
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study programme / specialisation:
Electrical Engineering and Computer
Science

The spring semester, 2022

Open / Confidential
Author: Aitor Martín Rodríguez

…………………………………………

(signature author)

Course coordinator: Head of Department Tom Ryen

Supervisor(s): Associate Professor Naeem Khademi

Thesis title: Enhancing QUIC over Satellite Networks

Credits (ECTS): 30

Keywords: QUIC, SATCOM, satellite,
transport layer, congestion control, BBR

 Pages: 79

 + appendix: 25

 Stavanger, 15.06.2022
 date/year

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Enhancing QUIC over Satellite
Networks

Master’s Thesis in Computer Science
by

Aitor Martín

Supervisor

Assoc. Prof. Naeem Khademi

June 14, 2022

Abstract

The use of Satellite Communication (SATCOM) networks for broadband connectivity
has recently seen an increase in popularity due to, among other factors, the rise of the
latest generations of cellular networks (5G/6G) and the deployment of high-throughput
satellites. In parallel, major advances have been witnessed in the context of the transport
layer: first, the standardization and early deployment of QUIC, a new-generation and
general-purpose transport protocol; and second, modern congestion control proposals
such as the Bottleneck Bandwidth and Round-trip propagation time (BBR) algorithm.
Even though satellite links introduce several challenges for transport layer mechanisms,
mainly due to their long propagation delay, satellite Internet providers have relied on
TCP connection-splitting solutions implemented by Performance-Enhancing Proxies
(PEPs) to greatly overcome many of these challenges. However, due to QUIC’s fully
encrypted nature, these performance-boosting solutions become nearly impossible for
QUIC traffic, leaving it in great disadvantage when competing against TCP-PEP. In
this context, IETF QUIC WG contributors are currently investigating this matter and
suggesting new solutions that can help improve QUIC’s performance over SATCOM. This
thesis aims to study some of these proposals and evaluate them through experimentation
using a real network testbed and an emulated satellite link.

Acknowledgements

Thanks to my supervisor Associate Professor Naeem Khademi, for his guidance and
dedication. Thanks to my family, for their unconditional support and love. Thanks to
the people of Stavanger and all around the world, for sharing wonderful moments with
me.

v

Contents

Abstract iii

Acknowledgements v

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Use Cases . 2
1.3 Problem Definition and Research Questions 3
1.4 Objectives . 4
1.5 Outline . 5

2 Background 7
2.1 Transport Layer over SATCOM . 7

2.1.1 Challenges . 8
2.1.2 TCP Solutions . 8

2.1.2.1 TCP Protocol Optimizations 9
2.1.2.2 Performance-Enhancing Proxies 10

2.1.3 QUIC over SATCOM . 12
2.2 QUIC protocol . 13

2.2.1 New Features of QUIC . 14
2.2.2 HTTP/3 . 15
2.2.3 Relevant QUIC Extensions . 17
2.2.4 QUIC Implementations . 17

2.3 Congestion Control . 18
2.3.1 Loss-based CC: CUBIC . 19
2.3.2 Model-based CC: BBR . 20

3 Proposed Solutions 23
3.1 Introduction . 23
3.2 End-to-end solutions . 23

3.2.1 Better Congestion Control . 24
3.2.2 Accelerate path parameter discovery 24
3.2.3 Reduce ACK load in the return link 25

vii

viii CONTENTS

3.2.4 Forward Error Correction . 27
3.3 Application Proxies . 27

3.3.1 MASQUE . 27
3.4 Selected Solutions . 28

4 Research Methodology 31
4.1 Satellite Experimentation . 31
4.2 Experimental Methodology . 32
4.3 Data Collection and Analysis . 33

5 Testbed Implementation 35
5.1 Testbed Overview . 35

5.1.1 Controller Setup . 37
5.1.2 Endpoint Setup . 38
5.1.3 Router Setup . 39

5.2 Experiment Orchestration with TEACUP 39
5.2.1 Extending TEACUP for QUIC support 40

5.2.1.1 New traffic generators . 41
5.2.1.2 New loggers . 41
5.2.1.3 Others . 42

5.3 Satellite Emulation . 43
5.3.1 tc-netem . 43
5.3.2 OpenSAND . 43

5.4 QUIC implementations . 44
5.5 Event Logging for QUIC . 45
5.6 Github Repository . 45

6 Experiments and Results 49
6.1 Experiment Design . 49
6.2 Metrics . 50
6.3 Scenarios . 50

6.3.1 Block A: Better Congestion Control 51
6.3.1.1 Scenario A1: Single-Flow Bulk Download 51
6.3.1.2 Scenario A2: Mice vs Elephant Flows 52
6.3.1.3 Scenario A3: Multi-Flow Fairness 53
6.3.1.4 Scenario A4: Latecomer Issue 53

6.3.2 Block B: Faster path parameter discovery 54
6.3.2.1 Scenario B1: Connection Resumption with BDP Extension 55

6.3.3 Block C: ACK policies for reducing congestion in return link . . . 55
6.3.3.1 Scenario C1: Bulk download on asymmetric SATCOM . 56

6.4 Results . 56
6.4.1 Block A results . 57

6.4.1.1 A1: Bulk download results 57
6.4.1.2 A2: Mice-flow results . 59
6.4.1.3 A3: Multi-flow fairness results 59
6.4.1.4 A4: Latecomer test results 63

6.4.2 Scenario B1 results . 64

CONTENTS ix

6.4.3 Scenario C1 results . 65

7 Discussion 69
7.1 Impact of QUIC Implementation . 69
7.2 Impact of Congestion Control . 70
7.3 Impact of BDP Frame Strategy . 72
7.4 Impact of ACK Frequency Strategy . 72

8 Conclusion 75
8.1 Answers to the Research Questions . 75
8.2 Future Directions . 77

List of Figures 77

List of Tables 81

A User manual for experiment reproduction 83
A.1 Testbed sanity checks . 83
A.2 Running an experimental scenario . 84
A.3 Post-processing . 85

B QUIC traffic generators for TEACUP 87

C QUIC loggers for TEACUP 93

D Installation scripts for QUIC implementations 95

E Accepted publication for ANRW’22 99

Bibliography 109

Abbreviations

ACK Acknowledgement

AQM Active Queue Management

BDP Bandwidth-Delay Product

BBR Bottleneck-Bandwidth and Round-Trip Time

CC Congestion Control

cwnd Congestion Window

E2E End-to-end

ECN Explicit Congestion Notification

GEO Geosynchronous Equatorial Orbit

ISP Internet Service Provider

LEO Low Earth Orbit

NAT Network Address Translation

NTP Network Time Protocol

PEP Performance Enhancing Proxy

RTT Round-Trip Time

SATCOM Satellite Communications

SSH Secure Shell

TCP Tranmission Control Protocol

TLS Transport Layer Security

QoE Quality of Experience

QUIC Quick UDP Internet Connections

UDP User Datagram Protocol

xi

Chapter 1

Introduction

This document describes the work carried out during the spring semester of 2022 at the
Faculty of Science and Technology at the University of Stavanger (UiS), for the Master
Thesis in Computer Science titled ’Enhancing QUIC over Satellite Networks’.

1.1 Motivation

The transport layer is instrumental for establishing logical end-to-end communications
over the Internet. Transport protocols provide network application developers with
abstraction regarding what networks their traffic has to go across, in some cases providing
reliability and security. TCP (Transmission Control Protocol) [1] and UDP (User
Datagram Protocol) [2] have been fundamental pillars for the development of Internet
communications for decades, and they are still used for most of the Internet traffic [3].

TCP, as a connection oriented and reliable transport protocol, is key for applications
where data transfers needs to be completed reliably, and where latency requirements are
not strict (e.g., web browsing, file exchange or e-mail). On the other hand, UDP minimizes
overhead and provides fast connectionless communications, which makes it fundamental
for delay-sensitive applications (e.g., VoIP or videoconferencing). Other protocols such
as SCTP (Scream Control Transmission Protocol) [4] and DCCP (Datagram Congestion
Control Protocol) [5] have attempted to combine the message-oriented approach of
UDP with the reliability of TCP, to provide a more appropriate transport for modern
applications. Even though these protocols have proven to be suitable for many scenarios,
they have not been able to compete with the well-established TCP and UDP. In the last
decade, a new candidate has appeared, aiming to revolutionize the transport layer.

1

2 Chapter 1 Introduction

QUIC (Quick UDP Internet Connections), initially designed by Google [6], aims to
substitute TCP, offering a secure, low-latency, reliable, multiplexed and general-purpose
transport over UDP. After years of development, QUIC was finally standardized as a
series of RFCs [7–10]. QUIC integrates TLS, offering full end-to-end encryption and
aiming for secure Internet communications. This feature greatly benefits Internet users,
however, it also introduces some new challenges for network operators and ISPs (Internet
Service Providers), due to the decrease in observability.

In parallel, we have witnessed the development of High Throughput Satellites (HTS)
[11] and the 5th and 6th generations of cellular networks, which contemplate the use of
Satellite Communication (SATCOM) networks for access or backhauling purposes, and
even potentially using a hybrid terrestrial-satellite scheme [12]. GEO (Geosynchronous
Equatorial Orbit) satellites have been widely used for broadband services for decades due
to the large coverage areas they can offer, and we are now witnessing the early development
and experimental phases of new generation LEO (Low Earth Orbit) constellations, which
also seem promising drivers for the Internet of the future [13]. This means that future
Internet communications will benefit from the possibilities these solutions introduce;
nevertheless, they will also have to be able to overcome the challenges introduced by
satellite infrastructure.

In this context, this thesis aims to analyze the challenges of using encrypted transport
protocols - specifically QUIC - over SATCOM networks, study their impact on perfor-
mance and evaluate the suitability of different state-of-the-art solutions through network
experimentation.

1.2 Use Cases

There are several use-cases where modern cellular networks can integrate satellite infras-
tructure [12]. Figure 1.1 shows two significant use cases for broadband access using GEO
satellites.

The first use case contemplates the use of a GEO satellite an access link, to give coverage
to users living in remote areas directly. With a single satellite terminal, users can reach
the gateway set up by their Internet Service Provider (ISP) through the satellite link,
which provides them with Internet connectivity.

The second use case is transparent to the user, and it suggests using a GEO satellite
to establish a backhaul link between the Radio Access Network (RAN) and the Core
Network (CN) of the cellular network architecture. This can benefit remote regions where
there is a lack of terrestrial infrastructure and a long distance to reach the CN. This

Chapter 1 Introduction 3

Internet

Server
Client in a

remote location

GEO Satellite access

Core Network

Server

User Equipment

GEO Satellite backhaul
Radio Access

Gateway

Figure 1.1: Satellite Internet use cases

use case also contemplates the possibility of using a dual-setup with a terrestrial and a
satellite scenario: this would allow to perform load balancing and applying Quality of
Service (QoS) through traffic prioritization over one link or the other depending on their,
for example, latency or bandwidth requirements.

1.3 Problem Definition and Research Questions

Satellite links feature long propagation paths that contribute to the end-to-end latency.
The distance from the Earth surface to GEO satellites can range from 36000 to 42000 km
approximately, depending on the relative position between ground station and satellite,
which translates into propagation delays that vary between 120 and 140 ms. In an
end-to-end scheme where a GEO satellite link is in the path, one RTT (Round Trip
Time) includes 4 trips between the Earth’s surface and the satellite. This means that, if
additional delays due to routing and processing in middleboxes are included, the RTT in
the connection can easily go over 600 ms.

This introduces very significant challenges for the transport protocols [14]. First, protocol
feedback suffers great delays. This means that mechanisms like loss recovery, congestion
control or flow control take longer to get feedback (e.g., it takes a long time to detect
packet loss or to receive acknowledgement packets). Second, the greater RTT increases the
BDP (Bandwidth-Delay Product), which leads to a higher number of packets "in flight"
(i.e., unacknowledged packets) and therefore requires larger buffers in the endpoints and

4 Chapter 1 Introduction

satellite transponders. Some other challenges also derive from the bandwidth asymmetry
present in satellite links and propagation errors.

These challenges introduced by the satellite link have usually been overcome with the use
of Performance-Enhancing Proxies (PEPs) [15], which often enhance TCP connections
with the use of connection-splitting. Splitting connections into several segments allows
local loss recovery and optimized congestion control in each segment. PEPs generally
accelerate the TCP handshake by spoofing the SYN-ACK messages, without waiting
for the response from the other side of the satellite link, to get a faster connection
establishment. They can also implement satellite-optimized congestion algorithms, such
as TCP Hybla [16].

However, QUIC’s end-to-end encryption [9] completely disables connection-splitting,
which leaves PEPs out of the picture. This leaves QUIC in great disadvantage, which
even with the fast handshake is greatly outperformed by TCP-PEP solutions [17]. With
the web quickly moving towards HTTP/3 and QUIC (to this date, 8% of the websites
on the public Internet already use QUIC [18]), it becomes clear that new solutions need
to be found to boost the performance of QUIC over satellite links.

Taking all of this into consideration, we formulate two main research questions:

• RQ1: Can the performance of QUIC over SATCOM links be improved using
transport protocol mechanisms?

• RQ2: If the answer to RQ1 is positive, are these mechanisms safe and feasible to
implement?

These research questions will be further detailed in Chapter 3.

1.4 Objectives

After defining the main research questions, a series of major objectives can be defined for
this work:

1. Study the state-of-the-art surrounding QUIC transport over GEO SATCOM and
identify solutions that could potentially boost performance.

2. Set up a network testbed that allows running automated QUIC experiments over
an emulated satellite link, ensuring reproducibility and repeatability.

Chapter 1 Introduction 5

3. Define a series of metrics and scenarios to evaluate different aspects of network
performance, in order to evaluate the suitability of the selected solutions.

4. Obtain performance results for these scenarios and observe their implications.

5. Reflect on the results and start a discussion about the impact of the selected
solutions and their feasibility.

1.5 Outline

The thesis is structured as follows:

• Chapter 2 describes some theory regarding the QUIC protocol, congestion control
algorithms and satellite communications (SATCOM), adding some insight into the
challenges that satellite links introduce to the transport layer.

• Chapter 3 discusses the existing approaches to improve the performance of QUIC
over satellite, and outlines the contributions of this work.

