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A B S T R A C T   

Testing kinship between pairs of individuals is central to a wide range of applications. We focus on cases where 
many tests are done jointly. Typical examples include cases where DNA profiles are available from a burial site, a 
plane crash or a database of convicted offenders. The task is to determine the relationships between DNA profiles 
or individuals. Our approach generalises previous methods and implementations in several respects. We model 
general, possibly inbred, pairwise relationships which is important for non-human applications and in archae
ological studies of ancient inbred populations. Furthermore, we do not restrict attention to autosomal markers. 
Some cases, such as distinguishing between maternal and paternal half siblings, can be solved using X-chro
mosomal markers. When many tests are done, the risk of errors increases. We address this problem by building on 
the theory of multiple testing and show how optimal thresholds for tests can be determined. We point out that the 
likelihood ratios in a blind search may be dependent so multiple testing methods and interpretation need to 
account for this. In addition, we show how a Bayesian approach can be helpful. Our examples, using simulated 
and real data, demonstrate the practical importance of the methods and implementation is based on freely 
available software.   

1. Introduction 

Inferring the relationship between pairs of individuals is central to 
many forensic applications. Examples include mass fatality incidents, 
which can be the result of accidental catastrophes like air crashes with a 
list of known victims [1] or shipwrecks without passenger lists [2,3]. 
Other applications are natural disasters like tsunamis, where the number 
of victims is unknown [4] and terrorism-related events [5]. The aim is to 
link DNA samples from the scene to putative victims (e.g. individuals 
reported missing since the event) and is known as disaster victim 
identification (DVI). There are various other important applications like 
searching for relationships among individuals in mass graves of 
archaeological relevance [6–8]. We may also check databases collected 
to estimate population statistics such as allele frequencies. Duplicates 
and close relatives should be excluded prior to the statistical analysis to 
avoid biased estimates of allele frequencies [9]. 

As these cases involve unidentified DNA samples, a first step in the 
investigation is to screen the data for related samples. This initial step is 

referred to as a blind search [10]. It is helpful to first position the topics 
that we are addressing in the wider context of database searching. As
sume that there is a case database of DNA profiles. This could comprise 
profiles obtained from a crime scene, a disaster site or a burial site. In 
addition, there may be a reference database of DNA profiles like a na
tional database of convicted offenders. There are various searches that 
can be performed to detect pairwise relationships as illustrated in Fig. 1: 
. 

1. Search for duplicates, i.e., direct search, performed within or be
tween the databases. If this is done within a database, the objective is 
to merge identical samples. A search between databases corresponds 
to the widely discussed database search problem [11].  

2. Familial searching involves searching between databases [12]. A 
selected DNA profile is compared to the profiles of a database with 
the aim of detecting close kin relationships, such as parent-offspring 
or sibling rather than a direct match. 
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3. Blind search. This is a search within a database and is the topic of this 
paper. 

In a blind search, comparisons are performed among all pairs of DNA 
samples. A likelihood ratio (LR), comparing the relationship specified by 
H1 to the one specified by H0, is computed for each pair. The LRs sum
marise the statistical DNA evidence. For pre-specified threshold values t0 
and t1, small values of LR < t0 are often interpreted as supporting H0, 
while large values of LR > t1 favour H1. A blind search typically involves 
a large number of comparisons. If there are n profiles in the database, the 
number of comparisons is n(n− 1)∕2, e.g. 4950 comparisons for 100 
profiles. The implications of this high number of pairwise comparisons 
in a blind search are of key concern in this paper. Also, it is not obvious 
how the thresholds t0 and t1 should be specified. Conventional thresh
olds used in paternity testing, for example, may not apply. The false 
positive rate FPR = P(LR > t1∣H0) and false negative rate FNR = P(LR <
t0∣H1) should both be close to 0. Even if these error rates are small for 
each comparison, the probability that errors occur when many com
parisons are done may be considerable. Determination of thresholds and 
optimisation of search strategies have been discussed in connection with 
database searches and familial searching [13]. The classical statistical 
theory of multiple testing [14] is also relevant. 

Current implementations of blind search are limited to fairly simple 

outbred pedigree structures connecting the two individuals of interest. 
For example, Familias [10], a freely available kinship software package, 
accommodates parent offspring (PO), sibling (S), half sibling (H), first 
cousin (FC) and second cousin (SC) [15,16]. We model general pairwise 
relationship, possibly with inbreeding, using the Jacquard coefficients 
[17]. By including X-chromosomal markers, some additional relation
ships can be addressed. For instance, paternal and maternal half sisters 
can be distinguished. 

Prior, non-DNA, information can sometimes be important. For 
instance, two individuals of the same age cannot possibly constitute a 
parent-offspring pair even if the DNA profiles suggest otherwise. To 
formally include prior information, we require a Bayesian approach. In 
the Bayesian framework we start out with a set of prior probabilities, 
reflecting our belief in the hypotheses, before considering any genetic 
data. Our belief in each hypothesis is then updated by incorporating the 
DNA information. Informative priors can contribute additional infor
mation to the genetic data and this will be reflected in the posterior 
probabilities. A more general prior distribution for pedigrees has been 
discussed elsewhere [18]. 

Our paper is structured as follows. We first review the parametric 
representation of relationships and the corresponding parametric like
lihood and likelihood ratio, for both autosomal and X-chromosomal 
markers. A review of the Bayesian approach to kinship testing is given, 

Fig. 1. Different database searches. 1. Direct search: Search for direct matches between or within databases. 2. Familial search: Search for related individuals 
between databases. 3. Blind search: search for related individuals within databases. 

Fig. 2. Left: Jacquard states J1, …, J9. Dots denote alleles, and lines connect IBD alleles. Right: IBD triangle, with location of some common relationships. Ab
breviations: MZ - monozygotic twins, PO - parent offspring, S - full siblings, H - half siblings, U - avuncular, G - grandparent grandchild, FC - first cousins, UN 
- unrelated. 
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before we return to the likelihood ratio and its properties. These prop
erties are incorporated when presenting the theory for evaluating the 
performance of a blind search. We then introduce the data used in the 
results section and give a brief description of our implementation. We 
provide several examples and conclude with a discussion of the chal
lenges and the advantages of the work we present. 

2. Review of previous results 

2.1. Relatedness coefficients 

Two homologous alleles are identical by descent (IBD) if they are 
identical by state (IBS) and inherited from a common ancestor. IBD is 
therefore defined with reference to a specified pedigree. The idea is that 
closely related individuals share more of their genetic material IBD than 
more distantly related individuals. 

