
Approved by the Dean 30 Sep 21 
Faculty of Science and Technology 

 

 
 

FACULTY OF SCIENCE AND TECHNOLOGY 

MASTER THESIS 

  

Study programme / specialisation: 
 
Data Science 

 
 

The spring semester, 2022 
 

Open / Confidential 
Author: Sander Takvam 
 

 
 
 

Course coordinator: 
 
Supervisor(s): Morteza Esmaeili 
 
 
Thesis title: Brain Tumor Segmentation and Classification Using Neural Networks 
 
 
 
Credits (ECTS): 30 
 
Keywords: 
 
ANN, CNN, ML, Brain, MRI, BraTS 
  
 
 

 
         Pages: 74 
     
     + Appendix: 9 

 
 

         Stavanger, 06/2022 
                                 
 
 

 



Contents

Contents i

Abstract 1

Acknowledgements 1

1 Introduction 1

2 Background 3

2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . 3

2.1.1 Convolutional Neural Network . . . . . . . . . . . . 5

2.1.2 Activation Functions . . . . . . . . . . . . . . . . . . 8

2.1.3 Loss Functions . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Optimizers . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.6 Hyperparameters . . . . . . . . . . . . . . . . . . . . 18

i



CONTENTS

2.1.7 Confusion Matrix . . . . . . . . . . . . . . . . . . . . 20

2.2 Magnetic Resonance Imaging (MRI) . . . . . . . . . . . . . 22

2.2.1 MRI contrasts . . . . . . . . . . . . . . . . . . . . . 22

3 Methods 26

3.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 BraTS 2020 Dataset . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Segmentation Architecture . . . . . . . . . . . . . . . . . . . 28

3.3.1 Data Pre-Processing . . . . . . . . . . . . . . . . . . 32

3.3.2 Validation and Training . . . . . . . . . . . . . . . . 35

3.4 Classification Architecture . . . . . . . . . . . . . . . . . . . 36

3.4.1 Data Pre-Processing . . . . . . . . . . . . . . . . . . 37

3.4.2 Validation and Training . . . . . . . . . . . . . . . . 40

4 Results 41

4.1 Segmentation Model Validation and Training Results . . . . 41

4.1.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Classification Model Validation and Training Results . . . . 48

4.2.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



CONTENTS

4.2.2 Training and Testing . . . . . . . . . . . . . . . . . . 53

5 Conclusion 58

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 63

A Poster 64

iii



List of Figures

2.1 Visual representation of an artificial neural network. Number
of hidden layers and neurons in each layer varies. . . . . . . 4

2.2 Example of a Convolutional neural network. Inside a convo-
lutional network. The outputs (not the filters) of each layer
(horizontally) of a typical convolutional network architecture
applied to the image of a Samoyed dog (bottom left; and
RGB (red, green, blue) inputs, bottom right). Each rectan-
gular image is a feature map corresponding to the output for
one of the learned features, detected at each image position.
Information flows bottom up, with lower-level features act-
ing as oriented edge detectors, and a score is computed for
each image class in output. ReLU, rectified linear unit. The
illustration is from Nature publication [29] with permission. 6

2.3 Plot of Rectified Linear Unit (ReLU) activation function. . 9

2.4 Plot of Sigmoid activation function. . . . . . . . . . . . . . . 11

2.5 Visual representation of dice loss according to Equation 2.8.
Dice is a measure of overlap where a value of 1 indicates full
overlap and 0 indicates there is no overlap. . . . . . . . . . . 13

iv



LIST OF FIGURES

2.6 Illustrating the effect of learning rate (LR) on the loss. Blue
line illustrates the effect of a high learning rate where di-
vergence occurs. Orange shows the effect of a low learning
rate which results in slow convergence. Green line represent a
learning rate where we have a smooth line where convergence
is achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Illustration of a confusion matrix. Rows represent predicted
values while columns represent true labels. Diagonal shows
correctly predicted, while the anti-diagonal shows the wrongly
predicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Example images of four modalities: T1-weighted (T1), T1-
weighted contrast-enhanced (T1ce), T2-weighted (T2), and
Fluid Attenuated Inversion Recovery (FLAIR) imaging ac-
quired from lower-grade glioma (LGG) and higher-grade glioma
(HGG) patients in the BraTS dataset. . . . . . . . . . . . . 23

2.9 T1-weighted sagittal, coronal and axial MR images. Many
areas appear bright as there is a lot of brain tissue contains
fat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 T1-Contrast-Enhanced sagittal, coronal and axial MR im-
ages. Enhancing agent speeds up realignment causing higher
intensity values in regions where the agent accumulates. . . 24

2.11 T2-weighted sagittal, coronal and axial MR images. Water
has a short T2 relaxation time and thus fluids appear bright
in this modality. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 FLAIR-weighted sagittal, coronal and axial MR images. Sim-
ilar to T2-weighted with the difference being in the TR and
TE timings being longer causing abnormalities to remain
bright while CSF is made dark [14]. . . . . . . . . . . . . . . 25

3.1 MR images showing a brain in the sagittal plane that has
been stripped of all non-brain tissue. . . . . . . . . . . . . . 28

v



LIST OF FIGURES

3.2 Illustration of the modified U-Net architecture for the seg-
mentation task. Illustration is a modified version of [20] with
permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 T2 contrast image showing the same unprocessed brain image
from the different axes sagittal, coronal, and axial. Sagittal
and coronal has a dimension of 155 × 240, while axial has a
dimension of 240× 240. Aspect ratio has been increased for
sagittal and coronal to fit figure. . . . . . . . . . . . . . . . 32

3.4 Illustration shows the tumor’s appearance in the three con-
trast types T1 contrast-enhanced, T2 weighted, and FLAIR.
The image to the far right shows the ground truth of the tumor. 33

3.5 Comparison of the original image and after the cropping. . . 33

3.6 Illustration of the classification model architecture. . . . . . 36

3.7 Left tumor segmentation is converted to binary silhouette in
the right image using thresholding. . . . . . . . . . . . . . . 39

3.8 Intersection between left image and the mask in the middle
is calculated to obtain the tumor image to the right. . . . . 39

4.1 Accuracy and loss achieved during validation of segmentation
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Mean IoU (Intersection Over Union) achieved during valida-
tion of segmentation model. . . . . . . . . . . . . . . . . . . 43

4.3 Accuracy and loss achieved during training of segmentation
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Mean IoU (Intersection Over Union) achieved during training
of segmentation model. . . . . . . . . . . . . . . . . . . . . . 45

4.5 Visual comparison of input image, ground truth segmenta-
tion and output segmentation of segmentation model. . . . . 46

vi



LIST OF FIGURES

4.6 Example showing how the model correctly predicts the tu-
mor location, shape and size while wrongfully classifying the
tumor class labels. . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Top plot shows classification accuracy and bottom plot shows
classification loss. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Recall and precision during validation of classification model. 50

4.9 Area Under the Curve (AUC) for classification model. . . . 51

4.10 Confusion matrix results from validation of the classification
model. Rows show the predicted labels while columns show
the true labels. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.11 Accuracy and loss per epoch during training and testing for
classification model. Accuracy in the top plot, loss in the
bottom plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.12 Precision and recall per epoch during training and testing for
classification model. . . . . . . . . . . . . . . . . . . . . . . 55

4.13 AUC (Area Under the Curve) per epoch during training and
testing for classification model. . . . . . . . . . . . . . . . . 56

4.14 Confusion matrices for training (Top) and testing (Bottom).
Rows show the predicted labels while columns show the true
labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



List of Tables

3.1 Metrics for the 235 deceased HGG diagnosed patients from
the BraTS dataset. . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Modified U-Net archtitecture in sequential order. . . . . . . 31

3.3 Classification model architecture in sequential order. . . . . 37

4.1 Table illustrating the diminishing returns from increasing
numbers of epochs during validation. . . . . . . . . . . . . . 51

4.2 Results for the classification model on training and testing
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



Abstract

Magnetic Resonance Imaging (MRI) is widely used in the diagnostic and
treatment evaluation of brain tumors. Segmentation is a critical step of the
tumor assessment, which usually is a time-consuming task by conventional
image analysis methods. In this thesis, I utilized deep learning methods to
automate the tumor segmentation and classification tasks. Two models were
used, a segmentation model and a classification model. I used U-Net for
the segmentation task and a Convolutional Neural Network followed by fully
connected layers for the classification task. I evaluated networks on the Mul-
timodal Brain Tumor Segmentation Challenge 2020 (BraTS 2020) dataset.
Image slices were sampled from the axial axis using three modalities, T1-
Contrast-Enhanced, T2-weighted, and Fluid-attenuated inversion recovery.
2-dimensional image slices were used for training in the segmentation task,
and annotated images were used for training during the classification task.

ix



Acknowledgements

I want to thank my supervisor, Morteza Esmaeili, for his guidance and feed-
back throughout this thesis. His knowledge and insight has been invaluable
and truly appreciated.

x



Chapter 1

Introduction

Gliomas are one of the most common types of malignant brain tumors in
adults and even though they are rare, they have a high rate of mortality.
World Health Organization (WHO) uses 4 grades of gliomas where grades
I and II are classified as low-grade gliomas, and grade III/IV are classified
as high-grade gliomas, depending on their level of aggressiveness where the
most aggressive glioma, gliomablastoma, has a median survival of 15 months
and a survival rate that is less than 5% at five years [18, 12]. Gliomas is
commonly treated with chemotherapy and radiation, where the treatment
is highly dependent on the grade of the tumor diagnosed.