• Chapter 4 presents a brief description of the research methodology, adding insight
into the chosen experimental approach, workflow and design principles.

• Chapter 5 offers an in-depth description of the design and implementation of the
experimental testbed.

• Chapter 6 describes the experimental procedure, metrics and scenarios, and it
presents the results of the experiments.

• Chapter 7 discusses the results, analyzing the possible reasons behind them, the
impact of different aspects of the transport layer on performance and the feasibility
of different mechanisms.

• Chapter 8 summarizes the outcome of this work, giving an answer to the research
questions and hinting possible future research paths.

Chapter 2

Background

Before describing the solution proposal for the formulated problem statement, it is
important to provide some background. This chapter aims to provide context for the
work done in this thesis, describing the different pillars that it stands on and discussing
the related works in the field.

The chapter starts by characterizing GEO SATCOM links, enumerating the challenges
that these links introduce in the context of the Internet transport layer and briefly
describing the solutions proposed over the years to mitigate these challenges for TCP
traffic. These solutions include protocol optimizations and proxied appraoches, and it is
essential to understand them in order to come up with new solutions for QUIC. This
chapter also summarizes the published performance evaluation studies on QUIC over
SATCOM and some early research studying different proposals for boosting performance.

Next, the QUIC protocol is introduced, describing its background and design principles,
relevant features for SATCOM and the current development and deployment status
of the different QUIC implementations. Having a basic understanding of the different
mechanisms implemented in QUIC is important to design clever SATCOM optimizations.

Finally, major breakthroughs in congestion control are described, briefly explaining the
development towards modern CC algorithms (i.e. BBR). Since many of BBR’s properties
make it a general-purpose CC, it is interesting to contemplate the feasibility of integrating
BBR in the QUIC protocol and evaluating its performance over SATCOM.

2.1 Transport Layer over SATCOM

GEO SATCOM links introduce have a series of properties that introduce challenges for
transport layer mechanisms. These challenges have lead to several TCP solutions, that

7

8 Chapter 2 Background

either optimize TCP over satellite by adding extensions to the protocol or propose the
use of proxies that implement performance-enhancing mechanisms, usually transparent
to the endpoints.

2.1.1 Challenges

There are mainly three relevant properties of the satellite link that are fundamental for
this study: (1) the long propagation delay, (2) the asymmetry of the connection and (3)
the propagation errors [19].

Firstly, the long propagation delay implies a long protocol feedback loop, which
implies that the slow-start and congestion-avoidance mechanisms will need a long time
to ramp up the cwnd and reach the available bandwidth (Challenge C#1), thus being
inefficient in terms of link utilization. Loss recovery mechanisms and cumulative ACKs
also suffer great delays, which can lead to unnecessary retransmissions and difficulty in
the RTT measurements, which are essential for the correct setup of retransmission timers
(Challenge C#2). In addition, a high propagation delay also increases the BDP, which
increases the size of the buffers needed in both the endpoints (receiving windows) and in
the satellite transponder (buffer size) to reach full link utilization (Challenge C#3).

Secondly, satellite links can be bandwidth-asymmetric, i.e. upstream bandwidth
(from the user to the Internet) can be several times smaller than downstream bandwidth
(from the Internet to the user). The bandwidth-asymmetric plans offered by satellite
service providers are oriented towards web browsing traffic, which usually implies large
amounts of data being downloaded from the Internet and not much traffic in the upstream
directions (e.g., ACKs, cookies and other small uploads). However, this implies that, if
the upstream traffic increases and the buffers become filled with ACKs, this will slow
down the data transfers in the downstream link [20] (Challenge C#4).

Thirdly, satellite links are prone to propagation errors. Even though these links often
maintain a free line-of-sight between satellite and ground stations, they are prone to
bit errors caused by atmospheric attenuation and rain fading, which are present at
the gigahertz frequency bands in which satellites communication satelites operate, - i.e.
between 4 and 40 GHz [21] (Challenge C#5).

2.1.2 TCP Solutions

Since the challenges of using TCP over SATCOM links were identified, several mechanisms
have been proposed to mitigate them over the years, and many of them have become
fundamental TCP extensions to improve TCP’s performance over heterogeneous networks.

Chapter 2 Background 9

Table 2.1 summarizes these solutions, classified as (1) protocol optimizations [22, 23], (2)
proxy-enabled optimizations (with PEPs [15]) and (3) link layer solutions. The following
subsections describe them in more detail.

Type Mechanism Challenge

Protocol optimizations

Better slow-start and congestion-avoidance C#1
Timestamps extension [24] C#2
Selective Acknowledgements [25] C#2
TCP Window Scale Option [24] C#3
Model-based CC C#5

PEP optimizations

ACK Spoofing C#1,2
Handshake Spoofing C#1
Satellite-optimized CC [16] C#1
Local Loss Recovery C#2
ACK Aggregation C#4

Link layer solutions Forward Error Correction (FEC) C#5

Table 2.1: Mechanisms to boost TCP performance over SATCOM

2.1.2.1 TCP Protocol Optimizations

Protocol optimizations are based on modifications or extensions of the TCP protocol
that can be implemented directly on the sender or receiver. The following list briefly
describes some of the main approaches implemented in the TCP protocol:

1. The TCP Window Scale option [24]. The original TCP specification [1] used
a 16-bit field to set the size of the sending and receiving windows, which leads
to a maximum of 64 kilobytes. When the bandwidths and latencies in Internet
communications started to grow, this value stopped being enough to handle the
large amounts of in-flight data. The TCP Window Scale option defines an exponent
that can set the window value up to 230 bytes, i.e. 1 gigabyte. This extension was
key for support of high BDP paths.

2. The Timestamps extension [24]. A common approach to measure RTT in TCP
endpoints is to measure the time between packet sent and corresponding ACK
received. However, this method has some faults: (1) re-transmitted packets share
the same sequence numbers, and (2) the sequence number space is limited to 232.
These two items can lead to wrong RTT measurements. The Timestamps extension
adds a header field that can be used to carry a clock timestamp, and enables the
use of an echo where both endpoints share their timestamp, allowing to measure
RTT with precision.

10 Chapter 2 Background

3. Selective Acknowledgements (SACKs) [25]. The first TCP specification used
cumulative acknowledgements - i.e., ACKs indicate the last packet that has been
received successfully. The main issue of this approach is that if one packet is lost,
all the following packets will also need to be re-transmitted. Using SACKs allows
to inform the sender of the specific packets that have been lost, so that the sender
only needs to re-transmit the lost packets.

4. Better slow-start and congestion-avoidance. The increase of the cwnd in
both the slow-start and congestion-avoidance phases becomes slower when the path
RTT increases. Proposals like TCP Hybla [16] modify these phases so that they
are independent of the RTT, compensating for the long delay and letting the cwnd
ramp-up faster in satellite scenarios.

These solutions allow to improve TCP connections over long BDP links without needing
to use any proxies. However, if these optimizations are too satellite-specific and too
aggressive for other general-purpose scenarios (e.g., a satellite-optimized congestion
control), there might be little interest in deploying them on the server-side. This is why
many satellite service providers rely on proxied solutions, which are usually transparent
to the endpoints.

2.1.2.2 Performance-Enhancing Proxies

PEPs are proxy-based solutions that allow to accelerate TCP connections by intercepting
them somewhere along the network path [15], and they are widely used in both satellite
and cellular use cases. PEPs usually rely on connection-splitting, which allows them to
split a network path into several segments and manage separate connections in each of
them, being able to optimize these segments individually without degrading performance
in the others.

PEP implementations can be either integrated - i.e. based on one single proxy (e.g.
PEPsal [26]) - or distributed i.e. based on two proxies, allowing to create a tunnel (e.g.
QPEP [27]), as presented in Figure 2.1.

Depending on the selected PEP architecture, some performance-boosting mechanisms or
others might be feasible. Although integrated solutions are cheaper and simpler, there
are some mechanisms that they do not support - e.g. handshake acceleration. Table 2.2
summarizes these mechanisms, indicating which are possible in each PEP architecture.

The following list briefly describes some popular PEP mechanisms:

Chapter 2 Background 11

Client PEPSatellite Terminal

Satellite

ISP Groundstation Internet Server

Long RTT Connection Short RTT connection
CUBIC CCHybla CC

Client Satellite Terminal

Satellite

ISP Groundstation Internet Server

Tunnel TCP connection

PEP
Client

PEP
Server

TCP connection

Integrated PEP solution

Distributed PEP solution

Figure 2.1: PEP implementations: integrated (top) and distributed (bottom)

Mechanism Integrated Distributed
ACK spoofing 3 3

ACK aggregation 3 3

CC optimization 3 3

Local loss recovery 7 3

Handshake acceleration 7 3

Table 2.2: Summary of PEP mechanisms

1. ACK Spoofing. A proxy can send ACKs to the sender pretending to be the
receiver, to accelerate the increase of the cwnd.

2. ACK Aggregation. A proxy can reduce the rate of ACKs by aggregating them,
to reduce congestion on the return link.

3. CC optimization. Via connection-splitting, a proxy on the server-side of the
satellite link can use a satellite-optimized CC (e.g., Hybla) that is only applied on
the satellite segment. This allows servers to use a general-purpose CC, without
needing to know that there is a satellite within the network path.

4. Local Loss Recovery. A proxy on the receiver-side can store packets in a buffer
to allow fast retransmission in case of packets being lost.

12 Chapter 2 Background

5. Handshake Spoofing. A proxy can pretend to be the server and respond to the
initial connection handshake on the client-side, avoiding the satellite link.

2.1.3 QUIC over SATCOM

When QUIC is introduced into the picture of SATCOM broadband services, a major
issue stands out. As a result of the fully-encrypted nature of the QUIC header, PEP
optimizations become nearly impossible, because proxies cannot see the contents of the
QUIC header that are fundamental for connection-splitting (e.g., packet numbers, stream
IDs, etc.). Therefore, unless some cooperation between the network and the endpoints
is introduced or some QUIC header fields are exposed to the middleboxes, PEPs as we
know them are mostly out of the picture.

After identifying this major issue, several studies have shown that the inability to use
PEPs leaves QUIC in great disadvantage when compared to TCP-PEP over SATCOM
links. Table 2.3 summarizes the work carried out in these studies, which evaluate different
aspects of transport layer performance through experimentation over simulated, emulated
and real satellite links.

Ref. Object of Study Implementation Experiments

[28] Page Load Times with Google QUIC chromium R
[29] Impact of Packet Loss on QUIC-

SATCOM
chromium, quicly, ngtcp2 R, E

[30] HTTP Browsing with Google QUIC chromium E
[31] QUIC ACK Policies over SATCOM chromium, quicly, picoquic R, E
[32] Effect of QUIC mechanisms for web

browsing over SATCOM
chromium E

[33] QUIC-BBR over SATCOM chromium E
[34] Web over GEO/LEO systems chromium S
[35] FEC-QUIC over wireless links rQUIC (quic-go) S
[36] Evaluation of BDP Extension picoquic R, E

Table 2.3: Summary of the research that evaluates the performance of QUIC over SAT-
COM links. Experiments column: R (real satellite), E (emulation) and S (simulation)

Authors in [28–30, 32] have thoroughly evaluated QUIC over SATCOM on real and
emulated scenarios, and they have all claimed that TCP-PEP solutions greatly outperform
QUIC. The work carried out in [28] points out that low performance is magnified for
large downloads - when downloads are short, QUIC’s fast handshake compensates for
the high latency; but when downloads become larger, QUIC’s CC’s slow convergence
makes it difficult to use the available link bandwidth efficiently. As shown in [30],
the presence of packet loss does not change the picture, and TCP-PEP keeps clearly
beating QUIC. Results in [29] also point out some performance differences between
QUIC implementations and satellite operators, likely due to high heterogeneity in the

Chapter 2 Background 13

QUIC endpoints, the satellite’s low layer mechanisms and the satellite operators’ policies.
Researchers in [32] show the benefits of QUIC’s 0-RTT resumption, stream multiplexing
and connection control when compared against no-PEP TCP. Other works such as [34]
extend performance studies to integrated GEO-LEO satellite networks.

After QUIC’s drawbacks over SATCOM where clearly shown, some studies began research
tasks on some performance-boosting solutions: (1) the use of custom ACK policies [31]
to reduce traffic in the return link under bandwidth asymmetry, which showed promising
results; (2) the benefits of using BBR congestion control [33] on lossy high RTT links;
(3) applying custom forward error correction to reduce the impact of propagation errors
[35] and (4) remembering path parameters to accelerate CC convergence [36].

The implications and potential benefits of using a PEP that splits QUIC connections
have also been evaluated in [37], showing that QUIC-PEP can be faster than TCP-PEP.
However, such a solution breaks end-to-end encryption and gives the proxy complete
read access to the payload, failing to maintain QUIC’s security principle. This study will
not consider such a solution, and it will focus on solutions that do not involve breaking
the end-to-end confidentiality.

2.2 QUIC protocol

QUIC was first proposed by Google in 2012 [6], defined as a general-purpose transport
protocol running over UDP that can inherit the best of TCP and UDP, while also
integrating end-to-end encryption with Transport Layer Security (TLS) [38], providing
reliable stream multiplexing and also reducing latency. QUIC is also designed to run in
the user-space, avoiding the problem of misbehaving-middleboxes and transport layer
ossification [39] and also enabling quick iteration of the protocol. At the same time, this
protocol aims to solve a series of shortcomings of TCP [40], such as (1) high latency
in connection establishment; (2) only being able to send a single request/response per
segment in HTTP/1.1 due to the lack of multiplexing and (3) the problem of head-of-line
(HOL) blocking.

During the last decade, maintenance, development and specification of the QUIC protocol
has been carried out by the IETF QUIC Working Group, and it has lead to a series of
RFCs [7–10] that define the first standardized version of QUIC. This version of QUIC
is usually referred to as IETF QUIC, to distinguish it from Google QUIC, which is
developed independently and implemented in Chromium [41].