The simplest measure of pairwise relationships is the kinship coef
ficient, φ, defined as the probability that a random allele at a locus from 
one individual is IBD to a random allele at the same locus from another 
individual. This is the same as the inbreeding coefficient f of a child of 
these two individuals [19]. 

The Jacquard coefficients [17] provide a description of general 
pairwise relationships. The four alleles of two individuals are in one of 
the nine Jacquard states Ji for i = 1, …, 9 (see left panel of Fig. 2). The 
probability that the alleles at a locus are in the different Jacquard states 
are given by the Jacquard coefficients, Δ = (Δ1, …, Δ9), where Δi = P 
(Ji). The coefficients sum to one. 

The first six Jacquard states model inbreeding in one or both of the 
individuals. The only possible IBD states for two outbred individuals are 
J9, J8 and J7, referred to as the IBD states K0, K1 and K2, respectively. 
Thus, for two outbred individuals, the Jacquard coefficients reduce to 
the IBD coefficients [20], κ = (κ0, κ1, κ2), where κi = P(Ki). Since 

∑2
i=0κi 

= 1, the coefficients can be visualised in the IBD triangle, with co
ordinates (κ0, κ2). Fig. 2 shows the IBD triangle with the location of some 
common pedigree relationships. 

Thompson [21] showed that the coefficients satisfy the inequality 
κ2

1 ≥ 4κ0κ2, which creates an inadmissible region, shown in grey in 
Fig. 2. This means that it is not possible to construct a pedigree con
necting two outbred individuals with IBD coefficients in the inadmis
sible region. 

2.1.1. Relatedness coefficients and founder inbreeding 
By assigning a coefficient of inbreeding to one or more of the foun

ders of a pedigree, background relatedness can be modelled [22]. 
Inbreeding of a pedigree founder (or several founders) affects the ge
netic relationship between other members of the pedigree [23], but does 
not necessarily make the pedigree members of interest inbred. For 
example, if it is suspected that two individuals are paternal half-siblings 

and the paternal grandparents are first cousins, as depicted in Fig. 3, the 
common father has an inbreeding coefficient f = 1∕16. The IBD co
efficients for these half siblings are given by κ = (0.469, 0.531, 0) in 
contrast with κ = (0.5, 0.5, 0) for the non-inbred setting with f = 0. It 
can be shown that there is some finite pedigree with founder inbreeding 
that corresponds to each admissible point in the IBD triangle [24]. 

2.2. The likelihood function 

Our data comprise pairs of DNA profiles, genotyped at m unlinked 
loci, i.e., m statistically independent loci. For a single pair of individuals, 
A and B, let Gj = (gA,j, gB,j) denote their respective genotypes at locus j for 
j = 1, …, m. The likelihood of Δ, i.e., the probability of observing the 
data G = (G1, …, Gm) assuming Δ to be true, is 

L(Δ) =
∏m

j=1

∑9

i=1
ΔiP(Gj

⃒
⃒Ji). (1)  

The probabilities P(Gj∣Ji) are given in Table 9 in the Appendix A. For 
outbred individuals, the likelihood of κ is 

L(κ) =
∏m

j=1

∑2

i=0
κiP(Gj

⃒
⃒Ki), (2)  

where the probabilities P(Gj∣Ki) for i = 0, 1, 2 correspond to the last 
three columns of Table 9. 

2.3. Parametric representation of the likelihood ratio 

The likelihood ratio (LR) quantifies how much more likely it is that a 
set of genetic data is explained by one hypothesis H1 than by another 
hypothesis H0. In our applications, each hypothesis states a pairwise 
relationship, expressed by a set of relatedness coefficients Δ (or κ for 
outbred relationships). The LR that compares (1) for two sets of co
efficients Δ1 and Δ0 is 

LR(Δ1,Δ0) =
P(G|H1)

P(G|H0)
=

L(Δ1)

L(Δ0)
. (3)  

The hypotheses H1 and H0 are not necessarily exhaustive, meaning that 
there may be other hypotheses that better explain the data. 

2.3.1. Example 
The purpose of this example is merely to illustrate how LRs can be 

easily computed for different sets of IBD coefficients using the repre
sentation in (3). 

Consider two individuals genotyped at three loci. Each locus has 
three alleles a, b and c, with population frequencies 0.5, 0.3 and 0.2, 
respectively. The genotypes at each locus are given in the first column of  
Table 1. The likelihood of κ for each locus are given in the last column. 

When comparing siblings, κ1 = (0.25, 0.5, 0.25) against unrelated 
(UN) κ0 = (1, 0, 0), the LR becomes 

Fig. 3. Figure showing the concept of founder inbreeding, as described in 
Section 2.1.1. The shaded part showing the first cousin relationship, is modelled 
by the inbreeding coefficient f. 

Table 1 
Likelihood of κ = (κ0, κ1, κ2), when observing genotypes for two individuals, for 
three unlinked loci, as described in the example of Section 2.3.   

P (G∣K0) P (G∣K1) P (G∣K2) L (κ) 

G1 = (ab, ac)  0.06  0.03  0 0.06 ⋅ κ0+0.03 ⋅ κ1 

G2 = (bc, bb)  0.011  0.004  0 0.011 ⋅ κ0+0.004 ⋅ κ1 

G3 = (aa, bc)  0.03  0  0 0.03 ⋅ κ0  
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LR(κ1, κ0) =
(0.06⋅0.25 + 0.03⋅0.5)

0.06

⋅
(0.011⋅0.25 + 0.004⋅0.5)

0.011

⋅
(0.03⋅0.25)

0.03
= 0.054.

(4)  

Similarly, we find the LR for half siblings (or avuncular or grandparent 
grandchild), κ1 = (0.5, 0.5, 0), against unrelated, κ0 = (1, 0, 0), to be 
0.256. The probabilities in the middle three columns of Table 1 are in
dependent of the tested relationships. 

2.4. Properties of the LR 

For specified thresholds t0 < t1, an LR < t0 essentially supports H0, 
while an LR ≥ t1 favours H1. More data may be required to make a de
cision when t0 ≤LR < t1 [25]. For simplicity, we will assume t0 = t1 = t, 
so that a conclusion can always be drawn. 

