department in 1999 with the motivation of providing a standardised framework
used to categorise and analyse individual expenditures according to their purpose.
This framework would facilitate comparable expenditure statistics across institu-
tions, and it is considered a standard in the production of most expenditure and
consumption statistics today (UN, 2018).

Due to the need for a more detailed classification system, a revision to the COICOP
system was initiated in 2015. This resulted in the publication of the “COICOP
2018” system in 2018, a classification system that aimed to better fulfil the needs of
its users.

The COICOP 2018 system consists of four different levels, where each level repre-
sents a different degree of classification detail. These levels are hierarchically ordered
with an increasing number of consumption categories and level of detail in the clas-
sification. The system uses numeric code to represent the different consumption
categories, and depending on the level, this code varies from a 2- to 5-digit scheme.
A general overview of the structure in the COICOP 2018 system is illustrated in
figure 1.1.
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Figure 1.1: Hierarchical structure of the COICOP 2018 classification system

To illustrate how the COICOP 2018 classification system works, consider the exam-
ple of “Chocolate milk”. Figure 1.2 shows how the different categories and COICOP
codes are used to categorise “Chocolate milk” depending on the desired level of detail
with the COICOP 2018 classification system.

Figure 1.2: COICOP 2018 classification of ”chocolate milk”

The levels of the COICOP system provide tools for classification in multiple detail
levels. In areas such as health care or fields with similar requirements for privacy and
confidentiality, basic levels of categorisation detail might be a suitable way to present
statistics, while for research related to nutrition, food consumption or consumption
expenditures, more granular levels of detail are often desired. The subclass level was
added in the COICOP 2018 revision to accommodate this, and this has consequently
become the standard in most modern household budget surveys (Benedikt et al.,
2020).
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1.2 The Survey of Consumer Expenditure

Statistics Norway (SSB) are the national statistical institute of Norway and the main
producer of official statistics in the country. They are responsible for collecting and
producing statistics in fields such as economy, population, and society. Statistics
Norway are also responsible for coordinating statistics prepared by the Norwegian
government and they have the overall responsibility for Norway’s participation in
international statistics cooperation

SSB are responsible for household statistics in Norway, and they coordinate the
collection and production of Norwegian household consumption and expenditure
statistics. This is done through their survey of consumer expenditure, a national
survey that collects data that specifically relate to Norwegian household spending
patterns, where the overall aim of the survey is to provide a detailed picture of
Norwegian households’ annual consumption of different goods and services (Holmøy
& Lilleg̊ard, 2014).

SSB have published consumer expenditure statistics since 1958, and the results from
the previous survey of consumer expenditure were published in 2012. The expendi-
ture statistics is one of SSB’s most in-demand statistics and it acts as the basis for
many studies conducted by research institutions such as the Norwegian Labour and
Welfare Administration, the Ministry of Finance, and the Ministry of Health. Many
research institutions now hold a great interest in obtaining new and updated con-
sumer expenditure statistics from SSB, as the current statistics, which is approaching
10 years of age, is becoming more outdated and consequently less representative of
Norwegian household spending patterns (Egge-Hoveid & Brændvang, 2020).

1.2.1 Survey Design 2012

The previous survey of consumer expenditure was conducted by recruiting different
Norwegian households and tasking them to keep a diary of their expenditures for
two weeks. The survey spanned a full year, which means that there were 26 different
2-week periods in total. The different periods would sum up to a full year, where
the different participating households would each be assigned a specific period in
which to register their expenditures.

Figure 1.3: Expenditure registration by respondent in diary (Holmøy & Lilleg̊ard,
2014, p. 81)
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Household Sampling and Data Collection

The households that participated in this survey, were chosen by stratifying Norwe-
gian households on “geographic region” and “type of household”. The participants
were then randomly selected within each stratum. There was a total of 7100 house-
holds selected to participate. Figure 1.4 shows the number of households selected
in each stratum.

Figure 1.4: Selection of households based on region and type of household (Holmøy
& Lilleg̊ard, 2014, p. 35)

The survey was implemented by splitting it into three parts. First, SSB would
conduct an introductory interview with the participating households to gather ad-
ditional information, such as education levels and occupational status, about the
household. Next, each household would record their expenses for their assigned
2-week period by writing down their expenses and saving the receipts from their
purchases in a physical diary provided by SSB. Lastly, in the concluding interview,
SSB would enquire each household about expenditures that incur irregularly and
would likely not be covered in the registered expenses in their assigned period. This
applies to expenses related to travel, household appliances, expensive clothing, etc.

After completing the concluding interviews and receiving the household diaries with
the associated receipts, SSB would manually classify and register each individual
expenditure into their database.

Results and Assessment of Data Quality

The resulting survey ended up with an overall response rate of 48.9%, where the
goal had been a response rate of at least 50%. The response rate was measured by
looking at the number of households that had completed a full survey, meaning two
interviews and a full 2-week period of expenditure registrations. SSB experienced a
noticeable increase in drop-off among the respondents as they approached the end
of the year. SSB ascribe some of the reason for this to the challenges involved with
rescheduling interviews and diary-keeping periods. Rescheduling became increas-
ingly difficult towards the end of the year as there would be fewer available periods
to reschedule activities to.

The report from 2012 also states that the implementation of the survey placed a
heavy burden on its respondents as it demands a lot of time and effort dedicated to
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longer interviews and manual registrations of every single expenditure for a contin-
ued period. SSB argue that this is likely a large contributor to the observed drop-offs
among its participants (Holmøy and Lilleg̊ard, 2014, p. 9).

1.2.2 Survey Design 2022

SSB now plan to conduct a new survey of consumer expenditure to publish updated
expenditure statistics in 2022. The report from the survey in 2012 outlines how the
survey has suffered from high implementation costs, low response rates and high
levels of uncertainties in its results and estimations. This, in addition to the de-
sire to publish expenditure statistics more frequently in the future, has motivated
SSB to make significant changes to how the next survey will be conducted and how
expenditure statistics will be generated in the future. This has initiated “Forbruk
2022”, a project to modernise the processes, routines and methods involved in SSB’s
survey of consumer expenditure.

The purpose of “Forbruk 2022” is described by Egge-Hoveid and Brændvang as:

By modernising the survey of consumer expenditure, we aim to conduct
the survey and produce new statistics for Norwegian households in an
efficient way with acceptable response rates, and with higher quality and
reliability.

In the new survey of consumer expenditure, SSB plan to expand and improve on
data acquisition by combining the survey with financial transaction data provided
by the largest grocery stores in Norway. The survey will now consist of two main
components: transaction data and survey data.

Financial Transaction data

SSB plan to utilise financial transaction data as an additional data source to assist
in its expenditure statistics production. The data will be provided by the largest
grocery stores in Norway: Rema, Coop and NorgesGruppen. This is meant to
facilitate the application of big data in the statistics production, which in turn is
meant to increase the quality of SSB’s expenditure statistics, and how frequent new
statistics can be published, while also lowering costs related to data acquisition and
statistics production.

Survey data

The survey itself will undergo significant changes to create a better and less demand-
ing user experience for the respondents by allowing the participating households to
either automatically register their expenditures by scanning their receipts, or to
manually register expenses using SSB’s phone app. This is meant to replace the
need for a physical diary, which both aims to ease the burden on the participants,
as well as the work involved with coding and registering the expenditures into SSB’s
database by utilising automatic classification of the different expenditures. Figure
1.5 depicts a demo version of SSB’s phone app, where the respondent can scan a
receipt, manually register a purchase, or manually register a bill.
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Figure 1.5: Survey expense registration in phone app (SSB, 2021)

1.2.3 Survey Data from Pilot Study

SSB have conducted a pilot study for the new survey solution. In this study, SSB
recruited 600 households to participate. Similar to the survey of consumer expendi-
ture in 2012, the different households were selected based on household types, and
each household was tasked with registering their expenses over a 2-week period. The
pilot study lasted for 6 weeks in total, starting from 31.05.21 and lasting to 11.07.21.
These weeks were split into 5 different 2-week periods in which the different house-
holds would scan their receipts or manually register their expenses in SSB’s phone
app.

Whereas the fundamental structure of the survey used in the pilot study still reuses
many components of the previous survey of consumer expenditure, the process of
registering and collecting data from expenses was distinctly different from 2012.
When a participant scans a receipt, the image of this receipt is processed, and the
text contained in different fields of the receipt is extracted. Examples of such fields
are shown in figure 1.6. The extracted data is used to construct a data set of different
households and their expenses, and as a result, SSB were able to collect a data set
containing 14 389 entries of consumer goods and 2 785 unique receipts from the
participants of the pilot study.

6



1. Introduction

Figure 1.6: Example of text fields extracted from receipts (SSB, 2019)

1.2.4 Streamlined Classification of Items from Receipts

Going forward, SSB aim to explore the potential of applying machine learning to
assist in classification of consumer goods into corresponding 5-digit COICOP 2018
subclass codes. Figure 1.7 illustrates a pipeline that exemplifies how scanned receipts
can be received as input to automatically output each item in the receipts with its
5-digit COICOP 2018 subclass code.

Figure 1.7: Pipeline from scanned receipts to statistics production

1. Scanning: Paper receipts are scanned into images. Respondents scan images
of receipts using the mobile phone app.

2. Optical Character Recognition (OCR): Text is automatically extracted
from the images of the receipts. Additionally, meta-data such as total receipt
price, date of purchase and store name is retrieved.

3. Processing and Vectorisation of Words: Processing of the text output
from the OCR step. The output from OCR may contain misspelled words or
errors due to characters being wrongly recognised. NLP techniques are used
to correct errors and to create a streamlined process to prepare the text data
for classification.

4. COICOP Classification: Using supervised machine learning with prepared
text data from the previous step, the different items are classified into 5-digit
COICOP 2018 subclass codes.
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As described in subsection 1.2.3, SSB were able to test some of the steps of the
pipeline in their pilot study. The first two steps were successful, resulting in the
previously mentioned receipts data set. Work on the remaining steps (3 and 4),
which involve preparations for and implementation of machine learning to classify
each item, has up until this point been limited. This thesis aims to continue this
work and to explore the feasibility and potential of implementing the last two steps
of the pipeline for SSB to facilitate automatic classification of items from scanned
receipts.
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1.3 Project Goal and Thesis Description

The goal of this thesis is to explore and implement supervised machine learning
for COICOP classification of consumer goods and to evaluate the potential and
feasibility of incorporating this into automatic classification of items for the survey
of consumer expenditure.

Goal: Implement automatic classification of consumer goods to classify items into
5-digit COICOP 2018 subclass codes based on their item names.

1.3.1 Aims for Thesis

With the stated project goal, this thesis aims to assist Statistics Norway in their
work with the survey of consumer expenditure 2022 by proposing methods and
designs for incorporating supervised machine learning into automatic classification of
consumer goods. Multiple objectives of the project were developed in collaboration
with Statistics Norway, and these have been translated into four research questions
(RQs) which this thesis aims to address.

RQ1: How can data from auxiliary data sources be combined to assemble a COICOP
training data set for training and developing a COICOP classifier model?

The first step involved in developing a COICOP classifier, is to assemble a training
set. Statistics Norway possess a wide range of data sets that have been collected
through different means, and the first objective of this thesis is to investigate whether
some of these data sets can be combined into a data set suited for training machine
learning classifiers for COICOP classification.

RQ2: How well do traditional classification models perform on the COICOP train-
ing data?

The next objective of this thesis is to evaluate how well traditional supervised ma-
chine learning classifiers can learn patterns in the COICOP training data and predict
the 5-digit COICOP subclass code based on the item names of consumer goods. The
thesis aims to explore whether the classifiers are in fact able to learn some discrim-
inatory information from the item names which typically contain short and concise
item descriptions.

RQ3: How well do the performances of the trained COICOP classifiers carry over
to unseen samples of scanned receipt data?

The ambition for SSB is to be able to automate parts of the work involved with
classifying consumer goods into COICOP categories for the survey of consumer
expenditure. Data from scanned receipts is planned to be an important data source
for the survey in 2022. This thesis aims to explore the potential of implementing
supervised machine learning into automatic classification by assessing how well the
performances of the previously trained classifiers (from RQ2) carry over to items
from scanned receipts data.

RQ4: What are some of the current limiting factors that prevent Statistics Norway
from implementing automated classification of items from scanned receipts?
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Based on the results of the preceding research questions, the final objective of this
thesis is to outline some prominent limitations that potentially prevent Statistics
Norway from currently implementing automated classification of items from scanned
receipts.

1.3.2 Research Methods

Several approaches and methodologies have been used in order to answer the re-
search questions and to meet the objectives of this thesis described in the preceding
subsection.

To answer the first research question, multiple data sets at SSB have been prepared
through high-level filtering operations and conversion of item categorisation coding
formats to bring all data sets to the same format. These data sets have then been
combined into a single data set consisting of valid entries of item names and cor-
responding 5-digit COICOP 2018 subclass codes. Each data set used in this thesis
and the performed steps with preparing and combining these different data sets are
described in chapter 3.

To answer the second research question, a set of supervised machine learning clas-
sifiers have been trained on the assembled COICOP training data by employing
different count-based feature extraction methods to transform the item names into
numeric feature vectors. A portion of the training data was withheld from the clas-
sifier models during training, and the models’ predictive performances were then
evaluated on the withheld data to assess how well they generalise to unseen data.
The choice of classifiers, model structure and evaluation protocol are described in
chapter 4, while classification results are presented in section 5.2 of chapter 5.

To answer the third research question, the previously explored classifier models are
retrained on the full assembled COICOP training data. No partition of the training
data is held-out from the model. Instead, the classifier model’s predictive perfor-
mances are evaluated on a different test set of scanned receipt items. This test set
is the product of randomly sampling items from the data set produced in the pilot
study (see subsection 1.2.3) and manually labelling these items with their 5-digit
COICOP subclass code. Subsection 3.2.5 describes the steps involved with acquiring
this test set, while the results of the classifier models’ performances on this test set
are presented in section 5.3 of chapter 5.

To answer the fourth and final research question, the results from the classifica-
tion performance on the scanned receipt items are explored in detail to investigate
where misclassifications typically occur and to attempt to identify the likely reason
as to why they occur. Additionally, this thesis explores the reliability of the mod-
els’ prediction probability scores for each prediction to assess the current potential
for implementing these models into an automatic classification system for scanned
receipt items for the survey of consumer expenditure. This assessment is done in
section 6.1 of chapter 6.
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Chapter 2

Background

Chapter 2 covers background theory and information relevant to this thesis. This
includes terminology and techniques within the fields of Machine Learning (ML)
and Natural Language Processing (NLP). Section 2.1 introduces some background
and key concepts in machine learning. Section 2.2 delves into the theory behind the
classifiers relevant to the thesis and introduces several performance metrics. The
final section, section 2.3, focuses on theory and methods within the field of Natural
Language Processing. All data examples in this chapter are entirely fictional, and
these are intended only to demonstrate key parts of relevant theory.

2.1 Basic Concepts in Machine Learning

Machine Learning is considered a sub-field of artificial intelligence (AI), and it specif-
ically focuses on applying self-learning algorithms that learn from data in order to
make predictions (Raschka and Mirjalili, 2019, p. 1). Predictions are often tied to
classification, regression, or clustering problems. For a classification problem, the
objective is to identify which of a set of categories an observation belongs to, such as
medical diagnoses or email spam detection. Regression is typically used in problems
where the prediction is a continuous value, such as sales forecasts or housing prices.
Clustering is the task of dividing observations into groups such that the observations
that are more similar to the observations contained in the same group than those
in the other groups. Clustering is typically associated with unsupervised learning,
where the groups are not defined beforehand.

2.1.1 Key Terms

This subsection provides a brief explanation of terms that are used in the subsequent
parts of this chapter.

Samples: Observations, instances, or objects of the data that is collected.

Features: Explanatory variables. The features are usually numeric or categorical,
and the machine learning model will typically be based on coefficients
of these variables.

Target: Categories, classes, or values to be predicted. The target is discrete or
continuous depending on the problem.
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Figure 2.1 shows a dataset containing n samples and m features, where the target
indicates whether the sample is a food item or not, represented as 1 or 0, respectively.

Figure 2.1: Samples, Features and Target

2.1.2 Learning Methods

There are two main branches within the machine learning field, namely supervised
learning, and unsupervised learning. Supervised Learning typically covers machine
learning tasks in the context of classification or regression, while unsupervised learn-
ing is common in tasks such as clustering.

Supervised Learning

In supervised learning, a model is trained using training data set that were the sam-
ples have already been labelled with their target value or class. This creates pairs
of samples and corresponding target labels, and these pairs are passed to a machine
learning algorithm to fit a predictive model that is intended to be able to predict
new, unlabelled data observations.

Figure 2.2 shows how the samples and their corresponding target labels are used
as training data for the supervised machine learning algorithm. While training, the
model attempts to predict the target labels of the samples in the training dataset.
The true target labels (correct labels) provide direct feedback to these predicted tar-
get labels, and the model automatically adjusts itself to be able to make predictions
that are better aligned with the true target labels in the next iteration.

Figure 2.2: Fitting a model with supervised machine learning
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Upon reaching a satisfactory performance or a maximum number of iterations, the
training stops, and the final model is produced. This is commonly referred to as
the ”fitted” or ”trained” model, and this model will make predictions on new data
samples. Figure 2.3 shows how the trained model in figure 2.2 is applied to predict
target labels for a collection of unseen samples.

Figure 2.3: Predictions on unseen samples

Unsupervised Learning

The main difference between supervised and unsupervised learning is that for unsu-
pervised learning, the data observations are not labelled before training. This means
that the model gets no direct feedback during training as it has no true target labels
to adjust itself to. Instead, unsupervised learning methods will typically search for
similarities, patterns or other meaningful information in the observations and group
similar observations together without the guidance of true target labels (Raschka
and Mirjalili, 2019, p. 7).

Figure 2.4: Clustering with unsupervised machine learning

Figure 2.4 illustrates how samples are grouped based on their attributes. In unsu-
pervised learning tasks, the ideal number of different groups are not always known
beforehand. Additionally, the discriminating features of the data observations are
not necessarily obvious, potentially making it difficult to identify how the categori-
sation of the data has been done and what the different categories or groups actually
represent.
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2.1.3 Bias-Variance Trade-off

In the field of machine learning, the terms Bias and Variance are often used to
describe the performance of a machine learning model. These terms express sources
of error that can contribute to a machine learning model not being able to generalise
well on data beyond the original training data.

