
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR THESIS

Study programme / specialisation:
Computer Science – Bachelor’s Degree
Programme

The spring semester, 2022

Open
Author: Sylwia Wasilewska

…………………………………………

(signature author)

Course coordinator:

Supervisor(s): Gianfranco Nencioni

Thesis title: Pre-study on Network Function Virtualization at Communication
Technology Lab: Emulator

Credits (ECTS): 20

Keywords:
 NFV
Emulation
Virtualization
Network Services

 Pages: 38

 + appendix: 5

 Stavanger, May 30, 2022

SYLWIA WASILEWSKA
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Pre-study on Network Function Virtualization
at Communication Technology Lab: Emulator

Bachelor's Thesis - Computer Science - May 2022

I, Sylwia Wasilewska, declare that this thesis titled, “Pre-study on Net-
work Function Virtualization at Communication Technology Lab: Emulator” and

the work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a bachelor’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my work.

■ I have acknowledged all main sources of help.

“Problems are not stop signs, they are guidelines.”

– Robert Schuller

Abstract

Network Function Virtualization (NFV) is a network architecture framework that

virtualizes functions that were traditionally tied to hardware and allows for higher

flexibility of deployment of network services. It is growing in popularity as more

research is being conducted in the field, and because of this it is beneficial to inves-

tigate its possible uses in academia. The objectives of this thesis are to research

NFV as a whole to investigate its different aspects, as well as research different

NFV emulators. Later, the aim is to design tests that could be run in a selected

emulator to showcase NFV academically to potential students.

Out of the three thoroughly investigated emulators, the MeDICINE emula-

tor was selected based on several criteria, most notably the ease of installation.

However, due to some major technical issues and time constraints, the emulator

could not be run, meaning no tests could be executed. Six tests were designed

with two different topologies to showcase as many aspects and functionalities of

NFV as possible. These tests open up possibilities for future work in the area,

where potential students could use these tests to investigate NFV further through

running them and checking parameters, but also adapting the topologies to other

emulators and comparing the process of running the tests in several different em-

ulators.

iii

Acknowledgements

I would like to thankmy supervisor, GianfrancoNencioni, for his enthusiasm and

help with writing this thesis. Without his pointers and tips, my work would have

been of much lower quality.

I would also like to thank the faculty, especially Erlend Tøssebro and Sheryl

Josdal, for their continued support through the difficult situation and all issues

that arose during this semester.

Finally, I would like to thankmy family and friends for always havingmy back

as I worked on my studies and writing this thesis. Without their support and

advice, Iwouldnot have been able towork as efficiently and stay as positive during

the tougher moments.

iv

Contents

Abstract iii

Acknowledgements iv

List of Figures vii

1 Introduction 2

1.1 NFV History . 3

1.2 Objectives . 4

1.3 Approach and Contributions . 5

1.4 Outline . 5

2 Background 7

2.1 NVF Architecture . 7

2.1.1 The Virtualized Network Functions (VNFs) 7

2.1.2 Network Functions Virtualization Infrastructure (NFVI) . 8

2.1.3 The Management Automation and Network Orchestration

(MANO) . 9

2.2 Service Composition . 10

2.3 Simulation, Emulation, and Experimentation 11

3 State of the Art of the NFV Emulation 13

3.1 Related Work . 13

3.2 Emulator Evaluations in Literature 14

3.2.1 NIEP . 14

3.2.2 ClickOS . 16

3.2.3 MeDICINE . 18

3.2.4 ComNetsEmu . 19

v

3.2.5 Commercial Emulators . 20

3.3 Emulator Comparison . 21

4 Investigating MeDICINE 25

4.1 MeDICINE Installation and Use 25

4.2 Evaluation of MeDICINE . 27

4.3 Technical Problems . 29

5 Design of Emulator Tests 30

5.1 Design Process . 30

5.1.1 Tests With Single Data Center 31

5.1.2 Tests With Two Data Centers 33

5.2 Potential for Future Works . 37

6 Conclusions 38

A Topology Files Used For Tests 40

A.1 Topology With Single Data Center 40

A.2 Topology With Two Data Centers 42

Bibliography 46

List of Figures

2.1 A diagram showing the NFV Architecture [1] 8

2.2 NFV Service Chain Diagram [2] 10

5.1 Diagram of the first test architecture. 31

5.2 Diagram of the second test architecture. 32

5.3 Diagram of the third test architecture. 33

5.4 Diagram of the fourth test architecture. 34

5.5 Diagram of the fifth test architecture. 35

5.6 Diagram of the sixth test architecture. 36

vii

Chapter 1

Introduction

As technology advances, a need for more flexible solutions for network services

arises. Networks grow fast, requiring methods of expanding that are both more

cost-efficient and time-effective to implement. Because of this, the telecommu-

nication industry creates and implements new concepts like Software Defined

Networking (SDN) andNetwork FunctionVirtualization (NFV), whichmoves net-

working functionalities to software-based solutions.

SDN allows for dynamic control of networks by separating the control plane

and the forwarding plane. This makes network functions possible to configure

andmanage through a centralized control point. Thanks to this, networks become

scalable, dynamic, and agile, which in turn allows them to respond to business

requirements that are changingmore rapidly than ever, especially inmodern data

centers that use virtualized infrastructure, and provision the network as a service

[3].

NFV, on the other hand, uses Virtual Machines (VMs) to replace network ap-

pliance hardware [4]. NFV uses a Virtual Machine Monitor (VMM) for running

network software and virtualizing processes such as load balancing and routing.

Moving these processes to the digital world allows for the development of more

dynamic, fully automated virtual networks that are faster to grow and evolve with

new functionalities, also requiring less trained maintenance staff and floor space

[5]. While SDN and NFV are complementary, they are growing increasingly co-

dependent [3]. This means that it is highly likely that both concepts will become

integrated in the future.

There are many benefits to virtualizing network functionalities through the

2

use of NFV. It virtualizes the network services as a whole, but specifically certain

aspects of it. The network operator will have advantages like reduced space re-

quired for hardware like routers and switches, a reduction in network power con-

sumption, a drop in maintenance cost, as well as easier upgrades to the network

and hardware having a longer lifecycle [5]. Using NFV makes building and con-

figuring networks much more time-effective and cost-efficient, as the time used

tomanually connect and configure hardware is lost. However, there are also risks

associatedwith usingNFV.Most of these are security risks, likemalware being dif-

ficult to isolate and contain, as well as network traffic becoming less transparent

[4]. In addition, physical security controls become ineffective, and the network

becomes more open to new types of attacks as opposed to physical equipment

that is kept in a secure data center.

1.1 NFV History

In 2012, the European Telecommunications Standards Institute (ETSI) estab-

lished the NFV Industry Specification Group (ETSI ISG NFV). Since then, the

group has worked on setting standards through over a hundred publications, tak-

ing the project through several 2-year-long phases called Releases that had differ-

ent focus areas ([6], [7]). In 2013-2014, the ISGNFV focused onbuilding a culture

and understanding of important concepts in network virtualization. The original

vision was outlined in a publication from October 2012, where the publishers set

”pre-standardization” documents [8]. The work of the group built on this paper,

and the first importantmilestone came a year later, when the first five ETSIGroup

Specifications were published in October 2013 [1]. These include NFV use cases,

terminology, virtualization requirements, and an architectural framework. The

following year, ISG NFV published a further 11 documents that focused in differ-

ent technical areas of NFV, including management and orchestration, infrastruc-

ture, and the architecture of Virtualized Network Functions (VNFs) [6].

In NFV Release 2, spanning from 2015 to 2016, the work of ISG NFV was

defined by ”selecting and prioritizing a set of key capabilities” for NFV deploy-

ment and ensuring ”interoperability of NFV solutions” when used at a larger scale

[6]. These capabilities include lifecycle management, software image manage-

ment, Network Service (NS) informationmodeling, hardware-independent accel-

eration, and more. Furthermore, testing specifications for Management and Or-

chestration (MANO) andApplicationProgramming Interface (API) Conformance

were also created in this Release. Release 3 focused mostly on preparing NFV for

global deployment and operations. In 2017-2019, 22 new features categorized

into three main areas were outlined, of which ten were completed, some were

closed, two were partially completed, and others were carried over to Release 4.

The three areas of features were advances in virtualization, support for new net-

work technologies, and new operational aspects [6].