Magnetic resonance imaging (MRI) plays a vital role in diagnosing and
treatment evaluation of glioma tumors, with help of medical professionals
and neuroradiologists. As gliomas differ in aggressiveness while also dif-
fering in shape, size and location, the task of segmenting MR images can
be challenging due to the different types of gliomas having these hetero-
geneous properties. To assist the professional in the process, a variety of
MRI modalities with differing amounts of contrast can be used. MR im-
ages with different amounts of contrast highlight different types of matter
(water, fat, white matter, gray matter, necrotic tissue, etc.) in the brain
so that each contrast image provides different types of information. Some
of the more common types of contrast are T1-, T2-, and Fluid-attenuated
inversion recovery (FLAIR)-weighted images. For example, T1-weighted
contrast highlights fat tissue giving it a higher intensity value so that it ap-

1



Introduction

pears white in the image, while giving a low intensity value to water making
it appear dark in the image. This way MR images with different contrasts
can highlight different matter depending on the localization of the tumor
to achieve contrast in the areas around the tumor.

There are several challenges associated with the traditional diagnosis pipeline,
such as a lack of general experts at the radiology unit or at a specific time of
year or the complexity of pre-processing images. An interesting question is
the ability to have an automated analyzing tool that can be used for precise
diagnosis providing initial assessments of tumor aggressiveness. As MRI is a
common approach for diagnosticating, the automation of diagnosing these
kinds of images would be an exciting approach. Deep learning methods
such as convolutional neural networks (CNN), a subclass of artificial intel-
ligence, have proven to be quite efficient at recognizing patterns in images
when there is a large amount of data available. An automated analyzing
tool will benefit from identifying patterns and correctly classifying a tumor
in a fraction of the time it would take a skilled professional to do the same.

The goal of this thesis is to develop a deep learning model that will be able to
segment brain tumors in magnetic resonance images and use the segmented
images to further classify the aggressiveness of the tumors as either lower-
grade glioma (LGG) or higher-grade glioma (HGG) automating this task.

2



Chapter 2

Background

This chapter provides essential background information as theories, con-
cepts, and terms used throughout this thesis. Here, the general concept of
artificial neural networks will be explained, and a more specific type known
as convolutional neural networks and medical imaging will be disclosed.

2.1 Artificial Neural Networks

Artificial neural networks (ANN) name and structure are based on under-
standing the human brain and its basic building block, the neuron. The
brain comprises tens of billions of neurons where each neuron is connected
to multiple other neurons through structural connections known as synapses
[26]. Information flows between neurons through these links, where infor-
mation moves to interconnected neurons in a hierarchical or layer-wise way.

3



2.1 Artificial Neural Networks

ANNs mimic the human brains structure in the way that they have layers
that comprise of nodes, or neurons, where each node has a numerical value,
called a weight, associated with it. Each node is connected to other nodes
where information from nodes in previous layers are handed down to nodes
in deeper layers in a sequential fashion. A artificial neural network consists
of at least 3 layers, an input-, hidden- and output-layer. An example can
be seen in Figure 2.1. ANNs can be thought of as function estimators,
and given a sufficient number of nodes and layers, one can compute any
computational function.

Figure 2.1: Visual representation of an artificial neural network. Number of
hidden layers and neurons in each layer varies.

Input values given are assigned to nodes in the input layer. When a node
passes its value to another node, the value gets multiplied with the corre-
sponding weight in the current node before it is passed down to the ensuing
node. Thus this becomes a weighted input in the receiving node. A sin-
gle node can receive input values from multiple nodes. The final value is
calculated as a sum of all input values(the sum also includes a bias term
which can be thought of as the constant intercept in a linear equation).
This weighted sum is often passed through an activation function, which

4



2.1 Artificial Neural Networks

will be mentioned later. Then, the final value is multiplied by the current
node’s weight and passed down to the following node. This process of pass-
ing down values continues until the output layer has been reached and the
final output is given.

The part of giving input to a network, processing it, and passing it to succes-
sive layers, is called forward propagation. This works well when the weights
associated with each neuron are calibrated correctly according to the task at
hand. To correctly configure the weights of each neuron, backpropagation
is used. This is known as the process where an artificial neural network is
learning.

Backpropagation is a technique used during supervised learning. Supervised
learning can be a case where we want to build an ANN that can classify
images containing cats and dogs. To do this, it requires a dataset of cats
and dogs where each image is labeled with a category. These labels are the
supervising part of the learning. An image is shown to the ANN during
learning, where it calculates a score for each category. When the ANN
makes an error, backpropagation is used to send information back into the
network. Each neuron has its weight value updated proportionally to how
much of the error in the output that they contributed. The larger the error
a neuron’s weight contributed, the large the change to its updated value.

2.1.1 Convolutional Neural Network

Convolutional neural networks [29], also known as ConvNets or CNN, is a
specific type of ANN. CNNs are designed to use 2D arrays, usually in the
form of images, as input. It can be expanded to work with 3D arrays/images
in a straightforward scaling manner as well. The idea behind CNNs is
to extract patterns and features using convolutions and pooling. This is
achieved by having convolutional layers extract features such as corners
and horizontal and vertical edges that together form a feature map. CNNs
exploit the fact that many high-level features are composed of multiple
lower-level ones, and by having multiple convolutional layers in succession,
CNNs can capture higher-level features from lower-level feature maps. This
way, edges and corners can be assembled into eyes, nose, and mouth, which
again can be assembled into faces.

5



2.1 Artificial Neural Networks

As mentioned, convolutional layers are used to extract features. Pooling
layers are interspersed between convolutional layers, and it is used to ag-
gregate features and downsampling. As pooling performs downsampling,
the feature map becomes smaller in size, and thus, fewer parameters are
required in the network.

Figure 2.2: Example of a Convolutional neural network. Inside a convolutional
network. The outputs (not the filters) of each layer (horizontally) of a typical
convolutional network architecture applied to the image of a Samoyed dog (bottom
left; and RGB (red, green, blue) inputs, bottom right). Each rectangular image is a
feature map corresponding to the output for one of the learned features, detected
at each image position. Information flows bottom up, with lower-level features
acting as oriented edge detectors, and a score is computed for each image class in
output. ReLU, rectified linear unit. The illustration is from Nature publication
[29] with permission.

Depending on the task of a CNN the output varies. There are mainly two
types of CNNs, semantic segmentation and classification. Segmentation
does object detection and recognition where it outputs a new image where
the relevant area is highlighted. This can be tasked with facial recognition or
detecting cars. In a classification task, features extracted using convolutions
and pooling are flattened. Flattening converts the 2D arrays in the feature
map into a 1D array. Once the feature map has been flattened the CNN is
followed by a traditional ANN to obtain the desired output.

The reason for using a CNN for these types of tasks instead of just a reg-
ular ANN is that ANNs are invariant to location. This is important as
the localization of a feature in an image is relevant as location matters in
imaging.

6



2.1 Artificial Neural Networks

CNNs are trained the same way as ANN, but as in the case of ANN the
weights trained are in each node. In a CNN, the trained weights are the
values in the convolutional filters.

Convolution

Convolution is a mathematical operation that can be expressed as in Equa-
tion 2.1 where w and h are the width and height of the filter, respectively.
h̃ and w̃ are half the height and width of the filter, respectively. G is the
filter itself where I is the image the convolution is performed on.

I ′(x, y) = I(x, y)⊛G(x, y) =

w−1∑
i=0

h−1∑
j=0

I(x+ w̃ − i, y + h̃− j)G(i, j) (2.1)

Even though convolution is expressed as a mathematical operation, it can
also be performed and explained more practically: As a 2D array consist-
ing of x × y pixels can describe an image, the convolutional filter can be
expressed as a 3 × 3 2D array. Other filter sizes can be used, but this is
the most common size. To convolve the image with a filter, first, flip the
filter about both its axis, then slide the filter along with the image from left
to right. When the end has been reached, move down one row and repeat.
Each time the filter moves to a new position, filter values are multiplied by
the image pixel values at which it is currently residing, and the sum of each
multiplication is computed. The obtained summation value is placed in a
new image at the coordinate value where the filters’ center value is currently
at [6].

Pooling

There are two major types of pooling, max and average pooling. The usage
of either of these types of pooling greatly depend on the type of data and
the image analysis objectives. The average pooling smooths out the image,
and hence the edges and sharp features may not be preserved. Max pooling
filters out the higher intensity pixels from the image, and may perform
better when the image background is darker, and only the brighter pixels
of the image are of interest [5].