14 Chapter 2 Background

2.2.1 New Features of QUIC

The QUIC protocol introduces a long list of features and mechanisms that are explained
in depth in [8]. The following list enumerates some of the most fundamental mechanisms
in the specification in the context of this study:

1. Faster connection establishment. The traditional TCP connection establish-
ment uses a 3-way handshake that takes 1.5 RTTs to finish. If TLS is also used,
unless any mechanisms such as the TCP Fast Open [42] of the TLS False Start
[43] are implemented, it takes 3 RTTs to establish the secure connection. However,
QUIC allows a faster handshake with integrated TLS: in the first connection to
a certain server, QUIC uses a 1-RTT handshake; for further connections, QUIC
can benefit from 0-RTT connection resumption, given that client and server have
cached information about each other, significantly reducing the latency penalty of
starting a new connection. This can be highly benefitial for GEO satellite links,
which can introduce up to 600 miliseconds of latency for each RTT.

A comparison between QUIC and TCP+TLS handshake is shown in Figure 2.2.

Inchoate CHLO

Client Server

REJ

Complete CHLO

Request

SHLO

Response

Client Server

Complete CHLO

Request

SHLO

Response

SYN

Client Server

SYN, ACK

ACK

TLS CHLO

TLS SHLO

TLS Client Finished

TLS Server Finished

Request

Response

TCP + TLS QUIC first connection QUIC 0-RTT resumption

3 RTT

1 RTT

0 RTT

Figure 2.2: QUIC handshakes in comparison to TCP+TLS

2. Connection Identifiers. Instead of using the common 5-tuples from TCP (2 IP
addresses, 2 ports and the higher layer protocol), QUIC uses a 64 bit connection
identifier, randomly chosen by both endpoints. This enables connection mobility
across IP addresses and UDP ports.

3. Stream Multiplexing. Within a single connection multiple streams can be sent,
all identified by the same connection ID. Streams have a stream identifier (stream
ID), and they can be established by both the client (using even numbers) and

Chapter 2 Background 15

the server (using odd numbers). QUIC provides flow control on both stream and
connection level.

4. Monotonically increasing sequence numbers. TCP uses sequence numbers
to identify unique segments; however, if the same segment is retransmitted, it uses
the same sequence number, not allowing the receiver totell the difference between
the original and the retransmissions. QUIC, on the contrary, uses monotonically
increasing sequence numbers - i.e., the sequence number increases even for retrans-
mitted segments. This helps to estimate the path RTT more accurately, which
becomes more important when the base RTT is really high, e.g. in the satellite
link.

5. Packets and Frames. QUIC endpoints communicate with each other using
packets, which are transported over UDP datagrams. The specification defines
two types of headers for QUIC packets: the long header, which is used for packets
sent before the 1-RTT keys have been exchanged, and the short header, which is
used to minimize the overhead in data exchange after the handshake is completed.
QUIC packets can carry multiple frames in the payload field. All packets except
for Version Negotiation packets (the ones used to negotiate which version of QUIC
is gonna be used) have some level of cryptographic protection [8]. The provided
confidentiality and integrity mechanisms are great additions for satellite networks,
where usually little attention is paid to security concerns, due to the usually wrongly
assumed trade-off between performance and security [44].

2.2.2 HTTP/3

The definition of QUIC also came along with the standardization work of HTTP/3 [45],
which is essentially the translation of the HTTP semantics [46] to the QUIC transport.

Since web browsing is one of the major use cases for satellite broadband connectivity, it
seems relevant to look at the evolution of the HTTP protocol during the last few decades.
HTTP/1.1 [47] lacked a multiplexing layer, so in order to avoid HOL blocking, it was
necessary to open one new TCP connection for each parallel request to be sent, which
has a negative impact on congestion control and network efficiency. With HTTP/2 [48],
a multiplexing layer was introduced, which allowed to multiplex various requests on a
single packet. However, the parallel nature of HTTP/2 multiplexing is not visible to the
TCP loss recovery mechanism, and therefore, in the event of a lost or reordered packet,
all active transactions can experience a stall regardless of whether each of them were
affected by this event.

16 Chapter 2 Background

The arrival of QUIC comes with many benefits for the HTTP protocol. QUIC incorporates
stream per-stream flow control and reliability in the transport layer, as well as congestion
control across the entire connection. In the HTTP context, means being able to launch
multiplexed HTTP requests in a single connection, allowing congestion control to operate
equally over all of them.

This leads to the new HTTP/3-QUIC protocol stack, presented in Figure 2.3 in compari-
son to the previous HTTP/2-TCP stack. HTTP/3 relies on QUIC for data confidentiality,
integrity and peer authentication (previously provided by TLS over TCP), for multi-
streaming (previously implemented on HTTP/2) and for reliability (previously provided
by TCP).

TCP

TLS

HTTP/2

UDP

QUIC

HTTP/3

Congestion control and
loss recovery

Confidentiality, integrity
and authentication

Stream multiplexing

Stream multiplexing

Confidentiality, integrity
and authentication

Congestion control and
loss recovery

HTTP/2 - TCP HTTP/3 - QUIC

Figure 2.3: The HTTP/3 protocol stack

The main operation scheme between HTTP/3 client and server can be summarized as
the following:

• An HTTP/3 client opens a QUIC connection, which provides protocol negotiation,
stream-based multiplexing and flow control.

• The HTTP/3 client can multiple various HTTP requests on a single QUIC connec-
tion. Each request/response pair goes on a different QUIC stream, avoiding HOL
blocking.

• The HTTP/3 server can perform a server push, to send HTTP objects without
needing to wait for the client’s request.

• HTTP/3 endpoints can benefit of the use of QPACK (Header Compression for
HTTP/3) [49], replacing the previous HPACK.

Chapter 2 Background 17

2.2.3 Relevant QUIC Extensions

After the release of the QUICv1 specification [8], contributors have been working on a
series of extensions for QUIC. The following list briefly describes some QUIC extensions
that are relevant for the future implementations of QUIC over SATCOM:

1. Unreliable Datagram Extension [50]. QUIC uses STREAM frames for reliable
data transmission. However, in applications with real-time requirements and
high packet loss tolerance (e.g., videoconferencing), it is interesting to be able to
transmit data unreliably. To address this issue, the specification in [50] introduces a
DATAGRAM frame. QUIC datagrams are not retransmitted upon loss, and neither
flow-controlled. The ability to carry multiple frames in a single packet allows
reliable and unreliable transmissions to coexist in the same QUIC connection. This
extension can be fundamental to alleviate the impact of latency for applications
with real-time requirements, e.g. VoIP or videoconferencing over satellite.

2. Multipath QUIC Extension [51]. This extension aims to provide QUIC with the
ability to manage multiple simultaneous network paths on a single connection. This
implies per-path congestion control, RTT measurement and Maximum Transmission
Unit (MTU) discovery. This extension is still work in progress, and there are
currently some debates on how it should be implemented - e.g. the packet number
space debate [52], which discusses the pros and cons of using a global or a per-path
packet number space. The multipath extension will be key for the deployment of
hybrid terrestrial-satellite solutions in 5G networks, such as the one proposed in
[53].

3. BDP Frame Extension [54, 55]. This extension allows endpoints to exchange
path parameters when resuming a connection, to accelerate the slow process of
discovering them. It is further described in Chapter 3.

4. ACK Frequency Extension [56]. This extension allows QUIC clients to negotiate
the rate at which they send acknowledgement frames. It is further described in
Chapter 3.

2.2.4 QUIC Implementations

There is a wide range of QUIC implementations available for experimentation and use.
The most popular implementations are presented in Table 2.4, which summarizes some
relevant information about them and the companies or individuals that carry out their
development.

18 Chapter 2 Background

As shown in the table, many different actors have shown interest in QUIC and developed
their own QUIC implementations for their services: Content Delivery Network (CDN)
providers - e.g., Akamai and Cloudflare -; web service solution providers such as LiteSpeed
and big technological companies such as Apple, Microsoft, Google and Facebook. IETF
QUIC WG enthusiasts have also independently implemented QUIC for experimenting
with new QUIC features, such as aioquic, ngtcp2 and picoquic. We can see that most
implementatins already support HTTP/3.

Even though most of them are based on the same specification, high heterogeneity in
the implementations has been reported [57]. In this context, the QUIC Interop Runner
project [58] was developed by several IETF QUIC WG contributors in order to benchmark
the performance and interoperability between QUIC implementations. This project has
recently been extended to GEO satellite links by authors in [59].

Implementation HTTP/3 Comments
aioquic [60] 3 Implementation for Asyncio RTC
Apple QUIC 3 Proprietary implementation by Apple for iOS
Akamai QUIC 3 Powers Akamai CDN services
lsquic [61] 3 Used in LiteSpeed web server solutions
msquic [62] 7 Developed by Microsoft
mvfst [63] 7 Deployed in Instagram and Facebook [64]
Neqo [65] 3 Developed by Mozilla
ngtcp2 [66] 3 Mainly developed by Tatsuhiro Tsujikawa
picoquic [67] 3 Mainly developed by Christian Huitema

quiche (chromium) [68] 3 Default transport in Google Chrome
quiche (cloudflare) [69] 3 Powers Cloudflare’s edge network

quicly [70] 7 Developed for H2O Web Servers
quic-go [71] 7 Used in several projects (see [71])

Table 2.4: Summary of some QUIC implementations

2.3 Congestion Control

Congestion Control (CC) is a fundamental mechanism for the well-being of the Internet.
The connectionless design of the Internet with the IP protocol provides great robustness
and flexibility; however, it also requires endpoints to apply mechanisms that control the
traffic that they introduce into the network, to avoid overloading the Internet [72]. When
congestion controlled traffic goes through a satellite link, performance drops due to the
long protocol feedback loop, which slows down convergence and can potentially introduce
fairness issues, as already described in Section 2.1.1.

Traditional standardized TCP CC algorithms rely on packet loss as an indicator of
network congestion, e.g. NewReno [73] and CUBIC [74]. Other CC algorithms use

Chapter 2 Background 19

different input for detecting congestion; for instance, the model-based TCP Vegas [75]
uses packet delay as a signal of congestion. Recent research into CC strategies has led
to the definition of the Bottleneck-Bandwidth and Round-trip propagation time (BBR)
algorithm [76], a model-based CC algorithm that models congestion by measuring the
bottleneck-bandwidth and RTT in the network path, described in Section 2.3.2.

Other alternatives rely on the network itself notifying that there is actual congestion.
These include Explicit Congestion Notification (ECN) [77], which allows routers to
notify congestion by marking packets using a flag in the TCP header, and Active Queue
Management (AQM) [78], which allows to actively drop packets to notify congestion to
the sender.

QUIC specifies by default a congestion controller based on NewReno; however, many
QUIC implementations have adapted TCP CC for QUIC support. This thesis will
compare QUIC performance using the loss-based CUBIC and the model-based BBR,
which are briefly described in the following subsections.

2.3.1 Loss-based CC: CUBIC

Loss-based CC algorithms use packet loss as an indicator that the network is congested.
CUBIC [74], designed to utilize bandwidth more efficiently in paths with high speed and
latency, is nowadays the default CC algorithm for TCP in Linux kernels since version
2.6.19.

The CUBIC algorithm starts with the standard TCP slow-start mechanism [79], which
exponentially increases the cwnd starting from a low value. Then, it follows a cubic
function, which allows to (1) fastly ramp up to the cwnd value set before the last
congestion event and (2) slowly increase the cwnd to probe for more bandwidth after the
inflection point of the cubic function is surpassed.

An example of a sender using CUBIC over an ideal GEO satellite link with a 600 ms
RTT and 20 Mbps downstream bottleneck bandwidth (i.e., BDP = 1.5 Mbytes) is shown
in Figure 2.4. After the slow start phase, the normal CUBIC behavior is visible, but
due to the long RTT the function takes several seconds to increase the cwnd up to its
maximum value (this value depends on the link BDP and the bottleneck buffer size -
in this case, with a buffer size of 1BDP, the cwnd can reach a value of 2 BDP, i.e. 3
Mbytes). This involves the available bandwidth being underutilized for long periods of
time.

20 Chapter 2 Background

0 20 40 60 80 100
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

cw
nd

 (b
yt

es
)

1e6 cwnd evolution

Figure 2.4: An example showing CUBIC behavior over a high latency GEO link (RTT
= 600 ms)

2.3.2 Model-based CC: BBR

A well-known issue about loss-based CC is that they assume that all packet loss is
consequence of network congestion. In the modern communications era, where wireless
network are highly present, packet loss due to propagation errors is very common, which
can lead to inefficient usage of the available bandwidth. In this context, BBR [80] aims
to improve link utilization by trying to find an optimal cwnd value that maximizes
throughput while trying to keep the connection RTT as low as possible and avoiding
bottleneck buffer overload.

The BBR algorithm can be summarized into four main phases:

1. The STARTUP phase increases the cwnd exponentially to fill the bottleneck
queue quickly and to measure the available bandwidth on the network path.

2. The DRAIN phase drains the bottleneck queue to remove the congestion intro-
duced in the STARTUP phase.

3. The PROBE_BW phase, in which the algorithm cycles through different pacing
rate values, aiming to continuously maximize the use of available bandwidth, but
also draining the queue regularly in order to maintain fairness towards other parallel
flows.

4. The PROBE-RTT phase allows the sender to re-measure the minimum RTT
value within regular intervals.

Chapter 2 Background 21

An example of a sender using BBR over an ideal GEO satellite link with a 600 ms
RTT and 20 Mbps downstream bottleneck bandwidth is shown in Figure 2.5. After the
STARTUP and DRAIN, the cwnd stays on the optimal point, utilizing the available
bandwidth better and draining the queue on regular intervals to remove congestion.

0 20 40 60 80 100
Time (s)

0

1

2

3

4

cw
nd

 (b
yt

es
)

1e6 cwnd evolution

Figure 2.5: An example showing BBR behavior over a high latency GEO link (RTT =
600 ms)

This algorithm has been experimentally shown to outperform CUBIC in many scenarios,
especially under high packet loss conditions [81]. Nevertheless, several studies have
pointed out several unfairness issues: (1) unfairness between parallel BBR flows, (2) high
aggressiveness towards loss-based CC and (3) RTT unfairness [82–84]. These studies
attribute these issues to the highly aggressive nature of the early STARTUP phase and
the following bandwidth probing phases.