NFV Release 4 was officially launched in the summer of 2019, where ISGNFV

worked on both new features and unfinished features that were carried over from

the previous release. These include NFV-MANO automation, policy models, se-

curity and licensing management, and more. It appears that ETSI ISG NFV is

still working on this Release as no new information is available, but documents

are continuously being updated and created [6].

There are other open-source projects that are also striving to develop NFV

standards, such as Metro Ethernet Forum (MEF), Open Network Automation

Platform, Open Platform for NFV, andmore. Even ETSI ISG NFV is open to both

members and non-members, which allows people all over the world to contribute

to the research and creation of new functionalities [7].

1.2 Objectives

Since NFV and NFV emulators are still very new on the market, the original aim

of this thesis was to select two emulators and showcase how NFV works through

designing tests and comparing how these tests are executed on both emulators.

However, due to time constraints and technical issues, the objective first changed

to only showcaseNFV through one emulator; because the used computers did not

correctly run the selected emulator, the objective changed again. This thesis will

outline tests that can be used by potential students whose computers correctly

run the emulator. These tests will showcase different aspects and functionalities

of NFV, allowing for potential future students to learn more about the concept.

The objectives are then as follows:

• Studying the state-of-the-art NFV emulation frameworks;

• Evaluation and analysis of the best suitable emulator;

• Designing tests that focus on showcasing how NFV works with future work

in mind;

• Presenting NFV academically to potential students.

1.3 Approach and Contributions

The approach to meet the objectives of the thesis is to research NFV as a whole,

followed by researching NFV emulators, both commercial and open-source, with

more focus on the open-source emulators. The best suitable emulator is then

chosen judging by the availability, the specifications, and the ease of installation,

among other criteria. Tests are designed to showcase several functionalities and

aspects of NFV, with focus on prospects of future work thatmay be done by future

students.

The main contributions of this thesis are:

• State of the art of the NFV emulators with description and systematic com-

parison;

• Design of tests or exercises that showcase NFV characteristics to potential

students and open up the possibility for future works;

1.4 Outline

The structure of this thesis is as follows:

• Chapter 2 describes background information on NFV architecture, service

composition, and differences between simulation, emulation, and experi-

mentation. These are aspects that are part of any NFV emulator.

• Any related works and detailed descriptions of emulators are covered in

Chapter 3, as well as a short comparison, which will allow for the selection

of the most suitable emulator.

• Chapter 4 focuses on the installation and running of the selected emulator,

as well as an evaluation of the emulator.

• The design of the tests and the academic aspect of these tests, as well as the

academic possibilities for future work, will be covered in Chapter 5.

• Finally, the conclusions of this thesis will be in Chapter 6.

Chapter 2

Background

This chapter focuses on background information about NFV like its architecture

and service composition, and the key differences between experimentation, sim-

ulation, and emulation.

2.1 NVF Architecture

NFV is comprised of threemajor components: the VirtualizedNetwork Functions

(VNF), theNetwork Functions Virtualization Infrastructure (NFVI), and theMan-

agement and Orchestration (MANO), as shown in Figure 2.1. This section will

discuss these parts in more detail.

2.1.1 The Virtualized Network Functions (VNFs)

The Virtualized Network Functions (VNFs) is the collection of software applica-

tions that deliver the network functions like file sharing, IP configuration, and

directory services [9]. VNFs are run in virtual machines on top of the networking

hardware infrastructure, and they include routers, switches, firewalls, and more

[10]. What makes VNFs flexible, is that one VNF does not have to be wholly de-

ployed on a single Virtual Machine (VM), but it can be spread over multiple VMs

where different VMs host separate components [11].

7

Figure 2.1: A diagram showing the NFV Architecture [1]

2.1.2 Network Functions Virtualization Infrastructure (NFVI)

Network Functions Virtualization Infrastructure (NFVI) provides the virtualiza-

tion layer andphysical infrastructure components - the storage, computation, and

networking on a platform to support software needed to run network applications

[10]. Some examples include the hypervisor, which creates and runs virtual ma-

chines (VMs) and allocates Central ProcessingUnit (CPU)memory storage to new

and existing VMs, as well as Docker containers that do not use hypervisors for vir-

tualization.

There are two types of hypervisors: Type 1, also called ”bare metal”, runs on

host hardware directly to manage the VMs, while Type 2, also called ”hosted”,

is a hypervisor that runs as a software layer on conventional operating systems

(OS) [12]. Another example of an infrastructure component is the Kernel-Based

Virtual Machine (KVM), which turns Linux into a hypervisor by getting some OS

level components from Linux [13].

TheNFVI is comprised of all of the components that build up the environment

where VNFs are deployed, which includes hardware, software and network. The

virtualization layer and the hardware resources are viewed as one, which allows

the NFVI to correctly provide the desired virtualized resources; in addition, the

network that connects these locations is also considered a part of the NFVI [11].

2.1.3 TheManagementAutomationandNetworkOrchestration
(MANO)

The Management Automation and Network Orchestration (MANO) component

provides the framework for managing the NFV infrastructure and provisioning

new VNFs [10]. It consists of three main functional areas: the NFV Orchestrator,

the VNF Manager, and the Virtual Infrastructural Manager (VIM) [9].

The NFV Orchestrator is the component that is responsible for handling the

VNF onboarding andmanagement of both lifecycle and global resources. It is the

main component of theMANO. It also validates and authorizes resource requests

coming from theNFVI [9]. This component does not function through direct com-

munication with VNFs, but rather through the VIM and the VNF Manager [10].

The NFV Orchestrator plays a big role in the on-boarding, terminating, scaling,

and instantiating network services and network service lifecycle, as well as inter-

acting with support systems through which users can execute service operations

[14].

The VNF manager component is responsible for the management of the VNF

lifecycle, which encompasses the updating, querying, and termination of VNFs

[10]. Depending on the architecture, the VNF manager can serve multiple VNFs

at once, or just a single VNF. This component is also responsible for event report-

ing, configuration of Element/Network Management Systems, and provides the

NFVI with a coordination and adaptation role [9].

Finally, the VIM manages and controls resources of the NFVI, including the

compute, network, and storage resources [10]. It provides the functionalities that

allow the control andmanagement of the interactions between VNFs and comput-

ing. This means that the VIM also allocates virtualization enablers and manages

the allocation of infrastructure resources. In addition, this component also per-

forms planning and analysis of issues like performance issues or infrastructure

faults, as well as monitoring and optimization [9].

2.2 Service Composition

Using the architecturementioned previously, NFV is used to provide network ser-

vices. What NFV does is virtualizing each network function instead of using ded-

icated hardware for deployment of a network service. This is done through run-

ning different VNFs in a specific order. An example of this would be sending a

packet from one virtual machine to another, through a firewall and a packet in-

spector [15]. If the order in which the VNF instances are run is incorrect, the

packet will not be sent correctly. This is called the service chain, as shown in

Figure 2.2.

Figure 2.2: NFV Service Chain Diagram [2]

As stated in the introduction, using NFV makes providing network services

both faster and cheaper; to accomplish better service, there are several differences

in theway of providing network services between current practice andNFV. Some

of these differences include dynamic scaling, separating software from hardware,

and flexibility of network function deployment [11].

Dynamic scaling indicates that it is possible to scale the VNF performance

more in accordance of, for example, the network traffic through decoupling of

network functions into separate software components. Separating software from

hardware is self-explanatory; decoupling of these allows for independent evolu-

tion of both and separate maintenance for software and hardware, as well as sep-

arate timelines of development. Finally, flexibility of network function deploy-

ment implies that separating software and hardware aids in reassignment of the

infrastructure resources, which allows for the performance of different functions

at differing times. This allows for faster deployment of new network services over

the same physical platform through flexible setup of connections in the network

[11].

When deploying a network service on VNFs, these VNFs do not all have to be

in the same location. Each service also does not have to be on only one VNF. It

is possible to combine several VNFs from several online locations into one part

of the service chain composition [15]. Because of this, NFV is incredibly flexible

in providing network services, as not every component needs to be present in the

same physical location.

2.3 Simulation, Emulation, and Experimentation

There are several ways of testing systems and software. This section will discuss

the differences between the three methods, simulation, emulation, and experi-

mentation.

An experimentation is done when a device is running locally, but in a lab set-

ting. A good example of this is running a local network on routers and switches

located in a lab, which creates an environment just like reality but on a smaller

scale. This is useful for learning how reality works in a controlled environment.