When LR≥ t, but H0 is true, we have a false positive (FP). If LR≥ t and 
H1 is true, we have a true positive (TR). We define the false positive rate 
(FPR) and the true positive rate (TPR) as 

FPR = P(LR ≥ t|H0), TPR = P(LR ≥ t|H1). (5)  

The TPR measures the ability to detect the relationship, while the FPR is 
the probability of falsely declaring a relationship. The relationship be
tween FPR and TPR is often visualised by a receiver operating charac
teristic (ROC) curve [26]. Fig. 4 in Section 3.3 illustrates the concept of a 
ROC curve. 

2.5. The Bayesian approach to kinship testing 

A frequentist approach to evaluating kinship is based on the LR 
reflecting the probabilities of the data we have observed under two 
specified hypotheses. An alternative approach is provided by a Bayesian 
framework. 

Instead of just testing one hypothesis H1 against H0, we consider a set 
of hypotheses Hi, i = 1, …, k, each against H0. With some prior belief in 
each hypothesis π0, …, πk, with 

∑k
i=0πi = 1, Bayes’ theorem expresses 

the posterior probability of each hypothesis as 

P(Hi|data) =
LRiπi

∑k
j=0LRjπj

, fori = 0,…, k, (6)  

where LRi is the likelihood ratio when Hi is compared against H0 [10]. In 
fact, the denominator in the LR cancels out, so (6) actually compares the 
likelihood of each hypothesis against all the other hypotheses jointly. 

Just as for LRs, we cannot infer anything about the true relationship 
between the individuals as this might not be one of the hypotheses 
considered. For a flat prior, the posterior probabilities do not add any 
information to that provided by the genetic data and hence simply scale 
the relevant likelihoods (or LRs). More informative priors, on the other 
hand, can contribute additional information and this will be reflected in 
the posterior probabilities. For example, the three relationships half- 
sibling (H), avuncular (U) and grandparental (G) all have the same 
IBD coefficients and identical likelihoods. They are hence indistin
guishable in the traditional frequentist setting and in a Bayesian setting 
using flat priors. Age information can easily be incorporated into the 
Bayesian approach and may yield different posterior probabilities. 

3. Methods for blind search 

3.1. The likelihood ratio for X-chromosomal markers 

X chromosomal markers are increasingly used in forensic applica
tions to supplement or replace autosomal markers for some cases of 
practical importance [27]. One such example is shown in Fig. 8. The 
females B and C are paternal half sibs while C and D are maternal half 
sibs. The distinction between maternal and paternal is captured by 
X-chromosomal markers but not by autosomal markers. The paternal 
half sibs share an allele IBD inherited from their father. The Jacquard 
coefficients and the likelihood calculation can be modified to cater for 
independent X-chromosomal markers (details omitted). Obviously, the 
sex of the individuals in the pair matters. As an example note that there 
are only two possibilities, or two states, for a pair of males: either they 
share an allele IBD or they do not. 

Since the number of unlinked markers on the X chromosome is 
limited, linkage and linkage disequilibrium become an issue [28]. We 
will ignore such dependence in Section 5.5. However, relevant findings 
that take dependence into account can be checked using the freely 
available software FamLinkX [29]. 

3.2. Estimation of FPR and TPR 

The true positive and false positive rates are determined by the hy
potheses considered, number of loci, properties of each locus and the LR 
threshold. These rates can be calculated numerically using the algorithm 
described in [30]. However, this method only works for a small number 
of markers, say up to 10. In practice, we therefore resort to simulation. 
We denote estimates of FPR and TPR by F̂PR and T̂PR, respectively. 

Typically TPR is close to 1 and FPR close to 0. These values are 
generally poorly estimated from direct Monte Carlo simulation. For 
instance, when FPR = 0.00001, 1 of 100000 simulations is expected to 
give a false positive. The conventional number of simulations in the 
range 100–10000 is therefore likely to return an estimate of 0. Kruijver 
[30] describes several methods for estimating small probabilities in 
forensic applications. One of these is importance sampling, which we 
use to estimate FPR in the results section. Details about importance 
sampling are given in Appendix B. 

3.3. Optimal LR threshold 

Intuitively we seek a threshold for LR that minimises the number of 
errors. Several approaches for choosing the optimal threshold have been 
suggested and compared [31]. We will focus on ROC-based methods. 
Fig. 4 shows a general ROC curve. Each point on the curve corresponds 
to a threshold t, with corresponding values for FPR and TPR. The value t 
in the figure corresponds roughly to FPR = 0.4 and TPR = 0.6. The 
upper left corner corresponds to FPR = 0 and TPR = 1 and is therefore 

Fig. 4. Figure showing the concept of a ROC curve with a corresponding 
threshold. The rate TPR is plotted as a function of FPR. Each point on the curve 
corresponds to an LR threshold t. The dashed line shows the Euclidean distance 
(unweighted) from the optimal point (0,1) to the ROC curve, given by (7). 
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called the optimal point. Consequently, it is reasonable to choose a 
threshold that minimises the weighted Euclidean distance between the 
ROC curve and the point (0,1), 

ER(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(w FPR(t))2
+ (1 − TPR(t))2

√

, (7)  

where w ≥ 0. In our examples the weight w = 1. It may be that one of the 
errors, typically a false positive, is more important to avoid than the 
other, a false negative. The relative importance of errors can be 
modelled by using other values of w. Because we do not know the exact 
values of FPR and TPR, they are replaced by their estimates. 

3.4. The problem of multiple testing in blind search 

When doing a blind search among n DNA profiles, we compute one 
LR comparing two hypotheses, H0 and H1, for each pair of DNA profiles, 
leaving us with a total of N = n(n− 1)∕2 LRs, LR1, …, LRN. The blind 
search can be repeated with a different pair of hypotheses, but here we 
restrict attention to a single blind search with two hypotheses H1 and H0 
for all pairwise comparisons. If the true hypothesis is known in each 
case, the result of the search (or any other multiple testing scenario) can 
be summarised as shown in Table 2. In practice, the truth will only be 
known for simulated data. 

Assume that the only possibilities are the relationship stated by H1 or 
H0, such that N0 + N1 = N. The number of type I errors or false positives 
is FP, while the number of false negatives is FN. Ideally, we want FP = 0 
and FN = 0. However, this is not realistic. For a sufficiently large 
threshold t we will never reject H0 and there will be no false positives, i. 
e. FP = 0. Similarly, there will be no false negatives, FN = 0 (which 
means TP = N1), for a sufficiently small threshold. The challenge is to 
make both FP and FN acceptably small, or equivalently, make FP as 
small as possible and TP as close to N1 as possible. 