7



2.1 Artificial Neural Networks

Pooling is also a type of convolution where it differs in how the result is
computed within the filter. Using a max pool filter of size 3×3, the highest
value of the 9 under scrutiny will be set as the output value. Average pooling
calculates the average of the 9 values in a 3× 3 matrix.

2.1.2 Activation Functions

A neuron outputs the sum of said neuron’s inputs multiplied by its weight.
This new value can further be used as input for another neuron. The issue
is that the output will always have a linear value. Many problems have
non-linear patterns, and a non-linear function is required to learn these
patterns. This is achieved using an activation function. Activation function
is often a non-linear function that takes the output of a neuron as input
and processes it before another neuron receives it as an input.

Weights in neurons are not bounded, meaning they can take values between
-∞ and ∞. This can lead to weights exploding in size proportionally to
weights in other neurons. Activation functions can take care of this by
squeezing output values into smaller ranges, often between -1 and 1.

For backpropagation to work, a differentiable function is needed. Thereby,
an activation function should be chosen with this in mind. There are many
types of activation functions that have different pros and cons and different
uses. Mentioned below are activation functions used in this thesis.

8



2.1 Artificial Neural Networks

Rectified Linear Unit (ReLU)

Rectified linear unit [16, 21] (ReLU) is a commonly used activation function
in the hidden layers. It is a non-linear function, and it is popular due
to its simplicity and addresses the vanishing gradient problem. It is also
an efficient activation function due to its simple derivative leading to easy
calculations during backpropagation.

ReLU:

f(x) =

{
0, for x < 0

x, for x ≥ 0
(2.2)

ReLU derivative:

f ′(x) =

{
0, for x < 0

1, for x ≥ 0
(2.3)

Figure 2.3: Plot of Rectified Linear Unit (ReLU) activation function.

9



2.1 Artificial Neural Networks

Softmax

Softmax [21] normalizes its input value into a probability distribution con-
sisting of N probabilities that summarizes to 1.

This function is commonly used in the final output layer of neural networks.
It is used to convert output values into probabilities where each class is
given a probability of how likely it is that the input belongs to this class.
It ensures that the sum of the class probabilities will be equal to one, and
it is often used in the case of multi-class problems.

Softmax:
fi(x) =

exi∑N
n=1 e

xn
, n = 1, 2, ..., N (2.4)

Sigmoid

Sigmoid [21], also known as the logistic function, is used to convert a linear
function into probabilities between 0 and 1, as can be seen in Figure 2.4.
This function is commonly used in the final output layer to convert the
output to probabilities, similar to the softmax function. It differs from
softmax in that it is used in the case of binary classification, while softmax
is used in the case of more than 2 classes.

Sigmoid is one of the first activation functions that was used in every layer,
but as newer functions such as ReLU came along, it has been replaced,
particularly in hidden layers. Sigmoid´s strength is also its weakness in
that it maps any input value into the range between 0 and 1. When the
input value goes to either −∞ or ∞, we can tell from Equation 2.5 that
the value will be close to 0 or 1, respectively. This leaves Sigmoid vulnerable
to the vanishing gradient problem, especially if used in hidden layers.

10



2.1 Artificial Neural Networks

Sigmoid:

f(x) =
1

1 + e−x
(2.5)

Sigmoid derivative:
f ′(x) = f(x)(1− g(x)) (2.6)

Figure 2.4: Plot of Sigmoid activation function.

Vanishing Gradient Problem

Vanishing gradient is a problem encountered when performing backpropaga-
tion in neural networks. This problem occurs when a large input is squished
into a small output space, as in the case with the sigmoid function. As can
be seen in Figure 2.4 a large change in input value in the sigmoid function
leads to a slight change in the output; thus, the derivative becomes small.

During backpropagation, the gradient is used to update the weights in neu-
rons. When the derivative value is small, the change to the neuron weight
will also be small. This leads to ineffective neural network training as the
small changes cause slow training.

11



2.1 Artificial Neural Networks

As mentioned, ReLU activation function works against the vanishing gradi-
ent problem. As we can tell from Figure 2.3 the derivative of ReLU takes
on the values of either 0 or 1, so that the derivative can’t take on small
values, hence ReLU becomes resistant to vanishing gradients.

2.1.3 Loss Functions

During the training of neural networks, a measure of fit, or how good it
is performing, is required. The standard for doing this is known as a loss
function. A loss function quantifies the deviation/error from the predicted
value to the true value[26]. The goal of a loss function is to minimize the
error, and different types of loss functions achieve this in different ways.

Mean squared errors (MSE) are the first loss functions used and are known
from regression. It calculates the error by taking the distance from the
predicted value, Ŷ , to the true value, Y , squaring it to remove negative
values as it will cancel out positive values during summation. Once the
distance has been calculated for every data point, the sum is calculated and
divided to obtain the average value, hence the function’s name.

Mean Squared Error (MSE):

f(x) =
1

N

N∑
n=1

(Y − Ŷ )2, n = 1, 2, ..., N (2.7)

Mentioned below are the loss functions used in this thesis.

Dice

Dice loss is a measure of similarity, and it originates from the Sørensen-
Dice Coefficient[23]. It has later been adapted for use in neural networks in
segmentation problems. In Equation 2.8 the formula can be seen where
A and B are images where one is the predicted segmented images, and the
other is the true annotated image we want neural network to achieve. It
is calculated to be 2 times the area of the intersection of A and B, divided

12



2.1 Artificial Neural Networks

by the sum of A and B. It is multiplied by 2 so that when there is a total
overlap both the intersection and sum will be equal to one.

Dice(A,B) = 2 ∗ |A ∩B|
|A|+ |B|

(2.8)

Dice loss minimizes the error based on the overlap of two images. Its value
ranges from 0 to 1; 0 indicates no overlap, and 1 indicates total overlap, as
A and B are the same image. Obtaining a loss function where the optimal
value is 0 error, can be achieved by using Loss = 1 − Dice. A visual
representation of Dice can be seen in Figure 2.5.

Figure 2.5: Visual representation of dice loss according to Equation 2.8. Dice
is a measure of overlap where a value of 1 indicates full overlap and 0 indicates
there is no overlap.

13



2.1 Artificial Neural Networks

Binary Cross-Entropy (BCE)

Binary cross-entropy, also known as log loss, is a loss function used for
classification problems where only 2 categories are present. It is based on
entropy which is a measure of uncertainty, and in information theory, it is
stated that information obtained in an inferential process is determined by
the reduction of entropy[19]. In Equation 2.9, Yi, is the class label where
the labels are either 0 or 1. From the equation, we can tell that depending
on which class label we are using, one of the terms will cancel out so that
we only calculate the entropy for the given class.

P (Yi) is the predicted probability that the current point belongs to class Yi.
When the entropy is calculated for each datapoint, they are summarized to
calculate the average. The goal of BCE is to achieve a value as close to 0
as possible. Looking at the entropy in BCE, Yi lnP (Yi), where P (Yi) can
have a value between 0 and 1, we can tell that the entropy will be close to 0
when P (Yi) is close to either 0 or 1, and largest when P (Yi) is 0.5. In other
words, we want to decrease the entropy as this will decrease the uncertainty
and the BCE value.

BCE = − 1

N

N∑
i=1

[
Yi ln(P (Yi)) + (1− Yi) ln(1− P (Yi))

]
(2.9)

A multiclass function for cross-entropy exists called categorical cross-entropy.
This is a generalization of cross-entropy, and if used in a 2-class-problem,
the same result as binary cross-entropy is attained.

2.1.4 Optimizers

As mentioned in Section 2.1.3, the goal of a loss function is to minimize
the error. When the function is convex, this is straightforward as the op-
timum can be found by calculating the derivative and solving for 0, i.e.,
f ′(x) = 0. This works for convex functions as every local minimum is a
global minimum. However, this is not true for non-convex functions where
stationary points can be either a saddle point or a local or global mini-

14



2.1 Artificial Neural Networks

mum/maximum [26]. This is often the case with neural networks; thus,
optimizers are introduced to help the loss function with reduction.

There are many different optimizers with different pros and cons, but gradi-
ent descent is commonly used. Its formula can be seen in Equation 2.10.

θNext = θPrev − α×∇J(θ) (2.10)

Each time a new value is pushed through the neural network and backprop-
agation is initiated, a lower value for the loss function will be attempted to
be obtained. The current point is kept until the next time backpropagation
is performed, and this is what θNext represents. When backpropagation
is performed, weights are updated according to the formula in Equation
2.10. ∇J(θ) is the gradient of the activation function, mentioned above in
Section 2.1.2. The gradient will tell the network which way the steepest
slope is, but what we are interested in is the steepest descent, which will
be the opposite direction, thus the formula subtracts the gradient from the
position, θPrev, from the previous round it was updated and stores this is
the new value for the next time backpropagation is performed. α is known
as the learning rate, this value is control how fast the gradient moves away
from the previous position towards the new position. Learning rate will be
be mentioned in Section 2.1.6.