An emulation is very similar to an experimentation in the way that it functions

like reality, however everything that runs locally in the experimentation now runs

virtually, on a computer [16]. Instead of physical equipment, a virtual version

runs on the user’s computer with all the functionalities the physical equipment

would have. Emulations can therefore be used as an option to create a controlled

environment with all the real functionalities away from a lab.

Compared to the emulation, a simulation is a more abstract way of testing.

It is a model that represents a specific network or platform, which does not be-

have exactly like reality but rather focuses on one specific aspect of what they are

representing. The degree of accuracy of the simulation depends on how compre-

hensive the simulator being used is; some simulators simulate an entire system,

while other simulators encompass only specific parts [17]. For example, a simu-

lator may simulate an OS entirely, while others simulate only a specific software

for that OS.

The difference between simulators and emulators is quite subtle. Simulators

allow the user to set up a similar environment to an original device’s system, but

they do not attempt to simulate it entirely as the real device. This means that sim-

ulators may not be able to run all the features that are associated with that device.

Because of this, many programs run slightly differently, or have to be changed to

be able to run on a simulator. However, an emulator duplicates every aspect of

the original device’s behavior, including the hardware. This allows for the exact

same features to run on the emulator, with no modifications. Because simulators

do not attempt to simulate the device’s hardware, they tend to run faster than em-

ulators, but they are often less accurate. Emulators are more accurate, but this

accuracy is in exchange for much slower run time, sometimes reaching an order

of magnitude slower than a program would take on the original device. [18]

Chapter 3

State of the Art of the NFV

Emulation

This chapter will cover any work related to the topic of the thesis, as well as cover

different NFV emulators. In the end, there will be a comparison of the NFV emu-

lators’ different functionalities, architecture, any limitations, and what technolo-

gies they use.

3.1 RelatedWork

Although there are many papers and articles that cover NFV emulators, there are

not many that compare them. This means that the original objective of this the-

sis was unique and new, however due to time constraints and other issues the

objectives changed. This section will discuss comparisons of different aspects or

components of NFV emulators.

There are several papers that compare certain aspects of NFV emulators, like

”Comparing virtualization solutions for NFV deployment: A network manage-

ment perspective” from 2016 that compares three NFV emulators in terms of

virtualization solutions. Here, the authors selected three NFV emulators or OSs

with emulating possibilities based on three aspects: code availability, being un-

der development, and being in accordance with ETSI’s NFV Virtualization Re-

quirements document. They compared the virtualization solutions in terms of

objective performance metrics like boot time, response time, and memory con-

sumption among others. The authors also mention that NFV is an innovative

13

and fairly new concept that is used for creating new solutions and continuously

investigated in academia. They came to the conclusion that of the three tested

NFV emulators, two performed very well in terms of the selected performance

metrics [19].

Another paper published in 2022 compares MANO frameworks, specifically

the open-source platformsOpen SourceMANO (OSM),OpenNetworkAutomatic

Platform (ONAP), Cloudify, Openstack Tacker, and OpenBaton and their func-

tional characteristics. The authors selected nine aspects to compare the differ-

ent MANO frameworks, including architecture, MANO Block, Standard Devel-

opment Organization (SDO), NFVO functions, and more. The paper aimed to

provide an overview of five open-source NFV-MANO frameworks that are widely

used, identify the challenges and further guide the research and development in

the field of Orchestration, and to characterize the frameworks through layered

taxonomy based on their functions. The paper highlighted some research chal-

lenges like scalability, resource management, security and privacy, and interop-

erability, that provide research opportunities within this field. The authors con-

cluded that different MANO frameworks can be distinguished from one another

through different properties like licenses and governance policy, and that there

are several possibilities of implementation through the architecture and language

support of each MANO framework [20].

3.2 Emulator Evaluations in Literature

Many papers and articles that discuss NFV emulators discuss one specific emula-

tor in detail, rather than comparing multiple emulators. These papers often use

case studies or experimental evaluations of the emulators to describe their func-

tionalities and evaluate their overall effectiveness.

3.2.1 NIEP

A paper from 2018 discusses the open-source emulator NFV Infrastructure Emu-

lation Platform (NIEP), including its architecture andmodule interactions. NIEP

is developed by a research team consisting of 11 researchers from Brazil and Bel-

gium. Part of its architecture is actually based on pre-existing tools that are in-

tegrated into a full emulator. These tools are Click-on-OSv as a VNF, KVM hy-

pervisor as VMmanagement, and Mininet for network emulation. These are tied

together by an orchestration module [21].

Click-on-OSv is an OS that is OSv-based and built specifically for NFV ex-

perimentation. It is a complete virtual machine that uses the Representational

State Transfer (REST) interface for monitoring underlying operations like life-

cycle management and different metrics. The KVM hypervisor is a virtual VM

manager that supports executing numerous VMs that run different types of OSs

by implementing full virtualization. The NIEP-Orchestrator uses the Virsh tool

for management of the VMs created through KVM through Command Line In-

terface (CLI) system calls. Mininet is a network emulator that uses lightweight

process-level virtualization, which allows designing large-scale network environ-

ments through the emulation of guest VMs as isolated processes. This reserves

memory, network, CPU, and inherits the functions and programs of the host.

All network topology definitions can be done using a JavaScript Object Notation

(JSON) file, which is then received in the NIEP-Orchestrator that performs the

instantiation process [22].

The NIEP-Orchestrator consists of four elements that each provide methods

to control the NIEP environment through specific action executions. These el-

ements are the VNF Repository, the Virtualized Elements Manager (VEM), the

Topology Manager, and the Interpreter. These are responsible for tasks like stor-

ing virtualized network functions, creating the Mininet network topology and ini-

tializing it, validating the definition of the JSON topology, controlling VNF exe-

cution, handling user requests, and more [22].

In the aforementioned paper, a case study is set up to conduct an experimental

evaluation of NIEP. The scenario of the case study consists of two hypothetical lo-

cations, the Customer Premises and the Internet Service Provider, with aMininet

host connected to a VNF in each. In the Customer Premises, the VNF had limited

resources, while the Internet Service Provider had considerably more resources

in comparison, as well as running a firewall and connecting to an SDN controller

and a host that acts as the application server. Four configurations with increasing

numbers of VNFs were used to investigate how this would impact NIEP’s perfor-

mance. After performing 30 executions of each configuration, the team writing

the article reached a confidence interval of 99% on all of the experiments. It was

found that NIEP provides possibilities for easily changing the defined topology,

as many of the configuration parameters had fine-grained controls. This way, it

is possible to use the emulator for testing many diverse NFV scenarios through

changing network paths, changing link properties, or adding, re-configuring, or

removing hosts [22].

The results of the experimental evaluation from the aforementioned paper

showed that NIEP’s VNFs all initialize in parallel, which allows a fairly quick boot

time even with multiple VNFs and firewall configurations. The emulator’s per-

formance was also tested under heavy load, where a bottleneck was simulated by

testing the link between the Customer Premises and the Internet Service Provider

and analyzing the throughput. It was found that increasing the amount of traffic

to the server had no effect on the throughput in all experimental setups, which

meant the results were positive. The conclusions of the article state that NIEP

supports the emulation of ”heterogeneous infrastructures [...] composed of de-

vices with different characteristics,” based on their results and the architecture

of the emulator [22]. The authors also found that expanding the setup by adding

more VNFs had no effect on metrics like boot time and throughput, where the

results showed a linear increase in both depending on the number of VNFs. In

addition, it was found that NIEP’s VMs are isolated from the kernel, offering bet-

ter security when testing third-party VNFs and allowing for emulation of more

precise security scenarios [21].

3.2.2 ClickOS

ClickOS is a ”high-performance, virtualized software middlebox platform” that is

created specifically for NFV emulation [23]. The creators of this middlebox plat-

form realized that many middleboxes were hardware-based, which made them

difficult to manage with functionalities that were almost impossible to change, as

well as costly. Because of this, as well as the rise of NFV emulation, ClickOS was

created to fill the void of software-based middlebox platforms [23]. It was one

of the emulators described in the aforementioned paper comparing emulators in

terms of virtualization solutions [19].

”ClickOS and theArt ofNetwork FunctionVirtualization” from2014 discusses

the problem statement mentioned above, as well as the design and architecture

of ClickOS. The paper also includes an evaluation of the platform as well as de-

scribes somemiddlebox implementations. ClickOS isXen-based and is optimized

for running hundreds of middleboxes that allow for processing speeds of millions

of packets per second. The authors conducted experiments that showed the pro-

cessing speed of a low-end server is around 30 Gb/s using ClickOS [24].