After these problems were identified, an updated version of the algorithm started to be
specified in 2019, later defined as BBRv2 [76]. This update adds additional complexity
to the BBR bandwidth probing algorithm, with the goal of maintaining BBRv1’s high
bandwidth utilization while making it less aggressive towards other flows sharing the
link. This is partly achieved by making the BBR state machine use packet loss and ECN
information as an input, which reduces aggressiveness and improves coexistence with
loss-based CC. BBRv2 also tweaks the probing algorithms to make RTT fluctuations
smoother.

BBRv2 has already been thoroughly investigated with TCP over terrestrial networks in
several studies [85–88]. Authors in [85] have shown clear improvements in the fairness
towards CUBIC with BBRv2; however, other studies still found intra-protocol convergence

22 Chapter 2 Background

issues between BBRv2 flows [86, 87] and some misbehavior of the algorithm when network
conditions and bandwidth dynamics change [88], leading to some proposals to improve
the algorithm even further.

As stated before, BBRv2 has been exhaustively evaluated over TCP traffic going through
low-medium RTT paths. Nevertheless, there is a lack of studies that evaluate BBRv2
over QUIC and that investigate BBRv2’s performance over scenarios with high BDP
values, such as those in satellite links. This thesis will study these aspects in-depth.

Chapter 3

Proposed Solutions

This chapter describes a series of approaches that have been proposed by IETF QUIC
WG contributors and other researchers in order to improve QUIC over satellite.

3.1 Introduction

The proposed solutions can be classified as (1) end-to-end solutions - which can be client-
side, server-side or both - that aim to improve performance over satellite by improving
QUIC; and (2) proxied solutions that aim to offer performance enhancing mechanisms
through cooperation between endpoints and network proxies.

The following sections introduce each of these categories, pointing out the advantages
and drawbacks of each, and describe some of the major solutions that are currently under
investigation.

3.2 End-to-end solutions

End-to-end solutions might allow improving the performance of QUIC over satellite
without the need of any proxies. Many contributors advocate for these solutions, since
they only affect the endpoints, they avoid the ossification caused by middleboxes (e.g.,
PEPs) and they maintain the end-to-end principle. Table 3.1 links together the transport
layer challenges pointed out in Chapter 2 with the different end-to-end solutions that are
described in this Chapter.

23

24 Chapter 3 Proposed Solutions

Challenge Solution(s)
Slow connection startup BDP Frame Extension [54]

ACK Congestion on return path ACK Frequency Extension [56]

Packet loss recovery and CC convergence Congestion-based CC: BBRv1/v2 [76]
Forward Error Coding (FEC) for QUIC [89]

Table 3.1: Challenges and proposals for QUIC over SATCOM

3.2.1 Better Congestion Control

By default, the QUIC specification defines a CC mechanism based on NewReno [10]. The
mechanism begins with a a Slow Start phase, where the cwnd increases exponentially with
each ACK received; a Recovery phase to reduce the cwnd when packet loss is detected
(either by receiving 3 duplicate ACKs or detecting the expiration of a retransmission
timeout) or an increase in the ECN-CE counter is detected; and a Congestion Avoidance
phase, in which the cwnd is increased linearly using an Additive Increase Multiplicative
Decrease (AIMD) approach.

Even if QUIC specifies NewReno by default, different QUIC implementations have
implemented other TCP CC algorithms over QUIC:

• CUBIC is supported by most QUIC implementations

• BBRv1 is supported by lsquic, mvfst, ngtcp2, picoquic and xquic

• BBRv2 is only supported by chrome and ngtcp2

As justified in Chapter 2, using model-based CC algorithms such as BBR might be helpful
in satellite links, since it can help to improve bandwidth utilization and minimize the
increase in path RTT due to queue congestion. Especially in high packet loss conditions,
BBR might prove an advantage in comparison with NewReno or CUBIC.

Therefore, in this study we compare both BBRv1 and BBRv2 with CUBIC in terms of
bandwidth utilization, congestion load and fairness.

3.2.2 Accelerate path parameter discovery

When clients resume a session to download a large object, CC algorithms require time to
ramp up the data rate - especially if the path RTT is high (e.g., satellite). To solve this,
the proposal in [54] suggests that endpoints can save path parameters - i.e. the base RTT
and the bottleneck-bandwidth - from previous sessions and use them in the following
connections started between the same pair of IP addresses. This would accelerate the

Chapter 3 Proposed Solutions 25

slow process of discovering path parameters - which is especially slow in the presence of
a satellite link in the path.

There have been several proposals on how to implement this, following different security
rationale [55]:

(a) The server learns path parameters in the first 1-RTT connection. In following
connections, it waits for 1 RTT to check if the current RTT is similar enough to
the previous RTT. If this safety check is passed, the current path parameter values
are replaced by the ones stored from the previous connection. In this solution, path
parameters are stored in the server, and never sent to the client.

(b) The server sends an encrypted packet to the server, containing path parameters in
a NEW_TOKEN frame. The client can then send it back to the server in the next
sessions. Path parameters are shared through the link, but they are never
revealed to the client.

(c) The server builds a BDP Frame [54] including path parameters, client IP address and
a lifetime value, and sends it to the client. If the client accepts the BDP extension
negotiation, it can send this frame back to the server in following connections to
enable parameter acceleration. Path parameters are shared through the link,
and they are revealed to the client.

None of these proposals allows the client to modify path parameters. Proposals (b) and
(c) need to implement a series of safety checks before activating this feature, to make sure
that network conditions or network path have not changed, and to avoid any possible
malicious clients [55].

In this study, we evaluate this solution using the BDP Frame proposal (proposal (C)),
which is currently implemented in picoquic [67]. An illustration of this approach is shown
in Figure 3.1.

3.2.3 Reduce ACK load in the return link

The asymmetry in satellite links can lead to ACK congestion in the return path, as
discussed in Chapter 2, limiting the throughput in the forward direction [20].

For example, consider the following simplified example scenario: we are using a bottleneck
link with a bandwidth of 10 Mbps on the downstream and 50 kbps on the upstream.
The downstream link mainly carries data packets of 1000 bytes, leading to a maximum
of 10,000 packets per second. The upstream mainly carries ACK packets of e.g. 40 bytes,

26 Chapter 3 Proposed Solutions

1-RTT Handshake

Client Server Client Server

First 1-RTT connection Resumed connection
with BDP Extension

.
Data transfer

..

BDP Frame

Connection close

BDP Frame

0-RTT handshake

Request

.
Data transfer

..

Figure 3.1: Illustration of BDP extension, using the BDP Frame approach

leading to a maximum of 1,250 ACKs per second. Therefore, we can define a "threshold"
of k = 10, 000/1, 250 = 8, meaning that 1 ACK can be sent per each 8 data packets. If
the receiver sends ACKs more frequently than this, the return path will get congested,
limiting forward traffic.

The QUIC specification [10] specifies a default ACK ratio of 1:2 - i.e. 1 ACK per each 2
packets. In this context, the ACK Frequency extension [56] allows QUIC endpoints to
negotiate this ratio, in order to reduce the ACK overload. The extension introduces a
new transport parameter (min_ack_delay), which advertises support of the extension,
and defines a minimum value for this ratio. It also defines two frames:

• TheACK_FREQUENCY frame, which can be sent by the receiver to the sender
to specify the rate at which it wants to send ACKs.

• an IMMEDIATE_ACK frame, which can be sent by the sender to the receiver
to ask for an ACK, in order to reduce the feedback delay in specific situations, or
to measure RTT with a PING frame.

These mechanisms allow QUIC endpoints to define and negotiate custom ACK policies,
which can be optimized according to parameters such as the link RTT and the bandwidth
asymmetry.

Chapter 3 Proposed Solutions 27

3.2.4 Forward Error Correction

There is also some interest in introducing Forward Error Correction (FEC) on the
transport layer [89]. FEC is based on the premise of adding some overhead to the sent
QUIC packets that allows receivers to fix errors and therefore reduce packet loss.

On the one hand, this solution adds robustness and reduces packet loss events, mini-
mizing the impact that long protocol feedback in the satellite links has on loss recovery
mechanisms. On the other hand, the additional overhead needed for FEC coding also
significantly reduces the amount of data that can be carried in each QUIC packet. This
tradeoff needs to be thoroughly addressed and evaluated through different FEC solutions.
Authors in [35] provide a FEC solution over QUIC to improve performance over different
wireless links.

Nevertheless, due to the lack of current research effort into this solution, there is a lack
of QUIC-FEC implementations, and thus it is not gonna be studied in this work.

3.3 Application Proxies

Another alternative is to use application proxies that can help optimize the QUIC
connections over the satellite link. In this context, some IETF QUIC WG contribu-
tors contemplate the use of Multiplexed Application Substrate over QUIC Encryption
(MASQUE) [90] as a potential solution, a proposal that extends the HTTP CONNECT
method for compatibility with UDP and QUIC, allowing to proxy QUIC connections.

3.3.1 MASQUE

In 2020, the IETF MASQUE WG was created [91], aiming to produce a series of HTTP
specifications that allow running multiplexed applications using QUIC streams and
datagrams inside an HTTPS connection.

MASQUE is based on the HTTP CONNECT method defined in [47]. This method
allows using a proxy to establish secure end-to-end tunneled connections between a client
and a server, guaranteeing that the proxy cannot read the data being exchanged. This
solution allows having proxies that only establish connections towards secure servers.
However, this method has two major shortcomings: (1) it only supports tunneling TCP
connections, which means that it cannot tunnel UDP datagrams; and (2) the lack of
multiplexing, since each CONNECT command opens a new TCP connection.

28 Chapter 3 Proposed Solutions

MASQUE aims to define UDP CONNECT [92], which extends HTTP CONNECT to
be able to tunnel UDP datagrams. Additionally, it aims to be able to tunnel QUIC
Datagrams inside an HTTP connection [93]. Therefore, MASQUE could allow using
QUIC to tunnel another QUIC connection, as shown in Figure 3.2.

Client MASQUE
Server Server

E2E QUIC
QUIC Tunnel

Figure 3.2: Illustration of the use of MASQUE to tunnel QUIC connections

These solutions could enable use cases where MASQUE can provide cooperation between
endpoints and network proxies to enhance performance, as proposed by authors in [94]
for 5G networks, allowing mechanisms such as local loss recovery or "promise signaling",
which involves the proxy being able to "promise" having received frames to the client
but delaying their delivery for the sake of performance. Preliminary results in [95] show
promising performance improvements using the local loss recovery mechanism when the
packet loss in the client-proxy path becomes significant.

This hints towards potential use cases of MASQUE for SATCOM links. It has been
demonstrated that the lack of a satellite-optimized CC for QUIC over SATCOM [28] is
one of the main factors that decreases its performance. In the absence of proxies, CC will
be suboptimal to some of the path segments: e.g., a satellite-optimized CC might work
well on the satellite segment, but it might not be good for the rest of the link. However,
if the QUIC connection is proxied, it might be possible to use a QUIC tunnel over the
satellite link with an appropriately optimized CC.

Even though this solution looks promising, it introduces the challenge of having two
nested congestion control mechanisms, which might not be optimal. In addition, it is
still in early development and there is a lack of MASQUE implementations that are easy
to integrate in the current QUIC implementation ecosystem. This is why this thesis will
not study this approach, but it opens up very interesting research paths for the future.

3.4 Selected Solutions

Taking all of the above into consideration, this study will focus on the following proposals:
using better congestion control (Section 3.2.1), accelerating path parameter discovery
with the use of the BDP Extension (Section 3.2.2) and using custom ACK policies on
the return link (Section 3.2.3).

Chapter 3 Proposed Solutions 29

Therefore, the research question RQ1 can be subdivided into three more specific research
questions:

• RQ1: Can the performance of QUIC over SATCOM links be improved using
transport protocol mechanisms?

– RQ1.1: Can better congestion control algorithms improve bandwidth utiliza-
tion, download speed and fairness?

– RQ1.2: Can the early exchange of BDP information between endpoints using
the BDP Extension improve congestion control convergence?

– RQ1.3: Can custom ACK policies on the client-side improve performance on
asymmetric satellite links?

Chapter 4

Research Methodology

This chapter aims to describe the research methodology followed during this work.
This involves discussing the different possible approaches for satellite experimentation,
specifying which one was chosen for this work, the reasons why it was chosen and
its implications. The following section presents the general methodology followed for
designing experiments, running them and extracting conclusions. Some comments are
also included on the design principles of the network testbed and the importance of
reproducibility, repeatability and test automation.

4.1 Satellite Experimentation

Any experimental setup can provide realistic results up to some extent. Just like many
other real-life systems, performing experiments with satellite links with high precision
can be challenging, since there are many factors to consider - e.g., the electronics in
the satellite transponder in outer-space conditions, the signal propagation through the
atmosphere, disturbances such as atmospheric attenuation or hydrometeors, etc.

In order to set up satellite experiments, there are three possible approaches [96]: (1)
having access to a real satellite link (2) emulating the satellite link using a testbed
(e.g., OpenSAND [97]) or (3) through simulation (e.g., SNS3 [98], the satellite network
extension to ns-3). All approaches can have their advantages and drawbacks. For instance,
approach (1) provides very realistic results, but limits experimentation to the services
and bandwidth plans provided by the satellite operator. An (2) emulated or (3) simulated
setup provides higher flexibility for designing experiments; however, it also simplifies
many physical phenomena and low layer mechanisms, which can reduce the reliability of
the experimental results if not considered carefully.

31

32 Chapter 4 Research Methodology

In this study, due to the lack of access to real satellites at UiS, we rely on satellite link
emulation. Emulation through a testbed is usually conceived as more realistic than
simulation, since it involves physical equipment and real network links, aiming to imitate
the conditions of the real scenario as close as possible. Emulating a satellite link with
high precision could involve emulating physical layer (PHY) and medium access control
(MAC) mechanisms - e.g., a very common PHY technique in satellite link is Adaptive
Coding and Modulation (ACM), which allows to adapt coding and modulation schemes
to the link conditions, using more robust schemes in case of high link degradation and
faster schemes when the conditions are better.

Since we are studying satellite links from the perspective of the transport layer, it is
possible to detach from these low layer mechanisms, since they play a less relevant role
on the higher picture of the end-to-end scheme. However, these mechanisms should
not be disregarded and their absence needs to be considered when both designing the
experiments and interpreting the results.