Bias is a measure of the systematic error that is not due to randomness, i.e., it
measures how far off a model’s predictions are from the correct value in general if
the model were to be rebuilt multiple times on different sets of training data. A high
level of bias can lead to a model missing important relations between the features
and target. A model suffering from high bias is typically referred to as underfitted.

Variance is a measure of the error that is due to small fluctuations in the data,
meaning that it measures the consistency of the model’s classification predictions
for a particular sample if the model were retrained multiple times on different subsets
of the training data. High variance can lead to a machine learning model adjusting
to random noise in the training data, typically resulting in a model performing well
on the training data, but it does not generalise well on data it has not seen before.
A model suffering from high variance is typically referred to as overfitted.

Figure 2.5: Bias-variance trade-off (Raschka and Mirjalili, 2019, p. 76)

Bias-Variance Trade-off is a common compromise in machine learning where one
attempts to identify a model that minimises the total error. If the model is too
simple, with few parameters, the model is prone to high bias and low variance.
However, if the model has too many parameters the model is consequently going to
suffer from high variance and low bias. In other words, the model has to be complex
enough to avoid underfitting, while at the same time, it should not be too complex
to prevent overfitting.
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2.2 Classifiers for Text Classification

Text classification is a field within machine learning that aims to assign categories to
text documents. Text classification is relevant in tasks such as sentiment analysis or
spam detection, and it typically incorporates supervised machine learning methods
where the categories (targets) are pre-defined (Minaee et al., 2021).

This section briefly covers the relevant theory behind machine learning classifiers
and performance evaluation metrics that are relevant to this thesis.

2.2.1 Logistic Regression

Logistic regression is a popular supervised machine learning model for classification
tasks that are based on extracting features and combining them linearly to predict
the probability of a sample belonging to a particular class (Raschka and Mirjalili,
2019, p. 61). Given an input feature vector x = (x1, ..., xm), the net input, z, is cal-
culated by taking the linear combination of the input values, x, and a corresponding
weight vector, w = (w1, ..., wm), shown in equation 2.1.

z = w1x1 + w2x2 + ...+ wmxm (2.1)

To calculate the probability that a certain sample belongs to a particular class,
logistic regression uses an activation function, φ(z) to transform the net input values,
z. For a binary classification task, e.g., predicting whether a consumer goods item is
a food or non-food item, the logistic regression uses the sigmoid activation function,
shown in equation 2.2, to transform the values.

φ(z) =
1

1 + e−z
(2.2)

Figure 2.6 illustrates that by using the sigmoid activation function, φ(z), to trans-
form the net input, z, the net input values are transformed into values in the range
[0, 1], where larger values of z results in a value for φ(z) that are closer to 1, while
smaller values of z in turn results in φ(z) being closer to 0.

Figure 2.6: Sigmoidal curve (Raschka and Mirjalili, 2019, p. 63)

15



2. Background

The output of the sigmoid function, φ(z), can be interpreted as the probability of
a particular sample belonging to the positive class given its feature vector x and its
weight coefficients w, which can be expressed as φ(z) = P (y = 1|x;w) (Raschka and
Mirjalili, 2019, p. 64). The predicted class label, ŷ, of sample i, can therefore be
summarised into a threshold function, shown in equation 2.3, where the threshold
value is set to 0.5.

ŷ(i) =

{
1, if φ(z(i)) ≥ 0.5
0, otherwise

(2.3)

The logistic regression algorithm is based on supervised learning, and it uses the true
labels, y, as direct feedback to its predicted labels, ŷ, to find optimal values for its
weights, w, by adjusting them repeatedly until there is no additional improvement
in the algorithms ability to predict the class label or when a pre-defined number of
iterations has been reached.

2.2.2 Decision Trees and Random Forests

Decision Trees are a supervised machine learning algorithm that can be used in
both classification and regression tasks. Due to their simple structure, Decision
Trees offer high levels of control and interpretability, making them a popular choice
for many machine learning tasks (Raschka and Mirjalili, 2019, p. 90). The Decision
Tree algorithm breaks down data by making decisions based on asking a series of
questions. The questions can be seen as individual nodes, and the answers to these
questions represent splits at the different nodes. By asking a series of questions, a
tree structure is formed, which is finally used to predict the class or value of samples.

As an illustration, consider the example shown in figure 2.7. Here, a simple Decision
Tree is employed to decide whether samples of consumer goods are food or non-food
items. The samples are first split into two groups depending on whether the price
of the consumer good is more than 100. If the item is priced at more than 100,
the items are classified as non-food items. Otherwise, the Decision Tree splits the
remaining samples into two new groups depending on whether they were purchased
from the grocery store ”Meny”. This results in a total of 50 samples classified as
non-food items (40 + 10) and 30 items classified as food items.

16



2. Background

Figure 2.7: Decision Tree example

To decide which questions to ask, i.e., which feature that creates the best split of
samples, the Decision Tree classifier adopts a ”greedy” divide-and-conquer strategy
by choosing to test splits on the most important features first. This is typically done
by using the Information Gain measure as the objective function to maximise. By
maximising the Information Gain, shown in equation 2.4, the algorithm can identify
which feature that yields the highest information value, enabling the algorithm to
make efficient and optimised splits.

IG(Dp, f) = I(Dp)−
m∑
j=1

Nj

Np

I(Dj) (2.4)

• IG: Information gain
• I: Impurity measure
• f : Feature that performs the split
• Dp: Data set of the parent node
• Dj: Data set of the jth child node
• Np: Total number of samples at the parent node
• Nj: Number of samples at the jth child node

In equation 2.4, I refers to the impurity measure. This is used to calculate the
impurity at each node, indicating how many samples that belong to the same class
at a particular node. The more samples that belong to the same class within a
node, the lower the impurity measure is. For a split that results in a node that
contains only samples that belong to a single class, the impurity measure would be
at its minimal value. On the other hand, a node that contains more of an even
distribution of classes would consequently have a higher impurity measure. Gini
and Entropy are examples of impurity measures that are commonly used. Equation
2.5 shows how impurity is calculated using the Gini (IG) impurity measure.

IG(t) =
c∑

i=1

p(i|t)(1− p(i|t)) = 1−
c∑

i=1

p(i|t)2 (2.5)

• p(i|t): Proportion of the samples that belong to class c for a particular node t
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Random Forest

Random Forest can be considered an extension of the Decision Tree algorithm as
the Random Forest algorithm is an ensemble of decision trees that computes its final
prediction by aggregating the individual predictions made by each decision tree and
assigns the class label by majority voting. Figure 2.8 builds on the previous example
in Figure 2.7 and illustrates how an ensemble of k decision trees make predictions
for whether samples of consumer goods are food or non-food items. The resulting
final prediction is the prediction with the majority of votes.

Figure 2.8: Random Forest example

An individual decision tree is prone to overfitting as the tree grows deeper when more
splits are made (Raschka and Mirjalili, 2019, p.91). In the random forest algorithm,
multiple deep trees are used in the full ensemble, where each decision tree has been
fitted to different bootstrap samples (random sampling with replacement) of the
full dataset. By averaging predictions over multiple overfitted decision trees, the
random forest becomes much more robust to noise and is able to compensate and
correct for much of the individual decision trees’ tendency to overfit. This comes at
the cost of computation cost as a random forest typically fit a couple hundred or
thousand individual decision trees to make its ensemble of decision trees on which
to base its final predictions (Raschka and Mirjalili, 2019, p. 100).

2.2.3 Evaluation Metrics for Classification

In order to evaluate a classifier, multiple evaluation metrics can be used to assess
model performance for specific problems. Accuracy is a popular metric for many
classification problems, and for a machine learning classification problem, the accu-
racy metric measures the ratio between correctly predicted samples and the total
number of samples in the full dataset, where a higher accuracy score means that
more samples were classified as the correct class.
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Other popular metrics are precision, recall and F1-score. The calculation of these
metrics depends on the number of true-positives (TP ), true-negatives (TN), false-
positives (FP ) and false-negatives (FN). True positives and negatives are expres-
sions for the number of correctly classified samples as the positive and negative
class, respectively, while false positives and negatives refer to the number of falsely
classified samples.

As shown in equation 2.6, the accuracy metric can be calculated as the sum of true
positives and true negatives over the sum of false positives, false negatives, true
positives, and true negatives, i.e., the sum of correctly classified samples over the
total number of samples.

Accuracy =
TP + TN

FP + FN + TP + TN
(2.6)

Precision is an evaluation metric that expresses how many of the detected positives
are truly positive. It is defined as the number of true positives over the sum of
false positives and true positives, shown in equation 2.7. A high precision score
indicates that out of the samples classified as positive, a high number of samples
were correctly classified.

Precision =
TP

TP + FP
(2.7)

Recall is a measure of the true positives over the sum of true positives and false
negatives, shown in equation 2.8, meaning that recall expresses the classifier’s ability
to correctly classify the positive class. By punishing misclassifications of the positive
class, while disregarding the negative class, recall can be a useful metric in fraud
detection or medical diagnosis (Raschka and Mirjalili, 2019, p. 214).

Recall =
TP

TP + FN
(2.8)

Precision and recall are often combined using the F1-score, shown in equation 2.9.
The F1-score expresses the weighted average of the two metrics, resulting in a mea-
sure that attempts to be both correct and not miss any correct predictions. F1-score
is a popular metric for comparing models, and it is especially useful for assessing
performance on unbalanced data, where the accuracy metric might be less suitable.

F1 = 2× Precision×Recall
Precision+Recall

=
2TP

2TP + FP + FN
(2.9)
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2.2.4 Multi-class Classification

When faced with more than two distinct classes, the machine learning classification
problem becomes a multi-class classification problem. In order to extend a binary
classifier, such as Logistic Regression, to a multi-class problem, One-Versus-Rest
(OvR) is a popular technique. By using OvR in a multi-class classification problem,
one classifier is trained per distinct class, where that particular class is treated as
the positive class while the rest of the classes are all treated as the negative class.
For a multi-class classification of n classes, a total of n classifiers are trained, and
each sample is assigned the class label with the overall highest confidence out of the
n classes.

Figure 2.9: OvR in a 3-class classification problem
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2.3 Text Representation in Machine Learning

Natural Language Processing (NLP) is a field within linguistics, computer science
and artificial intelligence that focuses on the interactions between computers and
human language. The expression natural language refers to the way humans commu-
nicate with each other, and natural language processing can be seen as the automatic
manipulation of such language by software to improve the computer’s ability to pro-
cess and derive meaningful information from text samples.

This section introduces relevant methods and concepts that are used in text repre-
sentation for natural language processing and how this enables the use of classifiers
to classify text samples.

2.3.1 Terminology in Text Processing Tasks

This subsection provides a brief explanation of terminology in NLP and text pro-
cessing tasks that are used in the subsequent parts of this chapter.

Term: A word, symbol or character instance of text.

Document: A text sample or a body of text such as an individual email or a
receipt.

Vocabulary: A set of all terms that occur in a document.

Corpus: A collection of documents, such as a collection of emails or receipts.

2.3.2 N -grams

N -grams are sequences of n consecutive units in a text, typically sequences of words
or characters. When n-grams correspond to a single word in a text (n = 1), they
are usually referred to as unigrams. Similarly, a bigram (n = 2) is used to describe
a sequence of length 2, a trigram (n = 3) for a sequence of length 3, and so forth.

To illustrate, consider the consumer good item ”lambi toalett extra long”, a toilet
paper variant sold in Norwegian grocery stores. Figure 2.10 shows how different
n-grams would partition the item name depending on the chosen value for n.

Figure 2.10: N -gram representations of ”lambi toalettpapir extra long”

N -grams can be used to develop features for machine learning models, where each
distinct N -gram serves as an individual feature. This can be applied in NLP-tasks
such as spelling correction, text summarisation and speech recognition (Ahmed et
al., 2009).

21



2. Background

2.3.3 Vectorisation of Words

Vectorisation of words involves turning individual terms from a document or corpus
into numeric representation by developing feature vectors from the unique terms.
These terms are typically words, characters or n-grams that occur in the documents.

Bag-of-Words

The Bag-of-Words (BoW) is a simple way to represent text where each document
is represented as a numerical feature vector. This creates features by first creating
a vocabulary of all unique terms across all documents, and then create a feature
vector per document and update it by counting the occurrences of each term in the
vocabulary. Figure 2.11 shows how a bag-of-words can be applied to documents of
arbitrary consumer goods, i1, i2, i3 and i4, where xij represents the developed feature
vector of consumer good ij. The list of words with corresponding keys represents
the vocabulary constructed from the documents.

Figure 2.11: Bag-of-Words from documents of consumer goods

Term Frequency – Inverse Document Frequency

Term Frequency – Inverse Document Frequency (tf-idf) is a technique to derive
information about the importance of terms in a document. Tf-idf is calculated by
comparing the number of occurrences in a single document to its usage in the entire
corpus. The tf-idf transformation results in a weighted numerical representation of
the terms instead of using their raw frequencies. Terms that occur frequently in
the item descriptions are assigned a lower weight, while the less frequent terms are
assigned larger weights to express their distinctiveness. A common way to calculate
tf-idf is shown in equations 2.10 and 2.11 (Raschka and Mirjalili, 2019, p. 265).

tf -idf(d, t) = tf(d, t)× idf(d, t) (2.10)

• tf : Term frequency for term t in document d.

idf(d, t) = log(
nd

1 + df(d, t)
) (2.11)

• nd: Number of documents in the corpus
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• df(d, t): Number of documents d that contain the term t.

Expanding on the previous example, figure 2.12 illustrates how the terms (words)
contained in each item description would be transformed using tf-idf. The new
feature vectors have been calculated using the default parameters of Scikit-learn’s1

tf-idf transformer, ”TfidfTransformer”. In this version, ”1” is added to each idf-score
to prevent zero division (smoothing), resulting in equation 2.12.

tf -idf(d, t) = tf(d, t)× (idf(d, t) + 1) (2.12)

Figure 2.12: Tf-idf transformation of consumer goods

In this example, the entry representing ”toalettpapir” in feature vector xi3 has
been assigned the lowest weight of all entries across all feature vectors as the word
”toalettpapir” here occurs in a document that contains 4 words in total, and this
particular word occurs in 2 documents (i2 and i3) in the corpus.

1Scikit-learn is a machine learning software library for the Python programming language (Pe-
dregosa et al., 2011)
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Chapter 3

Data

This chapter highlights some key aspects of the data sets used in this thesis. Sec-
tion 3.1 provides some background information about each data set, while section
3.2 covers the preparation of the data sets and how they were combined into a sin-
gle training data set for COICOP classification. Lastly, section 3.3 explores some
prominent characteristics of the full training data set, as well as some characteristics
of the individual data sets.

3.1 Description of Data Sets

All data sets used in this thesis are based on data that have been provided by SSB.
The criteria for what would qualify a data set as suitable for this study have been
lenient, where all available data sets that contain both consumer goods and an item
category code have been included. This has resulted in a selection of data sets that
are distinctly different, but they share a common characteristic in that they all con-
tain labelled items in text format.

The following five data sets have been used in this thesis:

Receipts: Data set containing entries of consumer goods that have been ex-
tracted from images of receipts or manually registered in SSB’s
phone app.

Keywords: Data set containing most COICOP subclass codes and a set of
common consumer goods that relate to each code.

Transactions: Data set containing entries of consumer goods that have been reg-
istered as purchases by Norwegian grocery stores.

CPI: Data set containing entries of non-food items that have been reg-
istered by the Consumer Price Index group at SSB.

Imports: Data set containing entries of consumer goods that have been reg-
istered as imports by Norwegian customs.

The data sets were originally collected through different means and for different pur-
poses. This section briefly describes how each data set was collected and summarises
some key statistics for the respective data sets.
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Receipts

The Receipt data set was collected by SSB in their pilot study for the survey of
consumer expenditure 2022, previously described in subsection 1.2.3. This data
set contains entries of purchased consumer goods, some with their corresponding
5-digit COICOP code. The ones that contain valid COICOP codes are items that
have been manually registered into SSB’s phone app, while the ones that are missing
COICOP codes are items that have been extracted from scanned receipts. The data
set contains various features with information about each purchase, such as ”store
name”, ”item price” and ”purchase date”.

Keywords

The Keywords data set is used to facilitate auto-completion of expense registrations
in SSB’s phone app. As respondents attempt to register their expenses using the
phone app, their registrations are matched with similar item names in the Keywords
data set. If a match is found, the registration is automatically labelled with the
COICOP code that corresponds to the matching item name. This data set contains
entries of consumer good descriptions, corresponding 5-digit COICOP codes and
item names of each consumer good.

Transactions

The Transactions data set is a product of multiple data sets that have previously
been prepared and combined by SSB to assemble a COICOP training data set with
5-digit COICOP 2018 subclass codes. The two main components of this data set
are transaction data from Norwegian grocery stores and product catalogues used in
previous calculations of Consumer Price Indices (CPI). The transaction data were
collected in 2018, while the data set of consumer goods used in the product catalogue
are updated for 2021.

CPI

Newly labelled non-food items emerged from the CPI group at SSB while working on
this thesis. These items are additional consumer goods that have not yet been added
into the previously described COICOP 2018 training data set by SSB. This data set
contains items that are labelled using the ECOICOP coding structure. ECOICOP
refers to the European COICOP 2016 coding system, a 6-digit code which the CPI
department at SSB use to categorise items.

Imports

The Imports data set is a product of individual customs declarations registered
with TVINN ; the Norwegian customs’ electronic system for exchanging customs
declarations. This data set contains entries of imported goods from 2018 and their
corresponding code in the CN 2008 coding format. The CN (Combined Nomen-
clature) code is a standardised 8-digit coding framework used for classifying goods
for common custom tariffs. An important distinction between CN and COICOP, is
that the CN code is also used to categorise items that aren’t necessarily intended
for consumption.
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Summary of Data Sets

Table 3.1 summarises some key statistics of the different data sets in their raw
format.