The design of ClickOS relies on hypervisor virtualization, specifically para-

virtualization, which allows to achieve flexibility and isolation between the hard-

ware and the middlebox software. Para-virtualization is preferred due to full vir-

tualization possibly increasing delay and ”hurting” the throughput. Because the

creators decided to use para-virtualization, they based ClickOS on Xen, which

supports para-virtualized VMs and therefore allows to build a platform with low

delay ahd high throughput. Xen also comes with its ownOS calledMiniOS, which

supports building efficient virtualized middleboxes. Because of this, all ClickOS

VMs are based in MiniOS. ClickOS is programmed in C, which is a flexible lan-

guage despite its high cost of development and debugging [24].

”Enabling Fast, DynamicNetwork Processingwith ClickOS” is a paper written

in 2013 that focuses on the emulator in terms of SDN. Here, ClickOS is presented

as being a ”tiny, Xen-based virtual machine that can instantiate middlebox pro-

cessing inmilliseconds while achieving high performance” [25]. The architecture

is described, where Xen is used to create a system comprised of several ClickOS

VMs. The control plane of ClickOS that handles all operations is separated into

three parts: the C-based CLI that provides an interface for users, the MiniOS

control thread that is created when a guest domain of ClickOS boots, and a new

element of Click that is called ClickOSControl that allows for communication be-

tween the other elements of the control plane and the Xen store. This paper also

evaluates various aspects of the emulator, where all tests were performed on x86

commodity servers connected by direct cabling, one server acting as a packet gen-

erator and sink, while the other runs Xen 4.1.2 and the ClickOS VMs. The aspects

tested were middlebox instantiation and networking performance, where it was

found that the start-up time was in the range of several seconds, but with all opti-

mizations the time dropped as low as 7-21 milliseconds, depending on howmany

VMs were running. In addition, the line rate for packets was optimized to fill up

the 10 Gb pipe [25].

ClickOS does not seem to be a full emulator, but rather focused on creating a

software solution for packet forwarding and middleboxes. This makes it more of

a tool used for NFV emulation, rather than being an emulator in itself.

3.2.3 MeDICINE

The Multi Datacenter servIce ChaIN Emulator (MeDICINE), also known as Vim-

Emu, is an NFV emulation platform that has been created together with Open

Source MANO (OSM). These are both created in projects related to ETSI, called

the SONATA Project and the 5GTANGO project [26]. MeDICINE and OSM are

both open source and continuously improved. MeDICINE uses Containernet as

the core of its platform, and it offers OpenStack-like APIs that will allow to inte-

grate with OSM or other MANO solutions. Other than that, it is highly customiz-

able and offers plugin interfaces like topology generators, container resource im-

itation models, and others for most of its components, meaning the emulator is

highly flexible [27]. The emulator also focuses on amulti point-of-presence (PoP)

approach, whichmeans that the topologies in this emulator define available PoPs

that start compute resources at emulation time instead of describing single hosts

that are connected to the emulated network.

This emulator is, as mentioned, heavily reliant on several APIs. Most notably,

it uses an extended version of Mininet’s Python-based topology API that gives

methods to define and create PoPs. Because it is a Python-based API, it gives

the benefit of allowing the usage of scripts or algorithms to generate topologies

within the emulator [27]. Another API is used to initiate and stop compute re-

sources. MeDICINE also uses the concept of ”flexible cloud API endpoints” that

are interfaces that link to one or multiple PoPs that manage compute resources.

There is also an API created for the support of developers, which focuses on the

service chain, that simplifies the SDN protocols to calling onemethod to allow for

chaining emulated containers [27].

MeDICINE builds on the Containernet tool, allowing the use of Docker con-

tainers in the emulation. Containernet also allows for the addition and removal

of containers while the network emulation is running, which Mininet, the base of

Containernet, does not support [28]. Because of this, Containernet can be used

as a cloud infrastructure, making MeDICINE even more flexible [26].

Prior to the creation of the emulator, there was a lack of prototyping tools that

would allow testing of multi-PoP scenarios of complete network services. Accord-

ing to the creators of the emulator and authors of the 2016 article ”MeDICINE:

Rapid prototyping of production-ready network services in multi-PoP environ-

ments”, themain goal of the emulator was to create a ”novel prototyping platform

for network services” that would allow for testing of these scenarios [27]. In the

article, the authors outlined several examples for testing NFV solutions, includ-

ing single and several VNFs, MANO systems, and more, that existing tools may

not have supported. The MeDICINE platform provides a new support tool that

could grant functionalities that existing support tools for network development

lacked. Because of this, the creators believe that the emulator is a crucial step in

the development of a fully integrated support toolchain for NFV [27].

3.2.4 ComNetsEmu

ComNetsEmu is an NFV-SDN emulator created specifically for educational pur-

poses. It is a tool used in the textbook ”Computing in Communication Netowrks:

From Theory to Practice” written by F. Fitzek and F. Granelli and published in

2020 [29]. The emulator’s design focuses on it being possible to run any exam-

ples on something as simple as a single laptop, meaning it could be a powerful

tool for students to learn about NFV and SDN emulation. Because of this, the

performance of the emulation is outside the main focus of the project [29].

ComNetsEmu builds on theMininet project, extending it by concepts that are

also in the Containernet project. This is done to allow for NFV/SDN emulation

of network applications that are more versatile than it is possible to create with

Mininet on its own [30]. ComNetsEmu uses complete host isolation and sibling

containers to allow for the emulation of network systems with computing. To cre-

ate sibling containers, the emulator uses Docker hosts that are deployed within

Docker hosts, the so-called Docker-in-Docker. This allows for lightweight emu-

lation of nested virtualization, as Docker-in-Docker mimics a physical host that

deploys Docker containers. This is all done in Mininet topologies [30].

For simplicity, the emulator was developed first with Python 3.6, and Python

3.8 when that became available, with examples and applications written in high-

level script language. Because of this, the performance of these programs is not

optimized. However, it is possible to contact the creators of the emulator for

highly optimized implementations. The emulator’s public repository contains a

collection of examples with sample code, as well as documentation that allows

for easy reproduction. The examples can also be extended easily thanks to the

provided documentation [31].

This emulator is presented in an article published in 2021 titled ”An Open

Source Testbed for Virtualized Communication Networks”. Here, the creators

of the emulator and authors of the textbook discuss the architecture of the em-

ulator as well as describe uses of the emulator for both researchers and educa-

tors. Here, the authors go into detail about the sibling containers and Docker-

in-Docker topologies and emphasize how ComNetsEmu is designed for allowing

setup on more resource-limited hardware, such as student laptops. The authors

also describe that the emulator provides a collection of built-in examples that

show the usage of its main features, as well as APIs, to aid students in learning

about NFV [30].

3.2.5 Commercial Emulators

In addition to the emulators that are described above, there is a number of other

emulators, both commercial and open-source, available on themarket. Several of

these were not taken into consideration for this thesis due to cost, like NE-ONE,

VMware, Equinix, and others. Many of these commercial emulators consisted of

several products that together make up the complete emulator, making it imprac-

tical from an academic point of view; when investigating emulators that could be

used by future students to study NFV, it is best to select an emulator that does

not require the purchase and installation of several products due to both the ac-

cumulation of cost and the usage of PC memory.

An example of this is Juniper’s Contrail product line [32]. Here, the full em-

ulator is split into Contrail Networking [33], Contrail Service Orchestration [34],

and Paragon Insights [35], not including a separate Firewall product. The com-

pany promises ultra-fast processing speeds, flexible topologies, an intuitive con-

sole, and automated analytics, security, and networking. The emulator features

an elastic VPN, API services, visualizations of the network traffic flow, and a num-

ber of other features [32]. The emulator does not seem to have been mentioned

in any articles or case studies, which makes it difficult to judge without a deeper

investigation.

Another example of commercial emulators is the aforementioned NE-ONE

emulator range. These products were created by Calnex, with features such as

the RESTful API, a scenario builder, and more [36]. According to the website,

the purpose of NE-ONE is to provide an accurate test network that is both con-

trollable and repeatable, for developing and accelerating application readiness in

network emulation. The emulator range has been utilized in several case stud-

ies for different companies [36]. There are several models of NE-ONE, with each

model having additional features and increased bandwidth. However, this emula-

tor comes with its own hardware in two different versions: the Enterprise version

and the Professional version, with availability as a virtual appliance as well [37].