4.2 Experimental Methodology

The research methodology followed in this work is summarized in Figure 4.1. The first
step is to design and implement a network testbed that allows to set up a wide range
of experimental scenarios through an emulated satellite link. This testbed should be
flexible in topology and scalable, to be able to scale it up with more endpoints if needed.
It should also allow test automation - i.e. to set up parameter sweeps and automate
experiments, in order to limit the need of human operation as much as possible and save
time resources.

It is essential that the testbed allows repeatability of the experiments - i.e., that experi-
ments can be repeated under the same conditions every time, to avoid any external bias -
and reproducibility, so anyone can repeat the same set of experiments and obtain the
same results. This is instrumental in any scientific practice, to make the results credible
and so that other institutions and individuals can verify the claims made.

After the testbed is set up, it needs to be validated. For this, a series of basic experiments
is designed to analyze the impact of the satellite link delay, as well as the correct operation
of the QUIC endpoints in aspects such as congestion control and flow control. This is
an essential step to guarantee the value of the results obtained with the testbed. The
testbed implementation is described in detail in Chapter 5.

After the testbed is validated and ready, a series of experimental scenarios need to be
built. These scenarios need to be able to prove the feasibility of the selected solutions,

Chapter 4 Research Methodology 33

and they should aim to be as close as possible to real satellite scenarios, in terms of
link characteristics and traffic conditions. After designing an initial set of scenarios
and obtaining preliminary results, these scenarios should be fine-tuned according to the
observations made. This involves an iterative process of trial and error and constant
improvement of the scenarios, aiming to converge towards more realistic results.

Once appropriate results have been obtained, they need to be thoroughly studied and
interpreted. This involves analyzing if the results match our expectations, and making
hypotheses of possible reasons behind unexpected behaviors, which is why these should
be accompanied by proper data visualization. This should lead to formulating a series of
conclusions and answers to the research questions.

1. Design, implement and validate an emulated network
testbed for GEO SATCOM links

2. Design experimental scenarios with QUIC and select
metrics to evaluate the identified solutions

3. Run experiments and extract results

4. Interpret results and extract conclusions

Iteratively re-design
experiments according to

new findings

5. Evaluate suitability of solutions to improve QUIC's
performance over GEO SATCOM

Figure 4.1: Summary of research methodology

4.3 Data Collection and Analysis

The experiments in this work generate large amounts of data, which needs to be properly
extracted, processed and analyzed. Experiment logs should be compressed to save storage
space and to accelerate remote downloads. The processing and visualization process
should be completely automated, to ensure that the same treatment is applied to all the
experimental data, and also saving time resources in the long term.

When going through the processing of the results, is essential to be aware of the following:
even if the experiments are executed correctly, wrong conclusions can be extracted if the
post-processing is not done properly. This is why close attention needs to be put into

34 Chapter 4 Research Methodology

these matters, which involve: (1) how to extract metrics from the logs generated at the
endpoints and (2) how to present and visualize these metrics.

Chapter 5

Testbed Implementation

This chapter describes the UiS TEACUP testbed used to perform network experiments
using QUIC. The testbed is based on the ’TCP Experiment Automation Controlled
Using Python’ (TEACUP) platform from CAIA [99], which allows to orchestrate and
automate TCP network experiments. The UiS TEACUP testbed was first built in [100],
and it has now been extended for QUIC support.

5.1 Testbed Overview

The complete testbed topology is shown in Figure 5.1. The testbed is composed by a
controller and 5 experiment nodes, which include 4 hosts and a router.

• The controller takes care of executing commands remotely in the experiment
nodes and extracting all the logs and traces they generate.

• hostXX-Y are the endpoints, which can act as client or servers:

– XX indicates the third octet of the network address - i.e., 10 for network A
and 11 for network B. Unless specified otherwise, hosts in network A act as
clients, and hosts in network B act as servers.

– Y enumerates the different endpoints in the same network (i.e., 1 and 2)

• The router is responsible of routing traffic between endpoints in networks A and
B, and performing link emulation

The controller is connected to the experiment nodes through the Control Network (CN),
with IP address 10.0.0.1/24. This network is used for remotely controlling the experiment

35

36 Chapter 5 Testbed Implementation

Control Network
10.0.0.1/24

Experiment Network A
172.16.10.0/24

Experiment Network B
172.16.11.0/24

UiS Intranet

host10-1 host10-2 host11-1 host11-2

controllerremote SSH client

Internet

router

Experiment traffic

Control and monitoring

External traffic

Figure 5.1: Architecture of the network testbed

nodes (endpoints and router), as well as downloading data from them (logs, dumps,
traces, etc.). This is managed using the TEACUP platform.

The traffic generated in the experiments goes through the Experiment Networks (EN),
with IP addresses 172.16.10.0/24 (network A) and 172.16.11.0/24 (network B), as shown
in Figure 5.2. The experiment networks are isolated from the control network - this
is essential to make sure that SSH sessions or other external traffic does not affect the
experiments.

Figure 5.2: Topology of the Experiment Networks

All the experiment nodes run on the OpenSUSE Leap 15.1 Linux distribution, and their
hardware is identical, as shown in Table 5.1. The controller runs on FreeBSD [101].

Chapter 5 Testbed Implementation 37

CPU 4 x Intel(R) Core i5-3470 @ 3.20GHz
RAM 16 GB Micron DDR3 1600 MHz
HDD 500 GB (100 GB for OS and Swap, 400 GB for /home)

Table 5.1: Testbed node specifications

5.1.1 Controller Setup

The FreeBSD controller host needs to be able to provide a series of basic services
to experiment nodes: time synchronization, gateway functionalities for Internet
access, and remote access to the nodes.

Time synchronization between the experiment nodes is essential for rigorous experi-
mentation, and it is achieved using the Network Time Protocol (NTP). The controller
acts as a NTP server, using the ntpd service in FreeBSD. The experiment nodes are
configured to synchronize with the controller on startup. The TEACUP platform restarts
the NTP service on every host before each experimental run, to fix any clock deviation.

Add this line to /etc/rc.conf:

ntpd_enable='YES'

In order to minimize the number of public IP addresses used, the testbed uses private
addressing for the experiment nodes, and uses a single public IP address for the external
interface in the controller. Therefore, the controller needs to perform Network Ad-
dress Translation (NAT) services, to provide the experiment nodes with Internet
connectivity. This also involves enabling packet forwarding in the controller.

To enable NAT, a custom FreeBSD kernel needs to be built with a specific set of options,
as described in 1. This also requires to enable IP forwarding and set the firewall policy
as ’open’:

Add these lines to /etc/rc.conf:

gateway_enable="YES"
firewall_enable="YES"

1https://docs.freebsd.org/en/books/handbook/kernelconfig/

38 Chapter 5 Testbed Implementation

firewall_type="OPEN"
natd_enable="YES"
natd_interface="re0"

It is also essential that the experiment nodes can be accessed from the controller using
the Secure Shell (SSH) protocol. The testbed requires that the SSH connections do
not require password, since they need to be accessed frequently by the TEACUP scripts
experiment orchestration. To enable this, the sshd service in the experiment nodes needs
to be configured to allow Public Key authentication, modifying /etc/ssh/sshd_config.
Then, the controller needs to generate a SSH key pair, and share this key with the
experiment nodes.

Run the following commands:

>> ssh-keygen
>> ssh-copy-id -i /root/.ssh/id_rsa.pub root@<server>

and repeat the second command for each SSH server.

This basic setup allows the use of TEACUP [99] in the controller.

5.1.2 Endpoint Setup

Network configuration in the endpoints needs to be configured according to the network
topology. This implies static IP addresses and routes. Endpoints configure only two
routes: one route to reach the opposite experiment network through the router (i.e.,
endpoints in network A configure route to reach endpoints in network B, and viceversa)
and a default route through the gateway - i.e., the controller.

The endpoints need to be able to run all the commands that the TEACUP platform uses.
This requires to install a series of packages:net-tools-deprecated, ethtool, tcpdump,
psmisc and ntpq.

The endpoints need to install all the traffic generators and loggers desired. It also requires
to install a patched version of iperf developed by CAIA, which allows to remove the cap
in flow control windows.

Chapter 5 Testbed Implementation 39

5.1.3 Router Setup

The router has three network interfaces: one for the control network, and two for the
experiment networks. It needs to provide routing between both experiment networks, by
setting up one route to reach network B from network A, and another route to reach
network A from network B.

The router also allows the use of the Linux network emulator (netem), which allows to
implement queues to emulate delays and buffers on the network interfaces and emulate
the effects of channel disturbances (e.g. packet loss). Netem is included in the iproute2
linux package.

Necessary tools for logging TCP traffic traversing the router are also installed, such as
tcpdump.

5.2 Experiment Orchestration with TEACUP

For any study that includes heavy experimentation, it is essential to be able to automate
experiments. This involves being able to define a series of experimental scenarios with
variable parameters, so that consecutive experiments can be launched automatically
without the need of human operation. This improves time management and facilitates
experiment reproducibility and repeatability.

TEACUP consists of a series of Python scripts that use the Fabric library [102] to
configure experiment nodes and launch experiments. Experiments are orchestrated using
a fabfile, which launches experiments according using the functions defined in a series
of Python scripts, as shown in Figure 5.3. Experimental scenarios are defined using a
configuration file (config.py), which allows to modify the network topology, set static
values to experiment parameters and define parametric sweeps.

fabfile.py

experiment.py util.py analyse.py

hostsetup.py routersetup.py loggers.py trafficgens.pysanitychecks.py

Figure 5.3: Architecture of main TEACUP scripts

40 Chapter 5 Testbed Implementation

For each parameter combination and experiment run, TEACUP performs a series of
steps defined in experiment.py [103]. These steps can be summarized as the following:

1. Configure topology, assigning hosts to networks A and B.

2. Run sanity checks according to sanitychecks.py: check for necessary tools in the
hosts, check connectivity and kill old processes.

3. Initialize hosts according to hostsetup.py: network configuration, modify kernel
variables (e.g., to choose the TCP congestion control algorithm or set the size of
receiving windows), synchronize clocks, etc.

4. Initialize router according to routersetup.py: configure routing and set link
emulation queues.

5. Start loggers according to loggers.py.

6. Start traffic generators according to trafficgens.py.

7. Wait for experiments to end, and stop all processes.

8. Collect logs.

TEACUP also includes a series of scripts that analyze TCP experiment results and
generate plots using R plotting libraries and pdfjam, which automatically generates
PDF files containing the desired results. Analysis functions are defined in analyse.py.

5.2.1 Extending TEACUP for QUIC support

The TEACUP platform was initially designed for experimenting with TCP. However,
TEACUP is a very flexible platform and it can be modified to execute any low level
commands in the experiment hosts, which makes it extremely customizable.

In this study, the platform has been extended to be able to experiment with QUIC
implementations. This involves (1) adding new traffic generators for the QUIC implemen-
tations to be used, (2) adding new code to handle the extraction of QUIC statistics and
(3) other modifications of the existing TEACUP scripts to handle specific experimental
scenarios.

Chapter 5 Testbed Implementation 41

5.2.1.1 New traffic generators

TEACUP traffic generators are defined in trafficgens.py, and they define a series of
methods that specify the commands to be run on the endpoints to start traffic exchange.
Most traffic generators consist of three methods: (1) one that starts the server application,
(2) one that starts the client application, and (3) a third wrapper method that executes
both applications consecutively on each endpoint - first the server and then the client.
The command line instructions are executed remotely from the controller through SSH
access and using nohup, which allows to execute commands in the background and
detach from them. The execution in the background is managed by a series of method
defined in runbg.py and the runbg_wrapper.sh bash file.

For this work, we have introduced two new traffic generators for two QUIC implementa-
tions: ngtcp2 [66], based on the ’examples/client’ and ’examples/server’ applications;
and picoquic [67], based on its ’picoquic_sample’ application. More details on these
implementations are given in Section 5.4.

The QUIC traffic generators introduced first perform a series of checks, to make sure that
the user has introduced a valid port and server host in the configuration file, and they
specify the path where logs will be stored. Then, the functions build the command-line
instruction to execute the server or client applications:

• The server method specifies the route to the certificate and key for authenticating
itself to the client. It also allows to set the congestion control algorithm according
to the ccalgo parameter in the configuration file.

• The client method allows to specify the size of the download to be started. For this,
a series of files have to be created in the server path ’/root/files’ with different sizes
(e.g., ’file100MB’, ’file1GB’, etc.). The client also allows to repeat the download
multiple times, according to the download_repeat parameter.

The full code for the ngtcp2 and picoquic traffic generators is available in Appendix B.

5.2.1.2 New loggers

QUIC implementations use qlog [104] in order to log all the events happening in the
endpoints: transport parameters exchanged, metrics updated, packets received or sent,
packets lost, etc (more details on Section 5.5). The QUIC implementations already
include qlog support, but the necessary methods need to be implemented in TEACUP in
order to handle qlog files and retrieve them from the endpoints.

42 Chapter 5 Testbed Implementation

For this, two main methods have been introduced in a new script called qlog.py (see
the full code listing in Appendix C):

• The clean_qlog() method, which removes all previous qlog files from the endpoints
before each experiment run. Since qlog files can be quite heavy, this allows to
prevent qlog files stacking and using a lot of storage in the endpoints. This function
is called in the beginning of each run, from experiment.py.

• The get_qlog() method, which takes care of (1) compressing the generated qlog
files using gzip, (2) renaming them according to their role and a counter (which
is used when many multiple client-server pairs are run simultaneously) and (3)
downloading them. This function is called in the end of the experiment run
on experiment.py, after all traffic generators and other processes have been
terminated.

These functions also need to account for the differences in the qlog implementation
between ngtcp2 and picoquic; e.g., picoquic generates a binary file which needs to be
processed to make it text-based and readable.

5.2.1.3 Others

Other modifications have been made to TEACUP script to support some QUIC scenarios.

First, some minor functionality items where added, such as the possibility to enable and
disable qlog logging through a parameter in configuration files was introduced, by setting
’TPCONF_enable_qlog’ to ’1’ or ’0’ respectively.