Data Set Rows Columns Coding Format
Receipts 14 389 19 COICOP18
Keywords 2 377 3 COICOP18
Transactions 33 272 37 COICOP18
CPI 82 518 13 ECOICOP
Imports 18 030 591 7 CN2008

Table 3.1: Characteristics of raw data sets

Even though some of the data sets listed in table 3.1 contain a high number of
entries, many of these do not provide any value to this thesis. A substantial number
of entries lack valid item coding annotation, and the CPI and Imports data sets
use different coding formats. Data preparations are therefore required to filter out
unwanted data entries and transform all relevant data to the same coding format.
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3.2 Preparing and Combining Data Sets

This section describes the high-level processing steps involved with each individ-
ual data set. This refers to filtering and mapping operations, such as removal of
unwanted columns or transformation of column values. For each data set, the ob-
jective is to extract a subset containing only entries of consumer goods and their
corresponding 5-digit COICOP subclass code. These subsets will subsequently be
combined into a single data set of item names and corresponding 5-digit COICOP
subclass codes which can be used as training data for a machine learning classifier.

Figure 3.1: Combining data sets into a training data set

Figure 3.1 shows how the different subsets of each data set will be combined into a
training data set. Here, ”Items” represents item names and ”Codes” represents the
item coding format in the respective data sets.

3.2.1 Preparation of Receipts and Keywords Data Sets

The Receipts and Keywords data sets were similar in that they both contained
entries of item names and corresponding COICOP codes in the 5-digit COICOP
2018 format. In both data sets, the item names and COICOP codes were already
in the desired format, and therefore, only a few simple steps were required in the
preparation of these data sets. This process is illustrated in figure 3.2.

Figure 3.2: Preparation of Receipts and Keywords data sets

For both data sets, a subset was created by extracting the columns for item names
and COICOP codes. Next, each row, where the COICOP code was either missing
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or invalid, was removed. This resulted in two prepared subsets of 568 and 2 377
entries.

3.2.2 Preparation of Transactions and CPI Data Sets

The Transactions data set, which has previously been used as COICOP training
data by SSB, was for the most part already prepared for COICOP classification.
The CPI data set, on the other hand, contains many unlabelled entries, and all of
these were removed. Next, all columns, except for the ones containing item names
and COICOP codes, were removed from both data sets. This created two subsets of
29 776 and 23 541 entries, respectively, and these steps are illustrated in figure 3.3.

Figure 3.3: Preparations of Transactions and CPI data sets

At this point, each data set contained entries of labelled consumer goods. However,
the CPI data set uses the ECOICOP coding format, which differs slightly from the
5-digit COICOP 2018 coding format. SSB have previously constructed their own
conversion table between ECOICOP and COICOP 2018 codes, and this table was
used to transform the codes into 5-digit COICOP 2018 codes using a many-to-one
or one-to-one mapping between the coding formats. This step is shown in figure 3.4.

Figure 3.4: Transformation of CPI coding format
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3.2.3 Preparation of Imports Data Set

The Imports data set in its original form contained 18 030 591 items entries. How-
ever, most of these items were duplicates, and in the first preparation step, all
duplicate item name entries were removed. In total, 14 652 184 duplicate rows were
removed, and this resulted in a subset of 3 378 407 item entries. This process is
illustrated in figure 3.5.

Figure 3.5: Remove duplicate entries in the Imports data set

As mentioned in section 3.1, the Imports data set deviates from the other data
sets used in this thesis, mainly due to its CN 2008 coding format. Additionally,
the entries in the Imports data set included items that were intended for either
consumption or production. COICOP classification is by definition only concerned
about items that are intended for consumption, and consequently the production-
related items were not relevant to the scope of this thesis. The next step in the
preparation of the Imports data set therefore became to transform the coding for-
mat of the relevant items into 5-digit COICOP 2018 format.

Code Transformation Pipeline

Eurostat1 offer publicly available conversion tables between a wide range of item
coding formats. These conversion tables made it possible to transform the cod-
ing format of the Imports data set into 5-digit COICOP 2018 codes. Additionally,
by transforming the coding format into COICOP 2018, all items not intended for
consumption were filtered out as there exist no COICOP code conversions for such
items. However, Eurostat do not offer conversion tables between all item category
codes, and this thesis was unable to identify conversion tables between CN 2008 and
COICOP 2018. Therefore, transforming the CN 2008 to COICOP 2018 had to be
done in several steps by employing multiple of Eurostat’s conversion tables.

Figure 3.6 illustrates the transformation pipeline used in this thesis. This pipeline
relies on three conversion tables from Eurostat for the full transformation. First, the
CN 2008 codes are transformed to CPA 2008 codes2, and these are then transformed
into CPA 2.1 codes3. Finally, the CPA 2.1 codes can be transformed into COICOP
2018 codes.

Figure 3.6: Applied code transformation pipeline

1Eurostat is the statistical office of the European Union
2CPA is a 6-digit coding framework that refers to ”Classification of Products by Activity”
3CPA 2.1 is an updated coding framework of CPA 2008
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Even though the CN 2008 codes are on 8-digit format, which in many cases are more
detailed than the 6-digit coding structure of CPA and the 5-digit coding structure
of COICOP 2018, the full conversion would in many cases still yield no matches
or a set of multiple possible matches. Multiple matches made the transformations
ambiguous, and these inconclusive transformations were troublesome in that they
require further domain knowledge to resolve. This problem could be avoided by
simply using a many-to-one or one-to-one mapping between the coding formats, i.e.,
a mapping where a code has exactly one match. However, this approach resulted in
a large portion of the Imports data set to be lost, where preliminary tests resulted
in 96.78% of the 3 378 407 items lost in the transformation pipeline when using
many-to-one or one-to-one mappings in all transformation steps.

Custom Search Algorithm

To counteract the large data loss, a custom search algorithm for code transformations
was developed and implemented into the transformation pipeline. The custom search
algorithm would iteratively remove one digit from the right side from both the code
intended for transformation and all codes in the same format in the conversion table
for a pre-defined range of digits. In this way, possible matches could be detected at
lower detail levels, and this was meant to prevent instances of zero matches between
transformation steps. Whenever a possible match was found, the algorithm would
return the target code of the match(es). The python code for this algorithm is
included in Appendix E.2.

Figure 3.7: Custom Search Algorithm for identifying item code matches

Figure 3.7 illustrates how this is done for an arbitrary 8-digit code. Here, a match
is identified whenever the code in the code sample and the original code in the con-
version table are identical. In the figure 3.7, a match is not found immediately (at
8-digits), and the right-most digit is removed from the code in the code sample and
in the original code in the conversion table. This is repeated until a match is found
at 6 digits, and this resulted in the transformation of code ”87019643” to ”03.23.2”.

Where there are ambiguous mappings, the custom search algorithm would return
the set of all possible matches. This is shown in figure 3.8. Here, three distinct CN
2008 codes are transformed to CPA 2008 codes with the custom search algorithm.
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Figure 3.8: Custom Search for matches between CN 2008 and CPA 2008

Performing Code Transformations

By employing the custom search algorithm into the code transformation pipeline,
it became possible to transform the coding format of a significant portion of the
Imports data set. The transformation of each item was done by first creating a direct
conversion table between the unique CN 2008 codes in the Imports data set and the
identified COICOP 2018 code matches. Following the steps of the transformation
pipeline, 5 289 out of the 6 183 unique CN 2008 codes in the Imports data set were
successfully transformed into COICOP 2018 codes. This is shown in figure 3.9.

Figure 3.9: Conversion of unique CN 2008 codes to COICOP 2018 codes

The custom conversion table was then used to transform all CN 2008 codes in the full
Imports data set. Figure 3.10 illustrates the transformation and data loss involved
with this conversion. Here, all entries that have more than one matching COICOP
2018 code with their CN 2008 code were excluded. This resulted in a data set of 1
433 947 items with corresponding 5-digit COICOP 2018 code, meaning that 42.44%
of the entries were successfully transformed to a single 5-digit COICOP code.

Figure 3.10: Transformation of CN 2008 to COICOP 2018 codes

Finally, in the last preparation steps, all columns except the item names and the
5-digit COICOP codes columns were removed, as well as all rows containing invalid
values. This resulted in a prepared Imports subset of 1 433 947 entries with item
names and 5-digit COICOP codes.
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Figure 3.11: Preparation of Imports data set

3.2.4 Combining Data Sets into a Training Data Set

After each data set was prepared, the individual data subsets were combined into a
training data set. This was done by vertically concatenating the individual data sets,
creating a combined training data set of 1 490 216 rows and 2 columns, as shown
in figure 3.12. The resulting training data set was later used to train classifiers,
and this, in addition to further text processing and feature extraction from the item
names, are described in chapter 4.

Figure 3.12: Combining data sets into a full training data set

3.2.5 Acquiring a Scanned Receipts Test Set

The previous subsections described the methods employed to prepare and combine
the different subsets and the steps involved with acquiring a full COICOP training
data set. However, as none of these sets contains labelled items from actual scanned
receipts, they may not give good indications of classification performance on such
data. In order to explore how well the performance of a classifier model that is
trained on data from such diverse sources carry over to items from scanned receipt
data, a test set of items from scanned receipts was assembled.

The test set was acquired by drawing a random sample of size n = 1000 from the
Receipts data set. Due to limited time and available resources, a larger sample
size was not feasible. In the sample, only unlabelled items were included, as these
represent items that were extracted from scanned receipts. Additionally, all items
with a non-positive price value were excluded from the data set before drawing the
sample, as these items typically relate to bundle discounts, store-specific offers, or
in many cases, ”pant” (bottle deposit).
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After drawing the random sample, a coder at SSB manually labelled each item with
its 5-digit COICOP 2018 code. The coder was privy to additional information about
each sample, where variables such as price and store name were used to help resolve
the ambiguity of inconclusive samples. Despite this, a total of 53 items were still
considered too ambiguous to be labelled correctly. These are items with especially
succinct item names, containing only descriptions such as ”dagligvarer”, ”diverse”,
”mat” and so on. Some of these item entries might be the results of erroneous
word extraction from the optical character recognition step (see subsection 1.2.4),
or simply due to how specific stores would register their own items. Nevertheless,
these items were removed from the test data set, resulting in a test set of 947 labelled
items from scanned receipts, shown in figure 3.13.

Figure 3.13: Labelling the Scanned Receipts Test Set
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3.3 Characteristics of the Data Set

This section presents results from various analyses on the combined COICOP train-
ing data set. As described in subsection 3.2.4, this data set consists of two columns:
item names and 5-digit COICOP codes. The following subsections outline some
observed characteristics and attributes of these variables, first exploring the target
class, namely the 5-digit COICOP codes, and then investigating some key charac-
teristics of the words used in the different item names. Additionally, comparisons
to the Scanned Receipts Test Set are presented to demonstrate differences between
the item types in both data sets.

3.3.1 COICOP Codes

The structure of the COICOP 2018 classification system was previously described in
subsection 1.1.1. As outlined in that subsection, there are several hierarchical levels
of the COICOP 2018 codes, ranging from 2-digit to 5-digit codes. Whereas the
classification of items will be done following the 5-digit COICOP coding structure,
the 2-digit COICOP coding format, called ”division”, can still provide a useful
and quick overview of how the items are generally distributed across the different
categories. Table 3.2 lists the different COICOP division codes, and these will be
used to illustrate the representation of each division category in the training data
set in figure 3.14. The complete distribution of subclasses can be found in Appendix
A.1.

Code Description
01 Food and Non-Alcoholic Beverages
02 Alcoholic Beverages, Tobacco and Narcotics
03 Clothing and Footwear
04 Housing, Water, Electricity, Gas and other Fuels
05 Furnishings, Household Equipment and Routine Household Maintenance
06 Health
07 Transport
08 Information and Communication
09 Recreation, Sport and Culture
10 Education Services
11 Restaurants and Accommodation Services
12 Insurance and Financial Services
13 Personal Care, Social Protection and Miscellaneous Goods and Services

Table 3.2: COICOP 2018 division codes (UN, 2018)

Figure 3.14 shows the number of items in each division category in the training data.
The largest portion of samples falls under division code 05, where approximately 27%
of the total data set is concentrated. Furthermore, division codes 10, 11 and 12 are
barely represented.
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Figure 3.14: Number of items in each COICOP division code in the training set

Figure 3.15 breaks down the training data set into the different individual data sets
that were combined and shows the number of samples in each division category for
each data set. There is a large difference in the number of samples within each data
set, and the plots presented in this figure are therefore on different scales.

Figure 3.15: Number of items in each COICOP division code in each data set
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The plots in figure 3.15 show that a large portion of the Receipts and Transactions
data are food items (division code 01), while in the Imports data set, most samples
are found within division code 05. There are notably few samples representing di-
vision codes 10, 11 and 12 in all data sets, where the few existing samples appear
exclusively in the Receipt and Keywords data sets.

There is a total of 338 COICOP 2018 subclass codes in the COICOP 2018 coding
framework (UN, 2018). However, only 298 of these specifically relate to individual
consumption, and these are the ones that are relevant to the scope of this thesis. The
motivation behind combining the data sets was to accumulate a COICOP training
data set that represents as many as possible of these 298 subclass codes. Table 3.3
summarises the representation of distinct subclasses in the different data sets, as
well as in the combined COICOP training data set.

Data Set Items Distinct Subclasses % of 298 Relevant Subclasses
Receipts 575 117 39.26%
Keywords 2 377 274 91.94%
Transactions 29 776 135 46.64%
CPI 23 541 27 9.06%
Imports 1 433 947 117 39.26%

Training Data 1 490 216 283 94.97%

Table 3.3: Number of distinct subclass codes in each data set

As shown in table 3.3, the attempted combination of data sets was unsuccessful
in obtaining a training data set where all 298 different subclasses are represented.
A total of 15 subclass codes are missing. For a detailed overview of the missing
subclass codes, see Appendix A.1. Furthermore, table 3.3 shows that the Keywords
data set contains the highest number of distinct subclasses, where only 9 additional
distinct subclasses were added to the combined training data set through any of
the other four data sets. The CPI data set contains the fewest number of distinct
subclass codes out of any of the data sets with only 27 distinct codes represented in
total. This means that out of the 23 541 samples in the CPI data set, only 9.06%
of all relevant subclasses are found.

Although table 3.3 shows a representation of subclass codes in the combined training
data set that is close to the total number of available subclasses (94.97%), it does
not fully communicate the class imbalance in the data set. Table 3.4 provides some
additional insight to this, showing the total number of distinct subclasses in each
data set that are represented by n samples, where n > 0.
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Subclasses n ≤ 5 Subclasses n ≤ 10 Subclasses n ≤ 15
Data Set Count Percent Count Percent Count Percent
Receipts 88 75% 104 89% 109 93%
Keywords 145 53% 204 74% 241 88%
Transactions 22 16% 29 21% 37 27%
CPI 1 4% 1 4% 2 7%
Imports 1 1% 2 2% 2 2%

Training Data 67 24% 90 32% 100 35%

Table 3.4: Number of distinct subclass codes represented by n samples in each
data set where n > 0. Percent refers to the ratio between unique subclass codes
represented by n samples and the total number of unique subclass codes in the data
set

As shown in table 3.4, a total of 100 subclass codes are represented by 15 or fewer
samples in the combined training data set. This means that out of the 283 subclass
codes in this data set, 100 (35%) are barely represented by any samples. This sug-
gests that the 1 460 216 samples in the full training data set are unevenly distributed
across the represented subclass codes. Figure 3.16 shows the 25 most frequent sub-
class codes in the training data. Together, the top 25 most frequent subclass codes
make up 74% of all samples in the full training data set.

Figure 3.16: Most frequent subclass codes in the training data set

Comparisons with the Scanned Receipts Test Set

There are differences between the COICOP codes represented in the combined train-
ing data set and in the Scanned Receipts Test Set. As described in section 3.2, these
data sets were sampled differently, and the following paragraphs presents the rep-
resentation of COICOP codes in the Scanned Receipts Test Set and attempts to
summarise some of the prominent differences between the item types in both data
sets.
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Figure 3.17 shows the number of items within each division category in the Scanned
Receipts Test Set. Here, around 68% of the items are concentrated within the food
category (division 01). As opposed to the combined training data set, this test set
contains close to no samples within division codes 04 and 08. The complete distri-
bution of subclass codes for the Scanned Receipts Test Set is included in Appendix
A.2.

Figure 3.17: Number of items in each COICOP division code in the test data set

Figure 3.18 shows the 25 most frequent subclass codes in the Scanned Receipts Test
Set. This data set contains 131 distinct subclass codes, and the top 25 most frequent
ones make up 61% of all samples in the full Scanned Receipts Test Set. Among the
subclass codes included in this figure, 6 of them are also among the top 25 most
frequent subclass codes of the combined training data set (see figure 3.16), and these
are highlighted in yellow.

Figure 3.18: Most frequent subclass codes in the test set. Yellow columns indicate
which subclass codes that are also among the most frequent in the training data set
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As shown in figure 3.18, some of the most frequent subclass codes in the Scanned
Receipts Test Set also occur among the most frequent ones in the combined train-
ing data set. However, among the remaining most frequent subclass codes in the
Scanned Receipts Test Set, some are represented by notably few samples in the com-
bined training data set. Figure 3.19 shows the number of samples in the combined
training data set that represent the 25 most frequent subclass codes in the Scanned
Receipts Test Set.

Figure 3.19: Number of samples in the training data set representing the most
frequent subclass codes in the test data set

As illustrated in figure 3.19, there is a large variation in the number of samples
representing the most frequent subclass codes of the Scanned Receipts Test Set. In
the combined training data set, subclass codes 13.1.2.0, 03.1.2.2 and 05.6.1.9 are
represented by nearly 100 000 samples each, while subclass codes 11.1.1.2, 01.1.6.1,
01.1.4.2 and 01.1.4.3 are represented by less than 100 samples.

39



3. Data

3.3.2 Item Names

This subsection explores attributes of the item names that occur in the combined
training data set. When training a classifier model, the item names will be used to
predict the 5-digit COICOP 2018 code, and this subsection attempts to highlight
some of the salient aspects of the item names.

Figure 3.20 shows that there is a disparity between the number of words in each data
set, where the item names in the Imports set are typically longer than in any of the
other data sets. However, since the different data sets are from different sources, and
originally collected for different purposes, some variation between the item names is
to be expected.

Figure 3.20: Average word count and length in each data set

The length of each word is typically shorter for the Imports and Transaction data,
indicating that the item names in these data sets might contain more instances of
incomplete words, abbreviations, quantity measures, or other special expressions.
The item names in the Receipts and Keywords data set contain very few words on
average, while each word is typically longer than in the Transactions and Imports
data sets. This could mean that there is less ”noisy” text in these item names, and
that each word in these data sets provides more valuable information for COICOP
classification.