The necessity of separate hardware for the emulator makes it impractical and im-

possible for students to acquire on their own for academic use.

3.3 Emulator Comparison

Four emulators were described in detail in the last section, these being NIEP,

MeDICINE, ClickOS, and ComNetsEmu. All four of these were considered for

this thesis. This section will compare their specifications and features in as much

detail as possible without testing each emulator.

As previously mentioned, after closer inspection it seems that ClickOS is not

a full emulator in itself, but rather a tool that is used for NFV emulation. This

means that it could be used as a component in a full emulator. Because of this,

ClickOS will not be taken into consideration during the comparison of the emula-

tors. Instead, the focus will be on the three full NFV emulators.

There are several factors that influenced the choice of the emulator for this

thesis, including the features, accessibility, ease of installation, and more. The

most deciding factor ended up being the ease of installation, seeing as two of the

emulators had some issues when installation was attempted.

First, the emulators were all developed using Python. However, in compari-

son to ComNetsEmu and MeDICINE, NIEP was developed using the now depre-

cated Python 2.7. ComNetsEmu was initially developed using Python 3.6, but as

newer versions of Python rolled out, the development moved to using Python 3.8.

MeDICINE also uses Python 3, but there is no information about which version

specifically. As Python libraries evolve, some functionalities can change,meaning

that it is important to keep programs up to date.

All three emulators utilise elements ofMininet in the network emulation, with

both ComNetsEmu and MeDICINE expanding into functionalities of Container-

net in addition to Mininet; NIEP is limited to using just Mininet functionalities.

Mininet uses lightweight, process-level virtualization that allows designing net-

work environments at a large scale, while Containernet is a fork of the Mininet

emulation that allows for more flexibility through the use of Docker containers

as hosts, as opposed to isolated processes like in classic Mininet. Thanks to the

added features, Containernet is used in research in cloud and fog computing, NFV,

and more, meaning that an emulator utilising this will be more flexible and can

create more realistic emulations compared to an emulator only utilising Mininet

[28].

The topology definition is different for each emulator. The MeDICINE plat-

form uses a topology API that contrasts with classical Mininet topologies by de-

scribing network hosts as available PoPs [27]. ComNetsEmu, on the other hand,

uses the classical Mininet topologies, but employs Docker containers as hosts

[30]. Finally, NIEP also usesMininet topologies, but these are initialized through

a JSON file to simplify the process of deploying the infrastructure [22].

The emulators also differ in the implementation of orchestration. NIEP uses

an orchestrationmodule that includes the VNF repository, the topologymanager,

the interpreter, and the VEM. It also receives the JSON file with the topology def-

inition to execute the instantiation process [22]. Several MANO systems can be

used coupled with MeDICINE, but the most obvious choice is OSM, as it was de-

veloped as part of the same project. This makes the emulator more flexible, and

yet more complex as different MANO systems can have different functionalities

[27]. ComNetsEmu, however, provides a special Manager class called APPCon-

tainer to orchestrate the internal Docker containers [30].

The installation of all three emulators can be done through the Ubuntu termi-

nal. However, ComNetsEmu is only possible to install through Ubuntu version

20.04 or later [31]. MeDICINE is recommended to install using Ubuntu 18.04 or

later [38], while NIEP does not mention a limit to which version of Ubuntu must

be used [21]. All three emulators also require the installation of extra software

for it to be possible to install and use them. ComNetsEmu requires the installa-

tion of Vagrant and Virtualbox before installing the emulator [31]. NIEP requires

the installation of hypervisors (Qemu and Libvirt) as well as Python 2.7 [21], and

MeDICINE requires the installation of Containernet and Ansible, a bare-metal

hypervisor [38]. All three emulators also require the cloning of the Github repos-

itories to the local machine prior to installation.

Examples of use of the emulators can be very useful for getting accustomed to

the functionalities available. All three emulators in this comparison provide ex-

amples; NIEP provides a list of examples for different topologies, including VMs,

VNFs, andmore. These were updated in February 2022 [21]. MeDICINE also has

a long list of examples, including full stack emulations of different complexities,

different topologies, and more, dating back to March 2019 [38]. ComNetsEmu

also provides examples, though the creators stress that these examples are not

made with optimized performance in mind. Here, the examples are basic and

can easily be reproduced and extended, and they encompass deploying Docker-

in-Docker, deploying a simple network service, and more. The latest update to

these happened in January 2022 [31].

A summary of the above comparison can be found in Table 3.1.

NIEP MeDICINE ComNetsEmu

Language Python 2.7 Python 3
Python 3.6 and
3.8

Based on Mininet Containernet Containernet

Topology
Mininet initial-
ized through
JSON

Topology API
Mininet using
Docker hosts

Orchestration
Built-in orchestra-
tion module

Compatible with
several MANO
systems but OSM
recommended

APPContainer
Manager class

Installation
Ubuntu, requires
installation of hy-
pervisors

Ubuntu (18.04 or
later), requires in-
stallation of Con-
tainernet and An-
sible

Ubuntu (20.04 or
later), requires
installation of
Vagrant and Vir-
tualbox

Examples
13+ different
examples (Feb
2022)

8+ different exam-
ples (Mar 2019)

7 basic examples
(Jan 2022)

Table 3.1: Comparison of the three emulators considered for this thesis.

Based on this comparison, one emulator was selected. The biggest factor that

influenced the selection of the emulator was the ease of installation, where the

installation of all three emulators was attempted. Only one of the emulators was

possible to install, and that was MeDICINE. Because of this, MeDICINE will be

used for the remainder of this thesis. The issues that happened with the other

two emulators were either the inability to install components due to them being

deprecated, or the inability to configure the components correctly. In addition to

these issues, MeDICINE also seems like it is a very flexible emulator with many

good features that allows for the creation of an accurate and realistic network

emulation. However, upon attempts of running some basic examples,MeDICINE

malfunctioned, which is why it was ultimately not used to run any created tests.

Chapter 4

Investigating MeDICINE

This chapter will be focusing on the installation and running of MeDICINE, as

well as evaluating the emulator more in-depth than in the previous chapter. In

addition, technical problems that arose during the writing of this thesis will be

discussed briefly.

4.1 MeDICINE Installation and Use

There are several steps that go into the installation ofMeDICINE throughUbuntu.

First, the installer for OSM needs to be downloaded by entering the command

wget https://osm-download.etsi.org/ftp/osm-11.0-eleven/install_osm.sh
which places the install_osm.sh file in the current repository [39]. Thismethod
installs MeDICINE in combination with OSM, which is the simplest method. The

next step is to run the command ./install_osm.sh --vimemuwhich guarantees
that the emulator is installed together with OSM. These instructions are taken

from the Github repository for Vim-Emu (Vim-Emu and MeDICINE are inter-

changable names for the emulator) [38].

The next step is to install the Ansible hypervisor. To do this, enter the com-

mand sudo apt-get install ansible git aptitude into the terminal and fol-
low further instructions. When this is complete, it is necessary to clone the Con-

tainernet Github repository into the local repository on the machine that will be

running the emulation. Once the repository is cloned, the right directory needs to

be accessed to install Containernet. Once the installation process completes, the

usermust go up one directory and run another commandbefore proceeding to the

25

installation of the emulator itself. The code block below illustrates the necessary

commands for the installation of Containernet.

git clone https://github.com/containernet/containernet.git
cd ~/containernet/ansible
sudo ansible-playbook -i "localhost," -c local install.yml
cd ..
sudo make develop

Next is the installation of MeDICINE itself. This is done by cloning the Vim-

Emu Github repository outside of the Containernet repository, entering the right

directory, and running the installation command. Once this process is completed,

move up one directory and run the setup command. The code block below illus-

trates the necessary commands for the installation of the emulator.

git clone https://osm.etsi.org/gerrit/osm/vim-emu.git
cd ~/vim-emu/ansible
sudo ansible-playbook -i "localhost," -c local install.yml
cd ..
sudo python3 setup.py develop

Once this is complete, if Docker is not installed on the user’s machine already,

return to the home directory and execute the command sudo apt-get install
docker-ce docker-ce-cli containerd.io docker-compose-plugin to do this.
This completes the installation of MeDICINE and other necessary software re-

quired to run the emulator.