Additionally, a missing functionality was identified when designing one set of experiments,
which required some traffic generators being stopped at specific times one after the other.
Since QUIC traffic generators cannot be told how long the download should be (they
require to specify the download size in bytes), the approach we follow is to generate long
connections and terminate them after some time. However, TEACUP only allows to
terminate all traffic generators at the same time, which prevents designing some scenarios
(e.g., latecomer fairness).

To solve this, an additional parameter named kill_delay was introduced in the functions
named ’stop_process()’ and ’stop_processes()’ in runbg.py, which allows to specify
how long the process termination needs to be delayed for each traffic generation instance.
This allows to set up any possible multi-flow scenario on the configuration files, where
flows start and terminate at different times.

Chapter 5 Testbed Implementation 43

5.3 Satellite Emulation

For this study, we contemplated two approaches for satellite emulation: first, emulating
the satellite link in the testbed router using NetEm queues [105]; and second, using
OpenSAND [97], a more advanced satellite emulation platform. Both of these approaches
are described in the following subsections.

5.3.1 tc-netem

The Linux Network Emulator (NetEm or tc-netem) [105] allows to emulate the satellite
link by implementing two queues in the testbed router, one for the downstream link
and another one for the upstream link. Each of these queues can be defined with the
following parameters:

• A queue management method, which determines how packets entering the
queue are handled. We are using FIFO: First In, First Out.

• A buffer size, which limits the amount of packets that fit into the queue. In this
study, we refer to the buffer size as a factor of the BDP.

• A fixed queue delay, which corresponds with the One-Way Delay (OWD).

• A bottleneck bandwidth, to limit the amount of traffic that can traverse the
link.

NetEm also allows introduce artificial disturbances in the link - e.g. packet loss or
reordering. In addition, it can be easily integrated in the TEACUP platform, since the
queues can be set up and modified merely using command-line instructions.

The benefits of using NetEm are multiple: (1) it is natively implemented on the Linux
kernel, (2) it can be implemented on any network node and (3) it can be configured
through very simple command-line instructions. Nevertheless, it cannot be disregarded
that using NetEm to emulate the satellite links lacks many low layer satellite mechanisms
existing in real-life broadband satellites.

5.3.2 OpenSAND

OpenSAND [97] is a satellite emulation platform developed by Thales Alenia Space and
the french government space agency (CNES). It provides a series of features on different
layers, from radio resource management and PHY techniques to advanced routing and

44 Chapter 5 Testbed Implementation

Quality of Service (QoS) enforcing. OpenSAND is set up with three machines: a satellite
terminal on the user side, a satellite emulator and a satellite gateway on the external
side.

Our initial purpose was to introduce OpenSAND into the TEACUP testbed, according
to Figure 5.4. However, a few challenges came up that left OpenSAND out of the
scope for now. First, introducing OpenSAND requires a change in topology, which
implies restructuring the experiment networks, changing the roles of the experiment
nodes and adding new ones, while making it all compatible with TEACUP. Additionally,
the lack of user-friendly documentation for the OpenSAND setup, the compatibility
issues with OpenSUSE Linux distributions and the scarce available time made it difficult
to implement it on time to meet the deadlines.

host1

host2

host3

host4

r1-st r2-gw

sat

Figure 5.4: Proposed experiment network topology for OpenSAND

However, we encourage the future integration of OpenSAND in the UiS TEACUP testbed,
since it would allow to repeat the experiments designed in this study and to compare
results between both emulation methods.

5.4 QUIC implementations

From the publicly available QUIC implementations (already discussed in Chapter 2),
two have been selected for this work: ngtcp2 [66], mainly because it implements the
newest version of BBR (i.e. BBRv2), and picoquic [67], since it allows to experiment
with satellite-enhancing features.

These two implementations are compared in Table 5.2, which looks into their default
parameters and available features. Even though it would be really interesting to look at
more implementations and compare them, it takes time to learn their inner structure and
how to work with them, and even more to implement them in the TEACUP platform.

These implementations need to be installed in all the endpoints. Bash scripts for
installation of these implementations are listed in Appendix D.

Chapter 5 Testbed Implementation 45

ngtcp2 picoquic
Initial Receiving Window 1 MB 1 MB

Max ACK Delay 25 10
Available CC BBRv2/v1, Cubic BBRv1, Cubic
HTTP/3 Yes Yes

Path MTU Discovery No Yes
ACK Frequency Extension No Yes
BDP Frame Extension No Yes

Table 5.2: Available features and default parameters for selected QUIC implementations

5.5 Event Logging for QUIC

Extracting detailed statistics from TCP experiments requires the use of kernel tools such
as web10g for Linux [106] and SIFTR for FreeBSD [107]. However, since QUIC operates
completely on the user space, no kernel tools are necessary to extract event statistics.

Instead, IETF QUIC WG contributors have been working on a series of drafts that
define qlog, a logging format for QUIC and HTTP/3 [104, 108, 109]. qlog is defined
as a logging scheme that it is streamable, event-based and format-agnostic [104] - i.e.,
it can be serialized in many formats (JSON/JSON-SEQ, CSV, protobuf, etc.). Event
definitions for QUIC, HTTP/3 and QPACK are listed in [108, 109].

Figure 5.5 shows the first lines of a qlog file generated by a picoquic connection. As it
can be seen, the header shows relevant information such as the qlog version it uses, the
QUIC implementation that generated it and timestamp for the start of the connection.
It also shows the IP addresses, ports and connection IDs involved, and the transport
parameters set by each one of the endpoints. Then, a long list of all the events registered
during the connection can be found, including CC parameter updates, packets exchanged
and received and frames included in each of them, ACKs and signaling, etc.

This work derives most of the performance evaluation metric values from qlog files.

5.6 Github Repository

The testbed is maintained in the UiS-IDE-NG/network-testbed Github repository
2. Figure 5.6 shows a summary of the contents of this repository, which are organized as
follows:

2https://github.com/UiS-IDE-NG/network-testbed

46 Chapter 5 Testbed Implementation

Figure 5.5: Example qlog-JSON file generated by picoquic

• The config folder contains configuration files related to the network topology, IP
addressing and routing, for the experiment nodes and the controller.

• The documentation folder contains all documentation produced for this testbed in
the past for the first version of the testbed, as well as the documentation generated
during this work.

• The experiments folder contains the TEACUP configuration files for all the
experimental scenarios designed for this thesis, which are described in Chapter 6.
They allow reproducing the experiments (see more on Appendix A).

• The results folder contains all post-processed results, including excel sheets, .csv
files and pdf plots.

• The teacup folder contains the scripts of the extended TEACUP developed for
this work.

• The visualization folder contains all the scripts written for post-processing of the
qlog files. Statistics and metrics are extracted using Python and R is used for
generating plots.

Chapter 5 Testbed Implementation 47

config documentation experiments results teacup visualization

2020_einar

2022_aitor

2020_einar

2022_aitor

Thesis document and
poster presentation

for this thesis

Previous
documentation on the

testbed

New results for this
thesis and ANRW'22

paper

Configuration files for
IP addressing and
routing in testbed

nodes

Experimental
scenarios for this

thesis
Extended TEACUP-

QUIC scripts

Post-processing
python scripts and
visualization with R

Previous results

UiS-IDE-NG/network-testbed/quic-opensand

Figure 5.6: Overview of the contents in the UiS Network Testbed repository

Chapter 6

Experiments and Results

This section describes the experimental design and the different scenarios built, and it
presents the obtained results. First, some general guidelines for all experiments are given;
then the chosen metrics and scenarios are defined and justified; and finally, the results
are presented using plots, tables and descriptions.

An brief user manual to reproduce all the experiments experiments is presented in
Appendix A.

6.1 Experiment Design

We define various type of links for our experimental setup: the satellite links (SAT), which
define different types of SATCOM links with different bandwidth values and asymmetry
ratios, and the terrestrial link (TERR), which serves as a baseline for comparison, to
analyze the impact of long delays and possible asymmetry.

The default values for link parameters are presented in Table 6.1. The values for the
Bottleneck Buffer Size are defined as a fraction of the BDP. Unless specified otherwise, a
default value of 1 BDP is assumed for this parameter.

SAT TERR
One Way Delay (OWD) 300ms 50ms
Downstream Bandwidth 20Mbps
Upstream Bandwidth 20Mbps
Bottleneck Buffer Size 0.25|0.5|1.0|2.0 x BDP

Table 6.1: Link emulation parameters

All experiments in this study are repeated 10 times, to provide statistical insight.

49

50 Chapter 6 Experiments and Results

6.2 Metrics

In order to numerically evaluate performance in the different scenarios to be built, we
make use a of a series of metrics:

1. Goodput: measures the application level throughput - i.e., the ratio between the
number of application bytes sent and the amount of time it took to send them, as
shown in Equation 6.1. We derive this metric from QLOG traces in the receiver,
checking the progress of the download offset and event timestamps.

Goodput(bytes/s) = bytesDelivered

time
(6.1)

2. Link Utilization: measures how well the available bandwidth is utilized, with
a dimensionless ratio. In this work, we measure link utilization using Goodput
values, and it is calculated using Equation 6.2.

Utilization = Goodput

Bandwidth
(6.2)

3. Jain’s Fairness Index (JFI) [110]: measures the amount of fairness between
multiple flows, taking values from 0 (completely unfair) to 1 (completely fair). The
JFI can be calculated using Equation 6.3,

J(x1, x2, ..., xn) = (
∑n

i=1 xi)2

n
∑n

i=1 x2
i

(6.3)

where n is the number of parallel flows and xi are the goodput values for each flow.

4. Download Time: measures the time it takes to complete the download of a single
object or a series of objects. This metric is obtained from the QLOG traces in the
client, by taking the timestamp of the reception of the last data segment in the
download.

6.3 Scenarios

For this study, a series of experimental scenarios have been built. These have been
grouped in three blocks, as shown in Figure 6.1, according to the solution they aim to
evaluate: (A) using better congestion control, (B) accelerating the discovery of path
parameters and (C) reducing congestion in the return link.

Chapter 6 Experiments and Results 51

Experimental Scenarios

Better Congestion Control
Acceleration of
Path Parameter

Discovery

 Reduction of ACK
rate on the return

path

A1
Single Flow

Bulk Download

A2
Mice vs

Elephant Flows

A3
Protocol
Fairness

A4
Latecomer
Fairness

B1
Connection
Resumption

with BDP
Extension

C1
 ACK Policies
on asymmetric

SATCOM

Figure 6.1: Overview of experimental scenarios

These scenarios are listed in Table 6.2, showing which experimental parameters they
vary and which metrics are used in each one. All the scenarios are further detailed and
justified in the following subsections.

Scenario Description Parameters varied Metrics
A1 Single-Flow Bulk Download CC, Buffer Size, PLR Goodput
A2 Mice vs Elephant Flows CC, Object Size, Number of Objects Download Time
A3 Multi-Flow Fairness CC, Number of flows JFI, link utilization
A4 Latecomer Issue CC, RTT Goodput
B1 BDP Extension Object Size, Resumption strategy Download Time
C1 Asymmetric SATCOM links ACK Policy, PLR Goodput

Table 6.2: Summary of Experimental Scenarios

6.3.1 Block A: Better Congestion Control

This block of results aim to study the suitability of BBR congestion control over GEO
SATCOM links, under different scenarios. These scenarios evaluate performance and
fairness under different congestion and loss circumstances, testing how well different CC
algorithms cope with them. The following subsections describe each of these scenarios.

6.3.1.1 Scenario A1: Single-Flow Bulk Download

Scenario A1 aims to measure bulk download performance with different QUIC imple-
mentations and CC algorithms, in both the satellite and the terrestrial scenario, to
evaluate how well the link is utilized in the presence of elephant flows. This is achieved
by initiating the download of a 1GB file, requested from the client to the server, as
illustrated in Figure 6.2. The download is terminated after 180 seconds, and the average
goodput is measured.

52 Chapter 6 Experiments and Results

client1 server1

router
link emulator

CC: BBRv2/v1, CUBIC

1GB file... ...

Buffer Size

Bulk Download

One Way Delay

...

Figure 6.2: Illustration of scenario A1

This scenario helps to identify which QUIC implementations perform better under the
satellite link, as well as the impact of CC under different packet loss conditions. The
experiments will be repeated for multiple buffer sizes, and packet loss will be introduced
artificially in the bottleneck queue.

6.3.1.2 Scenario A2: Mice vs Elephant Flows

Scenario A2 aims to measure the download time of different series of objects of different
sizes. These experiments are run with the presence of background traffic, for a more
realistic scenario and for evaluating the impact of CC for mice flows competing against
elephant flows. A simple illustration of this scenario is shown in Figure 6.3.

client1 server1

router
link emulator

CC: BBRv1, CUBIC

1GB file

client2 server2 Multiple small files

Background traffic: elephant flow

Small object downloads

CC: BBRv2/v1, CUBIC

...

Figure 6.3: Illustration of scenario A2

The background elephant flow is generated between ’client1’ and ’server1’ using the same
strategy as in scenario A1. 60 seconds after starting the elephant flow, the download of
small objects is started between ’client2’ and ’server2’. The experiments are repeated
for different object sizes - 1KB, 10KB, 100KB and 1MB - and for different numbers of
objects - 1, 10 and 100 objects. The possible influence of the CC in the background
flow on the downloads is also tested by repeating the experiments with BBRv1 and

Chapter 6 Experiments and Results 53

CUBIC. Performance is evaluated by measuring the download time of the different series
of objects.

6.3.1.3 Scenario A3: Multi-Flow Fairness

Scenario A3 aims to evaluate the fairness of different CC algorithms in multiple-flow
scenarios. Fairness is measured using Jain’s Fairness Index (JFI), which is an accurate
measure of fairness even when the number of flows increases. Flows are initiated
simultaneously between two pairs of hosts, and they are terminated after 180 seconds.
Odd-numbered flows run between ’client1’ and ’server1’, and even-numbered flows run
between ’client2’ and ’server2’ -, as illustrated in Figure 6.4. This ensures an equal
impact of CPU load on all flows.

client1 server1

router
link emulator

CC: BBRv2/v1, CUBIC

1GB file

client2 server2

Flows 1,3,5... (odd flows)

CC: BBRv2/v1, CUBIC

1GB file

...

Flows 2,4,6... (even flows)

...