The number of unique words gives an indication of the variation of words that exists
within each data set. Table 3.5 shows the number of distinct words and number of
distinct words per item in the different data sets, illustrating that there are a total
of 549 434 distinct words in the combined training data set.
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3. Data

Data Set Items Distinct Words Distinct Words per Item
Receipts 575 304 0.53
Keywords 2 377 2 398 1.01
Transactions 29 776 17 717 0.60
CPI 23 541 14 051 0.60
Imports 1 433 947 532 656 0.37

Training Data 1 490 216 549 434 0.37

Table 3.5: Distinct words in each data set

The column Distinct Words per Item in table 3.5 describes the ratio between the
distinct words and the total number of items in each data set. This can be seen
as a measure of the uniqueness of each item name in each data set. For the Key-
words data set, this measure is above 1, meaning that there are more distinct words
than there are entries in this data set. The Imports data set has the lowest value
of 0.37, meaning that there is approximately only one unique word for every third
item name in this data set. With the aim of assembling a large vocabulary of item
names for the classifiers to learn, the Keywords data set seems to be the most bang
for the buck as it introduces many new words over relatively few entries. Still, a
majority of the unique words originate from the Imports data set, and these words
will contribute to most of the unique item names in the vocabulary.

Table 3.6 shows the percentage of entries in each data set that contain exclusively
numerical, alphabetical, or alphanumerical characters. Additionally, it shows the
percentage of entries that contain special characters, such as ”-”, ”&”, ”%”, i.e., not
only alphanumeric characters.

Data Set Only Num Only Alphabetic Only AlphaNum Special Ch.
Receipts 0.00 % 77.91 % 78.09 % 21.91 %
Keywords 0.00 % 83.68 % 83.80 % 16.20 %
Transactions 0.02 % 78.05 % 86.77 % 13.23 %
CPI 0.00 % 18.44 % 55.14 % 44.86 %
Imports 0.01 % 19.75 % 79.20 % 20.80 %

Training Data 0.01 % 21.02 % 78.98 % 21.02 %

Table 3.6: Item names characteristics in each data set

Some of these special characters and numeric values in the item names might not
be useful to determine which COICOP subclass code an item belongs to, and some
of them might only add noise to the data. This is further explored in section 4.1 in
the next chapter of this thesis.
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Chapter 4

Model Architecture

Subsection 1.2.4 described the proposed pipeline that converts images of scanned
receipts to fully classified consumer goods. As outlined in the same subsection, the
work involved with this thesis aimed to explore approaches to step 3 and 4; Pro-
cessing and Vectorisation of Words and COICOP Classification. Whereas chapter
3 described the data collection procedure and the choices that went into the selec-
tion and preparation of data sets, this chapter describes the design of the classifier
models and how these models will be evaluated.

This chapter is split into three sections, where the first section, 4.1, describes the
chosen approach to step 3 of the pipeline: Processing and Vectorisation of Words.
This includes the steps involved with preparation of data before training a classi-
fier model. The next section, 4.2, summarises the design of the COICOP classifiers
themselves, namely which classifiers to explore and how these were trained. Hence,
this section describes the chosen approach to step 4 of the pipeline; COICOP Classi-
fication. Lastly, section 4.3 outlines a proposed classification system that facilitates
automatic classification and describes how to assess the classifier models against
that system.

4.1 Text Processing

”The quality of the data and the amount of useful information that it contains are
key factors that determine how well a machine learning model can learn” (Raschka
& Mirjalili, 2019, p. 109). In the previous chapter, section 3.2 described the higher-
level filtering steps that went into the preparation of the data sets. This section
presents the document-level data preparation steps, describing the chosen natural
language processing (NLP) methods for text pre-processing and the feature extrac-
tion of item names.

Table 3.6 showed that 24.52% of the samples in the training data contain special
characters, and around 0.01% of the samples contain only digits. These terms typ-
ically contain very little discriminatory or valuable information for a classifier to
learn (Škrlj et al., 2021). Pre-processing of text samples is often used to filter out
such non-alphanumeric characters, along with other specific terms that might only
add noise. This can for instance be done by simply removing the ”noisy” terms or
replacing them with pre-defined terms that might contain more valuable information.
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Classifying items from receipts is a peculiar field of text classification in that each
item name is often succinct, and the language is typically specific and sparse. There
are generally no verbs nor adverbs, but rather nouns, and in some cases, adjectives
used to describe the items (Maslova & Da Cruz, 2019). Unlike longer paragraphs
of text, these short item names hardly communicate much, if any, contextual in-
formation, and this can result in ambiguous item names that even a human would
struggle to classify. Combining these ambiguous item names with a classification
framework (COICOP 2018) which requires high levels of detail in the classifications,
the classification task might even be impossible. Hence, stripping too much of the
raw item names might negatively affect the classifiers’ performance. This thesis has
therefore exercised some restraint in the pre-processing of the item names to avoid
removing too much of potentially discriminating semantic information.

4.1.1 Pre-Processing of Item Names

To illustrate the effects of the text pre-processing steps used in this thesis, this
subsection presents a handful of item names from the Receipts data set. All of
which were extracted from images of scanned receipts as part of the pilot study (see
subsection 1.2.3).

Nr Items Names Extracted from Scanned Receipts
1 solsikkefrø 1 kg first price
2 Nicotinell tyggegum 2mg icemin\n96 ENPAC
3 Yoghurt vanilje 4x150g tine\n\kr\n1 stk - 1 %
4 1x apple cider vinegar sjampo\n385ml
5 100% APP JUICE M/K

Table 4.1: Items names extracted from scanned receipts

The ordering in which the text pre-processing steps are applied plays an important
role in obtaining the intended text representation. For instance, functions that
substitute specific expressions will become less effective if parts of those expressions
were removed in another step prior to running the substitution function. This thesis
decided on the following text pre-processing pipeline, and the ordering of these steps,
are as follows:

1. Lowercase: Change all letters to lowercase

2. Quantities: Substitutes quantities with specified expressions

3. Numbers: Removes numbers

4. Special Characters: Removes a set of special characters, e.g., (”-”, ”%”, ”&”)

5. Single Characters: Removes characters that occur alone

6. Newline Characters: Removes newline character (”\n”)

7. White Space: Removes white space between characters
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The text pre-processing pipeline was specifically designed with the output from the
OCR-step in mind. As described in subsection 1.2.4, the OCR step in the pipeline
outputs text that has been extracted from images of scanned receipts, and the items
listed in table 4.1, are examples of such text samples. The following paragraphs
summarises the effects of the pre-processing steps above, and table 4.2 shows how
the different item names from table 4.1 were transformed after all steps of the text
pre-processing pipeline were performed in order.

First, all letter in the item names were changed to lowercase. This was done to sim-
plify processing of words that are different in capitalisation only, and to later avoid
creating redundant features from these words. In this way, occurrences of ”JUICE”
and ”juice” will be recognised as the same word.

Since COICOP categories are generally not concerned with the quantity measures
of items, these measures could be removed. However, in an attempt to retain some
semantic information from these quantitative measures, they were instead substi-
tuted to either ”FAST” for the solid goods or ”FLYTENDE for the liquid goods.
The words chosen to replace the quantity measures were deliberately capitalised in
order to express their distinctiveness from words that stem from the original data
set. This transforms item names such as ”solsikkefrø 1 kg first price” to ”solsikkefrø
FAST first price”.

Some additional pre-processing steps were also performed, including removing num-
bers, removing newline character (”\n”), and removing white space between char-
acters. This was done in an attempt to derive less noisy text samples that are ready
to be extracted into feature vectors. The python code with each text processing
step is included in Appendix E.1. The result after performing each pre-processing
step is shown in table 4.2.

Nr Pre-Processed Items Names
1 solsikkefrø FAST first price
2 nicotinell tyggegum FAST icemin enpac
3 yoghurt vanilje FAST tine kr stk
4 apple cider vinegar sjampo FLYTENDE
5 app juice

Table 4.2: Pre-processed items names

4.1.2 Feature Extraction

After the initial text pre-processing steps, feature extraction was done to create nu-
merical features of the item names. Two different methods were explored to create
numerical feature vectors: vectorisation with bag-of-words and tf-ifd. These have all
been previously described in subsection 2.3.3.

The count-based feature extraction methods, bag-of-words (CountVectorizer) and
tf-ifd (TfidfVectorizer), were implemented using Scikit-learn. This thesis explored
using different N -gram ranges at both word- and character-level to construct feature
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vectors from item names. The combinations of feature extractors and N -gram ranges
that were used in this thesis are listed in table 4.3.

Name Feature Extractor Analyser N -gram Range
CV-w CountVectorizer word (1,1)
CV-w22 CountVectorizer word (2,2)
CV-w23 CountVectorizer word (2,3)
CV-w33 CountVectorizer word (3,3)
CV-ch22 CountVectorizer character (2,2)
CV-ch23 CountVectorizer character (2,3)
CV-ch33 CountVectorizer character (3,3)
TFIDF-w TfidfVectorizer word (1,1)
TFIDF-w22 TfidfVectorizer word (2,2)
TFIDF-w23 TfidfVectorizer word (2,3)
TFIDF-w33 TfidfVectorizer word (3,3)
TFIDF-ch22 TfidfVectorizer character (2,2)
TFIDF-ch23 TfidfVectorizer character (2,3)
TFIDF-ch33 TfidfVectorizer character (3,3)

Table 4.3: Chosen feature extraction methods and parameter settings

The different N -gram ranges and analyser methods determine the dimension of the
transformed feature matrix. As the count-based feature extractor methods aim to
represent the frequencies of individual terms in a document, the constructed feature
matrices tend to get high-dimensional (Shahmirzadi et al., 2019). Table 4.4 shows
how the number of features created varies depending on the choice of analyser and
N -gram range for the full COICOP training set.

Analyser N -gram Range Number of Created Features
word (1,1) 203 798
word (2,2) 824 764
word (2,3) 1 692 374
word (3,3) 867 610
character (2,2) 939
character (2,3) 18 891
character (3,3) 17 952

Table 4.4: Number of features created from the COICOP training data set for
different variation of feature extractor analyser and N -gram range

As shown in table 4.4, the number of created features largely depends on the analyser
and N-gram range. For the training data set used in this thesis, the word-based vec-
torisation methods created more feature than the character-based ones. Whereas
more semantic information might be kept in the word-based extraction methods,
the character-based methods appear to be more computationally favourable as they
appear to require a lower dimensionality feature space to represent the terms. Nev-
ertheless, all combinations of feature extraction methods listed in table 4.3 were
explored in this thesis.
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4.2 Classifier Model

This section summarises the design of the classifier models that were implemented
for classification of items into 5-digit COICOP codes. This includes the choice of
classifiers, how the classifier models were trained and evaluated, and how the best
performing combination of classifier and feature extractor was identified.

4.2.1 Classifiers

A set of traditional classifiers were chosen to explore the potential of implementing
supervised machine learning for classification of items into 5-digit COICOP 2018
subclass codes. These classifiers were largely chosen on the basis of being classifiers
that SSB have used in their previous work, and due to their advantages of being
easy to implement and typically performing well in text classification tasks with-
out requiring much tweaking or optimisation (Kowsari et al., 2019). The chosen
classifiers are listed in 4.5, and each classifier was implemented using Scikit-learn.

Name Classifier Scikit-Learn Module
LR Logistic Regression sklearn.linear model.LogisticRegression
RF Random Forest sklearn.ensemble.RandomForestClassifier

Table 4.5: Chosen classifiers and their Scikit-learn module

Some classifiers are slower to train on larger sized data sets than others. For in-
stance, Random Forest is trained by fitting several decision trees to the data, and
using multiple trees can be computationally expensive as it increases prediction com-
plexity. Logistic Regression, on the other hand, is a simpler model that is typically
fast to train. However, at the same time, the Logistic Regression model might be
less accurate than Random Forest on large feature data sets (Kowsari et al., 2019).

4.2.2 Performance Metrics

In order to evaluate the performance of the classifiers, the choice of performance
metrics must first be defined. Among the performance metrics presented in subsec-
tion 2.2.3, the accuracy score is perhaps the simplest metric to interpret as it reflects
the ratio between correct classifications and total samples in the data set. However,
as shown in section 3.3, not all subclass codes are equally represented in neither the
assembled COICOP training data nor in the Scanned Receipts Test Set. In these
situations, the accuracy metric on its own might fail to accurately communicate the
performance of the classifiers as higher accuracy scores can occur if the classifiers
simply predict the majority classes for every sample. Therefore, performance metric
scores accuracy, precision, recall, and F1-score are all presented together to give a
more detailed picture of each classifiers’ overall performance. These metrics, and
their calculations, have all been previously described in subsection 2.2.3.
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4.2.3 Training and Evaluation Protocols

To meet the objectives of research questions 2 and 3 (see section 1.3), this thesis con-
ducted two primary experiments with training and evaluating COICOP classifiers.
These experiments are summarised as follows:

Held-out Data: The classifiers are trained on a training partition of the COICOP
training data and evaluated on a held-out test partition.

Scanned Receipts: The classifiers are trained on the full COICOP training data
and evaluated on the Scanned Receipts Test Set.

The following paragraphs describe the training and evaluation protocols employed
in both experiments.

Held-out Data

In the Held-out Data experiment, the classifiers in table 4.5 were trained using a
hold-out method. This involves splitting the full data set into two partitions, where
one partition is used to train the model, while the other is used to evaluate the
model’s performance on data that it has never seen during training. These parti-
tions are typically referred to as the training set and test set (Raschka and Mirjalili,
2019, p. 121).

Figure 4.1 illustrates the employed training and evaluation protocol which utilises a
hold-out method. This thesis used 80% of the data as a training set, while 20% of the
data was kept as a test set. This split was made by stratifying on the COICOP sub-
classes in the data set to ensure that both the training and test partitions contained
proportional representations of each COICOP subclass code.

Figure 4.1: Held-out Data: Training and evaluation protocol
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After the split into training and test partitions was made, the item names in each
partition were pre-processed by applying the pre-processing steps described in sub-
section 4.1.1. Next, all samples, which at this point contained item names in text
format, were transformed into feature vectors using one of the different feature ex-
traction methods described in subsection 4.1.2.

In an attempt to get an unbiased assessment of the model’s generalisation perfor-
mance on unseen data, the test set was kept away from the model at all times during
training. This also included the item names in the test set, and the feature extractor
would therefore only learn to represent the item names that occurred in the training
set. The test set is meant to represent unseen data, and some of these item names
are expected to be item names that the model has not seen before. As shown in
figure 4.2, the feature extractor learns to represent the items names in the training
set and is subsequently used to transform the item names in both the training set
and test set into numeric feature vectors.

Figure 4.2: Transforming item names with a feature extractor

After transforming the item names into numeric feature vectors, the models were
trained on the data in the vectorised training set as shown in figure 4.1. The trained
models then attempted to predict the COICOP subclass codes in the vectorised test
set. The performance metrics of each model were calculated and used to evaluate
their performance on the held-out test set.

However, due to time constraints, the best performing combination of feature extrac-
tor and classifier was identified using a subset containing 10% of the full COICOP
training data set. Training and evaluation on this subset was done using the hold-out
method with an 80/20 split, following the same steps shown in figure 4.1. This means
that the optimal combination of feature extraction method and classifier might not
have been identified, but this approach should still have provided an indication of
which combination that is expected to perform well on the full training data set.

In the final evaluation of the classifier models in the Held-out Data experiment,
the identified best-performing combination of feature extractor and classifier on the
subset was retrained and evaluated on the full COICOP training data. This was done
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by using a hold-out test set of 20%, following the training and evaluation protocol
in figure 4.1. The model performances from this evaluation will be presented using
the performance metrics described in subsection 4.2.2.

Scanned Receipts

The Scanned Receipts experiment was conducted to assess how well the perfor-
mances of classifiers trained on the COICOP training data carry over to items from
scanned receipts. The best performing models from the Held-out Data experiment,
i.e., the identified best-performing combination of feature extractors and classifiers,
were used in this experiment.

Figure 4.3 illustrates the employed training and evaluation protocol where the mod-
els are trained on the full COICOP training data set and evaluated on the Scanned
Receipts Test Set.

Figure 4.3: Scanned Receipts: Training and evaluation protocol

The item names in both the training and set were pre-processed by applying the
steps described in subsection 4.1.1. Similar to how the feature extractor would only
learn to represent item names in the training partition in the Held-out Data experi-
ment, the feature extractor in this experiment learned to represent the items in the
full COICOP training data. The fitted feature extractor was subsequently used to
transform both the item names in the full COICOP training data set and the items
in the Scanned Receipts Test Set to numeric feature vectors.

After transforming the item names, the models were trained on the data in the vec-
torised COICOP training data set and evaluated on the vectorised Scanned Receipts
Test Set. The model performances from this evaluation will be presented using the
performance metrics described in subsection 4.2.2.
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4.3 Automatic Classification System

To evaluate the potential for implementing an automatic classification system into
the statistics production for Statistics Norway, a classification system suited for
automated COICOP classification must first be identified. By relying on machine
learning to automate the classification process of items in the survey, mistakes are
bound to happen as there will always be items that the classifier has never seen
before or items that the classifier is conflicted on. However, manually reviewing
each classification to make sure that no misclassifications occur, is hardly different
from manually labelling each item. Instead, employing a system that is able to
signal when mistakes potentially occur, so that only these predictions are manually
reviewed, may be a pertinent compromise.

Figure 4.4: Predictions for items where uncertain classifications are flagged

Figure 4.4 illustrates the envisioned concepts of this system. Here, predictions are
made for each item, but the prediction for ”Knekkebrød” is flagged as the classifier
believes that a mistake may have occurred. The two non-flagged predictions are
automatically handled, while the flagged prediction is the only one that requires
human attention. In order to identify a suitable approach to such a system, this
thesis consults related work from different national statistics offices (NSOs).

4.3.1 Related Work

The amount of previous work related to machine learning for automatic 5-digit
COICOP classification of items appears to be limited. Among the identified studies,
most studies typically relate to the application of machine learning for production
of the Consumer Price Index, while there is also one that directly relates to classi-
fication of items from household budget surveys. Among these, two studies appear
to be particularly relevant for the classification system envisioned in this thesis,
and the findings that were relevant to this study are summarised in the following
paragraphs.

Machine Learning in the Consumer Price Index

Myklatun (2019) explored the potential and benefits of utilising machine learning for
the classification of items from transaction data for the production of the Consumer
Price Index (CPI) for Statistics Norway. The motivation behind this was to increase
the coverage and accuracy of the CPI estimations and to decrease the labour burden
involved with manually labelling new items every month. Myklatun states that in

50



4. Model Architecture

the market of food and non-alcoholic beverages, there is an estimated 400-1200 new
items introduced every month, and whereas previously seen items could sometimes
be automatically classified using rule-based classifications, all these new items would
still have to be manually labelled.