To use the emulator, it is necessary to run a Docker daemon in one terminal

and using at least two others for the emulator and its different components. To

run a Docker daemon, enter the command sudo dockerd into the terminal. This
will ensure that running any Docker hosts will be possible. Then, in all other

terminals thatwill be used, enter the vim-emu repository to build and run aDocker
container. The commands needed are shown in the code block below.

build the container:
docker build -t vim-emu-img .
run the (interactive) container:
docker run --name vim-emu -it --rm --privileged --pid='host'

-v /var/run/docker.sock:/var/run/docker.sock vim-emu-img
/bin/bash

An example of the use of the emulator without OSM, is done through run-

ning a previously created Python3 topology file in one terminal, while creating a

few VNFs in a second terminal. Then, through the first terminal, it is possible to

check the connectivity of the VNFs created in the second terminal. The more fea-

tures, including the OSM, are included in the running of the emulator, the more

advanced it becomes.

4.2 Evaluation of MeDICINE

MeDICINE is an emulator that was created ”in the framework of the SONATA

project” [38] and ismost often used together with OSM. There are instructions on

how to install every component of the emulator, but as there are multiple pages

with slightly differing instructions, it can be confusing to find the correct ones.

Most notably, some instructions come from an already deprecated page [26] that

later redirects to a page that is dedicated toOSMrather thanMeDICINE [39]. The

instructions above, as already mentioned, come from the official Github reposi-

tory for the emulator [38]. Here, there are also instructions for the setup of the

emulator as well as instructions on how to run a simple example. In the page dedi-

cated toOSM, it is possible to find theminimumand recommended requirements

for the machine on which it is to be installed [39]. These minimum requirements

are 6 GB RAM, 40 GB of disk space, 2 CPUs, and internet access. It is not recom-

mended to useUbuntu forWindows, but rather a VM runningUbuntu, preferably

version 20.04 or later.

There are, as mentioned in the previous chapter, more than eight different

topology files under the /examples folder. These can be used in different scenar-
ios, for example for a topology with a single data center versus a full-stack emula-

tion with multiple MANO frameworks. When running the emulator, it is possible

to run the --help, -h positional argument in combination with the main com-
mands to learn more about their functionalities. These main commands are:

vim-emu compute
vim-emu datacenter
vim-emu network

vim-emu compute is responsible for any compute instances and containers.

It is run together with the start, status, list, stop, xterm positional ar-

guments. The start argument initiates a compute instance, while status gives
the status of an already created compute instance. list gives a list of all created
compute instances, while stop terminates a compute instance. Finally, xterm is
coupled with a list of VNF names and opens terminals for the VNFs listed. The

compute command has a list of optional arguments, of which the most important
ones are --datacenter, -d that indicates the name of the data center to which
the command will be applied and --name, -n that gives the name of the compute
instance, for example ”vnf2”. In addition, there are other positional arguments

like --image, -i that indicates the name of the container image that should be
used, or --net that gives the network properties of the compute instance, and
more.

The vim-emu datacenter command, on the other hand, is responsible for giv-
ing information about the data centers that are running. These are initialized

through the given topology file, and the positional arguments for this command

are list and status. The list positional argument is used to list all running
data centers, while the status positional argument is used in combination with
the optional argument --datacenter, -d to give information about a specific

data center.

Finally, the vim-emu network command is used to create networks within the
emulation. The positional arguments here are add and remove and are quite self-
explanatory. There are several optional arguments, the most important ones be-

ing --datacenter, -d that indicates which datacenter the network should be ini-
tiated for, --source, -s that indicates the name of the VNF that should be the
source of the chain, and --destination, -dst that indicates the name of the

VNF that will be the destination of the chain.

Using these three commands, it is possible to build a complete network service

chain. The setup of the network service depends verymuch onwhich topology file

is used when it comes to the amount of data centers and MANO frameworks, but

the user controls how many VNFs are created and which of these have terminals.

Through the terminals in the VNFs, it is possible to configure each VNF to a dif-

ferent role, for example a router, a firewall, or a client computer.

4.3 Technical Problems

This short sectionwill discuss the technical issues that didnot allow theMeDICINE

emulator to run, forcing a change to the objectives of this thesis. Several attempts

were made to install the emulator, on two different computers and several VMs.

The first attempt, the installation was done through Ubuntu for Windows,

which has its own issues when it comes to more complex programs and com-

mands. Because of this, it was possible to install what seemed to be the emulator

and run it, but nothing more than the initial setup file was possible to run. As

it turns out, what was installed through Ubuntu for Windows was not the com-

plete emulator, which became apparent when attempting installation via a VM

running Ubuntu. However, the VM on the initial computer would crash before

completing the installation. This is when attempts were made using a second

computer. Again, installation was attempted on a VM running Ubuntu, ensuring

the VM had all the necessary hardware requirements. However, here there was

also an issue during installation, where the process downloaded files into the VM

and later threw an error because the files were present. This means that there

might be an issue with the installation process in itself.

Due to time constraints and an uncertain situation that arose during the writ-

ing process, it was not possible to investigate this issue further, which is what

forced the change to the objectives of the thesis.

Chapter 5

Design of Emulator Tests

This chapter will focus on the design of tests for the MeDICINE emulator. As

mentionedmultiple times previously, due to technical issues and time constraints,

the tests designed in this section were not possible to run in MeDICINE as the

emulatormalfunctioned upon trying to run some basic examples. Due to this, the

tests designed will encompass many aspects and functionalities of NFV, with the

intention of being run inMeDICINE. The chapter will also mention any potential

for future works using the designed tests.

5.1 Design Process

The first step to running MeDICINE is to use a topology file that is used as a

base for the emulation. Since there are already eight pre-existing topologies, it

was seen as beneficial to utilize two of these in the design of the tests. The first,

simpler topology utilizes a single data center, and the code for this can be found in

Appendix A.1. The second topology ismore complex and utilizes two data centers,

as well as the Tango Lightweight Life Cycle Manager (LLCM), and can be found

in Appendix A.2.

The method used to design these tests is to start very basic, and build up com-

plexity with each test. Some of the architectures designed are inspired by exer-

cises from Cisco Packet Tracer, used in the Communication Technology courses

at the University of Stavanger.

30

5.1.1 Tests With Single Data Center

Keeping inmind that potential studentsmay not be familiar with concepts of NFV

and network emulation in general, it is crucial to start with less complex tests to

not make the learning curve too steep from the beginning. Because of this, the

first test will be using the simpler topology and will utilize only two VNFs. A

diagram of the architecture of this test can be seen in Figure 5.1. In this test, both

of the VNFs are intended to be client computers that are connected to each other

via the data center. These client computers can communicate with each other

using for example the ping command.

Figure 5.1: Diagram of the first test architecture.

Staying with the single data center topology, it is possible to build amore com-

plex architecture for the second test. The first test utilized only two VNFs as client

computers; this test will contain five client computers that are connected by two

switches. That makes seven VNFs in total. A diagram of the architecture can be

seen in Figure 5.2. Here, the key is to configure each VNF to each component of

the architecture to create two separate networks for each group of client comput-

ers and allow for communication between all of them.

Figure 5.2: Diagram of the second test architecture.

To increase the complexity even further, it is possible to increase the num-

ber of switches and client computers, still within the single data center topology.

Here, the principle will be similar to that of the previous test, where the key is

to configure a network for each switch and ensure communication between all

client computers; however, it involves a far greater amount of VNFs, with three

switches and nine client computers, which makes twelve VNFs in total. For this

test, the aim is to set up three networks and establish communication between

them, so that all client computers can ping each other. This architecture can be

seen in Figure 5.3.

Figure 5.3: Diagram of the third test architecture.

5.1.2 Tests With Two Data Centers

The previous test was more complex than the first two, but it was still built in a

topology with a single data center. To increase the complexity and make the next

test closer to a real network service, the next tests will utilize the topology file with

two data centers. This will mimic two separate Local Area Networks (LANs) that

need to communicate with each other.

The first of these tests will reduce the amount of VNFs to compensate for the

introduction of the complexity of the second data center. Here, there will be one

router and two client computers in each data center, which adds up to a total of

six VNFs. This architecture can be seen in Figure 5.4. In this test, it is crucial to

not only ensure communication between the client computers in the same data

center, but most importantly to ensure the communication between the two data

centers, and subsequently the communication between client computers across

data centers.

Figure 5.4: Diagram of the fourth test architecture.

To again increase the complexity, the next test will increase both the amount

of VNFs, and what type of component they represent. In the first data center,

there will be one router, two switches, and four client computers. However, in the

second data center, there will be one router, one firewall, one switch, and three

client computers. The diagram of this architecture is illustrated in Figure 5.5.