Figure 6.4: Illustration of scenario A3

This scenario allows to study two aspects of fairness: (1) the intra-protocol fairness - i.e.,
between flows that use the same CC algorithm; and (2) the inter-protocol - i.e., between
flows that use different CC algorithms. Intra-protocol fairness is measured for 2, 4, 8, 16,
32 and 64 flows. Inter-protocol fairness is measured for different CC combinations of 2
and 4 flows. For this set of experiments, only ngtcp2 will be evaluated, since picoquic
does not implement BBRv2.

6.3.1.4 Scenario A4: Latecomer Issue

In the context of fairness, scenario A4 looks into the latecomer issue. This problem
implies latecomer flows either (1) not being able to compete with other flows that are
already utilizing the link or (2) being too aggressive towards them.

54 Chapter 6 Experiments and Results

To evaluate this issue, a 4-flow scenario was designed where each flow starts 40 seconds
after the other at a different time - at 0, 40, 80 and 120 seconds. As in the previous
scenario, odd-numbered flows and even-numbered flows are started between different
pairs of hosts, as shown in Figure 6.5. All flows are terminated 180 seconds after they
are started.

client1 server1

router
link emulator

CC: BBRv2/v1, CUBIC

1GB file

client2 server2

Flow 1 (t=0)

CC: BBRv2/v1, CUBIC

1GB file

Flow 4 (t=120)

Flow 3 (t=80)

Flow 2 (t=40)

Figure 6.5: Illustration of scenario A4

To evaluate different performance aspects of these scenario, four items are considered:

1. Convergence speed. Latecomer flows SHOULD be as fast as possible at getting
their correspondent bandwidth share.

2. Aggressiveness towards existing flows. Latecomer flows SHOULD NOT steal
more bandwidth than they are corresponded with to existing flows.

3. Long-term fairness. All flows SHOULD converge to a fair bandwidth share.

4. Recovery of available bandwidth after other flows end. Once other flows
are terminated and some bandwidth is freed, latecomer flows SHOULD be able to
get the new available bandwidth.

6.3.2 Block B: Faster path parameter discovery

The second approach aims to study the possible benefits of using the BDP Frame
extension implemented in picoquic for achieving faster CC convergence. This could
improve not only short flows, by allowing a faster cwnd ramp-up for small downloads, but
also longer flows, since this faster ramp-up allows to converge to the maximum available
bandwidth faster, thus benefiting flows in the long term.

Chapter 6 Experiments and Results 55

6.3.2.1 Scenario B1: Connection Resumption with BDP Extension

This scenario which allows to measure the download time for different object sizes on
three different contexts:

• The first connection. The server and client do not know each other, so the
default 1-RTT handshake is performed. In the end of this connection, the server
sends a token to the client.

• Zero-rtt resumption. The client initiates a connection with a known server,
sending the token in a 0-RTT packet. If the token is verified and accepted by the
server, the 0-RTT handshake goes through, immediately starting the data transfer.

• Zero-rtt resumption with BDP extension. With the BDP extension enabled,
the server sends a BDP frame in the end of the first connection. This BDP frame
is sent back to the server by the client when attempting to resume a connection,
allowing the server to optimize its CC parameters according to the BDP frame
data.

Each experiment run for both connection resumption approaches is carried out following
the next steps:

1. Start first 1-RTT connection client and server, with the BDP extension disabled or
enabled.

2. Resume connection using the received token and start the download.

3. Compare the download time in both the initial connection and the resumed con-
nection.

6.3.3 Block C: ACK policies for reducing congestion in return link

The third approach aims to analyze the impact of asymmetry on QUIC performance,
and study the possible benefit of using custom ACK policies to reduce congestion in
return link.

For this block, we define the Asymmetry Ratio to represent the asymmetry between
the downstream and the upstream links, as shown in Equation 6.4,

AsymmetryRatio(%) = 1 − BWu

BWd
(6.4)

56 Chapter 6 Experiments and Results

where BWu and BWd are the bottleneck bandwidth values for the upstream and down-
stream respectively. Table 6.3 shows the Asymmetry Ratio values used for these experi-
ments and their corresponding bandwidths.

Asymmetry Ratio (%) Downstream Bandwidth Upstream Bandwidth
0

20 Mbps

20 Mbps
50 10 Mbps
75 5 Mbps
90 2 Mbps
95 1 Mbps
97.5 500 kbps
99 200 kbps

Table 6.3: Correspondence between asymmetry ratio values and link bandwidth

In order to study the impact of the asymmetry, we measure the achieved goodput relative
to the symmetric case. Results will be obtained with both ngtcp2 - which does not use
any ACK policy to benefit asymmetrical links - and picoquic - which implements the
ACK Frequency extension by default and applies an ACK policy.

6.3.3.1 Scenario C1: Bulk download on asymmetric SATCOM

Scenario C1 measures the bulk download goodput achieved through the download of a
large file, similarly to scenario A1. However, in this case there are two main differences:
(1) the link is asymmetric and (2) different ACK policies are used.

Since an aggressive delayed ACK policy might have a negative impact on loss recovery,
since it delays loss detection, the experiments will be repeated with the presence of
packet loss. The experiments will also be run with the presence of cross-traffic on the
upstream, which can be a typical scenario if there is heavy bidirectional traffic (e.g.,
videoconferencing traffic), and it can aggravate the issue of upstream congestion even
more.

6.4 Results

This section presents and describes the results obtained in the different scenarios for
blocks A, B and C. The results are presented using tables and graphs, produced from
experimental data using R and its plotly library.

Chapter 6 Experiments and Results 57

6.4.1 Block A results

6.4.1.1 A1: Bulk download results

Figures 6.6, 6.7 and 6.8 summarize the goodput results in the current scenario, for values
of 0%, 0.1% and 1% packet loss (PLR) respectively.

0.25 0.5 1 2
14

15

16

17

18

19

20

0.25 0.5 1 2

ngtcp2 - bbr2 ngtcp2 - bbr1 ngtcp2 - cubic picoquic - bbr1 picoquic - cubic

Bottleneck Buffer Size (BDP) Bottleneck Buffer Size (BDP)

G
o
o
d

p
u
t

(M
b

p
s)

SAT scenarioSAT scenarioSAT scenario TERR scenarioTERR scenarioTERR scenario

Figure 6.6: Bulk download goodput over an ideal link (PLR=0)

0.25 0.5 1 2
0

5

10

15

20

0.25 0.5 1 2

ngtcp2 - bbr2 ngtcp2 - bbr1 ngtcp2 - cubic picoquic - bbr1 picoquic - cubic

Bottleneck Buffer Size (BDP) Bottleneck Buffer Size (BDP)

G
o
o
d

p
u
t

(M
b

p
s)

SAT scenarioSAT scenarioSAT scenario TERR scenarioTERR scenarioTERR scenario

Figure 6.7: Bulk download goodput with losses (PLR=0.1%)

First, we focus on the ideal scenario with no packet loss, i.e. Figure 6.6. As expected,
results show that performance over the satellite link is worse than over the terrestrial
link in all cases, due to the long RTT. Results also show picoquic performing significantly
better than ngtcp2, especially in the satellite scenario, where the performance boost
provided by the implementation is more significant.

58 Chapter 6 Experiments and Results

0.25 0.5 1 2
0

5

10

15

20

0.25 0.5 1 2

ngtcp2 - bbr2 ngtcp2 - bbr1 ngtcp2 - cubic picoquic - bbr1 picoquic - cubic

Bottleneck Buffer Size (BDP) Bottleneck Buffer Size (BDP)

G
o
o
d

p
u
t

(M
b

p
s)

SAT scenarioSAT scenarioSAT scenario TERR scenarioTERR scenarioTERR scenario

Figure 6.8: Bulk download goodput with losses (PLR=1%)

The choice of CC algorithm also proves to make a difference. For appropriate buffer sizes
(i.e. over 1BDP) CUBIC appears to do better than both versions of BBR. BBRv1 and
BBRv2 do not show significant improvements from the use of bigger buffers, and they
perform slightly worse than CUBIC in the ideal scenario.

When packet loss is introduced in the link, as shown in Figures 6.7 (PLR=0.1%) and 6.8
(PLR=1%), we see CUBIC providing a dramatically lower goodput, down to around 3
Mbps in the case with 0.1% PLR and going under 1 Mbps in the 1% PLR case. This is a
consequence of the loss-based nature of CUBIC, which performs poorly in lossy scenarios
in the absence of lower-layer mechanisms that add robustness (e.g., FEC or Adaptive
Coding and Modulation (ACM)).

Nevertheless, BBR keeps providing a similar performance in the presence of packet loss -
even with a PLR of 1%, BBRv1 achieves goodput values over 15Mbps. Since BBRv1 sets
the pacing rate only based on the bottleneck-bandwidth and the RTT, it maintains the
pacing rate no matter the amount packet loss experienced, and the QUIC loss recovery
mechanisms take care of retransmitting the lost packets. While BBRv2 shows a similar
performance to the ideal scenario with 0.1% PLR, performance drops significantly in the
high PLR experiments. This is potentially a result of the packet loss level surpassing the
threshold set by the BBRv2 sender, after which the packet loss starts to have an impact
on the CC behaviour.

It is possible to get a greater understanding on the reasons behind these results by looking
at congestion window and RTT data. Figure 6.9 shows the cwnd and RTT evolution over
time for a randomly picked run, for each CC algorithm available in ngtcp2, in the ideal
(PLR=0) and high loss (PLR=1%) scenarios. Results clearly show how, while BBRv1 is

Chapter 6 Experiments and Results 59

barely affected by the presence of packet loss in terms of cwnd and RTT dynamics, the
impact on BBRv2 and CUBIC is more significant, especially in the latter.

6.4.1.2 A2: Mice-flow results

Figure 6.10 shows the download times for different numbers of objects and object sizes,
with each CC algorithm available. Experiments are run in the presence of an elephant
flow in the background: BBR background traffic (plots on the first row of Figure 6.10)
and also using CUBIC background traffic (plots on the second row of Figure 6.10).

First of all, results show an exponential increase of the download time as the object size
increases, and also as the number of objects increases. This is expected, as a result of
the exponential increase of the cwnd in the start of the connection.

Results in the presence of BBR background traffic show that BBRv1 achieves the shortest
download times, especially for heavier object sizes, while CUBIC takes around twice as
long as BBRv1 in the 1MB case. BBRv2 itself also outperforms CUBIC, but it performs
a bit slower than BBRv1, as already hinted in the previous results from scenario A1.

When the background traffic is CUBIC, we see download times increasing in most cases.
BBRv2 suffers a dramatic performance drop when competing against a CUBIC elephant
flow. BBRv1 also sees an increase in download times; however, it still beats CUBIC. This
demonstrates that the fact that BBRv1 beats CUBIC is not a consequence of BBRv1
being too agressive towards it.

6.4.1.3 A3: Multi-flow fairness results

Figure 6.11 shows the results of the intra-protocol fairness tests with 2 flows. The figure
show a clear winner - BBRv1 is the fairest of all the candidates -, followed by CUBIC
and BBRv1. In addition, the size of the bottleneck queue does not appear to have a
clear impact on fairness.

Results for intra-protocol fairness tests with multiple parallel flows are shown in Figure
6.12. Bandwidth utilization for these tests is also shown in Figure 6.13. The results
shows that, although bandwidth utilization improves, fairness in BBRv1 and BBRv2
starts to drop significantly as the number of flows increases. Even though BBRv2 appears
to behave more fairly than BBRv1 for a high number of flows, the JFI scores achieved
by both BBR versions are not appropriate. Meanwhile, CUBIC achieves an outstanding
fairness score even for 64 parallel flows.

60 Chapter 6 Experiments and Results

(a) BBRv2, PLR=0% (b) BBRv2, PLR=1%

(a) BBRv1, PLR=0% (b) BBRv1, PLR=1%

(a) CUBIC, PLR=0% (b) CUBIC, PLR=1%

Figure 6.9: Congestion window and RTT evolution for a randomly picked run, for each
CC algorithm, in the ideal (PLR=0) and high loss (PLR=1%) scenarios.

Chapter 6 Experiments and Results 61

1KB 10KB 100KB 1MB
0

10

20

30

40

50

1KB 10KB 100KB 1MB 1KB 10KB 100KB 1MB

1 object 10 objects 100 objects

Object Size Object Size Object Size

D
o
w

n
lo

a
d
 T

im
e
 (

s)
BBRv2BBRv2BBRv2 BBRv1BBRv1BBRv1 CubicCubicCubic

(a) BBR background traffic

1KB 10KB 100KB 1MB
0

10

20

30

40

50

1KB 10KB 100KB 1MB 1KB 10KB 100KB 1MB

1 object 10 objects 100 objects

Object Size Object Size Object Size

D
o
w

n
lo

a
d
 T

im
e
 (

s)

BBRv2 59.58 ± 30.79 BBRv1BBRv1BBRv1 CubicCubicCubic

(b) CUBIC background traffic

Figure 6.10: Mice flow experiment results for BBR and CUBIC background traffic

0.25 0.5 1 2
0.75

0.8

0.85

0.9

0.95

1

1.05

0.25 0.5 1 2 0.25 0.5 1 2

Buffer Size (BDP) Buffer Size (BDP) Buffer Size (BDP)

Ja
in

's
 F

a
ir

n
e
ss

 I
n
d
e
x
 (

JF
I)

BBRv2BBRv2BBRv2 BBRv1BBRv1BBRv1 CubicCubicCubic

Figure 6.11: Intra-protocol fairness tests with two parallel flows, with ngtcp2

Afterwards, we look at the inter-protocol fairness with three different scenarios using
different CC combinations: (A) BBRv2 vs BBRv1, (B) BBRv2 vs CUBIC and (C) BBRv1
vs CUBIC. Figure 6.14 shows the JFI obtained for all possible CC permutations with
2 and 4 parallel flows. The JFI is computed using all flows individually and shows
the fairness score between all of them, but it does not reveal which CC algorithm is
dominating. To solve this, the relative bandwidth share of each flow is shown in the pie

62 Chapter 6 Experiments and Results

2 4 8 16 32 64
0.2

0.4

0.6

0.8

1

2 4 8 16 32 64 2 4 8 16 32 64

Number of Flows Number of Flows Number of Flows

Ja
in

's
Fa

ir
n
e
ss

In
d

e
x

(J
FI

)

BBRv2BBRv2BBRv2 BBRv1BBRv1BBRv1 CubicCubicCubic

Figure 6.12: Intra-protocol fairness tests with different numbers of parallel flows, with
ngtcp2

2 4 8 16 32 64
0.5

0.6

0.7

0.8

0.9

1

bbr2 bbr1 cubic

Number of Flows

G
o
o
d
p

u
t/

B
a
n
d
w

id
th

Figure 6.13: Bandwidth utilization for intra-protocol fairness tests

A B C

0.4

0.6

0.8

1

A B C A B C A B C

Scenario Scenario Scenario Scenario

JF
I

2 flows2 flows2 flows 4 flows - 2v24 flows - 2v24 flows - 2v2 4 flows - 3v14 flows - 3v14 flows - 3v1 4 flows - 1v34 flows - 1v34 flows - 1v3

Figure 6.14: Inter-protocol fairness tests for different CC combinations, with ngtcp2

charts in Figure 6.15.