Myklatun explored the use of machine learning for the previously unseen items and
proposed the use of prediction probability scores for each item to determine which
items should be flagged for manual labelling. Using this approach, Myklatun found
that for predictions with prediction probabilities above 20%, the overall accuracy of
the predictions was 95%. With this approach, Statistics Norway were able to reduce
the amount of manual labour required in the CPI productions significantly at the
cost of an estimated 5 % incorrect classifications.

Classification of Shopping Receipts

In a collaboration between the national statistics offices in UK and Netherlands,
Benedikt et al. (2020) explored the use of machine learning to modernise parts of
the household budget survey by automatically classifying items from receipts. Sim-
ilar to Statistics Norway’s survey of consumer expenditure, this household budget
survey utilised 5-digit COICOP subclass codes in the classification of items. Because
of this detailed coding framework, Benedikt et al. found that fully automating the
classifications poses many challenges. Many receipts contain short item names such
as ”fresh milk”. When using the detailed 5-digit COICOP 2018 structure to classify
milk, one needs information about the type of milk to make necessary distinctions
between milk types such as ”whole milk” or ”skimmed milk”. Benedikt et al. argued
that because of this, the classifier will ultimately make mistakes.

In order to reduce the number of mistakes made, Benedikt et al. proposed the use
of a ”human-in-the-loop” classification system. This system also relies on prediction
probability scores to determine when human intervention is required to manually
review predictions. Furthermore, through manually reviewing items, more labelled
data is generated which can be used to enrich the training data to improve model
performance in the future. This process is referred to as Active Learning. Figure
4.5 illustrates the proposed classification system. Here, ”Confident” refers to the
prediction probability of a prediction.

Figure 4.5: ”Human-in-the-Loop” classification of items (Benedikt et al., 2020)

51



4. Model Architecture

Although Benedikt et al. did not report results from implementing this system into
real applications of statistics production, the preliminary test showed promising
results, where some of the best classifiers showed the potential for automatically
classifying 62% of the items at the cost of 3% incorrect classifications.

4.3.2 Proposed System for Automatic Classification

Based on the outlined classification systems in the related works, prediction probabil-
ities appear to be a suited metric for signalling when misclassifications are expected
to occur. Furthermore, with the addition of Active Learning in a ”human-in-the-
loop”-based classification system as Benedikt et al. explored, there is a potential for
continuous model improvements by giving direct feedback to items that the model
has never seen before or are conflicted on.

Because of the auspicious results from the studies of Myklatun and Benedikt et al.,
the models explored in this thesis will also facilitate a similar classification system in
the future. In this way, Statistics Norway can decide on the appropriate threshold
value that determines which portion of the data that needs manual review and which
that should be automatically classified. Figure 4.6 illustrates this concept with an
arbitrary distribution of prediction probabilities for items and separates these items
into manual review or automatic classification based on which side of the threshold
value, T = 80 %, they fall.

Figure 4.6: Prediction probabilities partitioned by threshold value T

Figure 4.7 expands on the example from figure 4.4 and uses both prediction proba-
bilities and threshold value, T = 80%, to determine if an item should be manually
reviewed or be automatically classified. Here, ”Knekkebrød” falls below the pre-
defined threshold value and is flagged for manual review. After assigning the correct
COICOP code to this item, the classifications are finalised, and the labelled item is
added to the training data.
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Figure 4.7: ”Human-in-the-loop”-based classification system for items from scanned
receipts

In the evaluation of the current potential and limitations for implementing an auto-
mated classification system for items from scanned receipts, this thesis has based its
assessments on whether the explored and evaluated models are fit-for-purpose for a
similar ”human-in-the-loop”-based classification system.

4.3.3 Evaluation Potential for Automatic Classification

To explore the potential for automatic classification based on the described classi-
fication system in subsection 4.3.2, the frequencies of the prediction probabilities
for predictions both on the held-out test set and the scanned receipt data were
explored in detail. The number of misclassifications that occurred above specified
threshold values were calculated to illustrate how many errors that would happen if
all predictions above the specified prediction probability threshold were automati-
cally classified instead of manually reviewed by a human. Figure 4.8 illustrates how
the threshold value segments the data and how the error rates for predictions above
the threshold are calculated.

Figure 4.8: Calculating rate of error above a specified threshold value
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Chapter 5

Model Results

This chapter presents results from the training and evaluation of the COICOP clas-
sifiers on the assembled training data, previously described in subsection 3.2.4. Sec-
tion 5.1 presents the best performing feature extractor method for each classifier
that will be used in evaluations in the subsequent sections of this chapter. Section
5.2 presents the performance results of classifiers on the training data where each
classifier was evaluated on a hold-out test set from the training data. Section 5.3
presents results that show how well the previously trained classifiers carry over to
the Scanned Receipts Test Set, previously described in subsection 3.2.5. In this
chapter, results related to research questions 2 and 3 are presented, while the next
chapter further interprets these results.

5.1 Model Selection

In the model selection process, all classifiers were tested with the different com-
binations of feature extractors, analyser and N-gram range, as listed in table 4.3.
The best performing feature extraction method for each classifier was identified by
evaluating performance on a subset of 10% of the full training data. Both classifiers,
listed in table 4.5, were implemented using their default values with the Scikit-learn
library. Table 5.1 shows the best performing models on the subset of the training
data, while performance scores for every combination of feature extractor methods
and classifiers are included in Appendix B.1.

Classifier Feature Extractor Analyser N -gram Range
Logistic Regression CountVectorizer Character (3,3)
Random Forest CountVectorizer Character (2,3)

Table 5.1: Classifier Models: Chosen feature extractor, analyser and N -gram range
for both classifiers

The classifier models of table 5.1 are both used in the evaluation of model perfor-
mances on held-out test data from the full training data set in section 5.2 and in
evaluations on items from scanned receipt data in section 5.3.
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5.2 Model Performances on Held-out Data

5.2.1 Model Predictions

Following the described steps of the Held-out Data experiment in subsection 4.2.3,
the Logistic Regression and Random Forest classifier models from table 5.1 were
evaluated on the full training data set using a 20% hold-out set as a test set. Table
5.2 shows the performance of the Logistic Regression and Random Forest models
on the training and test partition of the full training data set. The highlighted
cells show the highest performance metric scores on the hold-out test set. Here, the
model performances on the training set are also presented to illustrate how well the
classifiers were able to fit to the training data. The differences between performance
scores on the training set and the test set can indicate whether the models were
overfitting to the training set.

Classifier Model Performance Metrics
Classifier Extractor Precision Recall F1-Score Accuracy

Training Set (80%)

Logistic Regression CV-ch33 0.845 0.844 0.844 0.844
Random Forest CV-ch23 0.984 0.984 0.984 0.984

Hold-out Set (20%)

Logistic Regression CV-ch33 0.820 0.820 0.819 0.819
Random Forest CV-ch23 0.870 0.869 0.868 0.869

Table 5.2: Performance of classifier models on training and test partitions of the
training data set

The results from table 5.2 indicate that both models were able to learn patterns in
the training data, where the Random Forest model was able to achieve high perfor-
mance scores on the training partition of the training set. However, when assessing
its performance on the hold-out set, more than a 10 percentage points drop in per-
formance is observed for all performance metrics. The Logistic Regression model
did not fit as well to the training data as the Random Forest model, achieving an
accuracy score of 84.44%, which is 14 percentage points lower. Still, the drop-off in
performance on the hold-out set was much lower for the Logistic Regression model,
indicating that this model might have been able to reach a better comprise between
bias and variance than the Random Forest model. Regardless, Random Forest still
proved to be the overall best performing model of the two on the hold-out test set.

Table 5.3 breaks down the overall accuracy into average accuracy by division cat-
egory, showing that the Random Forest model also achieved the highest average
accuracy for all division categories in the hold-out set. The highlighted cells show
the highest average accuracy scores for samples within each division category. For
a full description what the different division codes represent, see section 3.3.
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Hold-out Set Classifier Models
Code Items Logistic Regression Random Forest

01 31 553 0.786 0.842
02 3 934 0.728 0.764
03 42 888 0.855 0.893
04 24 429 0.829 0.906
05 80 338 0.800 0.863
06 4 102 0.814 0.839
07 21 166 0.820 0.865
08 21 092 0.866 0.899
09 37 560 0.752 0.798
10 1 1.000 1.000
11 20 0.850 0.859
12 2 0.000 0.000
13 30 774 0.907 0.939

Table 5.3: Average model accuracy on samples within each COICOP division code
in the held-out test set

Based on the results in table 5.2 and table 5.3, the Random Forest model appears
to be the overall best performing model on the COICOP training data. Still, several
misclassifications occurred in the hold-out set for both models. Figure 5.1 shows
the 25 most frequently misclassified subclass codes for the Random Forest model.
In total, this model made 38 949 misclassifications, and the 25 most frequently
misclassified subclass codes represent 69% of all misclassifications made.

Figure 5.1: Most frequently misclassified subclass codes in the held-out test set by
the Random Forest model
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Similarly, figure 5.2 shows the 25 most frequently misclassified subclass codes for
the Logistic Regression model. This model made 53 840 misclassifications in to-
tal, and the 25 most frequently misclassified subclass codes represent 73% of all
misclassifications made.

Figure 5.2: Most frequently misclassified subclass codes in the held-out test set by
the Logistic Regression model

Figures 5.1 and 5.2 indicate that both models typically misclassify similar subclass
codes. However, notably fewer misclassifications were made by the Random Forest
model.
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5.2.2 Distribution of Prediction Probabilities

Misclassifications on the unseen testing data are to be expected as there will be
item names that the models have never seen before. Ideally, this should also be
reflected in the model’s prediction probabilities, where one can get an indication of
which item names that are unknown or inconclusive to the models and where mis-
classifications are likely to occur. The following paragraphs show the distribution of
prediction probabilities for the Logistic Regression model and the Random Forest
model, as well as the error rates at different threshold values.

Figure 5.3: Distribution of prediction probabilities for Logistic Regression predic-
tions on the held-out test set

Figure 5.3 illustrates the distribution of prediction probabilities by correct and incor-
rect classification of samples for the Logistic Regression model. In this visualisation,
the prediction probabilities have been bucketed with a bucket size of 0.05, meaning
that the graph might be less detailed than the actual distribution. The left-skewed
distribution in the figure indicates that the model was confident in most of its predic-
tions. Furthermore, among the predictions that have a high prediction probability
value, most were in fact correct classifications. Still, figure 5.3 shows that incorrect
predictions also occurred for higher prediction probability values, but they were
less frequent than correct predictions when the prediction probability is above 50%.
Table 5.4 shows the number of items classified with a prediction probability above
specified threshold values, T , and the error rates, ER, for these predictions.

Count T ≥ 95% T ≥ 90% T ≥ 85% T ≥ 80%
Number of Items 72 469 111 686 140 433 161 830
Of Total Data 24.33% 37.50% 47.15% 54.33%
Error Rate (ER) 0.00 0.01 0.01 0.02

Table 5.4: Number of items above threshold value (T ) for predictions made by the
Logistic Regression model on the held-out test set
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As shown in table 5.4, 54.33% of the total data was classified with a prediction prob-
ability above 80% (T ≥ 80%). Among these predictions, 2% were misclassifications.
Alternatively, table 5.5 shows how much of the data that can be used with specified
error rates. Table 5.5 shows that 73.70% of the data could be automatically handled
by the classifier at the cost of 5% misclassifications - if the threshold value were to
define which partition of the data that would be automatically classified without
the need for manual review.

Count ER = 0.00 ER = 0.01 ER = 0.03 ER = 0.05
Number of Items 22 448 135 271 191 879 219 515
Of Total Data 7.54% 45.41% 64.42% 73.70%
Threshold (T ) T ≥ 99% T ≥ 86% T ≥ 71% T ≥ 60%

Table 5.5: Number of items and threshold value (T ) for a specified error rate (ER)
for predictions made by the Logistic Regression model on the held-out test set

Similarly, the distribution of prediction probabilities for the Random Forest model
predictions on the hold-out set is shown in figure 5.4. This graph indicates that the
Random Forest model is generally confident in its predictions, as most predictions
are concentrated above 95% prediction probability.

Figure 5.4: Distribution of prediction probabilities for Random Forest predictions
on the held-out test set

The confidence of the Random Forest model is also reflected in table 5.6, which
shows that the prediction probabilities are ≥ 95% for 57.10% of the data predicted.

Count T ≥ 95% T ≥ 90% T ≥ 85% T ≥ 80%
Number of Items 170 081 182 401 191 384 199 423
Of Total Data 57.10% 61.24% 64.25% 66.95%
Error Rate (ER) 0.00 0.01 0.01 0.01

Table 5.6: Number of items above threshold value (T ) for predictions made by the
Random Forest model on the held-out test set
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Table 5.7 shows how much of the data that can be used with specified error rates.
The table shows that 85.64% of the data could be automatically classified if an
error rate of 5% is tolerated. Additionally, the table also shows that the prediction
probabilities for 51.03% of all predictions were ≥ 99%.

Count ER = 0.00 ER = 0.01 ER = 0.03 ER = 0.05
Number of Items 152 002 199 423 235 191 255 092
Of Total Data 51.03% 66.95% 74.51% 85.64%
Threshold (T ) T ≥ 99% T ≥ 80% T ≥ 55% T ≥ 39%

Table 5.7: Number of items and threshold value (T ) for a specified error rate (ER)
for predictions made by the Random Forest model on the held-out test set

As the previous paragraphs have shown, both classifiers typically make correct pre-
dictions when the prediction probability value is high. Although the Random Forest
model indicates a better separation of misclassifications and correct classifications
than the Logistic Regression model. However, it should be noted that the two mod-
els calculate prediction probabilities differently.

As previously described in subsection 2.2.1, Logistic Regression transforms the net
input sum z of each sample with the sigmoid activation function, φ(z), to obtain
a probability value between 0 and 1. This value is used by the Logistic Regression
model as its prediction probability. Random Forest, on the other hand, is a col-
lection of Decision Trees. Each Decision Tree returns a decision; 1 for the positive
class and 0 for the negative class. The Random Forest counts the number of votes
of all the Decision Trees and predicts the majority class. The prediction probability
is calculated as the number of votes for this class divided by the number of trees in
the model (Pedregosa et al., 2011).
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5.3 Model Performances on Scanned Receipts

The preceding section showed that the Logistic Regression and Random Forest mod-
els were both able to achieve performance scores above 80% when testing on held-out
test data. The results presented in this section summarise how well the perfor-
mances of these models carry over to predictions on unseen items from Scanned
Receipt Data, acquired through manual labelling of items from the pilot study (see
subsection 3.2.5).

5.3.1 Model Predictions

Following the described steps of the Scanned Receipts experiment in subsection
4.2.3, both models were retrained on every sample in the training data set without
partitioning the data into a training and hold-out set. After both models were fitted
to the full training data set, each model attempted to predict the subclass code of
the items in the Scanned Receipts Test Set. Table 5.8 shows the performance of
both models on the Scanned Receipts Test Set, where the highlighted cells show the
highest scoring performance metric.

Classifier Model Performance Metrics
Classifier Extractor Precision Recall F1-Score Accuracy

Logistic Regression CV-ch33 0.568 0.485 0.489 0.485
Random Forest CV-ch23 0.613 0.526 0.530 0.526

Table 5.8: Performance of classifier models on Scanned Receipts Test Set

Table 5.8 shows that neither model was able to reproduce its performance from the
Held-out Data experiment on the Scanned Receipts Test Set. The models achieved
similar scores for most performance metrics, where only a few percentage points
separates the models. Although the scores are similar, the Random Forest model
achieved slightly higher scores.

Table 5.9 breaks down the overall accuracy of each model into average accuracy
by division category, showing that the Random Forest model achieves the highest
average accuracy for samples within most division categories. However, the Logistic
Regression model is slightly ahead or on par with the Random Forest model for
predictions on samples within four of the division categories. For a full description
what the different division codes represent, see section 3.3.
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Test Set Classifier Models
Code Items Logistic Regression Random Forest

01 641 0.569 0.621
02 29 0.517 0.586
03 35 0.257 0.314
04 8 0.125 0.125
05 54 0.370 0.426
06 22 0.000 0.136
07 13 0.385 0.385
08 5 0.200 0.000
09 56 0.304 0.214
10 1 0.000 0.000
11 39 0.000 0.000
12 2 0.000 0.000
13 42 0.619 0.667

Table 5.9: Average model accuracy on samples within each COICOP division code
in the Scanned Receipts Test Set

As shown in table 5.9, there is variation in the average accuracy scores for the
different division categories. Both models were generally able to achieve higher ac-
curacy scores for division category 13, and to some extent for categories 01 and 02.
Still, the models appear to have struggled with classifications on samples within the
other division categories, and for samples within division category 10, 11 and 12, no
model was able to make a single correct prediction. Additionally, for samples within
division category 08, the Random Forest model was not able to make any correct
prediction.

Figure 5.5 illustrates the most frequently misclassified subclass codes in the Scanned
Receipts Test Set by the Logistic Regression model. A total of 488 out of 947 samples
in the Scanned Receipts Test Set were misclassified. Among these misclassifications,
most samples correspond to food items (division code 01), while the overall most
frequently misclassified subclass code was 11.1.1.2. The misclassifications included
in figure 5.5 show 64.73% of all misclassifications made on the Scanned Receipts
Test Set by the Logistic Regression model.
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Figure 5.5: Most frequently misclassified subclass codes by frequency in the Scanned
Receipts Test Set by the Logistic Regression model

Similarly, figure 5.6 shows the 25 most misclassified subclass codes by the Random
Forest model. A total of 449 of the 947 samples in the Scanned Receipts Test Set were
misclassified by this model. Like the Logistic Regression model, the Random Forest
model was unable to correctly classify any sample belonging to division category
11, and consequently, subclass code 11.1.1.2 was also the overall most frequently
misclassified subclass code by the Random Forest model. The misclassifications
included in figure 5.5 shows 58.80% of all misclassifications made on the Scanned
Receipts Test Set by the Random Forest model.