Even if the probability of a false positive is very small for a single 
pairwise comparison, the fact that there are so many tests in a blind 
search could lead to a substantial probability of at least one false posi
tive. Approaches to analyse and control these false positives in a 

multiple testing setting have to be applied. The Family Wise Error Rate 
(FWER) [14] is often used for this purpose. 

FWER is defined as the probability of getting at least one false pos
itive out of N tests [32]. Let α denote the FWER. For N independent tests, 

α = P(FP ≥ 1) = 1 − (1 − FPR)N
,

where the FPR, as defined in (5), is assumed to be the same for each test. 
As we illustrate in the results section, the pairwise tests in a blind search 
are not independent and so we use the Bonferroni bound 

α ≤ N⋅FPR =
n(n − 1)

2
FPR.

Thus, to obtain an α below a given value, we choose a threshold so that 

FPRα ≤ 2α∕(n(n − 1)) (8)  

for a fixed sample size n. Fig. 5 plots FPRα as a function of α, for a blind 
search with 5, 10, 50, 100 and 200 individuals. The red vertical line is 
located at α = 0.05. 

The aim is to find the threshold t that minimises ER(t) given in (7), 
with the constraint that FPR≤FPRα. 

4. Data and implementation 

4.1. Real data and simulations 

The DNA profiles evaluated in Sections 5.3 and 5.4 are from 65 in
dividuals of Northern European origin (Germany) forming 8 pedigrees, 
with a variety of declared kinships up to 7th degree (the number of 
meioses between the persons of interest [33]). Most founders were not 
genotyped, and pedigree sizes ranged from 5 to 17, with an average of 9 
members per family. Genotyping was done via massively parallel 
sequencing using the ForenSeq™ DNA Signature Prep kit (Verogen Inc., 
San Diego, CA, USA) and will be discussed in full elsewhere (M. Colucci, 
B. Rolf, N. A. Sheehan, M. A. Jobling, in preparation). Samples were 
collected with informed consent. For the purposes of the current study, 
we consider only the length-based genotypes from 27 autosomal STRs 
contained in Plex B of this kit. Allele frequencies are based on the Eu
ropean dataset in PopSTR (http://spsmart.cesga.es/popstr.php[34,35]) 
and downloaded from the Familias website (https://familias.no/downlo 
ad). 

The performance analysis in Section 5.2, that leads to the blind 
search in the following section, is based on simulated data assuming the 
same set of loci as the real data, i.e., the 27 autosomal STR loci described 
above. This set of STR markers is also used in the simulations for the last 
example in the results section. 

To demonstrate the use of X-chromosomal markers, data are simu
lated based on 12 X-chromosomal STR markers included in the kit 
"Investigator Argus X-12", with frequencies taken from an Argentinian 
database [36]. This is the most widely used kit for forensic applications. 

4.2. Implementation 

The analyses in this paper are all performed using R code developed 
by the authors. The code is available from the first author on request. 
The main engine of the code is an implementation of the parametric 
version of the likelihood function. This efficiently computes likelihoods 
for a series of relationships and converts to LRs and posterior proba
bilities. The code builds on the R libraries pedtools, ribd, forrel and pedmut 
developed by Magnus Dehli Vigeland, freely available from CRAN [37]. 

4.3. Assumptions 

All the equations above are based on (1) which is only valid under 
certain assumptions. Firstly, the population is assumed to be in Hardy- 

Table 2 
The statistics of a blind search summarised, as described in Section 3.4. Only W0, 
the number of LRs below t, and W1, the number of LRs above t, are observed.   

Claim H0 Claim H1 Total 

H0 true TN FP N0 

H1 true FN TP N1 

Total W0 W1 N 

Source:Adapted from [32]. 

0.0 0.2 0.4 0.6 0.8 1.0

-8
G̃

-6
-4

-2

FPR vs. FWER for n individuals

lo
g 1

0
F

P
R

Individuals

n=5
n=10
n=50
n=100
n=200

F WE R

Fig. 5. Highest acceptable value of FPR, as a function of α, given by (8) in 
Section 3.4. Plotted for blind search with 5, 10, 50, 100 and 200 individuals. 
The vertical line is located at α = 0.05. 
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Weinberg Equilibrium (HWE) and in Linkage Equilibrium (LE). Sec
ondly, mutations are ignored. Mutation rates are usually small, and the 
errors induced by ignoring them in likelihood calculations are typically 
negligible [38]. However, for a parent offspring (PO) relationship, i.e. 
κ = (0, 1, 0), the likelihood will be zero if the two samples have geno
types at any locus that are incompatible with this hypothesis, e.g. gA =

aa and gB = bb. For this special case, there is a simple formulation of the 
likelihood that incorporates mutation (see [10]). This likelihood for
mula is applied throughout the paper when the likelihood of κ = (0, 1, 0) 
is computed. An extended stepwise mutation model is implemented, 
with mutation rates of 10− 3 and 5 ⋅ 10− 6 for mutation of integer and 
non-integer alleles, respectively and a mutation range of 0.1. For further 
details on this mutation model, see paper by Simonsson and Mostad 
[39]. We ignore allele drop-ins and drop-outs, null alleles and geno
typing errors. 

5. Results 

The first example shows that the LRs in a blind search are not in
dependent. The second example demonstrates how to evaluate the 
performance of a blind search such as we present in the third example. 
We then carry out a blind search on X-chromosomal markers before 
showing how inbreeding can be accommodated. 

5.1. Correlation between LRs in a blind search 

In this example, we show by simulation a case where the LRs of a 
blind search are correlated. Consider the pedigree in Fig. 6 and the 
hypotheses H1 stating a sibling relationship and H0 unrelated. Let LR1,3 
denote the likelihood ratio when individual 1 is compared to 3 and 

define LR2,3 analogously. We use 10 independent loci, each with 10 
alleles and equal allele frequencies of 0.1. Note that the LRs are random 
variables. We simulate 1000 sets of DNA profiles for the three shaded 
individuals of the pedigree in Fig. 6. The values of LR1,3 and LR2,3 are 
computed for each simulation. The results are shown in the scatter plot 
in Fig. 6, the red line denoting a regression line. 