Thirteen VNFs are used in this test, with seven VNFs in the first data center and

six VNFs in the second data center. Before communication between data centers

can be established, it is crucial to ensure communication within each data center,

and the correct configuration of the firewall in the second data center.

The sixth and final test is the most complex of the designed tests. It uses the

topology with two data centers, with one router, one firewall, two switches, and

five client computers in each data center, which adds up to a total of 18 VNFs, nine

in each data center. That means that the architecture is symmetrical. This can be

seen in the diagram in figure 5.6. Again, it is important to ensure communication

within a data center before attempting to establish a connection between the two

data centers. This includes the communication between client computers that

are connected to the same switch as well as to a different switch, and the correct

configuration of the firewall in each data center.

F
ig
u
re
5.
5:
D
ia
gr
am

of
th
e
fi
ft
h
te
st
ar
ch
it
ec
tu
re
.

F
ig
u
re
5.
6
:
D
ia
gr
am

of
th
e
si
xt
h
te
st
ar
ch
it
ec
tu
re
.

These tests, all growing in complexity, illustrate different architectures of net-

work service chains. The number of VNFs increaseswith each test, stepping down

only with the introduction of a second data center. The tests, done in progression

from 1-6 should be possible to complete while learning how to use the emulator

itself, meaning the learning curve is not too steep. The tests are slightly similar

to exercises from the aforementioned Communication Technology courses, with

possibilities for IP configuration, sending packets, and more.

5.2 Potential for Future Works

The tests designed in the previous section aremeant to be an introduction to NFV

and network emulation for potential students. Because these were not possible

to test at the time of writing this thesis due to technical issues, it opens up the

possibility for future works.

First, the tests could be built in theMeDICINE emulator, with all of the differ-

ent infrastructure like routers or firewalls. Here, different functionalities could be

tested through pinging or attempting to send packets with data, as well as config-

uration of IP addresses in tests where switches are involved. Parameters like the

time it takes to send a packet in the different architectures could be investigated.

Each test could be replicated in not only the MeDICINE platform, but also in

other emulators like ComNetsEmu or NIEP. This would require creating topol-

ogy files that are compatible with these other emulators, but that have the same

functions as the original topology files. Then, the tests could be run and compared.

The comparison could be for example the differences in building the architectures

in each emulator and howmany steps it took, or how smoothly the emulator runs

the test and how long the different functionalities take.

Chapter 6

Conclusions

NFV is still a novel concept that is gaining popularity, both in academia and in the

telecommunication industry. Because of this, it is important to investigate and

create a path for future students to learn more about the topic. The objectives of

this thesis were just that.

Because of unforeseen issues and time constraints, the objectives changed sev-

eral times during the writing process. Starting off as the design and running of

tests in two different emulators and the comparison of these, the objectives later

changed to only using one emulator to run designed tests; however, when the se-

lected emulator did not function correctly, a last-minute change to the objectives

had to be made yet again to design tests that may be used by future students that

will be able to correctly install and run the emulator. In addition, the unchanged

objective was to research the state-of-the-art of NFV as a whole, as well as com-

pare several NFV emulators with the intention of selecting one or two for running

of the designed tests.

After thorough into the architecture and service composition of NFV, several

open-source NFV emulators were investigated in depth to determine which emu-

lator would be the most suitable for this thesis. After attempting to install three

different emulators, it appeared that only MeDICINE was possible to install and

run the setup. Because of this, the MeDICINE platform was selected. However,

upon closer inspection, it became apparent that the emulator was not running

correctly and it was impossible to run any kinds of tests.

Since it was not possible to run any tests, a more thorough investigation into

the functions used in the emulator was done, as this was possible to run in the

38

incomplete, malfunctioning emulator. After this, the tests were designed based

on two pre-existing topology files. Six tests were designed in total, with different

difficulty levels. These tests were designed with a learning curve for both NFV

concepts and the emulator in mind.

These six tests that were designed for use in MeDICINE open up possibilities

for future works. Either to run the tests and check metrics and parameters like

execution time, or adapting the topology files to be able to run in a different emula-

tor to be able to compare how two different emulators may run the same network

service architecture. The tests can be used for IP configuration, sending and trac-

ing packets, and more, meaning they are versatile and give varying prospects for

future students to use them for their own learning and research.

Appendix A

Topology Files Used For Tests

A.1 Topology With Single Data Center

Note: This code was written by Manuel Peuster and is located on the Vim-Emu

(MeDICINE)Github repository at /examples/default_single_dc_topology.py
[38].

Copyright (c) 2015 SONATA-NFV and Paderborn University
ALL RIGHTS RESERVED.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Neither the name of the SONATA-NFV, Paderborn University
nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written

40

permission.
#
This work has been performed in the framework of the SONATA project,
funded by the European Commission under Grant number 671517 through
the Horizon 2020 and 5G-PPP programmes. The authors would like to
acknowledge the contributions of their colleagues of the SONATA
partner consortium (www.sonata-nfv.eu).
import logging
from mininet.log import setLogLevel
from emuvim.dcemulator.net import DCNetwork
from emuvim.api.rest.rest_api_endpoint import RestApiEndpoint
from emuvim.api.openstack.openstack_api_endpoint import OpenstackApiEndpoint

logging.basicConfig(level=logging.INFO)
setLogLevel('info') # set Mininet loglevel
logging.getLogger('werkzeug').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.base').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.compute').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.keystone').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.nova').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.neutron').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.heat').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.heat.parser').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.glance').setLevel(logging.DEBUG)
logging.getLogger('api.openstack.helper').setLevel(logging.DEBUG)

def create_topology():
net = DCNetwork(monitor=False, enable_learning=True)

dc1 = net.addDatacenter("dc1")
add OpenStack-like APIs to the emulated DC
api1 = OpenstackApiEndpoint("0.0.0.0", 6001)
api1.connect_datacenter(dc1)
api1.start()

api1.connect_dc_network(net)
add the command line interface endpoint to the emulated DC (REST API)
rapi1 = RestApiEndpoint("0.0.0.0", 5001)
rapi1.connectDCNetwork(net)
rapi1.connectDatacenter(dc1)
rapi1.start()

net.start()
net.CLI()
when the user types exit in the CLI, we stop the emulator
net.stop()

def main():
create_topology()

if __name__ == '__main__':
main()

A.2 Topology With Two Data Centers

Note: This code was written by Manuel Peuster and is located on the Vim-Emu

(MeDICINE)Github repository at /examples/tango_default_cli_topology_2_pop.py
[38].

Copyright (c) 2018 SONATA-NFV, 5GTANGO and Paderborn University
ALL RIGHTS RESERVED.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Neither the name of the SONATA-NFV, 5GTANGO, Paderborn University
nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
#
This work has also been performed in the framework of the 5GTANGO project,
funded by the European Commission under Grant number 761493 through
the Horizon 2020 and 5G-PPP programmes. The authors would like to
acknowledge the contributions of their colleagues of the 5GTANGO
partner consortium (www.5gtango.eu).
import logging
from mininet.log import setLogLevel
from emuvim.dcemulator.net import DCNetwork
from emuvim.api.rest.rest_api_endpoint import RestApiEndpoint
from emuvim.api.tango import TangoLLCMEndpoint

logging.basicConfig(level=logging.DEBUG)
setLogLevel('info') # set Mininet loglevel
logging.getLogger('werkzeug').setLevel(logging.DEBUG)
logging.getLogger('5gtango.llcm').setLevel(logging.DEBUG)

def create_topology():
net = DCNetwork(monitor=False, enable_learning=True)
create two data centers
dc1 = net.addDatacenter("dc1")
dc2 = net.addDatacenter("dc2")
interconnect data centers
net.addLink(dc1, dc2, delay="20ms")

add the command line interface endpoint to the emulated DC (REST API)
rapi1 = RestApiEndpoint("0.0.0.0", 5001)
rapi1.connectDCNetwork(net)
rapi1.connectDatacenter(dc1)
rapi1.connectDatacenter(dc2)
rapi1.start()
add the 5GTANGO lightweight life cycle manager (LLCM) to the topology
llcm1 = TangoLLCMEndpoint("0.0.0.0", 5000, deploy_sap=False)
llcm1.connectDatacenter(dc1)
llcm1.connectDatacenter(dc2)
run the dummy gatekeeper (in another thread, don't block)
llcm1.start()
start the emulation and enter interactive CLI
net.start()
net.CLI()
when the user types exit in the CLI, we stop the emulator
net.stop()

def main():
create_topology()

if __name__ == '__main__':
main()

Bibliography

[1] ETSI Industry Specification Group, “Network functions virtu-

alisation (NFV) - network operator perspectives on industry

progress.” ETSI ISG NFV, 2013, p. 16. [Online]. Available:

https://portal.etsi.org/NFV/NFV_White_Paper2.pdf

[2] J. Gil Herrera and J. F. Botero, “Resource allocation in NFV: A compre-

hensive survey,” IEEE Transactions on Network and ServiceManagement,

vol. 13, no. 3, pp. 518–532, 2016, conference Name: IEEE Transactions on

Network and Service Management.