2.1.5 Metrics

Metrics are used to measure how well a neural network is doing during train-
ing and validation. Metrics provide similar functionality to loss functions.
The main difference is whether neuron weights are updated according to
the metric or not. This means that loss functions will be minimized by the
optimizer while a metric is only an interface used to judge the performance
of the network. Also, as mentioned earlier, for a function be used as a loss
function it needs to be differentiable.

15



2.1 Artificial Neural Networks

Intersection Over Union (IoU)

Intersection over union is also known as the Jaccard Index, which evaluates
the overlap of two objects in the image. It is a similarity measure [28] and
it ranges from 0 to 1, where no overlap between the two images equals 0,
and total overlap equals 1. It is a common metric to use in semantic image
segmentation.

In Equation 2.11 A and B are two sets. A is the true image set and B is
the predicted image set.

IoU =
|A ∩B|
|A ∪B|

(2.11)

Accuracy

Accuracy calculates how many of the predictions are equal to their true
labels. It uses total labels and a counter for how many of the predictions
are correct and calculates the fraction, as seen in Equation 2.12 to find
the total accuracy. It can also be calculated in terms of statistical error,
as seen in Equation 2.13. Accuracy is often used to evaluate classifiers
ability to generalize [15].

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(2.12)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.13)

Accuracy has limitations. If we consider a 2-class problem where class
0 consist of 990 datapoints and class 1 cosnsist of 10 datapoints. If a
model predicts everything to be class 0, this will result in an accuracy of
990
1000 = 0.99. This is misleading as the model doesn’t detect any datapoints
to be class 1.

16



2.1 Artificial Neural Networks

Precision and Recall

Precision and recall is also known as specificity and sensitivity, respectively.
Precision is the ratio of true positives of total positives predicted, as seen in
Equation 2.14, while recall is the ratio of true positives out of all positives
in ground truth, as seen in Equation 2.15.

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
(2.14)

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)
(2.15)

Precision and recall both ranges between 0 and 1 where a precision value
towards 1 signifies that the network correctly classified mostly true positives.
What it doesn’t show is the amount of false negatives. A recall value towards
1 signifies the network missed few true positives, a lower recall indicates
missed positives predictions.

The desired outcome is to have a high precision and recall, but there is
usually a trade-off between the two. As one increases, the other decreases,
this is known as the precision-recall trade-off [8].

Precision and recall are both closely related to the confusion matrix talked
about below in Section 2.1.7.

17



2.1 Artificial Neural Networks

2.1.6 Hyperparameters

Hyperparameters [30] are variables that affect the performance of the model
during training. While training, they remain constant and can only be
changed before or after. Changing these parameters to find the optimal
values for best performance is called tuning. Hyperparameters used to in-
fluence the training models in this thesis are mentioned below.

Batch Size

Batch size is the number of data points pushed through the neural network
before backpropagation is performed. Larger batch sizes speed up the time
it takes to train a model at the cost of a lower ability to generalize. However,
changing the learning rate closes this generalization gap [13].

Larger batch sizes put higher requirements on hardware as more data points
need to be available in memory simultaneously. Batch size is often chosen
to be a multiple of the system’s available memory.

Epochs

An epoch is the number of times a model is trained on the entire dataset.
One epoch means that each datapoint will be able to affect the training of
weights one time. When the number of epochs increases, each data point
gets an additional chance to influence the training; increasing epoch will
increase the time to train and help the model with convergence as long as
the model is still learning. Increasing epoch also increases the chance of the
model overfitting as the model can potentially learn to fit the training data
perfectly.

18



2.1 Artificial Neural Networks

Learning Rate

Learning rate is a hyperparameter within the optimizer. It is used to control
the step size between each iteration during backpropagation. If the learning
rate is low, the learning curves are typically smooth, but convergence can
be slow. In contrast, a significant learning rate can oscillate but lead to
faster convergence unless the learning rate is too large and the model will
diverge [26]. The effect on the learning rate can often be seen on the loss
function value, and an illustration can be seen in Figure 2.6.

Figure 2.6: Illustrating the effect of learning rate (LR) on the loss. Blue line
illustrates the effect of a high learning rate where divergence occurs. Orange
shows the effect of a low learning rate which results in slow convergence. Green
line represent a learning rate where we have a smooth line where convergence is
achieved.

19



2.1 Artificial Neural Networks

2.1.7 Confusion Matrix

Confusion matrix can be scaled to be used with any number of classes, but
the binary confusion matrix is the easiest one and is the one used in this
thesis; thus, the binary confusion matrix will be described here.

Confusion matrix is used to evaluate how well a model is performing. For
the binary case, there are two classes, 0 and 1, also known as as false and
positive classes, respectively. The confusion matrix consists of 4 values:

• True Positive: Number of correctly classified positive that belong
to the positive class.

• True Negative: Number of correctly classified negative that belong
to the negative class.

• False Positive: Number of wrongfully classified negatives that have
been classified as positive.

• False Negative: Number of wrongfully classified positives that have
been classified as negative.

We want as many positive classes to be predicted as positive cause this will
increase the value of true positive. The same goes for true negatives, where
we want negative classes to be predicted as negatives. A confusion matrix
is often visualized using a plot where it is represented, as can be seen in
Figure 2.7.

20



2.1 Artificial Neural Networks

Figure 2.7: Illustration of a confusion matrix. Rows represent predicted values
while columns represent true labels. Diagonal shows correctly predicted, while the
anti-diagonal shows the wrongly predicted.

It is possible that other metrics mentioned as IoU and accuracy can have
values close to 1, making it seem like the model has a high performance,
but quite the opposite could be the case. Confusion matrix allows further
evaluation so that issues such as bias in the data can be spotted, which
accuracy and IoU may not tell us.

21



2.2 Magnetic Resonance Imaging (MRI)

2.2 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging is a non-invasive and non-ionizing technique al-
lowing detailed images of the brain. The technique provides the acquisition
of several contracts. MRI has been established as a critical diagnostic tool
for brain examinations, including initial characterization of brain tumors,
post-treatment monitoring, and surgery planning. It is common to acquire
complimentary MRI modalities such as T1-weighted, T1-weighted with con-
trast enhancement (T1ce), T2-weighted, and Fluid Attenuation Inversion
Recovery (FLAIR). These protocols enable distinctive contrast from the
brain tissues, providing the margin of the tumor and tumor spread through-
out normal tissues. For example, the T1ce modality indicates hyperactive
tumor sub-regions, which may induce necrosis.

2.2.1 MRI contrasts

MRI consists of a static magnet to produce a strong magnetic field that
forces protons in the body to align with the direction of the magnetic field.
A radiofrequency is then pulsed at often a 90◦ angle [3] of the magnetic field
to stimulate the protons. The 90◦ pulse moves the protons perpendicular
to the magnetic field. When the radiofrequency is turned off, the protons
will align with the magnetic field again (equilibrium or steady-state), this
is known as relaxation. As this happens, energy will be released; the MRI
sensors (radiofrequency antea, MRI coils) detect that. The time it takes a
proton to realign and the amount of energy released change depending on
the type of tissue to which the proton belongs.

Depending on the TE (Time to Echo) and TR (Repetition Time) timings,
different tissue types will release varying amounts of energy. Thus, MRI
systems can generate different kinds of contrasts. The effect of different
MR contrasts will be attempted explained below in a simplified manner.

22



2.2 Magnetic Resonance Imaging (MRI)

Figure 2.8: Example images of four modalities: T1-weighted (T1), T1-weighted
contrast-enhanced (T1ce), T2-weighted (T2), and Fluid Attenuated Inversion Re-
covery (FLAIR) imaging acquired from lower-grade glioma (LGG) and higher-
grade glioma (HGG) patients in the BraTS dataset.

T1-weighted

T1-weighting is achieved having short TR and TE timings. This causes
tissues high in fat to have high intensity values, appearing bright in the
image. Areas containing CSF (Cerebrospinal Fluid), which is high in water,
has higher T1 values and thus appears darker in images.

Figure 2.9: T1-weighted sagittal, coronal and axial MR images. Many areas
appear bright as there is a lot of brain tissue contains fat.

23



2.2 Magnetic Resonance Imaging (MRI)

T1 Contast-Enhanced

T1-contrast-enhanced-weighting is achieved having short TR and TE while
also using a contrast-enhancing agent. The agent is given intravenously to
the patient which increases the speed at which realignment occurs. Gadolin-
ium is the most used agent [11] and it induces relaxation in tissue where it
accumulates, increasing the intensity in the area.

Figure 2.10: T1-Contrast-Enhanced sagittal, coronal and axial MR images. En-
hancing agent speeds up realignment causing higher intensity values in regions
where the agent accumulates.