The estimated correlation between the logarithmic values of LR1,3 
and LR2,3 is 0.484. This shows that the LRs are not independent. In other 
words, the outcome of different comparisons cannot be interpreted 
independently if one individual is involved in several comparisons. We 
elaborate on the implications of this correlation in the discussion. 

5.2. From FWER to choice of LR threshold 

In Section 5.3, we carry out a blind search among 65 individuals, 
genotyped for a set of 27 STR loci. Here, we present the preliminary 
evaluation required to obtain optimal LR thresholds for that search. 

The first step is to decide on an acceptable value of α. From this value 
of α we can decide on an upper limit of the FPR and then the corre
sponding optimal LR threshold. For a blind search of n = 65 individuals, 
with the requirement that α ≤ 0.05, Equation (8) gives an upper limit for 
the false positive rate of FPR0.05 = 2.404 ⋅ 10− 5. 

The next step is to analyse how the FPR and TPR relate to each other 
for this particular set of markers. This depends on what hypotheses we 
test in the blind search. In the following example, we consider the hy
potheses H1: PO, H2: S, H3: H/U/G and H4: FC, all against H0: UN. We 
therefore consider these hypotheses here when estimating FPR and TPR. 

Fig. 7 shows ROC curves for the different hypotheses. The values for 
F̂PR and T̂PR are estimated from simulated data, as described in Section 
3.2. For H1: PO, we only obtained estimates of FPR smaller than 10− 7, 

Fig. 6. Figure corresponding to the correlation discussion in Section 5.1. Left: Scatter plot of LRs of simulated data for two siblings and an unrelated individual. Red 
line shows regression line. Right: Pedigree used for simulation of data, identifying the id labels 1, 2 and 3 in left panel. 

Fig. 7. ROC curves for the analysis performed in Section 5.2. The hypothesis H1 stating S, H and FC and H0 unrelated, using 27 STR markers. ROC curves from 
simulated data. A threshold of 11 corresponds to an estimated false positive rate of about 0.01 and an estimated true positive rate of about 0.26 for FC. The right 
figure shows the same estimated ROC curves and the line FPR = TPR, with an untransformed first axis. 
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with a corresponding estimated TPR of 0.999 or higher. This shows that 
the LR comparing PO to UN is high when the true relationship is PO and 
low otherwise. Parent offspring and unrelated individuals are easily 
distinguished as expected and so we have omitted this curve from the 
graph. 

The ROC curves show the estimated properties of a single compu
tation of the LR, for the respective hypotheses, for this specific set of STR 
markers. The curves do not depend on the number of individuals in the 
blind search. 

The last step in the performance analysis is to identify the optimal 
threshold, by minimising ER(t), with the constraint F̂PR ≤ FPRα. The 
highest optimal thresholds for α = 0.05 and α = 0.1 are listed in Table 3. 

5.3. Blind search with real data 

In this example we do a blind search on the data described in Section 
4.1. The data set contains 65 DNA profiles. A blind search among these 
profiles results in 2080 pairwise comparisons. We want to test the hy
potheses H1: PO, κ1 = (0, 1, 0), H2: S, κ2 = (0.25, 0.5, 0.25), H3: H/U/G, 
κ3 = (0.5, 0.5, 0), H4: FC, κ4 = (0.9375, 0.0625, 0), against H0: UN, 
κ0 = (1, 0, 0). In the previous section, we obtained optimal thresholds for 
blind searches with these hypotheses (Table 3). A stepwise mutation 
model is implemented in the evaluation of PO. 

Table 4 summarises the blind searches performed on the real data. 
This table is possible to construct because we know the true relationship 
for each pair from the pedigree information. In practice, only the sum of 
the last three rows (for each relationship) would be known. 

For PO, we are left with a list of 47 hits. 43 of these are true PO, while 
4 of the 47 hits are pairs of individuals with another relationship. 3 pairs 
with true PO relationship are not detected. By lowering the threshold, 
the remaining 3 pairs could have been detected. However, the proba
bility of obtaining false positives increases by decreasing the threshold. 
For S, only one true sibling pair is not detected and there is only one false 

positive. However, the list of hits contains 66 pairs of individuals, 53 of 
these having another relationship. 

We conclude that the summary in Table 4 is consistent with the 
performance evaluation shown in Table 3. PO can easily be distin
guished from UN. The more distant the tested relationship, the lower the 
power to distinguish it from unrelated. With the obtained optimal 
thresholds, the number of false positives stays low as desired. For each 
hypothesis tested, the list of pairs warranting further investigation 
comprises those in the final row of Table 4, i.e., those who do not have 
the tested relationship and who are also not unrelated. 

5.4. Analysis of posterior probabilities 

The result of each of the blind searches performed in Section 5.3 is a 
list of pairs with a LR above the threshold. Some pairs of individuals may 
appear in several of the lists, while other pairs may not be present in any 
of the lists. In this example, we turn to Bayesian analysis to further 
investigate specific pairs. 

Table 5 shows LR values for 7 pairs from the above blind search. 
Values above the LR thresholds are in bold font. The rightmost column 
gives the true relationship. Only the first two pairs have LR values above 
the thresholds given in the left table of Table 3 corresponding to 
α = 0.05. For pairs 3–7, the LRs are low, some below 1, indicating that a 
UN relationship is more plausible than the alternative hypothesis. 

Next we calculate posterior probabilities to see if it is possible to infer 
a relationship for the different pairs. LR thresholds are not required for 
this. Table 6 shows posterior probabilities for the different hypotheses, 
with flat prior probabilities, i.e., πi = 1∕7 for i = 0, . . . , 6. The highest 
probability for each pair is in bold and corresponds to the true rela
tionship for several of the pairs. For example, the LRs in Table 5 
comparing S, H/U/G and FC against UN for the second pair were all 
above the relevant LR thresholds. The posterior probability of S is close 
to 1, now making it possible to correctly infer this relationship. For pairs 
3, 4 and 5, the highest posterior probabilities are just below 0.3. Even 
though the corresponding relationship is the most probable, a posterior 
probability of 0.3 is maybe not high enough to allow firm conclusions to 
be drawn. 

The relationships H, U and G are indistinguishable in the parametric 
framework presented in Section 2. Also posterior probabilities with a flat 

Table 3 
Optimal thresholds for different relationships, with corresponding F̂PR and 
T̂PR, for the analysis performed in Section 5.2. For α = 0.05 (left table) and 
α = 0.1 (right table), for blind search with n = 65 individuals.  