[3] A. Leonhardt. (2020) SDN vs NFV: Understand-

ing their differences, similarities and benefits. [On-

line]. Available: https://blog.equinix.com/blog/2020/03/10/sdn-vs-nfv-

understanding-their-differences-similarities-and-benefits/

[4] VMWare. (2022) What is network functions virtual-

ization (NFV)? | VMware glossary. [Online]. Avail-

able: http://www.vmware.com/topics/glossary/content/network-

functions-virtualization-nfv.html

[5] Ciena Corporation. (2016) What is network function virtualization (NFV).

[Online]. Available: https://www.blueplanet.com/resources/What-is-NFV-

prx.html

[6] ETSI. (2022) ETSI - NFV. [Online]. Available:

https://www.etsi.org/committee/nfv

[7] ——. (2022) ETSI - standards for NFV - network functions virtualisation |

NFV solutions. [Online]. Available: https://www.etsi.org/technologies/nfv

46

[8] ETSI Industry Specification Group, “Network functions vir-

tualisation - an introduction, benefits, enablers, chal-

lenges & call for action,” 2012, p. 16. [Online]. Available:

https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/White%20Papers/NFV_White_Paper1_2012.pdf

[9] A. Leonhardt. (2019) Defining the elements of NFV architectures. [On-

line]. Available: https://blog.equinix.com/blog/2019/10/17/networking-

for-nerds-defining-the-elements-of-nfv-architectures/

[10] F. Khan. (2015) A cheat sheet for understanding ”NFV architecture”.

Section: NFV. [Online]. Available: https://telcocloudbridge.com/blog/a-

cheat-sheet-for-understanding-nfv-architecture/

[11] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and

R. Boutaba, “Network function virtualization: State-of-the-art and research

challenges,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp.

236–262, 2016, conference Name: IEEE Communications Surveys Tutori-

als.

[12] VMWare. (2022) What is a hypervisor? | VMware glossary. [Online]. Avail-

able: https://www.vmware.com/topics/glossary/content/hypervisor.html

[13] RedHat. (2022) Kernel virtual machine. [Online]. Available:

https://www.linux-kvm.org/page/Main_Page

[14] B. Tola, Y. Jiang, and B. E. Helvik, “Model-driven availability assessment

of the NFV-MANO with software rejuvenation,” IEEE Transactions on Net-

work and Service Management, vol. 18, no. 3, pp. 2460–2477, 2021, con-

ference Name: IEEE Transactions on Network and Service Management.

[15] S. Bian, X. Huang, Z. Shao, X. Gao, and Y. Yang, “Service chain

composition with failures in NFV systems: A game-theoretic per-

spective,” arXiv:2008.00208 [cs], p. 14, 2020. [Online]. Available:

http://arxiv.org/abs/2008.00208

[16] D. Antonelli and W. Johnson. (2020) Emulators can turn your PC into

a mac, let you play games from any era, and more — here’s what you

should know about the potential benefits and risks of using one. [Online].

Available: https://www.businessinsider.com/what-is-an-emulator

[17] B. McGuigan. (2022) What is a computer simulator? [Online]. Available:

http://www.easytechjunkie.com/what-is-a-computer-simulator.htm

[18] N. Singh, A. Mura, S. Raghani, and B. Joshi. (2013) What

are the differences between simulation and emulation? [Online].

Available: https://www.quora.com/What-are-the-differences-between-

simulation-and-emulation

[19] L. Bondan, C. R. P. dos Santos, and L. Z. Granville, “Comparing virtualiza-

tion solutions for NFV deployment: A network management perspective,”

in 2016 IEEE Symposium on Computers and Communication (ISCC), 2016,

pp. 669–674.

[20] K. Kaur, V. Mangat, and K. Kumar, “Towards an open-source NFVmanage-

ment and orchestration framework,” in 2022 14th International Conference

on COMmunication Systems NETworkS (COMSNETS), 2022, pp. 251–255,

ISSN: 2155-2509.

[21] Garcia, Vinícius Fülber. (2021) NIEP: NFV infrastructure emulation

platform. Original-date: 2017-10-10T17:45:43Z. [Online]. Available:

https://github.com/ViniGarcia/NIEP

[22] T. N. Tavares, L. da Cruz Marcuzzo, V. Fulber Garcia, and G. Venâncio de

Souza, “NIEP: NFV infrastructure emulation platform,” in 2018 IEEE 32nd

International Conference on Advanced Information Networking and Ap-

plications (AINA), 2018, pp. 173–180, ISSN: 2332-5658.

[23] NEC. (2021) ClickOS - systems and machine learning. [Online]. Available:

http://cnp.neclab.eu/projects/clickos/

[24] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, and F. Huici,

“ClickOS and the art of network function virtualization.” USENIX, 2014,

p. 16.

[25] J. Martins, M. Ahmed, C. Raiciu, and F. Huici, “Enabling fast, dy-

namic network processing with clickOS,” in Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined net-

working - HotSDN ’13. ACM Press, 2013, p. 67. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=2491185.2491195

[26] M. Peuster. (2016) Vim-emu: A nfvmulti-pop emulation platform. [Online].

Available: https://osm.etsi.org/wikipub/index.php/VIM_emulator

[27] M. Peuster, H. Karl, and S. van Rossem, “MeDICINE: Rapid prototyping

of production-ready network services in multi-PoP environments,” in 2016

IEEE Conference on Network Function Virtualization and Software De-

fined Networks (NFV-SDN), 2016, pp. 148–153.

[28] M. Peuster. (2022) Containernet. [Online]. Available:

https://containernet.github.io/

[29] F. Fitzek and F. Granelli. (2021) ComNetsEmu SDN/NFV emula-

tor - granelli’s laboratory. [Online]. Available: https://www.granelli-

lab.org/researches/relevant-projects/comnetsemu-sdn-nfv-emulator

[30] Z. Xiang, S. Pandi, J. Cabrera, F. Granelli, P. Seeling, and F.H. P. Fitzek, “An

open source testbed for virtualized communication networks,” IEEE Com-

munications Magazine, vol. 59, no. 2, pp. 77–83, 2021, conference Name:

IEEE Communications Magazine.

[31] Z. Xiang. (2022) ComNetsEmu. [Online]. Available:

https://git.comnets.net/public-repo/comnetsemu

[32] Juniper Networks. (2022) Contrail | juniper networks. [On-

line]. Available: https://www.juniper.net/us/en/products/sdn-and-

orchestration/contrail.html

[33] ——. (2022) Cloud-native contrail networking (CN2) | juniper networks.

[Online]. Available: https://www.juniper.net/us/en/products/sdn-and-

orchestration/contrail/cloud-native-contrail-networking.html

[34] ——. (2022) Contrail service orchestration | juniper networks.

[Online]. Available: https://www.juniper.net/us/en/products/sdn-and-

orchestration/contrail/contrail-service-orchestration.html

[35] ——. (2022) Paragon insights | juniper networks. [On-

line]. Available: https://www.juniper.net/us/en/products/network-

automation/paragon-insights.html

[36] Calnex. (2022) NE-ONE enterprise network emulator range. [Online].

Available: https://itrinegy.com/ne-one-enterprise-range/

[37] ——. (2022) NE-ONE professional network emulator range. [Online].

Available: https://itrinegy.com/ne-one-professional-range/

[38] M. Peuster. (2021) Vim-emu: A nfvmulti-pop emulation platform. [Online].

Available: https://github.com/containernet/vim-emu

[39] ETSI OSM. (2020) Open source MANO 6.0 documentation. [Online].

Available: https://osm.etsi.org/docs/user-guide/latest/index.html

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Hein Meling

© 2022 Sylwia Wasilewska