T2-weighted

T2-weighting is achieved having long TR and TE timings. In simple terms,
T2-weighted shows the opposite of what a T1-weighted image does. T2
causes tissues high in fat to appear dark in images, while areas high in water
will appear bright. As can be seen in Figure 2.11, some areas appear a
lot brighter, especially in the lower left corner of the coronal image. This
is the tumor area where edema (swelling) causes excess fluid to be trapped
resulting in a bright region.

24



2.2 Magnetic Resonance Imaging (MRI)

Figure 2.11: T2-weighted sagittal, coronal and axial MR images. Water has a
short T2 relaxation time and thus fluids appear bright in this modality.

FLAIR

Fluid-attenuated inversion recovery (FLAIR) is an advanced MRI modality.
The technique elucidates sub-regions of brain tissue T2 prolongation as
bright while suppressing (grayscaled darkening the areas) CSF, resulting in
a more apparent contrast of lesions in proximity to CSF, such as edema
[10]. FLAIR has improved the MRI diagnosis of various brain lesions and
disorders and is implemented as a complementary protocol to conventional
MRI sequences.

Figure 2.12: FLAIR-weighted sagittal, coronal and axial MR images. Similar
to T2-weighted with the difference being in the TR and TE timings being longer
causing abnormalities to remain bright while CSF is made dark [14].

25



Chapter 3

Methods

This section will include analysis of the dataset used in this thesis and the
machine learning models used.
The model used is split into a segmentation part and a classification part.
First, the segmentation part will be presented, and the output from this
model will be used as input for the classification part of the model.

3.1 Environment

Environment for coding was setup using anaconda, and the work was done
in Jupyter Notebook. Code was implemented using Python version 3.8.5,
and the libraries used were NiBabel=3.2.1, Numpy=1.19.5, Pandas=1.4.0,
Tensorflow=2.6.2, Keras=2.6.0, Matplotlib=3.5.1 and Segmentation Mod-
els=1.0.1.

3.2 BraTS 2020 Dataset

BraTS (Brain Tumor Segmentation) 2020 dataset [1] consists of 369 multi-
contrast MR scan images from glioma patients, where 293 of the patients

26



3.2 BraTS 2020 Dataset

have been diagnosed with HGG and 76 have been diagnosed with LGG.
The BraTS MR data collection includes TCGA-GBM and TCGA-LGG MR
imaging data, available through The Cancer Imaging Archive (TCIA) repos-
itories [2, 9]. All MR images are multimodal and consist of the same four
MRI contrasts: T1-weighted, T2-weighted, Fluid Attenuated Inversion Re-
covery (FLAIR), and T1-weighted Contrast Enhanced (T1-CE). Images in
the training data come with a ground truth segmented image along with the
4 contrast images. Each ground truth image has been manually segmented
by up to four raters to locate tumor areas where their annotations have
been approved by neuroradiologists [1, 7, 25, 24].
Out of the 369 patients, 235 are deceased where all of them were diag-
nosed with higher-grade glioma. Metrics for these individuals can be seen
in Table 3.1.

Mean Std Median
Age (Years) 61.94 11.90 61.94

Survival Days 461.29 346.04 461.29

Table 3.1: Metrics for the 235 deceased HGG diagnosed patients from the BraTS
dataset.

BraTS MR images are stored in NIfTI (.nii or .nii.gz) file format containing
a sequence of images making up a 3D model of the brain. In the 3D brain
model each axis can be accessed two at a time to achieve a 2D representation
of the brain, this is known as a slice. Each image has been pre-processed in
the sense that every image has been standardized to a size of 240×240×155
pixels. Each image has been stripped of eyes and skull to leave only tissues
considered as part of the brain to be left in the images as can be seen in
Figure 3.1.

27



3.3 Segmentation Architecture

Figure 3.1: MR images showing a brain in the sagittal plane that has been
stripped of all non-brain tissue.

Annotated images consist of 4 labels, 0 of which are unlabeled/background,
1 is necrotic, 2 is peritumoral edema, and label 3 is a gadolinium-enhancing
tumor.

3.3 Segmentation Architecture

For the segmentation task, a modified version of the U-Net [17] was used.
U-net architecture consists of a contracting path, which can be considered as
a typical architecture for a CNN where the size of the input image decreases
at each layer it passes. Following the contracting path comes an expansive
path. This part of the network works in the inverse way where the image
size increases at each progressive layer.

The modified network was built in the same way as the original U-Net, with
the main difference being in the input and the output size. The original U-
Net has an input size of 572×572×1 pixels and an output size of 388×388×2
pixels whereas the model used here has an input size of 128×128×3 pixels
and an output size of 128× 128× 4 pixels. Input size consists of 3 channels

28



3.3 Segmentation Architecture

as the model uses 3 contrast images stacked on top of each other, and the
output size has 4 channels as each segmented image has 4 labels used as
classes for the output. A figure illustrating the modified network can be
seen in Figure 3.2.

Figure 3.2: Illustration of the modified U-Net architecture for the segmentation
task. Illustration is a modified version of [20] with permission.

The model used consists of 20 convolutional layers, where each convolution
uses padding to ensure that the size stays the same. Dropout layers are
used between each convolution, and in the contracting path, there is used
a maxpool layer after every other convolution that decreases the image
dimensions by half. At the same time, the number of filters is increased by
the double.

In the expansive path, the dimensions are increased back up by doubling the
image dimensions as well as decreasing the number of filters by half. As the

29



3.3 Segmentation Architecture

image dimensions increases in the expansive path, the image is concatenated
with the image of the same dimensions from the contracting path to keep
the localization of features in the image. The model architecture can been
seen in Table 3.2.

30



3.3 Segmentation Architecture

Layer Image Size Filters
Input 128 × 128 3

Conv2D 128 × 128 16
Dropout 128 × 128 16
Conv2D 128 × 128 16
MaxPool 64 × 64 16
Conv2D 64 × 64 32
Dropout 64 × 64 32
Conv2D 64 × 64 32
MaxPool 32 × 32 32
Conv2D 32 × 32 64
Dropout 32 × 32 64
Conv2D 32 × 32 64
MaxPool 16 × 16 64
Conv2D 16 × 16 128
Dropout 16 × 16 128
Conv2D 16 × 16 128
MaxPool 8 × 8 128
Conv2D 8 × 8 256
Dropout 8 × 8 256
Conv2D 8 × 8 256

Conv2DTrans 16 × 16 128
Concat 16 × 16 256
Conv2D 16 × 16 128
Dropout 16 × 16 128
Conv2D 16 × 16 128

Conv2DTrans 32 × 32 64
Concat 32 × 32 128
Conv2D 32 × 32 64
Dropout 32 × 32 64
Conv2D 32 × 32 64

Conv2DTrans 64 × 64 32
Concat 64 × 64 64
Conv2D 64 × 64 32
Dropout 64 × 64 32
Conv2D 64 × 64 32

Conv2DTrans 128 × 128 16
Concat 128 × 128 32
Conv2D 128 × 128 16
Dropout 128 × 128 16
Conv2D 128 × 128 16
Output 128 × 128 4

Table 3.2: Modified U-Net archtitecture in sequential order.

31



3.3 Segmentation Architecture

3.3.1 Data Pre-Processing

As the images in the BraTS dataset consists of 3D images, each image needs
to be pre-processed to fit the 2D U-Net model used. Each image can be
split into the 3 axes sagittal, coronal, and axial, as can be seen in Figure
3.3.

Figure 3.3: T2 contrast image showing the same unprocessed brain image from
the different axes sagittal, coronal, and axial. Sagittal and coronal has a dimension
of 155 × 240, while axial has a dimension of 240 × 240. Aspect ratio has been
increased for sagittal and coronal to fit figure.

the following pre-processing methods has been used on each image:

Slicing

Each image has been sliced to go from a 3D image to a 2D image. Here the
axial axis has been used as this axis contains much information and more
commonly are investigated by expert. Each slice has been collected from
the center of the 3D image as the area is more prominent.

Location of the tumor can affect how visible the tumor is in each slice and
the tumor can easier to distinguish in different MRI contrasts. Therefore,
the MRI contrasts T1 contrast-enhanced, T2-weighted and FLAIR has all
been used for the same slice where they have been stacked on top of each
other to create an image with 3 channels to be used as input for the network.
This way the model will have 3 contrasts that can be used to identify the
tumor area.

32



3.3 Segmentation Architecture

Figure 3.4: Illustration shows the tumor’s appearance in the three contrast types
T1 contrast-enhanced, T2 weighted, and FLAIR. The image to the far right shows
the ground truth of the tumor.

Image Cropping

As can be seen in Figure 3.4 above, each image consist of a considerable
amount of background. To make the model’s training faster and easier, and
to avoid confusing the model, each image has been cropped in size to remove
as much of the background region as possible while keeping the region of
interest.

Segmented image is also cropped to keep the localization equal to that of
the images.

Figure 3.5: Comparison of the original image and after the cropping.