α = 0.05 ⇒ FPRα = 2.404 ⋅ 10− 5  

t F̂PR  T̂PR  

PO  65531 5.439 ⋅ 10− 8  1.000 
S  771 2.296 ⋅ 10− 5  0.961 
H  2501 2.365 ⋅ 10− 5  0.184 
FC  421 1.689 ⋅ 10− 5  0.014  

α = 0.1 ⇒ FPRα = 4.808 ⋅ 10− 5  

t F̂PR  T̂PR  

PO  65531 5.439 ⋅ 10− 8  1.000 
S  311 4.713 ⋅ 10− 5  0.972 
H  1551 4.770 ⋅ 10− 5  0.232 
FC  251 4.421 ⋅ 10− 5  0.022  

Table 4 
Results of the blind search among n = 65 individuals in Section 5.3 with 
α = 0.05 where N1 denotes the total number of pairs in the sample with the 
tested relationship, TP is the number of these pairs with a LR above the 
threshold, and FP is the number of unrelated individuals with a LR above the 
threshold. The last row gives the number of other (differently related) pairs with 
an LR above the threshold.   

PO S H/U/G FC 

N1  46  13  64  21 
TP  43  12  12  0 
FP  0  1  2  0 
H1 Claimed, other true  4  53  57  59  

Table 5 
LR values for seven pairs of the blind search in Section 5.3. Values for H, U and G 
are the same and shown in the column H/U/G. Values smaller than 10− 6 are set 
to 0.   

PO S H/U/G FC UN True 

1 5.181 ⋅ 1010 1.205 ⋅ 108 1.825 ⋅ 107 5.593 ⋅ 104  1 PO 
2 353.460 1.544 ⋅ 108 3.886 ⋅ 105 5.189 ⋅ 103  1 S 
3 0 0.681 57.572 20.519  1 H 
4 0 5.017 ⋅ 10− 3 4.156 4.0984  1 U 
5 0 0.030 13.269 16.916  1 G 
6 0 1.115 ⋅ 10− 4 0.163 1.375  1 FC 
7 0 1.821 ⋅ 10− 6 0.022 0.349  1 UN  

Table 6 
Posterior probabilities, computed from the LR values of Table 5, when applying 
a flat prior, i.e., πi = 1∕7 for i = 0, . . . , 6, as described in Section 5.4. Values for 
H, U and G are the same and shown in the column H/U/G. Probabilities smaller 
than 10− 6 are set to 0.   

PO S H/U/G FC UN True 

1 0.997 0.002  0.0004 1.076 ⋅ 10− 6  0 PO 
2 2.272 ⋅ 10− 6 0.993  0.002 3.336 ⋅ 10− 5  0 S 
3 0 0.0003  0.295 0.105  0.005 H 
4 0 2.86 ⋅ 10− 4  0.237 0.233  0.057 U 
5 0 5.15 ⋅ 10− 4  0.230 0.293  0.017 G 
6 0 3.90 ⋅ 10− 5  0.057 0.480  0.349 FC 
7 0 1.29 ⋅ 10− 6  0.0162 0.246  0.706 UN  
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prior as in Table 6 can not differentiate between them. Additional in
formation, preferably objective, needs to be considered. 

Suppose now that we have knowledge of how many pairs of the 
different relationships are present among the DNA profiles. This could 
be the case in a plane crash with a known passenger list. There are 1867 
unrelated pairs, 46 parent-offspring pairs, 13 sibling pairs, 4 half sibling 
pairs, 33 avuncular pairs, 27 grandparental pairs and 21 first cousin 
pairs. The remaining 69 pairs have other more distant relationships not 
investigated here. The prior probabilities are then π0 = 0.928 (UN), π1 
= 0.023 (PO), π2 = 0.006 (S), π3 = 0.002 (H), π4 = 0.016 (U), π5 
= 0.013 (G) and π6 = 0.010 (FC). 

Posterior probabilities using these more informative priors are 
shown in Table 7. The prior probability of a PO relationships is π1 
= 0.023, i.e., there is a chance of 2.3% that a pair of individuals has a PO 
relationship. The corresponding posterior probability for the first pair is 
0.999. The genetic data give such strong support to PO, that even though 
the prior probability is low, the posterior probability of this relationship 
is approximately 1. 

In this blind search (as in most other blind searches), most pairs of 
individuals are unrelated, making the prior probability of UN close to 1 
and the others low. This requires the LRs for the other relationships to be 
high in order to be supported by the posterior probabilities. For the 
relationships H/U/G and FC, the LR of the true relationships against UN 
is typically low. The combination of priors and LRs makes the posterior 
probability of UN high while the posterior probability of the true rela
tionship remains low. 

For this reason, this particular set of prior probabilities, even though 
objective, does not help us to distinguish between the H, U and G re
lationships in these data. 

5.5. Blind search with X-chromosomal markers 

Because a male has only one X-chromosome, paternal half sisters 
(HSP) must inherit the same X-chromosome from their common father. 
Their second X-chromosomes, inherited from their respective mothers, 
are not IBD (since their mothers are unrelated), and hence, the IBD co
efficients for a HSP relationship are κ = (0, 1, 0). The IBD coefficients for 
maternal half siblings (HSM), whether considering X-chromosomal or 
autosomal markers, are κ = (0.5, 0.5, 0). In the following example, we 
show with simulated data how X-chromosomal markers can distinguish 
between HSP and HSM. 

We simulated genotypes for 12 X-chromosomal STR markers, for the 
shaded individuals in Fig. 8. Genotypes are simulated for each locus 
independently, by gene-dropping through the pedigree structure. More 
specifically, genotypes are sampled for the founders of the pedigree (the 
parents) according to the allele population frequencies and passed down 
through the pedigree assuming the rules of Mendelian inheritance. Only 
the resulting genotypes of the offsprings are kept for the applications in 
this example. Table 8 presents the average posterior probabilities over 

100 simulations, for the relationships PO, S, HSP, HSM and UN, for the 
six possible comparisons between the individuals A, B, C and D. A flat 
prior πi = 1∕5 for i = 0, …, 4 is assumed. 

The evidence in favour of C-D being HSM, shown in bold in Table 8, 
could not be obtained using autosomal markers. Since we are using a flat 
prior, the LR comparing maternal to paternal half sibs can be found from 
the posterior probability ratio, 0.81327/0.01916 = 42.4. This value 
may not be decisive on its own, but supplements other evidence. Note 
that HSP cannot be distinguished from PO using X-chromosomal 
markers alone as the row for the comparison A-C confirms. Age infor
mation, autosomal marker data or other non-DNA data may solve such 
cases. 