Figure 5.6: Most frequently misclassified subclass codes by frequency in the Scanned
Receipts Test Set by the Random Forest model
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5.3.2 Distribution of Prediction Probabilities

To get an indication of how well suited the classifier models that were trained on
the assembled COICOP training data are for a ”human-in-the-loop”-based system,
the following paragraphs explore the prediction probabilities of each prediction for
both models.

Figure 5.7 shows the distribution of prediction probabilities for the Logistic Re-
gression model. Again, for this visualisation, the prediction probabilities have been
bucketed with a bucket size of 0.05, meaning that the graph might be less detailed
than the actual distribution.

Figure 5.7: Distribution of prediction probabilities for Logistic Regression predic-
tions on the Scanned Receipts Test Set

The graph in figure 5.7 shows a much less skewed distribution than what was pre-
viously observed on the held-out test data in figure 5.3. This graph indicates that
for predictions with prediction probability values up to 55%, most predictions were
in fact misclassifications. In contrast to the distribution of prediction probabilities
on the held-out test data, there is a notable overlap between misclassifications and
correct classifications, also for the higher prediction probability values. Table 5.10
shows the number of items classified with a prediction probability above specified
threshold values, T , and the error rates, ER, for these predictions.

Count T ≥ 95% T ≥ 90% T ≥ 85% T ≥ 80%
Number of Items 11 49 84 145
Of Total Data 1.16% 5.17% 8.87% 15.31%
Error Rate (ER) 0.09 0.12 0.13 0.17

Table 5.10: Number of items above threshold value (T ) and the error rate (ER) for
predictions made by the Logistic Regression model on the Scanned Receipt Test Set
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Table 5.10 shows that the Logistic Regression model was less confident in its pre-
dictions, as considerably fewer predictions had high prediction probability scores.
15.31% of the predictions had a prediction probability of 80% or higher. However,
at the same time, only 11 predictions in total had a prediction probability of 95% or
higher. Additionally, the error rates were higher than they were for similar thresh-
olds on prediction on the held-out test set. Using a threshold for 80% prediction
probability, 17% of the predictions were incorrect.

Similarly, figure 5.8 shows the distribution of prediction probabilities for the Ran-
dom Forest model. In this graph, there is a clearer separation of misclassifications
and correct classifications than for the Logistic Regression model in figure 5.7. This
graph shows that most misclassifications are concentrated on the lower prediction
probability values, while the opposite appears to be the case for most correct clas-
sifications.

Figure 5.8: Distribution of prediction probabilities for Random Forest predictions
on the Scanned Receipts Test Set

Table 5.11 presents the number of predictions and error rates located above specified
thresholds. This table shows that 220 of the predictions have a prediction probability
of 80% or higher, and this makes up 23.23% of the total Scanned Receipts Test Set.
However, a total of 16% of these are misclassifications. The results in table 5.11
show a generally lower error rate for predictions by the Random Forest model with
higher prediction probabilities than table 5.10 showed for the Logistic Regression
model. Still, figures 5.7 and 5.8 show that there are overlapping misclassifications
and correct classifications for predictions at all prediction probability values for both
models.
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Count T ≥ 95% T ≥ 90% T ≥ 85% T ≥ 80%
Number of Items 90 141 176 220
Of Total Data 9.50% 14.89% 18.59% 23.23%
Error Rate (ER) 0.07 0.09 0.12 0.16

Table 5.11: Number of items above threshold value (T ) and the error rate (ER) for
predictions made by the Random Forest model on the Scanned Receipt Test Set
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Chapter 6

Discussion

In this study, the concept of utilising machine learning to classify consumer goods
into 5-digits COICOP 2018 subclass codes has been explored. This includes ways
in which to prepare and combine data sets from auxiliary data sources to acquire
a training data set of item names and COICOP codes, application of traditional
COICOP classifiers for learning patterns in the training data, and evaluation of the
trained COICOP classifiers performance on items from scanned receipt data.

This chapter is split into four sections, where section 6.1 evaluates the findings of
the preceding chapters and summarises how these findings relate to the different
objectives of this thesis. Section 6.2 outlines some of the limitations of this study,
as well as some of the limiting factors that have influenced the scope of this thesis.
Section 6.3 compares the findings of this thesis to findings in related studies. Lastly,
section 6.4 presents some recommendations for future work. This section also de-
scribes how further development can be done to improve model performance, as well
as some suggestions for how Statistics Norway can proceed in their development of
an automatic classification system based on the findings in this study.

6.1 Evaluation of Results and Thesis Objectives

The primary results in this thesis relate to both the acquisition of COICOP training
data and to the training and evaluation of COICOP classifiers. Chapter 3 described
the involved steps and outcome of the data acquisition, while chapter 5 presented
the results related to classifier performances. This section aims to evaluate these
findings and to put them in the context of the main objectives of this thesis.

6.1.1 Evaluation of Objectives

The following paragraphs list the different research questions from section 1.3 and
summarise the main findings related to each objective.

RQ1: How can data from auxiliary data sources be combined to assemble a COICOP
training data set for training and developing a COICOP classifier model?

Chapter 3 of this thesis described the performed steps in acquiring a COICOP
training data set. The findings in this chapter showed that data from auxiliary data
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sources at Statistics Norway can be combined into a COICOP training data set of
Item Names and 5-digit COICOP subclass codes. Through high-level filtering oper-
ations and transformation of coding formats, a single data set was obtained from 5
distinct data sources.

Out of the different data sets, the Imports data set required the most preparation
work in order to be suited as COICOP training data. Through the use of Eurostat’s
conversion tables combined with a custom-made search algorithm, almost half of
the entries in the original Imports data set (excluding duplicates) were successfully
converted into item names associated with 5-digit COICOP subclass codes. The
Imports data set formed a significant part of the final combined training data set,
resulting in 96.22 % of all training samples. In total, the combined training data set
contains 283 unique subclass codes with 1 490 216 entries of item names.

However, as the assembled COICOP training data set is the result of five individual
data sets, the sources of these data sets have largely determined the subclass codes
represented in them. For example, one would not find many instances of subclass
codes corresponding to travel insurance by considering a data set generated from
sales at Rema 1000. Therefore, not all subclass codes are present in the assembled
training data set, where 15 codes are missing and 100 (35 %) are represented by 15
or fewer samples.

Despite these shortcomings, the assembled COICOP training data set still provides
valuable utility for the objective of this thesis by successfully facilitating training
and evaluation of COICOP classifiers. Furthermore, the assembled training data
set can also contribute to further work and research related to item classification by
providing a prepared COICOP training data set. Additionally, with the description
of the steps involved with the preparation of this data set, this study also provides a
design for how data from the different data sources can be prepared and combined
into a COICOP training data set.

RQ2: How well do traditional classification models perform on the COICOP train-
ing data?

Chapter 4 described the choices that went into the design of the classifier models. As
the stated purpose of this study has been to evaluate the potential of implementing
machine learning for automatic COICOP classification of consumer goods, a set of
out-of-the-box classifiers were implemented using the Scikit-learn library to explore
whether COICOP classification based on item names is feasible. Despite their simple
structure, the results in section 5.2 showed that the employed classifier models were
able to learn most patterns in the training data and to recognise prominent features
in unseen held-out test data. Additionally, the prediction probabilities of the models
appeared to be good indicators of where misclassifications typically occur, and this
indicates that there should be a potential for implementing a ”human-in-the-loop”
integration with the COICOP classification system.

Ultimately, these findings show that COICOP classification can successfully be done
using quite basic, but easy to implement, classification models in combination with
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simple text representation methods. Based on these observations, it seems reason-
able to assume that further tweaking and optimising of the models’ design, and
perhaps with the implementation of more advanced text representation methods,
the performances of the models would only further increase.

RQ3: How well do the performances of the trained COICOP classifiers carry over
to unseen samples of scanned receipt data?

A test data set of scanned receipt items from the pilot study (see subsection 1.2.3)
was acquired through manual labelling. The aim of this was to quantify how well the
previously trained COICOP classifiers would perform if they were immediately im-
plemented for classification of items from the survey of consumer expenditure. The
results in this study found that there was a noticeable drop-off in performance when
predicting the 5-digit COICOP subclass code for these items, where each model was
only able to correctly classify around half of the samples. Additionally, the results
showed that the average prediction accuracy for samples within most division cate-
gories was typically quite low.

It should be noted that there are differences between the scanned receipt data set
that was used in this evaluation and the assembled COICOP training set that was
used to train the classifier models. As these data sets do not contain samples from
the same population, some misclassifications are expected to occur. A portion of
the misclassifications appears to be the result of systematic errors that are likely
caused by a lack of representative training data, as the models struggled to predict
most of the subclasses they had barely seen before, while they typically performed
better on more familiar subclass codes.

However, in contrast to the findings on the held-out test data in RQ2, the prediction
probability values of each prediction on the Scanned Receipts Test Set do not appear
to be clear indicators of where misclassifications occur. Figure 5.4 showed that de-
spite high prediction probability, misclassifications happened quite often. This sub-
sequently limits the current benefits of implementing a ”human-in-the-loop”-based
classification system for automatic classifications, as all predictions will have to be
manually reviewed by a human when the prediction probability values of the model
cannot be trusted. However, by reviewing each classification, model performance
may quickly improve through the benefits of active learning, and subsequently, the
prediction probabilities will likely become more dependable. This idea is further
discussed in section 6.4.

RQ4: What are some of the current limiting factors that prevent Statistics Norway
from implementing automated classification of items from scanned receipts?

This thesis’ ability to discuss current limitations at Statistics Norway is limited by
the materials and the methods that were used. This means that in this assessment,
it is assumed that the Scanned Receipts Test Set provides a precise indicator of
expected item purchases to occur in future surveys and that they are correctly la-
belled by the coder that performed the labelling. Furthermore, it is also assumed
that Statistics Norway are limited to the data sets that have been used in this thesis.
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The following paragraphs explore where some of the more prominent misclassifica-
tions occur and attempt to point out some likely reasons as to why they happen.

Perhaps the most obvious source of error is the subclass codes in the Scanned Re-
ceipts Test Set that the models have barely seen, if at all, during training. Table 6.1
lists instances of subclass codes that are present in the Scanned Receipts Test Set,
and that are represented by only 5 or fewer samples in the training data set. For
these samples, the models have likely not been able to learn any patterns that could
be applied to the unseen samples. Consequently, no model was able to correctly
predict these subclass codes.

Subclass Code Items in Test Data Items in Training Data
02.1.2.2 2 5
04.4.1.1 1 0
04.4.3.1 2 0
07.3.2.2 1 5
08.3.4.0 2 5
12.1.3.0 1 1
12.2.2.0 1 4
13.3.0.9 1 2

Table 6.1: COICOP subclass codes with low representation in the Training Data
Set

As table 6.1 shows, these subclass codes do not occur often in the Scanned Receipts
Test Set either. Thus, they have not made a large impact on the overall performance
scores of the models in the evaluation. Nevertheless, these findings still outline an
important limitation for future predictions of these particular subclass codes, as the
trained COICOP classifiers will most likely never be able to correctly predict any
samples with these subclass codes in the future without adding additional training
data.

On the other hand, among the most frequent subclass codes in the Scanned Receipts
Test Set, the accuracy scores of the predictions are varied. Table 6.2 shows the
ten most frequent subclass codes in the Scanned Receipts Test Set, and here, the
accuracy scores show that the models are still able to recognise patterns in samples
corresponding to some of the subclass codes. This is reflected in the higher model
performance scores in table 6.2.
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Code Test Set Training Set Model Performance
Subclass Count Count LR RF
01.1.1.3 58 28 770 0.828 0.897
13.1.2.0 35 129 901 0.800 0.943
01.1.4.5 34 850 0.853 0.647
01.1.9.3 33 22 629 0.758 0.758
01.1.8.5 30 16 174 0.467 0.733
01.1.2.5 29 2 273 0.862 0.862
11.1.1.2 26 10 0.000 0.000
01.1.7.9 26 6 250 0.654 0.769
01.1.7.2 25 132 0.440 0.520
01.1.8.6 25 1 598 0.600 0.680

Table 6.2: Average accuracy of each model for the most frequent COICOP subclass
codes in the Scanned Receipts Test Set

Despite table 6.2 showing that correct predictions do occur, this in itself does not
necessarily bring much value to an automated ”human-in-the-loop”-based classifi-
cation system. As previously noted, the prediction probabilities on the Scanned
Receipts Test Set do not currently seem to be relevant indicators of where mis-
classifications occur, and when the probability predictions cannot be trusted, each
prediction on unseen samples will have to be manually reviewed. Whereas table 6.1
outlined the issue with lack of sufficient training data for particular subclass codes,
the issue of high prediction probability values for misclassifications may come down
to the lack of representative training data for the scanned receipt items. This means
that the high prediction probability scores may indicate that the models have in
fact seen similar item names before, but misclassifications occur because they have
not seen that the particular item names can correspond to the same subclass codes
as they do in the Scanned Receipts Test Set.

Items Training Set Test Set
Item Name Occurrences Label Label

Clausthaler 26 02.3.1.0 01.2.9.0
Kokt Skinke 29 01.1.2.3 01.1.2.2
Isbergsalat 9 01.1.7.4 01.1.7.1
Badeshorts 118 03.2.1.3 03.1.2.1
Blomsterpotte 40 09.3.1.2 09.3.1.1

Table 6.3: Same item names with different labels in the Training Data Set and the
Scanned Receipts Test Set

Table 6.3 lists some of the more prominent examples of this, where the exact same
item names occur in both data sets, but the labelled subclass code is not the same.
Because of this, none of these items were ”correctly” classified despite all models
expressing high confidence (>90 %) in these predictions. This highlights another
source of error, perhaps due to disparity in the labelling procedures of the two data
sets, or as a consequence of how the training data was prepared and combined (see
section 3.2). However, exploring the validity of the labels and the labelling proce-
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dures is beyond the scope of this thesis and has not been explored further.

It is likely that the issue with similar item names not corresponding to the same
subclass codes in the data sets can be improved by training on more representative
training data, i.e. data from the same population that have been labelled following
the same labelling procedures. However, it should also be noted that even training
on more representative data might not necessarily be a silver bullet for increased
performance and reliability in future predictions. The way in which some of these
items are represented in the Scanned Receipts Test Set makes them intrinsically
ambiguous, and they are consequently very difficult to classify correctly.

For example, some of the samples within division category 11 in the Scanned Re-
ceipts Test Set have item names that can make the classifications difficult. As shown
in table 6.4, the item names of some of these samples appear to be item names de-
scribing ordinary food items that would typically belong in division category 01.
However, as these items were served at restaurants or cafés, they should belong in
division category 11.

Item Name Predicted Prediction Confidence True Label
Wienerbrød 01.1.1.3 98.26 % 11.1.1.2
Ostekake 01.1.1.3 97.17 % 11.1.1.2
Burger 01.1.2.5 96.99 % 11.1.1.2
Pizza 01.1.1.1 96.83 % 11.1.1.1
Baguette Ost og Skinke 01.1.9.1 95.88 % 11.1.1.2

Table 6.4: Random Forest misclassified samples with high prediction confidence

Without any additional context, there is no clear way to make a distinction on
whether the item was sold at a grocery store or served at a restaurant. When manu-
ally labelling these items, the coder at SSB was privy to information about price and
store name for each sample, and for those samples, these parameters added enough
contextual information to significantly reduce the ambiguity. A model that bases
its predictions solely on item names will not be able to make reliable predictions for
these items, even with more representative training data added. Still, if a classifier
has seen that ”wienerbrød” (”danish”) can possibly relate to subclass codes within
both the food (01) and the restaurant category (11), the classifier would likely ex-
press a lower confidence score for this item as it will have experienced that these
correlations are ambiguous.

Ultimately, the observations in the preceding paragraphs indicate that a portion
of errors and misclassifications can most likely be ascribed to the lack of training
data that is representative of scanned receipt items. This involves a general lack of
training data for some subclass codes, while for others, the disparity between the
training data and the scanned receipt data appears to be limiting. Therefore, the
absence of representative training data is likely the current major limiting factor
for implementing an automatic classification system for items from scanned receipts
with an acceptable degree of reliability.
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6.2 Limitation of the Study

This thesis acts as a preliminary study of the potential of implementing machine
learning for automatic classification of items for the survey of consumer expenditure.
Whereas the findings of this study are the result of a collaboration with Statistics
Norway over a period of three months, the scope of what could be explored was
ultimately restricted by the time frame of this project. This proved to be particularly
relevant for the acquisition of data, as a majority of the training data used in this
study became available late in the project. This caused necessary changes to the
original scope of this thesis, and this subsequently determined which methods that
would be feasible, and which results that would be obtainable.

6.2.1 Data

The available data sets have played a large role in defining the scope of this project.
Whereas some data sets were readily available from the start, several data sets were
not available until the latter stages of this project, while some turned out not to
be available within the specified time frame at all. Among these, manually labelled
training data of items from scanned receipts turned out not to be available while
working on this project besides a small data sample used for testing (see subsection
3.2.5). Therefore, as the models evaluated in this thesis were not trained on data
from scanned receipts, but were still evaluated on it, the performance assessments
do not necessarily paint an accurate picture of how well these models could perform
on scanned receipts data from the survey if given more representative data to train
on.

The choice of data sets largely determines what a classifier can learn, and conse-
quently the obtainable results. Among the data sets that ended up being available
in this study, the only variables that the data sets had in common were item names
and 5-digit COICOP 2018 subclass codes. These variables enabled the model to
learn correlations between the different item names and corresponding COICOP
codes. However, they did not enable the models to predict COICOP codes based on
any other variable than the item names. As the item names in receipts are typically
quite succinct, this limitation can restrict a classifier’s ability to make important
distinctions for items, and this was shown in section 6.1, where the ”wienerbrød
problem” highlights this very disadvantage. As food served at restaurants or cafés
are typically more expensive than food sold in grocery stores, the inclusion of item
price might prove to be a useful predictor variable in these classifications. Addi-
tionally, the store names of where an item was sold might also prove to be a helpful
variable for many items, as the type of store can help indicate the type of products
they typically sell.