33



3.3 Segmentation Architecture

Scaling

Data has been scaled to be in a range between 0 and 1 as a difference in
pixel range between images can affect the training of the model.

Label Normalization

Segmented images consist of 4 labels with 0, 1, 2, and 4. None of the
segmented images has any pixel with a value of 3. Thus, 4 is changed to
be 3 instead to get the 4 labels of values 0, 1, 2, and 3. Further, each
segmented is turned into categorical images. This turns each segmented
image into 4 binary-valued images where each image only has a pixel value
of 0 or 1 depending on if the label is present or not. Each segmented image
has 4 channels giving them a shape of 128× 128× 4.

Data Augmentation Augmentation has been used to increase the number
of data points and help with generalization and avoid overfitting. Augmen-
tation has been done by flipping images both horizontally and/or vertically.
Images are augmented at random using a uniform distribution and they can
be either flipped horizontally, vertically, or both or not flipped at all. This
way, each slice can potentially create 4 different data points.

Thresholding

The tumor’s position affects which slices contain the most information about
the tumor. This can cause some of the slices to be blank as the tumor is
not present in a given slice which renders the image unusable as it will
not contribute to the improvement of the model. These images has been
avoided by using a threshold on every ground truth image, checking that at
least 1% of the pixels in the image are of either label 1, 2 and/or 3. If this
threshold is not met, the slice is discarded.

Data Split

From the 369 3D images, 11 slices were sampled per image and after each
image was pre-processed, 3 421 slices were left in total for use. These slices
were split into validation, training, and testing splits with a distribution of
10%, 70%, and 20%, respectively.

34



3.3 Segmentation Architecture

3.3.2 Validation and Training

The validation set consisted of 363 slices, approximately 10% of the data,
and was used to tune hyperparameters before completing the training set.
Toward an optimized training, some hyperparameters were tuned including
epoch, batch size, learning rate, and class weights in the dice loss func-
tion. Validation was done multiple times on different subsets of the data to
achieve K-fold cross-validation to eliminate noise from affecting the valida-
tion results.

Initial values for hyperparameters were chosen based on similar segmenta-
tion work using U-Net [27, 22]. Each hyperparameter was tuned to some
extent through trial and error. The epoch was tuned the most by trying
an increasing amount of epochs until the model started to decrease in per-
formance during validation. A total of 150 epochs was attempted at max
during validation, and it resulted in a decrease in performance where 100
epochs yielded the best metric values.

Model was trained on 2 380 slices, approximately 70%, and it was trained for
100 epochs using a batch size of 2, a learning rate of 0.0001 for the Adam
optimizer, and class weights of 0.005 for the background label where the
remaining 0.995 was split evenly between the other classes, these weights
were chosen to accommodate the imbalance in the class distribution of the
class labels in the segmented images in the dataset.

35



3.4 Classification Architecture

3.4 Classification Architecture

For the classification task, the model used was trial and error to find a
model that could fit. Papers using convolutional neural networks to solve
classification based on MR imaging were considered, which led to the model
in this paper [4]. This paper attempts various models and compares them to
find the optimal model. The task they are solving is the same classification
of glioma tumor grade as in this thesis, only with a different dataset and a
different amount of output parameters.

The model has an input size of 128 × 128 × 1 pixels, as this is the output
image size from the segmentation model, and a binary output of a single
value as the model is to predict either 0 or 1 where 0 represents HGG and
1 represents LGG. The input to the model is an image containing a tumor
extracted from an MRI image of a brain which can be obtained by running
a brain MRI image through the segmentation model from the first part of
this thesis in section 3.3. The output is 0 or 1 because the model’s objective
is to classify the tumor grade based on the image features. As the dataset
has only two types of grades, this becomes a binary task. An illustration of
the model architecture can be seen in Figure 3.6.

Figure 3.6: Illustration of the classification model architecture.

The model consists of 5 convolutional layers and 2 fully connected layers.
Each convolution uses padding to ensure the image size is kept the same;
each convolution is followed by a max-pooling layer that extracts features

36



3.4 Classification Architecture

from the previous layer. Weights in each of the convolutional layers is
also initialized using He_normal initialization; this has been observed in
the paper [4] where the model was introduced to help with speeding up
convergence. Following the two fully connected dense layers, there is a
dropout layer to help with overfitting and ensure a better generalization of
the model. The model architecture can be seen in Table 3.3

Layer Kernel Size Filters/Units
Conv2D 5 × 5 48
MaxPool 2 × 2 -
Conv2D 2 × 2 128
MaxPool 2 × 2 -
Conv2D 3 × 3 64
MaxPool 2 × 2 -
Conv2D 7 × 7 128
MaxPool 2 × 2 -
Conv2D 6 × 6 96
MaxPool 2 × 2 -
Flatten - -
Dense - 512
Dense - 512

Dropout(0.2) - -
Output - 1

Table 3.3: Classification model architecture in sequential order.

Even though the output from the segmentation model in section 3.3 is
intended to be used as input for the classification model talked about in this
section, a modification has been done to the data before its being used as
input. The modification is mentioned in subsection 3.4.1 under intersection.

3.4.1 Data Pre-Processing

Data used as input for the model is based on the segmented output images
from the segmentation model. As the segmentation model is trained on
image slices from the axial axis, the same axis is used to sample data for

37



3.4 Classification Architecture

this model. Even though the output from the segmentation model is used
as input for the classification model, the data has been pre-processed to
some degree, and the pre-processing methods used are as follows:

Oversampling

Due to the imbalance of class distributions in the BraTS dataset 76 of the
patients are classified as LGG, and 293 are classified as HGG. This is an
approximate ratio of 1:5, and to avoid the model being biased towards the
majority class, oversampling has been used on the LGG images to obtain a
more even ratio closer to 1:1.

Oversampling has been done by sampling more slices from each LGG pa-
tient. There were 11 slices sampled from each HGG patient and 42 slices
from each LGG patient. This was approximately four times as many from
LGG as from HGG, which ensured a more even split. There are around
four times as many HGG patients as LGG patients. This has led to a total
dataset of 17428 image slices with a split of 7808 LGG slices and 9620 HGG
slices.

Note that even though it seems to be a 50/50 split from the sampling
method, the same thresholding technique used in sampling data for the
segmentation model was used here. Thus, more of the LGG patient slices
were discarded than the HGG slices, and the data split ended at roughly
55% HGG and 45% LGG.

Intersection

To obtain a higher amount of information for the model to learn from the
intersection between the input image and output mask from the segmenta-
tion model was done. First, the image was converted into a binary image
where any value greater than 0 was set to 1, and everything else was kept
as 0. This way, a tumor silhouette was obtained. An example of this can
be seen in Figure 3.7.

38



3.4 Classification Architecture

Figure 3.7: Left tumor segmentation is converted to binary silhouette in the
right image using thresholding.

Further, this tumor silhouette mask was together with the input image used
to find the intersection between the two. The result is an image containing
only the values of the tumor where every value is present instead of having
the mask with only four different values representing the labels. This way,
more information will be available to the model. A figure showing the
intersection result can be seen in Figure 3.8.

Figure 3.8: Intersection between left image and the mask in the middle is calcu-
lated to obtain the tumor image to the right.

Data Augmentation

Each image slice occurs in the four contrast types, T1-weighted, T1 contrast-
enhanced, T2-weighted, and FLAIR. Each of these has been used to create
intersection images, as mentioned above, to increase the amount of data
available during validation, training, and testing.

39



3.4 Classification Architecture

Data was augmented on the fly during training to increase the training
data’s size and achieve better generalization. Augmentation methods used
were the normalization of pixel values to a scale between 0 and 1, images
were flipped, and shearing and zooming were used.

Data Split

From the 17428 image slices created during oversampling, the data was split
into validation, training, and testing, where the distribution used was 20%,
70%, and 10%, respectively.

3.4.2 Validation and Training

Validation was done on 3485 image slices that were sampled at random from
the entire dataset of 17428, and it was used to tune hyperparameters of the
model prior to model training. Hyperparameters tuned were epochs, batch
size, and learning rate.

Initial values were 100 epochs, batch size of 8, and learning rate of 0.01. The
number of epochs was chosen as it was the selected number in the paper
where the model was introduced. At the same time, the learning rate is the
default value used with the Adam optimizer, and the batch size was chosen
to be a small size to start as it is less intense on memory, and smaller batch
sizes have shown to provide improved ability to generalize [13].

Learning rate had the most significant impact on the model result. Dur-
ing the validation, epoch values between 50 to 100 epochs, depending on
other hyperparameter values, were used, particularly with changing learn-
ing rates. Learning rates used were chosen from [0.1, 0.01, 0.001, 0.0001],
where any other value than 0.001 led to early convergence and an under-
fitted model where larger epoch values were attempted. However, the model
would always converge after less than 10 epochs and get stuck. The batch
size seemed to have little to no effect on the models’ ability to learn and
was increased from 8 to 64 to decrease the time to train.