5.6. Half siblings with inbred founder 

Computations of LRs and posterior probabilities are restricted to a 
limited set of predefined pedigree relationships in many current soft
ware implementations. The parametric form of the LR given in (3) en
ables us to compute LRs and do blind search for any pairwise 

Table 7 
Posterior probabilities with informative priors, as described in Section 5.4. 
Probabilities smaller than 10− 6 are set to 0.   

PO S H U G FC UN True 

1 0.999 6.57 ⋅ 
10− 4 

3.06 ⋅ 
10− 5 

2.52 ⋅ 
10− 4 

2.07 ⋅ 
10− 4 

0  0 PO 

2 8 ⋅ 
10− 6 

0.988 7.65 ⋅ 
10− 4 

0.006 0.005 5.36 ⋅ 
10− 5  

0 S 

3 0 0.001 0.038 0.317 0.259 0.072  0.312 H 
4 0 2.94 ⋅ 

10− 5 
0.007 0.062 0.051 0.039  0.841 U 

5 0 1.26 ⋅ 
10− 4 

0.017 0.143 0.117 0.116  0.608 G 

6 0 0 3.42 ⋅ 
10− 4 

0.003 0.002 0.015  0.979 FC 

7 0 0 4.78 ⋅ 
10− 5 

3.95 ⋅ 
10− 4 

3.23 ⋅ 
10− 4 

0.004  0.995 UN  
Fig. 8. Pedigree connecting the individuals of the analysis in Section 5.5. 
Marker data are simulated for the four daughters to demonstrate blind search 
with X-chromosomal markers. 

Table 8 
Posterior probabilities averaged over 100 simulations for the comparisons be
tween the four daughters in Fig. 8.   

PO S HSP HSM UN 

A-B  0.039  0.921  0.039  0.001 0.000 
A-C  0.475  0.039  0.475  0.012 2 ⋅ 10− 5 

A-D  0.000  0.000  0.000  0.154 0.846 
B-C  0.471  0.045  0.471  0.012 2 ⋅ 10− 5 

B-D  0.000  0.000  0.000  0.146 0.854 
C-D  0.019  0.001  0.019  0.813 0.147  

Fig. 9. Half sibling pedigree with founder inbreeding assumed in the analysis 
in Section 5.6. 
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relationship. In this example we show how background inbreeding can 
be modelled and how this can be taken into account in the Bayesian 
framework. 

Assume a set of DNA profiles among which we want to do a blind 
search. The number of profiles is not important. The pedigrees con
necting the individuals are unknown, but we know that the individuals 
come from a population where inbreeding is common. We consider the 
hypotheses H1: PO, H2: S, H3: H and H4: H with founder inbreeding 
f = 0.25, all against H0: UN. The relationship in H4 is shown in Fig. 9. 
Individuals A and B are outbred paternal half siblings, with the father 
being inbred with an inbreeding coefficient f = 0.25. This value of f 
corresponds to extreme inbreeding where the parents of the father are 
siblings. The IBD coefficients for the half sibling relationship are 
κ = (0.375, 0.625, 0). 

We consider one pair with true relationship H4. A total of 100 sim
ulations of DNA profiles for this pair is performed. LRs and posterior 
probabilities, with a flat prior πi = 1∕5, i = 0, …, 4 are computed for 
each simulation. Mean values of the posterior probabilities for the hy
potheses H0, . . . , H4, are: p1 = 0.017, p2 = 0.094, p3 = 0.374, p4 =

0.495 and p0 = 0.019. It can be seen that the mean posterior probability 
of hypothesis H(f) is about 0.5, making it possible to distinguish it from 
the half sibling relationship without inbreeding. 

The coefficient of inbreeding in this example is quite high. Lower 
values of f make the pair genetically more similar to half siblings without 
inbreeding, and distinguishing these relationships becomes harder 
without additional information. This high degree of inbreeding may be 
more relevant for non-human applications. 

6. Discussion 

The topic of this paper is blind search, a procedure used to search for 
pairwise relationships among a set of unidentified DNA profiles. Each 
pairwise comparison is similar to a kinship test performed, for instance, 
to resolve a paternity dispute. In the paper, we focus mainly on issues 
related to multiple testing. For this reason we will not discuss Hardy- 
Weinberg equilibrium and other assumptions that our applications 
share with other applications in forensic genetics. For instance, it is not 
obvious how evidence from different DNA sources like autosomal 
markers and X-chromosomal markers should be combined. However, 
this challenge is no different for a blind search than for a kinship test and 
is therefore not addressed here. 

Case workers must decide on how the results of a blind search should 
be evaluated and reported. The context, or specific application, is 
obviously not irrelevant. In a DVI application, a false identification is 
likely to be a more serious error than missing an identification. To ac
count for this, the metric for determining the threshold in (7) allows a 
weight to be specified which would penalise false identifications. Other 
applications, such as screening a database for relatives prior to esti
mating allele frequencies, may not require a weighting for errors. If costs 
can be specified for the possible errors, optimal decision rules can be 
derived as explained in Chapter 8.1 of [10]. However, there is hardly 
ever an objective way to balance the two errors that can occur and so 
specification of weights or costs may not be a viable option. We have 
used the unweighted form of the metric throughout. We have only 
considered binary decisions (corresponding to t0 = t1) as stated in the 
beginning of Section 2.4. One could drop this requirement and declare a 
test to be inconclusive if t0 < LR < t1. In this case, a cost for making no 
decision would have to be added and (7) modified accordingly. 

We only presented one method to determine an optimal threshold 
based on the distance illustrated in Fig. 4 although several alternatives 
are available [31]. Results using different approaches were practically 
identical for the examples we presented and so we chose not to discuss 
the thresholds based on the other metrics. Furthermore, other ap
proaches to obtain ROC curves could be considered. For instance, there 
are several ways to smooth ROC curves. It is also possible to provide 
confidence bands for the ROC curves and study the impact of 

assumptions. This has been explored in previous papers [40]. Fig. 6 
shows that the LRs from a blind search may be correlated when the same 
individual is involved in two comparisons. This has several implications. 
In particular, the results of different comparisons cannot be interpreted 
independently. Intuitively, we may get a high LR if unrelated individuals 
A and B happen to share a rare allele. Another individual C, who is a 
close relative of A, is likely to share this allele IBD with A and so we can 
also expect a high LR when comparing B and C. Importantly, the 
methods used to control the overall error rate must allow for depen
dence and for this reason we used the Bonferroni bound (8) as an upper 
limit for the FWER. Another frequently used measure to control the 
overall error rate in multiple testing scenarios is the false discovery rate 
(FDR) [14]. When controlling the FDR, the outcome of each test is based 
on p-values. However, conventional significance testing based on 
p-values are not recommended to evaluate the strength of DNA evidence 
in forensic genetics [41,42]. 