6.2.2 Models

Whereas the choice of data affects what the classifier can learn, the design of the
model contributes to how a classifier learns. This study has employed two traditional
classifiers from the Scikit-learn library, in combination with count-based feature ex-
tractors, to train and develop COICOP classifiers. Originally, this study aspired
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to investigate the performances of several additional classifier models, and among
these were different variants of Support Vector Machines (SVM) and an implemen-
tation of a majority voting classifier. However, due to limited time and available
computing resources, this turned out not to be feasible. Training these models on
the full training data set, or even most subsets of the training data required more
computational resources than what was available. However, a linear SVM classifier
was trained on a small subset of the training data without any samples from the Im-
ports data set. The results from this process indicate that the SVM model achieved
performance scores that were on par or slightly better than the models evaluated
in this thesis. The results from performance evaluations of the SVM model are
included in Appendix C.3. For similar reasons, no tuning of the models was done
on the full training data set. However, some limited tuning on a narrow range of
hyperparameters was done for the models on a subset of the full training data set.
The steps involved in this process and the results are included in Appendix B.2.
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6.3 Results in Related Studies

Section 4.3 presented two related works that implemented classification systems
based on prediction probabilities of classifier models with the purpose of streamlin-
ing statistics production. This section compares the findings in these related works
with the findings in this thesis.

In the works of Benedikt et al. (2020), they explored a wide range of classifier models
for classification of items extracted from scanned images of receipts. Similar to the
findings in this study, Benedikt et al. found the character-based feature extraction
methods to work well with simple implementations of Scikit-learn classifiers. In
their study, they found that Support Vector Machines (SVM), Logistic Regression
and Random Forest performed very similarly, with only 0.2 percentage points sep-
arating SVM from the rest. Similarly, in the works of Myklatun (2019), Support
Vector Machines and Logistic Regression were among the top performers.

However, out of the two studies, it is only Benedikt et al. that explored classifica-
tion of items into 5-digit COICOP subclass codes, and therefore, it is perhaps their
results that are the most relevant to the findings in this thesis. In the evaluation
of model performances, Benedikt et al. used held-out partitions from their training
data to evaluate their models, and their results show that most models achieved ac-
curacy scores around 75% to 85%. These results are similar to the accuracy scores
obtained by the same models on the held-out test data in this thesis, where both
models achieved accuracy scores above 81% (see section 5.2).

In contrast to this thesis, Benedikt et al. also explored the COICOP classification
performance of the shallow neural network text classifier fastText1. Overall, fastText
achieved similar performance scores as SVM, obtaining 85% accuracy for predictions
on their test data. Additionally, the FastText classifier appeared to be one of the
best candidates for a ”human-in-the-loop” automatic classification system, where
62% of the items in their test set could automatically be classified at the cost of
3% incorrect classifications. These results were only matched by the Random Forest
classifier, which also showed the best potential of the models evaluated in this thesis.

It should be noted that despite employing similar methods, the results from the study
of Benedikt et al. are not directly comparable to the results in this thesis as they
have used their own data sets in their experiments. Still, the similar results would
suggest that the suitability of the models for 5-digit COICOP classification tasks
are not simply limited to the use of a specific data set. These observations would
also further support the idea that similar performance metrics and results should
be obtainable for scanned receipt data from the survey of consumer expenditure,
provided that the models are given a sufficiently representative data set to train on.

1fastText is a open-source library for efficient learning of word representations and sentence
classification (Joulin et al., 2016)
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6.4 Future Work

The findings in this study provide insight into the state of Statistics Norway’s cur-
rent potential for implementing automatic classification of consumer goods. These
findings indicate that there is a promising potential for automatic classification
through a ”human-in-the-loop” integrated classification system given representative
data to train classifiers on. However, because of the lack thereof, the preliminary
performance results on the scanned receipt data in this study should be treated as
somewhat inconclusive. Still, they do highlight some existing deficiencies in Statis-
tics Norway’s current ability to accomplish automatic classification of receipt items
for the survey of consumer expenditure, as the current need to acquire representa-
tive training data appears to be crucial.

Whereas this study has been limited both in terms of scope and timespan, these
limitations do also provide opportunities for future studies and research into ways to
further develop and optimise models for COICOP classification. Furthermore, this
study forms a foundation on which Statistics Norway can base their assessments on
whether to pursue the development of an automatic COICOP classification system
through supervised machine learning. The following subsections outline some of
the observed potential for further work related to the applied methods, and some
proposed next steps on the path to developing an automatic classification system
for items from the survey of consumer expenditure.

6.4.1 Methods

This study has not placed a large emphasis on exploring different ways to process and
represent words in the item names. Section 4.1 describes the applied pre-processing
techniques and feature extractor methods in this study, and whereas these methods
have enabled this thesis to reach its stated objectives, more modern and advanced
techniques for representing semantic information do exist. The count-based feature
extraction methods used in this thesis are able to learn occurrences of words (or
characters) in text, but they are not able to learn which words that are more similar
than others. Word embeddings layers in neural network models can do this, as they
instead represent words as vectors in a vector space where related words have a sim-
ilar vector representation (Raschka and Mirjalili, 2019, p.590). With this approach,
the models might be able to also learn that item names such as raspeball, komle,
and klubb (which all refers to the same dish) are in fact related, which might prove
to further increase classification performance.

Even though the findings in this study show the need to acquire representative train-
ing data for scanned receipt items, there also appears to be a potential for further
model performance improvements on the Scanned Receipts Test Set through exper-
imentation with the currently available data sets. The assembled COICOP training
data set is a product of 5 distinct data sets, and among them, each data set might
vary in terms of their representativeness of items in the Scanned Receipts Test Set.
For example, the Imports data set (which also make up the overwhelming major-
ity of the assembled COICOP training data set) might not be as representative of
scanned receipt items as the Transactions data set or the manually registered Re-
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ceipts data set. Preliminary tests indicate that the exclusion of the Imports data
set when training classifiers, yields better classification performance on the Scanned
Receipts Test Set. These results are shown in Appendix D.1. Additionally, custom
weighting could be assigned to the different data sets of the assembled COICOP
training data in order to emphasise which item names that are more important for a
classifier to learn than others. Preliminary tests have also been done for this, where
assigning custom weights to the different data sets when training classifiers, shows
some classification performance improvements on the Scanned Receipts Test Set.
These results are included in Appendix D.2.

Furthermore, exploration of additional classifiers and further fine-tuning of models
might also yield better performance results. This study primarily explored the use
of Logistic Regression and Random Forest, and while these classifiers were able to
learn patterns in the training data quite well, there are many other classifiers that
might prove to perform better on the same data. As previously shown, a common
finding in related studies is that Support Vector Machines (SVM) are able to perform
well for similar problems. Although this study has only performed preliminary
testing with linear SVM on a subset of the full training data due to hardware
restrictions, these results indicate a promising potential for the SVM classifier as it
currently is the overall highest scoring model for tests on the Scanned Receipts Test
Set. Additionally, exploration of neural network models might also be of interest
as these have become state-of-the-art in many fields of text classification (Minaee
et al., 2021). However, as these models are typically computationally expensive to
train (Kowsari et al., 2019), training complex neural networks might not be feasible
with the current hardware resources available at Statistics Norway. However, the
fastText classifier, which showed promising results for Benedikt et al. (2020), offers
fast training times on large data sets (Joulin et al., 2016), and it could therefore be
a good alternative to pursue if the opportunity presents itself in the future.

6.4.2 Practical Applications

The research in this study aims to build a proof of concept, illustrating that auto-
matic COICOP classification can be done using supervised machine learning. The
tests on 297 859 items from held-out test data show promising results and they
indicate that there is a real potential for automation while preserving data qual-
ity through a ”human-in-the-loop” integration. Still, there is work remaining to
replicate these results on items from scanned receipt data, and subsequently in the
development of a classifier system that is fit-for-purpose for automatic classification
of registered items from the survey of consumer expenditure. As outlined in this
study, the main limiting factor appears to be the lack of representative training data.
To address this issue, there are some approaches that may be relevant. However,
depending on how Statistics Norway want to allocate their resources, not all may
be equally realistic.

One simple approach is to annotate more samples from scanned receipt data. This
requires the allocation of human resources to do the labelling, but in this way, one
can acquire training data that is representative of the data that the models are in-
tended to classify in the future. However, the findings in this study indicate that
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there is a potential for doing this in a partially strategic manner, where under-
performing subclass codes could first be targeted in some way. Since the scanned
receipt data set contains unlabelled samples, finding perfect instances of these sam-
ples in the unstructured data can be difficult. However, for certain codes, there
might be variables in the scanned receipt data set that can be used for this. For
example, store name could be used to quickly identify items sold at restaurants and
cafés.

Alternatively, or combined with the above, Statistics Norway could implement a
”human-in-the-loop” classification system right away, provided that most predictions
are manually reviewed in the beginning. As more labelled data are added through
human intervention, prediction performances are expected to improve with the active
learning aspect of this system. However, this also requires the allocation of human
resources to review the quality of the predictions, especially in the beginning. Still, in
this way, Statistics Norway can closely monitor the development of the classification
system’s performance and determine when a satisfactory trade-off between invested
resources and prediction quality is achieved.
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Chapter 7

Conclusion

Overall, the findings in this study show that basic machine learning models and
natural language processing techniques appear to be sufficiently capable methods
for 5-digit COICOP classification of consumer goods. At the same time, the findings
also highlight important limitations with the data sets, as the results indicate that
they do not enable the models to reliably predict items for the survey of consumer
expenditure. It is therefore the conclusion of this study that the explored methods
show sufficient potential for further development, where the next step of which would
be to acquire training data more relevant to Statistics Norway’s survey of consumer
expenditure.
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Appendix A

Data

This appendix chapter includes additional information about the data sets used in
this thesis. The following sections are particularly relevant to chapter 3 of this
thesis.

A.1 Missing Subclass Codes in Training Data

The assembled COICOP training data set consists of 283 unique COICOP 2018
subclass codes in total. There are 298 subclass codes the COICOP 2018 coding
framework that relate to individual consumption, and table A.1 shows all 15 subclass
codes that are missing from the assembled COICOP training data set.

Code Description
01.1.2.1 Live land animals
01.3.0.0 Services for processing primary goods for food and non-alcoholic beverages
04.1.1.0 Actual rentals paid by tenants for main residence
04.2.1.0 Imputed rentals of owner-occupiers for main residence
04.2.2.0 Other imputed rentals
04.4.1.1 Water supply through network systems
04.4.1.2 Water supply through other systems
04.4.3.1 Sewage collection through sewer systems
04.4.3.2 Sewage collection through onsite sanitation systems
04.4.4.1 Maintenance charges in multi-occupied buildings
04.4.4.9 Other services related to dwelling
05.4.0.4 Repair and hire of glassware, tableware and household utensils
10.1.0.1 Early childhood education
11.1.2.9 Other canteens, cafeterias and refectories
13.2.9.2 Repair or hire of other personal effects not elsewhere classified

Table A.1: Missing subclass codes from the Training Data Set
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A.2 Subclass Codes in Training Data Set

Figure A.1 shows the distribution of subclass codes in the assembled COICOP train-
ing data set.

Figure A.1: Count of subclass codes in Training Data Set

83



Appendix A

A.3 Subclass Codes in Test Data Set

Figure A.2 shows the distribution of subclass codes in the Scanned Receipts Test
Set.

Figure A.2: Count of subclass codes in Scanned Receipts Test Set
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Model Results

This appendix chapter includes additional results from model training and evalua-
tion. The following sections are particularly relevant to chapter 5 of this thesis.

B.1 Model Selection

Table B.1 and B.2 show the performance metric scores for the Logistic Regression
classifier and Random Forest classifier combined with each feature extractor variant.
The highlighted cells indicate the highest performing feature extractor with that
particular classifier. In all performance evaluations, a subset of 10 % of the full
training data set has been used. The subset was assembled by randomly sampling
from the full training data set, where the sampling was stratified on the COICOP
subclass codes.

Logistic Regression on Subset of Training Data Set
Feature Extractor Precision Recall F1-Score Accuracy
CV-w 0.805 0.767 0.766 0.767
CV-w22 0.809 0.479 0.521 0.479
CV-w23 0.820 0.479 0.524 0.479
CV-w33 0.693 0.277 0.258 0.277
CV-ch22 0.725 0.728 0.721 0.728
CV-ch23 0.835 0.837 0.833 0.837
CV-ch33 0.837 0.840 0.835 0.840
TFIDF-w 0.760 0.719 0.713 0.720
TFIDF-w22 0.713 0.401 0.400 0.401
TFIDF-w23 0.713 0.401 0.400 0.401
TFIDF-w33 0.686 0.247 0.221 0.247
TFIDF-ch22 0.647 0.653 0.627 0.653
TFIDF-ch23 0.750 0.760 0.737 0.760
TFIDF-ch33 0.739 0.748 0.725 0.748

Table B.1: Logistic Regression feature extraction test scores on hold-out set from
subset of training data set

The results from table B.1 indicate that Logistic Regression with CountVectorizer
using N -grams of 3 characters is the best performing model. Note that all models
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in this table were trained on a 10 % subset of the full training data. The results
might therefore not be accurate of the optimal feature extraction method of the full
training data set. Still, this should give an indication of which feature extraction
method that is expected to perform well with the Logistic Regression classifier.

Similarly, the results from table B.2 indicate that Random Forest with CountVec-
torizer using N -grams of 2 and 3 characters is the best performing model.

Random Forest on Subset of Training Data Set
Feature Extractor Precision Recall F1-Score Accuracy
CV-w 0.802 0.773 0.774 0.773
CV-w22 0.834 0.592 0.644 0.592
CV-w23 0.835 0.588 0.641 0.588
CV-w33 0.833 0.362 0.412 0.362
CV-ch22 0.809 0.812 0.803 0.812
CV-ch23 0.821 0.825 0.818 0.825
CV-ch33 0.820 0.823 0.817 0.823
TFIDF-w 0.764 0.742 0.741 0.742
TFIDF-w22 0.806 0.441 0.491 0.441
TFIDF-w23 0.803 0.441 0.491 0.441
TFIDF-w33 0.781 0.254 0.287 0.254
TFIDF-ch22 0.793 0.793 0.782 0.793
TFIDF-ch23 0.810 0.817 0.809 0.817
TFIDF-ch33 0.815 0.819 0.810 0.819

Table B.2: Random Forest feature extraction test scores on hold-out set from subset
of training data set
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B.2 Model Tuning

Most machine learning classifiers implemented in Scikit-learn come with a set of
hyperparameters (user-specified classifier parameters) that can be adjusted to im-
prove the classifiers’ ability to capture patterns in the data. In order to identify a
set of suitable hyperparameters, each classifier is typically retrained multiple times
while slightly tweaking certain hyperparameters between each iteration. The set of
identified optimal hyperparameters is normally chosen as the one that achieves the
highest performance for a specified performance metric (Raschka & Mirjalili, 2019,
p. 207).

Some experiments with tuning the different classifiers were performed. However,
due to computational limitations, the explored hyperparameters and hyperparam-
eter settings were narrowed down substantially. Additionally, the tuning was done
on the same 10 % subset of the full training data set as used in section B.1. The
subset was assembled by randomly sampling from the full training data set, where
the sampling was stratified on the COICOP subclass codes.

The observed best-performing combinations of feature extraction methods and clas-
sifiers from tables B.1 and B.2 were tuned using GridSearchCV. The evaluation was
done using 5-fold cross-validation and F1-score, resulting in a total of 75 trained
Logistic Regression models and 60 trained Random Forest models. Figures B.1 and
B.2 shows the F1-score for the different hyperparameter values. Here, the F1-score
shows the averaged F1-score across all cross-validation (CV) folds for each hyper-
parameter value.

Figure B.1: Logistic Regression hyperparameter tuning

The default Scikit-learn implementation of Logistic Regression uses L2 penalty,
lbfgs solver and inverse regularisation strength, C = 1.00. Figure B.1 shows that for
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higher values of ”C”, the models were able to achieve very similar F1-scores. Logistic
Regression with ”L1” penalty and ”liblinear” solver fell off for lower values of ”C”,
however. The two ”L2”-based models performed very similarly for all values of ”C”,
where each model peaked in performance with regularisation parameter value, ”C”
set to 10. For higher values, performance started to fall off for all models.

Figure B.2: Random Forest hyperparameter tuning

The default Scikit-learn implementation of Random Forest uses n estimators = 100
and max features set to ’auto’. According to the Scikit-learn documentation, the
’auto’ and ’sqrt’ settings calculate the number of features in the exact same way
(Pedregosa et al., 2011). Therefore, ’sqrt’ is treated as the default setting for
max features in this evaluation. As figure B.2 shows, all evaluated Random For-
est models were able to achieve very similar F1-scores. For 20 estimators, ”sqrt”
was slightly better than ”log2”, however, for all other evaluated n estimators, ”log2”
was the best performing Random Forest model. As the number of estimators in-
creased, the F1-score increased until it peaked at 100 estimators. When further
increasing the number of estimators, the F1-score seemed to not increase any fur-
ther for both variants.

Table B.3 summarises the top performing combination of the evaluated hyperpa-
rameter values for both classifiers.

Classifier Model Tuning Results
Classifier Extractor Hyperparameters Hyperparameter Value

Logistic Regression CV-ch33
C 10.0

penalty L2
solver liblinear

Random Forest CV-ch23
n estimators 100
max features log2

Table B.3: Best performing hyperparameters values for each classifier model
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The preliminary results of this section indicate that model performance can be fur-
ther increased with hyperparameter tuning. However, because of the aforementioned
limitations with computational resources, this thesis has not explored model tuning
any further.

89



Appendix C

Support Vector Machines

This thesis originally aspired to explore the potential of support vector machines
(SVM) for 5-digit COICOP subclass classification. However, due to limited time
and available computing resources, this turned out not to be feasible. Instead,
this Appendix presents classification performance results of the SVM classifier on
a subset of the training data. This subset is simply the exclusion of the Imports
data set of the full assembled training data set (for more information about the
different data sets in the assembled training data set, see section 3.1). First, some
background theory of the SVM classifier is introduced, and then, the results from
performance evaluations on held-out test data and Scanned Receipts Test set are
presented.

C.1 SVM Theory

Support vector machines (SVM) is a popular supervised machine learning algorithm,
where the main idea is to identify an optimal hyperplane in a finite-dimensional fea-
ture space that differentiates between samples depending on their class (target label).

For each of the n samples in an n × m-dimensional dataset, each sample, i, be-
longs to either a positive or a negative class. This can be expressed as (xi, yi) for
i = {1, ..., n}, where x is the m-dimensional feature vector and yi indicates which
class sample i belongs to (yi = 1 for the positive class and yi = −1 for the negative
class).