40



Chapter 4

Results

4.1 Segmentation Model Validation and Training
Results

The evaluation employed Dice loss, accuracy, and intersection over union
to assess the performance of the segmentation model. These metrics were
calculated for training, validation, and testing separately.

4.1.1 Validation

The segmentation model achieved a dice loss of 0.8421, an accuracy of
0.9496, and a mean IoU of 0.9356. As mentioned earlier, validation was
performed on 10% of the dataset, which accounts for 363 slices. Validation
was repeated multiple times on different samples to ensure an unbiased
result due to the current validation sample and similar results found for
different samples.

41



4.1 Segmentation Model Validation and Training Results

Figure 4.1: Accuracy and loss achieved during validation of segmentation model.

42



4.1 Segmentation Model Validation and Training Results

Figure 4.2: Mean IoU (Intersection Over Union) achieved during validation of
segmentation model.

4.1.2 Training

Segmentation model was trained for 100 epochs using a batch size of 2 and
a learning rate of 0.0001 using the Adam optimizer. The model obtained a
dice loss of 0.8383, an accuracy of 0.9540, and a mean IoU of 0.9383 during
training. The training was done on 2380 slices, approximately 70% of the
data.

43



4.1 Segmentation Model Validation and Training Results

Figure 4.3: Accuracy and loss achieved during training of segmentation model.

44



4.1 Segmentation Model Validation and Training Results

Figure 4.4: Mean IoU (Intersection Over Union) achieved during training of
segmentation model.

4.1.3 Testing

Segmentation model achieved a dice loss of 0.8498, an accuracy of 0.9517,
and a mean IoU of 0.9383 during testing. In Figure 4.5 a sample from
testing data can be seen giving a visual representation of the model per-
formance comparing the corresponding input image and ground truth from
the BraTS 2020 dataset to the segmented output image from the model.

45



4.1 Segmentation Model Validation and Training Results

Figure 4.5: Visual comparison of input image, ground truth segmentation and
output segmentation of segmentation model.

46



4.1 Segmentation Model Validation and Training Results

As can be seen from the visual testing result in Figure 4.5 the model is able
to localize the tumor area quite well. Model is doing a great job finding the
tumor location, size, and shape, but somewhat worse on the correct tumor
label. An example of this can be seen in Figure 4.6. Here, the model
predicts the location, size, and shape but identifies the wrong class label for
the tumor.

Figure 4.6: Example showing how the model correctly predicts the tumor loca-
tion, shape and size while wrongfully classifying the tumor class labels.

47



4.2 Classification Model Validation and Training Results

4.2 Classification Model Validation and Training
Results

To evaluate the classification model, binary cross-entropy has been used as
a loss function, while accuracy, the area under the curve (AUC), precision,
recall, and confusion matrix have been used as performance metrics. When
calculating true positive, true negative, false positive, and false negative for
usage in precision, recall, and confusion matrix, LGG has been used as the
positive class and HGG as the negative class.

A total of 3 models were attempted during validation, where 2 out of 3
returned promising results. One of them had issues with overfitting, and this
was attempted to be fixed using regularization techniques such as dropout
and L2-regularization, which improved the model a bit. However, it was
still outperformed by the 3rd model, which results will be presented in this
section.

4.2.1 Validation

The classification model obtained a loss value of 0.043, accuracy of 0.98,
AUC of 0.998, precision and recall of 0.984, and 0.982, respectively. Valida-
tion was performed on 20% of the dataset, accounting for 3485 image slices,
where 1924 comes from HGG and 1561 come from LGG.

During validation, the model was also tested up against the test split of the
dataset. This was done as there were issues with overfitting. Thus, it was
hard to tell if the result from the validation was good or not without having
data the model had not seen yet.

48



4.2 Classification Model Validation and Training Results

Figure 4.7: Top plot shows classification accuracy and bottom plot shows clas-
sification loss.

49



4.2 Classification Model Validation and Training Results

Figure 4.8: Recall and precision during validation of classification model.

50



4.2 Classification Model Validation and Training Results

Figure 4.9: Area Under the Curve (AUC) for classification model.

As can be seen in Figures 4.7, 4.8 and 4.9, the classification model starts
to converge and achieve high values of accuracy, AUC, precision, and recall
as early as 20-40 epochs in, depending on the metric. After this, it is still
learning and improving its results. However, it is with diminishing returns,
as can be seen in Table 4.1. This has been taken into consideration during
the model’s training and will be discussed in the training subsection of the
classification model.

Epochs Loss Accuracy AUC Precision Recall
20 0.2426 0.899 0.963 0.880 0.899
40 0.1100 0.957 0.991 0.946 0.959
60 0.060 0.978 0.997 0.973 0.978
80 0.047 0.982 0.998 0.980 0.980
100 0.043 0.985 0.998 0.984 0.982

Table 4.1: Table illustrating the diminishing returns from increasing numbers of
epochs during validation.

51



4.2 Classification Model Validation and Training Results

Confusion matrix in Figure 4.10 summarizes how many images has been
correctly and incorrectly predicted. On the diagonal shows the correctly
predicted images and we can tell from the count that the model rarely
predicts incorrectly during validation.

Figure 4.10: Confusion matrix results from validation of the classification model.
Rows show the predicted labels while columns show the true labels.

52



4.2 Classification Model Validation and Training Results

4.2.2 Training and Testing

Model obtains a training loss of 0.031, accuracy of 0.989, AUC of 0.998,
precision of 0.988 and a recall of 0.988. During testing the model obtained
a loss of 0.025, accuracy of 0.992, AUC of 0.999, precision of 0.994 and a
recall of 0.988. A more readable representation can be seen in Table 4.2.

Classification model was trained on 12199 image slices and tested on 1744
image slices responding to 70% and 10% of the data, respectively. Training
was done using binary-crossentropy as loss function, Adam as optimizer
using a learning rate of 0.001, a batch size of 64 and the model was trained
for 60 epochs. During validation a total number of 100 epochs was used, but
as mentioned in chapter 4.2.1, the model reaches high metric values during
the earlier epochs and improves with diminishing returns during the later
epochs as can be seen in Table 4.1. To reduce the time to train the model,
a lower number of epochs was used for this reason and as can be seen in
Figures 4.11, 4.12 and 4.13 the model achieves good metric values during
training and testing even with lower number of epochs.

Loss Accuracy AUC Precision Recall
Training 0.031 0.989 0.999 0.988 0.988
Testing 0.025 0.992 0.999 0.994 0.988

Table 4.2: Results for the classification model on training and testing dataset.

53



4.2 Classification Model Validation and Training Results

Figure 4.11: Accuracy and loss per epoch during training and testing for classi-
fication model. Accuracy in the top plot, loss in the bottom plot.

54



4.2 Classification Model Validation and Training Results

Figure 4.12: Precision and recall per epoch during training and testing for clas-
sification model.

55



4.2 Classification Model Validation and Training Results

Figure 4.13: AUC (Area Under the Curve) per epoch during training and testing
for classification model.

Confusion matrices showing the predicted results of training and testing
data can be seen in Figure 4.14. On the diagonal we see the number
of correctly predicted images for each class and the number of wrongly
predicted on the anti-diagonal.

56



4.2 Classification Model Validation and Training Results

Figure 4.14: Confusion matrices for training (Top) and testing (Bottom). Rows
show the predicted labels while columns show the true labels.

57



Chapter 5

Conclusion

This thesis aimed to classify tumor types based on data from multi-parametric
magnetic resonance imaging (MRI) using deep learning. I split the project
question into two parts, segmentation and classification, to allow for more
in-depth image analysis than what would have been achieved from a pure
classification task.

Modified version of U-Net, a state-of-the-art convolutional neural network
for biomedical image segmentation, was used to perform image analysis.
The segmentation model has good performance where it manages to pre-
dict tumor location, size and shape with high accuracy with slightly lower
performance on internal tumor label prediction. In general, the inter tumor
label performance was not an issue as the information was redundant and
not required for further use in classification. It was rather additional data
that allowed for greater analysis to base the model evaluation.

For classification, a convolutional neural network was performed on seg-
mented tumor images. A total of three different models were examined, and
two of them provided promising results. One of the models provided over-
fitting during training and thus was incapable of generalizing the trained
outcomes, leading to undesired classification results on the test dataset.
Regularization was attempted on the model to no avail. Finally, I chose the
model with the best performance, providing the desired training outcome
with justifiable high classification accuracy. The model showed that it could

58



5.1 Future Work

learn features with ease as high values for accuracy were obtained in the
early stages of training, allowing for shorter training times.

Both segmentation and classification networks have great performance con-
sidering their relatively shallow network architectures and short training
times. Both networks were trained on a laptop without a dedicated graphics
card using a 2.3 GHz Quad-Core Intel Core i5 CPU. It took approximately
5 and a half hours, and 4 hours to train segmentation and classification
networks, respectively.