Furthermore, a blind search will not necessarily provide a globally 
consistent ‘solution’ in the sense that the LRs may support impossible 
combinations of relationships, like one individual having two mothers. 
An interesting extension to this paper would be to investigate alternative 
search strategies that may improve the results of a blind search. One 
strategy could be to do the search sequentially, where hypotheses to be 
tested depend on the outcome of the previous pairwise comparisons. For 
instance, if individuals A and B are classified as PO and A and C as PO, 
then it would be logical to test if B and C are siblings, half siblings or a 
grandparent-grandchild pair. There are also methods and software for 
pedigree reconstruction, see Chapter 8 of [37]. Finally, the true rela
tionship may not be among the alternatives considered. This is also true 
for the Bayesian approach. 

A Bayesian interpretation might seem more appropriate than the 
frequentist alternative for blind search applications than for a kinship 
case. The alternative, based on the LR, is designed to deal with only two 
hypotheses. If there are several hypotheses, a reference hypothesis must 
be specified. The posterior probabilities reported using a Bayesian 
approach make comparison of several competing hypotheses simpler as 
they are between 0 and 1. However, as always, a prior is needed for the 
Bayesian approach and the choice of prior may be crucial. If DNA is of 
poor quality, leading to few markers being typed, or if the competing 
hypotheses specify relationships that are very close to each other, con
clusions may hinge on the choice of the prior. 

An important aspect of this paper is the use of the parametric rep
resentation of relationships. This enables us to investigate any admis
sible pairwise relationship between two outbred individuals. By defining 
founder inbreeding in a pedigree structure, as shown in Fig. 3, back
ground inbreeding can also be modelled [22]. Rather than proposing 
specific alternative relationships, we could simply estimate the co
efficients describing the relationship. In the outbred case, these esti
mates can be plotted in the IBD triangle in Fig. 2 which would indicate 
where these relationships lie in relation to the well known relationships. 
For instance, pairs with estimates close to (0.25, 0.25) could be classified 
as siblings. 

Throughout, we have restricted attention to pairwise testing. In 
principle, the blind search can be extended to search for relationship 
between triplets. However, the parametric approach based on the Jac
quard coefficients then becomes impractical. The number of parameters 
needed to describe the relationship between three individuals increases, 
from 2 to 15 in the outbred case. 

Issues to do with reporting DNA evidence are currently of key in
terest as evidenced by the so-called “DNA database controversy" (see 
[11] and references therein). The main message of this paper is that 
there are also problems related to multiple testing in kinship analyses 
which cannot be ignored. 
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Appendix A. Table of genotype probabilities  

Appendix B. Importance sampling 

Importance sampling is a method that can be used to approximate small probabilities. We first introduce the indicator function, 

I(LR > t) =
{

1, if LR ≥ t,
0, if LR < t.

}

The expectation of I becomes 

E(I(LR ≥ t)) = 0⋅P(LR < t) + 1⋅P(LR ≥ t)
= P(LR ≥ t)
= FPR  

It is therefore valid to say that FPR = E(I(LR≥t)). Then consider the expression for the expected value in a more general sense. The value of the function 
I is dependent on the value of the LR, which is a function of the genotypes G of the DNA profiles. The probability distribution of G is governed by the 
relationships that has generated the data. For this consideration, we assume that this relationship is either H0 or H1. Denote by X the values that I can 
take on. We then have 

E(I(LR ≥ t)) =
∑

j
Xj⋅P(Gj

⃒
⃒H0) ≈

1
N

∑N

i=1
I(LRH0

i ≥ t).

In the last expression, the expected value is estimated by the sample mean of I, from a set of N simulations. The genotypes G, and then also X, are 
distributed according to H0, which is indicated by the superscript of the LR. Then, consider the opposite probability distribution, P(G∣H1), where the 
genotypes are distributed according to H1. As long as P(Gj∣H0) = 0 whenever P(Gj∣H1) = 0, we can write 

E(I(LR ≥ t)) =
∑

j
Xj⋅

P(Gj
⃒
⃒H0)

P(Gj
⃒
⃒H1)

P(Gj
⃒
⃒H1) ≈

1
N

∑N

i=1

I(LRH1
i ≥ t)

LRH1
i

.

Using this method, the LR is sampled under the wrong hypothesis (H1), instead of the desired hypothesis (H0). The bias this introduces is adjusted for 
by the weight LRH1 . An estimate of FPR is then 

F̂PR =
1
N

∑N

i=1

I(LRH1
i ≥ t)

LRH1
i

.

Table 9 
The conditional probability P(G∣Ji) of a pair of genotypes G = (gA, gB), given a Jacquard state Ji. The symbols a, b, c and d represent different alleles, with population 
frequencies pa, pb, pc and pd respectively.  

(gA, gB) J1 J2 J3 J4 J5 J6 J7 J8 J9 

(aa, aa) pa  p2
a  p2

a  p3
a  p2

a  p3
a  p2

a  p3
a  p4

a  

(aa, bb) 0 papb  0 pap2
b  0 p2

apb  0 0 p2
ap2

b  

(aa, ab) 0 0 papb  2p2
apb  0 0 0 p2

apb  2p3
apb  

(aa, bc) 0 0 0 2papbpc  0 0 0 0 2p2
apbpc  

(ab, aa) 0 0 0 0 papb  2p2
apb  0 p2

apb  2p3
apb  

(bc, aa) 0 0 0 0 0 2papbpc  0 0 2p2
apbpc  

(ab, ab) 0 0 0 0 0 0 2papb  papb(pa + pb) 4p2
ap2

b  

(ab, ac) 0 0 0 0 0 0 0 papbpc  4p2
apbpc  

(ab, cd) 0 0 0 0 0 0 0 0 4papbpcpd   
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