Support vector machines aim to identify an m− 1 dimensional hyperplane that sep-
arates the observations into two classes. In figure C.1, the samples are represented
in a two-dimensional feature space, resulting in a one-dimensional hyperplane (line)
that acts as the decision boundary between the classes.
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Figure C.1: Hyperplane in a 2-dimensional feature space

For samples that are linearly separable, there is an infinite number of possible hy-
perplanes that separates the samples into each class. Many of these hyperplanes
will not generalise well to new data, however, as smaller margins are more prone
to overfitting (Raschka and Mirjalili, 2019, p. 79). Therefore, the hyperplane that
maximises the distance between the hyperplane and its nearest sample, is chosen
as the optimal hyperplane. The hyperplane can be expressed as all data points
that satisfy equation C.1. Here, w represents a weight vector that is orthogonal to
the hyperplane, and b represents the bias, which can be seen as the offset from the
origin.

wTx+ b = 0 (C.1)

The distance between the hyperplane and its nearest samples is called the margin.
These samples are called support vectors, which form the negative and positive
hyperplanes that are parallel to the decision boundary, shown in figure C.2. These
hyperplanes can be expressed as:

wTxpos + b = 1 (C.2)

wTxneg + b = −1 (C.3)

By subtracting the two equations C.2 and C.3 from each other and normalising this
by the length of the vector w, we arrive at the following equation:

wT (xpos − xneg)
‖w‖

=
2

‖w‖
(C.4)

The left side of equation C.4 represents the distance between the positive and nega-
tive hyperplane, which is the margin that SVM aims to maximise. This means that
the objective function of SVM becomes to maximise the expression 2

‖w‖ , under the
constraint that each sample is classified correctly, meaning that no samples should
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fall into the area between the positive and the negative hyperplane, but every sam-
ple should be located on the correct side of the margin.

Figure C.2: Hyperplane that maximises the margin
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C.2 SVM Performance on Training Set

This section presents results from classifier performance on the training data set. As
previously described, the training data set in this chapter refers to a subset of the
full assembled COICOP training data set. This subset excludes all samples from
the Import set (for more information about the different data sets in the assembled
training data set, see section 3.1). This section also presents performance results of
the Logistic Regression and Random Forest models on the same subset.

Classifier Model Performance Metrics
Classifier Extractor Precision Recall F1-Score Accuracy

Training Set (80 %)
SVM TFIDF-ch33 0.953 0.953 0.950 0.953
LR CV-ch33 0.987 0.987 0.987 0.987
RF CV-ch23 0.991 0.991 0.991 0.991

Hold-out Set (20 %)
SVM TFIDF-ch33 0.817 0.806 0.794 0.806
LR CV-ch33 0.844 0.846 0.842 0.846
RF CV-ch23 0.824 0.827 0.820 0.827

Table C.1: Performance of classifier models on training data without the Imports
data set

As shown in both table C.1 and C.2, the Logistic Regression model is the best
performing model for all performance metrics. However, all models produced similar
performance metric scores overall.

Hold-out Set Classifier Models
Code Items SVM LR RF

01 4 480 0.764 0.787 0.777
02 927 0.875 0.913 0.907
03 1 378 0.907 0.927 0.933
04 54 0.426 0.556 0.463
05 1 466 0.789 0.856 0.823
06 175 0.503 0.789 0.703
07 101 0.673 0.802 0.752
08 45 0.422 0.511 0.489
09 1 385 0.765 0.844 0.815
10 1 0.000 1.000 1.000
11 20 0.850 0.900 0.950
12 2 0.500 0.500 0.500
13 1 166 0.967 0.949 0.959

Table C.2: Average model accuracy on samples within each COICOP division code
in the held-out test set from training data without the Imports data set
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C.3 SVM Performance on Scanned Receipts Test

Set

To evaluate model performance on the Scanned Receipts Test Set, the models from
C.2 are retrained on the full training data set (without any samples from the Imports
data set). The model performances on the Scanned Receipt Test Set are presented
in this section.

Classifier Model Performance Metrics
Classifier Extractor Precision Recall F1-Score Accuracy

SVM TFIDF-ch33 0.628 0.566 0.540 0.566
LR CV-ch33 0.635 0.560 0.553 0.560
RF CV-ch23 0.603 0.556 0.540 0.556

Table C.3: Performances on Scanned Receipts Test Set of classifier models trained
on training data set without Imports data set

Table C.3 shows that both the Logistic Regression and SVM models achieve the
highest performance metric scores on the Scanned Receipts Test Set. Table C.4
shows that the SVM classifier obtains the highest accuracy for samples within divi-
sion codes 01, 02, 05 and 13.

Test Set Training Data
Code Items SVM LR RF

01 641 0.677 0.665 0.658
02 29 0.655 0.586 0.621
03 35 0.114 0.114 0.143
04 8 0.000 0.000 0.000
05 54 0.370 0.352 0.333
06 22 0.227 0.318 0.273
07 13 0.385 0.462 0.462
08 5 0.200 0.400 0.400
09 56 0.250 0.321 0.268
10 1 0.000 0.000 0.000
11 39 0.000 0.000 0.000
12 2 0.000 0.000 0.000
13 42 0.810 0.738 0.690

Table C.4: Average model accuracy on samples within each COICOP division code
in the Scanned Receipts Test Set

Similar to how the prediction probabilities of Logistic Regression and Random For-
est models were evaluated on the Scanned Receipts Test Set in section 5.3.2, this
section presents the prediction probabilities and error rates at specified threshold
values, T , for the SVM classifier model. Note that this model has been trained on
training data without any samples from the Imports data set.

Figure C.3 shows the distribution of prediction probabilities for the SVM classifier
model. In this visualisation, the prediction probabilities have been bucketed with a
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bucket size of 0.05, meaning that the graph might show a less detailed view than
the actual distribution.

Figure C.3: Distribution of prediction probabilities for SVM predictions on samples
in the Scanned Receipts Test Set

As shown in table C.5, the error rate of classifications is above 25 % for all threshold
values. As section 5.3.2 shows, these error rates are higher than the error rates at the
same threshold values for both the Logistic Regression and Random Forest models.

Count T ≥ 95 % T ≥ 90 % T ≥ 85 % T ≥ 80 %
Number of Items 119 267 344 390
Of Total Data 12.57 % 28.19 % 36.33 % 41.18 %
Error Rate (ER) 0.25 0.25 0.28 0.29

Table C.5: SVM: Number of samples in the Scanned Receipt Test Set above thresh-
old value (T ) and the classification error rate (ER) of these samples
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Modifications of Training Data

D.1 Model Performances without Imports Data

Tables D.1 and D.2 show the performance of the classifier models when trained on
full training data and training data without the Imports data. Because of hardware
constraints, the SVM model was only trained on the training data set without the
Imports data set. As shown in table D.1, the best performing models on the Scanned
Receipts Test Set were trained on training data without the Imports data set.

Classifier Model Performance Metrics
Classifier Extractor Precision Recall F1-Score Accuracy

Without Imports Data
SVM TFIDF-ch33 0.628 0.566 0.540 0.566
Logistic Regression CV-ch33 0.635 0.560 0.553 0.560
Random Forest CV-ch23 0.603 0.556 0.540 0.556

Full Training Data Set
Logistic Regression CV-ch33 0.568 0.485 0.489 0.485
Random Forest CV-ch23 0.613 0.526 0.530 0.526

Table D.1: Performances on Scanned Receipts Test Set of classifier models trained
on full training data set and on training data without Imports data

Table D.2 shows that the model trained on training data without Imports data
achieves the highest accuracy scores for most division categories. The models trained
on the full training data set are only able to achieve the highest average accuracy
scores for samples within division code 03, 04 and 05.
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Test Set Without Imports Data Full Training Set
Code Items SVM LR RF LR RF

01 641 0.677 0.665 0.658 0.569 0.621
02 29 0.655 0.586 0.621 0.517 0.586
03 35 0.114 0.114 0.143 0.257 0.314
04 8 0.000 0.000 0.000 0.125 0.125
05 54 0.370 0.352 0.333 0.370 0.426
06 22 0.227 0.318 0.273 0.000 0.136
07 13 0.385 0.462 0.462 0.385 0.385
08 5 0.200 0.400 0.400 0.200 0.000
09 56 0.250 0.321 0.268 0.304 0.214
10 1 0.000 0.000 0.000 0.000 0.000
11 39 0.000 0.000 0.000 0.000 0.000
12 2 0.000 0.000 0.000 0.000 0.000
13 42 0.810 0.738 0.690 0.619 0.667

Table D.2: Average model accuracy for samples within each COICOP division code
in the Scanned Receipts Test Set. Both for models trained on the full training data
set and for models trained on data set without the Imports data
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D.2 Model Performances with Custom Weighting

of Training Data Sets

As mentioned in section 6.4, each data set in the COICOP training data might
not be equally representative of items from scanned receipts. This section presents
performance results from model evaluations where custom weights were applied to
samples within the different data sets and compares the model performance with
models trained on the non-weighted COICOP training data set.

The weights assigned to samples within each data set are listed in table D.3. The
choice of weights in this experiment was based on subjective assumptions of which
data sets that might be more representative of items from scanned receipts. Further
experimentation with custom weighting of data sets is encouraged as the results
indicate that it is possible to increase model performances on the Scanned Receipts
Test Set with this approach.

Data Set Items Sample Weights
Receipts 575 1.00
Keywords 2 377 1.00
Transactions 29 776 0.70
CPI 23 541 0.35
Imports 1 433 947 0.10

Table D.3: Assigning custom sample weights to samples within each data set

As shown in table D.4, the Logistic Regression model, that was trained on the
weighted training data set, was able to achieve the higher scores for all performance
metrics. The accuracy of the Logistic Regression model on the Scanned Receipts
Test Set increased by 8 percentage points by applying sample weights to the training
data. Similarly, Random Forest performed better when trained on weighted training
data, where the accuracy increased by 2.6 percentage points.

Classifier Model Performance Metrics
Classifier Extractor Precision Recall F1-Score Accuracy

LR CV-ch33 0.568 0.485 0.489 0.485
LR (Weighted) CV-ch33 0.645 0.565 0.566 0.565
RF CV-ch23 0.613 0.526 0.530 0.526
RF (Weighted) CV-ch23 0.620 0.548 0.544 0.548

Table D.4: Performances of weighted and non-weighted models on Scanned Receipts
Test Set

Figure D.5 breaks down the overall accuracy into average accuracy by division cat-
egory. Here, the Logistic Regression model trained on weighted training data was
able to achieves the highest accuracy for samples within most division categories.
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Hold-Out Set Classifier Models
Code Items LR LR (Weighted) RF RF (Weighted)

01 641 0.569 0.655 0.621 0.646
02 29 0.517 0.655 0.586 0.690
03 35 0.257 0.314 0.314 0.286
04 8 0.125 0.125 0.125 0.125
05 54 0.370 0.407 0.426 0.407
06 22 0.000 0.227 0.136 0.136
07 13 0.385 0.385 0.385 0.385
08 5 0.200 0.400 0.000 0.000
09 56 0.304 0.304 0.214 0.232
10 1 0.000 0.000 0.000 0.000
11 39 0.000 0.000 0.000 0.000
12 2 0.000 0.000 0.000 0.000
13 42 0.619 0.786 0.667 0.738

Table D.5: Average accuracy of weighted and non-weighted models for samples
within each COICOP division code in the Scanned Receipts Test Set

Although the results presented in this section are preliminary, where no comprehen-
sive exploration of different sample weighting has been done, they still highlight a
clear potential for model performance improvements on the Scanned Receipts Test
Set. This suggests that the models’ performance on the Scanned Receipts Test Set
can be further increased without the need to acquire additional training data.
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Python Code

This Appendix includes a selection of python code that has been previously refer-
enced to in this thesis. As the code developed in this thesis belongs to Statistics
Norway, only limited and approved code excerpts are included.
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E.1 Pre-processing Code

Figure E.1 illustrates the python code used to implement the pre-processing pipeline.
This code was used to pre-process the item names in the data sets.

import re

def tokeniser(string, filler_words=[]):
    """Tokenises a string entry of words.

    Args:
        string (string) : String entry to be tokenised
        filler_words (list) : Optional noisy text entries to remove. E.g., grocery store names

    Returns:
        string: Tokenised string
    """

    ## Processing and tokenization ##

    # Convert to string
    string = str(string)   

    # Lowercase string                                                                     
    string = string.lower()             

    # Removes -, %, &, keeps 'æøå'                                                       
    string = re.sub('[^a-ø0-9]', ' ', string)            

    # Replace Quantities with "FAST"                                      
    string = re.sub(r'(\d*,?\.?)\d+\s*(((kilo|mili)?\s*grams?)|gr|(k|m)?g)', " FAST ", string)   

    # Replace Quantities with "VÆSKE"
    string = re.sub(r'(\d*,?\.?)\d+\s*((mili|centi)?\s*liter(s)?|((c|m)?l))', " FLYTENDE ", string) 

    # Removes Numbers (1 or more)
    string = re.sub(r'\d+', " ", string)   

    # Removes Additional Special Characters       
    string = re.sub(r"[/.,;`<>\+\-\*\?\'\’]", "", string) 

    # Removes single char words                                      
    string = re.sub(r'\b\w{1,1}\b', '', string)  

    # Matches Whitespace Characters (also removes '\n')                                              
    string = re.sub(r'\s+', " ", string)                                                       

    
    # Check if any filler words are given
    if filler_words:

        # Remove pre-defined filler words
        filler_word_set = set(filler_words)

    # If no filler words are given
    else: 

        # Create empty set
        filler_word_set = set()

    # Create word tokens from string entries
    word_tokens = [word.strip() for word in string.split(" ") if word not in filler_word_set]

    # Return tokenised string sentence
    return " ".join(word_tokens).strip()

Figure E.1: Python Code: Pre-processing of Item Names
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E.2 Custom Search Algorithm Code

Figure E.2 illustrates the python code used to implement the Custom Search Al-
gorithm. This code was used to transform the coding format of the Imports data
set.

import pandas as pd
import numpy as np

def remove_whitespace_dots(string):
    """Removes white space and dots from string

    Args:
        string (string) : string entry to process
    """

    string = str(string)
    string = string.replace(" ", "")
    string = string.replace(".", "")
    return string

def remove_digit(string, length):
    """Removes a specified length of digits

    Args:
        string (string) : string entry to process
        length (int) : Length of string to keep
    """
    
    string = str(string)
    string = string[:length]
    return string

def cn_to_cpa(number, dataframe, digits_list = [8, 7, 6, 5, 4], source_col='CN08', target_col='CPA08'):    
    """Converts a CN 2008 code to CPA 08 code

    Args:    
        number (int or string) : Code number to transform
        dataframe (pandas.DataFrame): (CPA08 : CN08) conversion table to use in transformation
        digits_list (list) : List of digits to use in the search 
        source_col (string) : Name of column in conversion table with current code format (CN08)
        target_col (string) : Name of column in conversion table with target code format (CPA08)
    """

    number = str(number)
    df = dataframe.copy()
    
    match = []
    unique_matches = []
    
    # Iterate over list of digits
    for digit in digits_list:
        
        # If no unqiue matches have been found
        if not unique_matches:
    
            # Check if number (code number) is longer than digit
            if len(number) > digit:
                
                # If longer, remove digits
                # Remove digits in number so it corresponds with number of digits in the loop
                number = remove_digit(string = number, length = digit)
                
                # Remove a digit in 'CN08' column
                df[source_col] = df[source_col].map(lambda s:remove_digit(s, length=digit))

                # Get all matches in conversion table
                match = df.loc[df[source_col] == number, target_col]
                
                # Store unique matches
                list_of_matches = match.tolist()
                unique_matches = set(list_of_matches)
            
            # If number (code number) is same length as digit     
            else:

                # Get all matches in conversion table
                match = df.loc[df[source_col] == number, target_col]
            

            # Store unique matches
            list_of_matches = match.tolist()
            unique_matches = set(list_of_matches)
            
    return unique_matches
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def cpa08_cpa21(df, mapping_df, column_name):
    """Converts a CPA 08 code to CPA 2.1 code

    Args:
        df (pandas.DataFrame) : Dataframe containing CPA08 codes to transform to CPA21 codes
        mapping_df (pandas.DataFrame) : CPA08 : CPA21) conversion table to use in transformation
        column_name (string) : Name of column with CPA08 codes in df
    """

    # Create dataframe copy for manipulations
    dataframe = df.copy()
    
    # Loop over rows in dataframe
    for row in dataframe[column_name].iteritems():
        
        # Check whether input is a set
        if isinstance(row[1], set):

            # Create empty set
            set_a = set()

            # Iterate over entries in set
            for i in dataframe[column_name][row[0]]:
                
                # Find match
                match = mapping_df.loc[mapping_df['CPA08'] == i, 'CPA21']
                 
                list_of_matches = match.tolist()
                
                # Get unique entries from list of matches
                unique_matches = set(list_of_matches)
                
                # Iterative over new matches
                for unique_match in unique_matches:
                    set_a.add(unique_match)
                    
                # Add new matches to column entry
                dataframe[column_name][row[0]] = set_a
            
    return dataframe[column_name]

def cpa_to_coicop(df, mapping_df, column_name, digits_list = [6,5,4,3], source_col='CPA21', target_col='COICOP18'):
    """Converts a CPA 2.1 code to COICOP 2018 code

    Args:
        df (pandas.DataFrame) : Dataframe containing CPA21 codes to transform to COIOCP18 codes
        mapping_df (pandas.DataFrame) : (CPA21 : COICOP18) conversion table to use in transformation
        column_name : Name of column with CPA21 codes in df
        digits_list (list) : List of digits to use in the search
        source_col (string) : Name of column in conversion table with current code format (CPA21)
        target_col (string) : Name of column in conversion table with target code format (COICOP18) 
    """
    
    # Create dataframe copy for manipulations
    dataframe = df.copy()
    
    # Iterate over rows in dataframe
    for row in dataframe[column_name].iteritems():

        # Check whether input is a set
        if isinstance(row[1], set):

            # Iterate over entries in set
            for i in dataframe[column_name][row[0]]:

                # Iterative Mapping with custom digit range
                matches = cn_to_cpa(str(i), 
                                    dataframe=mapping_df, 
                                    digits_list=digits_list,
                                    source_col='CPA21',
                                    target_col='COICOP18')
                
                
                # Assign matches
                dataframe[column_name][row[0]] = matches
                
        else:
            # Assign np.nan where CPA21 code is not a set
            dataframe[column_name][row[0]] = np.nan
            
    return dataframe[column_name]

Figure E.2: Python Code: Custom Search Algorithm Code
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