5.1 Future Work

The BraTS repository used in this study consists of 369 multi-institutional
3D images acquired from glioma pateints, where 2D images were generated
from this cohort. This is a relatively small dataset in the context of deep
learning, which may hamper the generalizability of the model’s predictions.
Extension of the dataset by including data from other sources could help
obtain a model that is not as prone to being biased and rather inclined to
generalize.

A future study may analyze internal tumor label prediction to determine
if any class labels are over- or under-represented to adjust class weights
further. This can help with the classification of internal tumor labels and
thus improve the accuracy of the model.

59



Bibliography

[1] Brats 2020 challenge. https://www.med.upenn.edu/cbica/
brats2020/data.html.

[2] Cancer genome atlas research network. comprehensive, integrative ge-
nomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med.,
372:2481–2498, 2015.

[3] Magnetic Resonance Imaging, chapter 4, pages 211–252. John Wiley
Sons, Ltd, 2019.

[4] Foad Kazemi Amin Kabir, Moosa Ayati. Magnetic resonance
imaging-based brain tumor grades classification and grad-
ing via convolutional neural networks and genetic algorithms.
https://www.researchgate.net/publication/328373113_
Magnetic_resonance_imaging-based_brain_tumor_grades_
classification_and_grading_via_convolutional_neural_
networks_and_genetic_algorithms, 2018.

[5] Florentin Bieder, Robin Sandkühler, and Philippe C. Cattin. Com-
parison of methods generalizing max- and average-pooling. CoRR,
abs/2103.01746, 2021.

[6] S. Birchfeld. Image Processing Analysis. Cengage Learning, 2016.

[7] Stefan Bauer Bjoern H Menze, Andras Jakab. The multimodal brain
tumor image segmentation benchmark (brats). https://pubmed.
ncbi.nlm.nih.gov/25494501/, 2015.

[8] Kevin Chu. An introduction to sensitivity, specificity, predictive values
and likelihood ratios. Emergency Medicine, 11(3):175–181, 1999.

60

https://www.med.upenn.edu/cbica/brats2020/data.html
https://www.med.upenn.edu/cbica/brats2020/data.html
https://www.researchgate.net/publication/328373113_Magnetic_resonance_imaging-based_brain_tumor_grades_classification_and_grading_via_convolutional_neural_networks_and_genetic_algorithms
https://www.researchgate.net/publication/328373113_Magnetic_resonance_imaging-based_brain_tumor_grades_classification_and_grading_via_convolutional_neural_networks_and_genetic_algorithms
https://www.researchgate.net/publication/328373113_Magnetic_resonance_imaging-based_brain_tumor_grades_classification_and_grading_via_convolutional_neural_networks_and_genetic_algorithms
https://www.researchgate.net/publication/328373113_Magnetic_resonance_imaging-based_brain_tumor_grades_classification_and_grading_via_convolutional_neural_networks_and_genetic_algorithms
https://pubmed.ncbi.nlm.nih.gov/25494501/
https://pubmed.ncbi.nlm.nih.gov/25494501/


BIBLIOGRAPHY

[9] Smith K. et al. Clark K., Vendt B. The cancer imaging archive (TCIA):
Maintaining and operating a public information repository. J. Digit.
Imaging, 26:1045–1057, 2013.

[10] et al. De Coene BHajnal JV, Gatehouse P. Mr of the brain using
fluid-attenuated inversion recovery (flair) pulse sequences. AJNR Am
J Neuroradiol, 13:1555–1564, 1992.

[11] Pinho MC Rofsky NM Sherry AD De León-Rodríguez LM, Martins AF.
Basic mr relaxation mechanisms and contrast agent design, 2015.

[12] Corrales-García Delgado-López, P.D. Survival in glioblastoma: a re-
view on the impact of treatment modalities. https://doi.org/10.
1007/s12094-016-1497-x, 2016.

[13] Daniel Soudry Elad Hoffer, Itay Hubara. Train longer, generalize bet-
ter: closing the generalization gap in large batch training of neural
networks. https://arxiv.org/pdf/1705.08741.pdf, 2018.

[14] Kasuboski L Pattany PM De Coene B Lewis PD Pennock JM Oatridge
A Young IR Bydder GM Hajnal JV, Bryant DJ. Use of fluid attenuated
inversion recovery (flair) pulse sequences in mri of the brain, 1992.

[15] Mohammad Hossin and Md Nasir Sulaiman. A review on evaluation
metrics for data classification evaluations. International journal of data
mining & knowledge management process, 5(2):1, 2015.

[16] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In ICML, pages 807–814, 2010.

[17] Thomas Brox Olaf Ronneberger, Philipp Fischer. U-net: Convolutional
networks for biomedical image segmentation. https://arxiv.org/
abs/1505.04597, 2015.

[18] Faith G. Davis Isabelle Deltour James L. Fisher Chelsea Eastman
Langer Melike Pekmezci Judith A. Schwartzbaum Michelle C. Turner
Kyle M. Walsh Margaret R. Wrensch Jill S. Barnholtz-Sloan Quinn
T. Ostrom, Luc Bauchet. The epidemiology of glioma in adults: a
“state of the science” review. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4057143/, 2014.

[19] Daniel Ramos, Javier Franco-Pedroso, Alicia Lozano-Diez, and Joaquin
Gonzalez-Rodriguez. Deconstructing cross-entropy for probabilistic bi-
nary classifiers. Entropy, 20(3):208, Mar 2018.

61

https://doi.org/10.1007/s12094-016-1497-x
https://doi.org/10.1007/s12094-016-1497-x
https://arxiv.org/pdf/1705.08741.pdf
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057143/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057143/


BIBLIOGRAPHY

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In Nassir Navab,
Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, ed-
itors, Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2015, pages 234–241, Cham, 2015. Springer International
Publishing.

[21] Simone Sharma Siddharth Sharma. Activation functions in neural
networks. International Journal of Engineering Applied Sciences and
Technology, 4:310–316, 2020.

[22] David Vazquez Adriana Romero Yoshua Bengio Simon Jégou,
Michal Drozdzal. The one hundred layers tiramisu: Fully convolutional
densenets for semantic segmentation. https://arxiv.org/abs/1611.
09326, 2016.

[23] Thorvald Julius Sørensen. A method of establishing groups of equal
amplitude in plant sociology based on similarity of species content and
its application to analyses of the vegetation on Danish commons. I
kommission hos E. Munksgaard, 1948.

[24] Andras Jakab Spyridon Bakas, Mauricio Reyes. Identifying the best
machine learning algorithms for brain tumor segmentation, progres-
sion assessment, and overall survival prediction in the brats challenge.
https://arxiv.org/abs/1811.02629, 2018.

[25] Aristeidis Sotiras Michel Bilello Martin Rozycki Justin S Kirby John
B Freymann keyvan Farahani Christos Davatzikos Spyridon Bakas,
Hamed Akbari. Advancing the cancer genome atlas glioma mri collec-
tions with expert segmentation labels and radiomic features. https:
//pubmed.ncbi.nlm.nih.gov/28872634/, 2017.

[26] Sergios Theodoridis. Machine Learning: A Bayesian and Optimization
Perspective. 2nd edition, 2020.

[27] Mark Jenkinson Vaanathi Sundaresan, Ludovica Griffanti. Brain tu-
mour segmentation using a triplanar ensemble of u-nets on mr images.
https://arxiv.org/pdf/2105.11356.pdf, 2021.

[28] Dietrich Van der Weken, Mike Nachtegael, and Etienne E. Kerre. Using
similarity measures and homogeneity for the comparison of images.
Image and Vision Computing, 22(9):695–702, 2004.

62

https://arxiv.org/abs/1611.09326
https://arxiv.org/abs/1611.09326
https://arxiv.org/abs/1811.02629
https://pubmed.ncbi.nlm.nih.gov/28872634/
https://pubmed.ncbi.nlm.nih.gov/28872634/
https://arxiv.org/pdf/2105.11356.pdf


BIBLIOGRAPHY

[29] Geoffrey Hinton Yan LeCun, Yoshua Bengio. Deep learning. pages
349–440, 2015.

[30] Li Yang and Abdallah Shami. On hyperparameter optimization of
machine learning algorithms: Theory and practice. Neurocomputing,
415:295–316, 2020.

63



Appendix A

Poster

64


















	Contents
	Abstract
	Acknowledgements
	Introduction
	Background
	Artificial Neural Networks
	Convolutional Neural Network
	Activation Functions
	Loss Functions
	Optimizers
	Metrics
	Hyperparameters
	Confusion Matrix

	Magnetic Resonance Imaging (MRI)
	MRI contrasts


	Methods
	Environment
	BraTS 2020 Dataset
	Segmentation Architecture
	Data Pre-Processing
	Validation and Training

	Classification Architecture
	Data Pre-Processing
	Validation and Training


	Results
	Segmentation Model Validation and Training Results
	Validation
	Training
	Testing

	Classification Model Validation and Training Results
	Validation
	Training and Testing


	Conclusion
	Future Work

	Bibliography
	Poster