Results show that, while BBRv1 behaves very aggressively towards CUBIC, leaving
CUBIC flows with a small bandwidth share (see scenario C and corresponding pie charts),
BBRv2 provides a fairer behavior towards CUBIC in all cases (see scenario B), with JFI

Chapter 6 Experiments and Results 63

BBRv1 - 2
43.1%

 BBRv1 -1
40.7%

BBRv2 - 1
10.7%

B
B

R
v2

 - 2

5
.5

6
%

 CUBIC -1
35.6%

CUBIC - 2
27.8%

BBRv2 - 2
19.3%

BBRv2 - 1
17.3%

BBRv1 - 1
54.1%

BBRv1 - 2
33.8%

CUBIC
 -

2

6.
8%

 C
U

B
IC

 -
1

5.
24

%

(a) 2v2 inter-protocol scenarios

BBRv1 - 1
80.1%

BBRv2 - 1
10.3% BBRv2 - 2

7.04%BBRv2 - 3
2.55%

CUBIC - 1
40.1%

 BBRv2 - 2
22.6%

BBRv2 - 3
20.2%

BBRv2 - 1
17.1%

BBRv1 - 1
34.3%

BBRv1 - 3
33.1%

 BBRv1 - 2
27.5%

CUBIC - 1
5.15%

(b) 3v1 inter-protocol scenarios

 BBRv1 - 1
36.8%

BBRv1 - 2
29.7%

BBRv1 - 3
29.7%

BBRv2 - 1
3.79%

CUBIC - 2
34.1%

 CUBIC - 1
23.9%

CUBIC - 3
23.8%

BBRv2 - 1
18.2%

BBRv1 - 1
58.1%

 CUBIC - 1
18.9%

CUBIC - 2
12.8%

CUBIC - 3
10.2%

(c) 1v3 inter-protocol scenarios

Figure 6.15: Relative bandwidth shares for 4-flow inter-protocol experiments with
ngtcp2

scores over 90%. When the two BBR versions compete against each other, BBRv2 gets
great disadvantage.

6.4.1.4 A4: Latecomer test results

Figure 6.16 summarizes the results of the latecomer experiments for both the satellite
and terrestrial links, showing the goodput achieved by each flow over time, as well as the

64 Chapter 6 Experiments and Results

aggregate goodput and the smoothed RTT measured by each flow. Overall, we see the
endpoints in all flows measuring the RTT with very close results. In terms of bandwidth
utilization, we observe quite stable aggregate goodput over time over the terrestrial link,
while the satellite link makes it oscillate more due to the long feedback loop, especially
with BBR CC.

When looking at flows individually and studying how they enter the link, we can draw
several observations, summarized in Table 6.4. In terms of convergence speed, we see
CUBIC being the slowest candidate, especially in the SATCOM scenario, due to the long
RTT. Since both BBR versions share a very similar cwnd ramp-up approach, they both
converge at a similar pace.

Looking at the short-term fairness to evaluate the aggressiveness towards existing flows,
we see BBRv1 latecomers stealing an excessive amount of bandwidth from previous flows.
BBRv2 latecomers, however, join the link more gently and do not greatly damage existing
flows. In terms of long-term fairness, all the candidates do a good job, but especially
CUBIC and BBRv2.

We also identify an issue where BBRv2 fails to recover the available bandwidth after the
rest of the flows are terminated (see item (a) in Figure 6.16). This issue is only present
in the SATCOM scenario, which hints that it is a product of the long RTT not allowing
the CC orchestrator to fully utilize the available bandwidth.

Qualitative Metric BBRv2 BBRv1 CUBIC
Convergence speed Good Good Poor
Short-term fairness Best Poor Good
Long-term fairness Good Decent Best

Recovery of available bandwidth Poor* Good Good

Table 6.4: Qualitative latecomer fairness evaluation for BBRv2, BBRv1 and CUBIC. *
For the SATCOM scenario

6.4.2 Scenario B1 results

Figure 6.17 shows the download times for different object sizes using picoquic, comparing
the first connection with the two approaches for connection resumption (without and
with the exchange of the BDP Frame). Download times for smaller objects were not
shown because connection resumption does not seem to have an impact on download
times in their downloads.

Results show that the connection resumption allows to save around 1 RTT (600 ms) in
the download, and around 1 second for 50MB objects. However, our results do not show

Chapter 6 Experiments and Results 65

0

5

10

15

20

0 40 80 120 160 200 240 280

600

800

1000

1200

1400

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d

p
u
t

(M
b

p
s)

R
T
T

(m
s)

0

5

10

15

20

0 40 80 120 160 200 240 280
0

100

200

300

400

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d

p
u
t

(M
b

p
s)

R
T
T
 (

m
s)

(a) BBRv2 SAT (RTT = 600 ms), (b) BBRv2 TERR (RTT = 100 ms)

0

5

10

15

20

0 40 80 120 160 200 240 280

600

800

1000

1200

1400

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d

p
u
t

(M
b

p
s)

R
T
T

(m
s)

0

5

10

15

20

0 40 80 120 160 200 240 280
0

100

200

300

400

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d

p
u
t

(M
b

p
s)

R
T
T
 (

m
s)

(c) BBRv1 SAT (RTT = 600 ms), (d) BBRv1 TERR (RTT = 100 ms)

0

5

10

15

20

0 40 80 120 160 200 240 280

600

800

1000

1200

1400

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d

p
u
t

(M
b

p
s)

R
T
T

(m
s)

0

5

10

15

20

0 40 80 120 160 200 240 280
0

100

200

300

400

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d

p
u
t

(M
b

p
s)

R
T
T
 (

m
s)

(e) CUBIC SAT (RTT = 600 ms), (f) CUBIC TERR (RTT = 100 ms)

Figure 6.16: Latecomer experiment results for different CC in both the satellite and
terrestrial scenarios

any additional advantage with the exchange of the BDP frame, no matter the object size.
Experiments were also repeated using different CC algorithms, but no noticeable change
in behavior was observed.

6.4.3 Scenario C1 results

Table 6.5 shows the goodput ratio in relation to the symmetric scenario, for different
asymmetry ratio values. Results show that the lack of a satellite-optimized ACK policy
in ngtcp2 introduces a notable performance degradation as the asymmetry ratio increases,
especially after hitting the 95% mark. Meanwhile, picoquic’s performance remains
constant even with very high asymmetry.

Experiments were repeated with the presence of cross-traffic in the upstream link,
producing the results shown in Table 6.6. Results show that the presence of upstream

66 Chapter 6 Experiments and Results

5MB 10MB 20MB 50MB
0

5

10

15

20

25

30

First connection

0-rtt resumption

0-rtt-bdp resumption

Object Size

D
o
w

n
lo

a
d
 T

im
e
 (

s)

Figure 6.17: Download times for different object sizes, using 0-rtt and 0-rtt-bdp
connection resumption approaches

traffic aggravates the issue: with only 50% of asymmetry we already observe a performance
decrease of around 12%.

Statistics about the number of ACKs sent by the receiver and STREAM (data) frames
received were also extracted from the experiments, and presented in Figures 6.18 (without
loss) and 6.19 (with 1% PLR). Results reveal that ngtcp2 ’s lack of ACK policy is limited
to the default QUIC 1:2 ratio (i.e., 1 ACK sent for every two packets); meanwhile,
picoquic uses an ACK ratio of around 1:17. Results also show that this ACK policy
implemented by picoquic does not depend on the level of asymmetry, since it uses the
same ACK ratio regardless of the asymmetry ratio.

Asymmetry Ratio
50% 75% 90% 95% 97.5% 99%

PLR ACK Policy Goodput ratio (%)

0%
None (ngtcp2) Mean 99.52 99.40 99.27 95.15 66.70 27.88

Stdev 1.37 1.35 2.18 2.70 0.97 0.34

picoquic Mean 99.92 99.97 100.06 100.05 100.03 100.06
Stdev 0.31 0.33 0.21 0.21 0.19 0.22

1%
None (ngtcp2) Mean 100.60 98.77 100.37 75.81 41.74 19.36

Stdev 2.57 3.47 2.82 2.41 1.21 0.53

picoquic Mean 99.91 99.99 99.58 99.99 100.01 99.63
Stdev 0.42 1.19 0.38 0.47 0.19 0.22

Table 6.5: Goodput ratio relative to symmetric scenario

Chapter 6 Experiments and Results 67

Asymmetry Ratio
50% 75% 90% 95% 97.5% 99%

PLR ACK Policy Goodput ratio (%)

0%
None (ngtcp2) Mean 88.90 73.41 58.85 30.56 13.61 4.31

Stdev 8.58 14.63 7.39 8.08 2.18 2.43

picoquic Mean 100.01 100.04 99.95 99.92 99.92 99.96
Stdev 0.24 0.20 0.22 0.20 0.22 0.20

1%
None (ngtcp2) Mean 99.17 78.02 53.14 24.27 13.22 5.81

Stdev 7.09 10.26 11.29 5.85 2.73 3.45

picoquic Mean 99.67 99.90 99.85 99.86 99.80 99.90
Stdev 0.30 0.38 0.43 0.36 0.34 0.34

Table 6.6: Goodput ratio relative to symmetric scenario, with cross-traffic on the
upstream

75 90 95 97.5 99
0

20k

40k

60k

80k

100k

120k

140k

160k

180k

ngtcp ACK picoquic ACK ngtcp2 FRAME picoquic FRAME

Asymmetry Ratio (%)

#
 o

f
fr

a
m

e
s

Figure 6.18: Number of ACK frames sent and STREAM frames received by the client,
on the ideal scenario (PLR=0)

68 Chapter 6 Experiments and Results

75 90 95 97.5 99
0

20k

40k

60k

80k

100k

120k

140k

160k

180k

ngtcp ACK picoquic ACK ngtcp2 FRAME picoquic FRAME

Asymmetry Ratio (%)

#
 o

f
fr

a
m

e
s

Figure 6.19: Number of ACK frames sent and STREAM frames received by the client,
under loss conditions (PLR=1%)

Chapter 7

Discussion

The obtained set of the results for the different proposed solutions and experimental
scenarios has led to a series of observations that can generate a very interesting discussion.
This discussion aims to not only provide a broader view on the implications of the results,
but also to comment on the practical implementation feasibility of the solutions, and to
hint potential future research paths related to the different mechanisms proposed.

7.1 Impact of QUIC Implementation

Before starting a discussion on the different solutions proposed, some insight needs to be
added into the heterogeneity observed between the QUIC implementations used in this
study (ngtcp2 and picoquic). Even though both implementations are built based on the
same IETF QUIC specification, they are still under development, and small differences
in software design might introduce different behavior patterns under certain conditions.

Observations from scenario A1 (section 6.4.1.1) have shown picoquic clearly outperforming
the other candidate in terms of bandwidth utilization, especially under high BDP
conditions, providing a goodput increase of around 16% in the BBRv1 case. It is also
possible to see picoquic performing really well under high packet loss conditions with
CUBIC, as opposed to ngtcp2 ’s CUBIC.

To gain deeper insight, we can compare the cwnd and Smoothed RTT at the sender
with both implementations. Figure 7.1 presents these parameters over time on randomly
chosen runs, using BBRv1 CC, 1 BDP buffer size and absence of packet loss. The data
shows different BBR behaviors: even though ngtcp2 BBRv1 drains the queue by reducing
the cwin to 0 on regular intervals, picoquic BBRv1 maintains a lower average RTT on

69

70 Chapter 7 Discussion

the path while keeping a high goodput. We also observe picoquic’s slow-start increasing
the cwnd faster.

(a) ngtcp2 (b) picoquic

Figure 7.1: cwnd and Smoothed RTT on the sender for single-flow experiments (BBRv1,
1BDP, 0% PLR)

Results also indicate that this performance difference is not only a matter of CC choice,
and picoquic’s advantage might be a result of other aspects of the transport layer. Even
though for these experiments flow control window limits have been uncapped, it is
possible that the flow control tuning algorithm in some QUIC implementations might
be limiting performance when the BDP is high. It is also likely that other mechanisms
unique to picoquic might be improving performance in this scenario, such as Path MTU
Discovery (PMTUD) or ACK policies fine-tuned for satellites (see more on 7.4).

All these observations hint that the next following years will witness several iterations in
the development of QUIC implementations and IETF specification: some implementations
will include experimental features that introduce improvements to the protocol under
SATCOM scenarios, and these features will likely be adapted by other agents.

7.2 Impact of Congestion Control

The choice of congestion control for QUIC over SATCOM has demonstrated to play a
big role in many aspects of network performance and fairness, as observed in Block A
results. Since observations do not show a clear winner, it is reasonable to do follow a
qualitative comparison that evaluates how well each CC algorithm performs in different
performance and fairness aspects.

Chapter 7 Discussion 71

Table 7.1 summarizes the observed performance and behavior of each CC algorithm, in
the different studied aspects of performance and fairness, in line with the experimental
scenarios designed for Block A. In this discussion section, we are focusing on ngtcp2,
which implements the latest iteration of BBR, allowing to study if it solves the issues of
previous versions and if it introduces any other additional challenges.

Qualitative Metric BBRv2 BBRv1 CUBIC
Bulk Download over ideal link Good Good Best
Bulk Download over lossy link Decent Best Poor

Mice Flow Performance Good Best Poor
Intra-Protocol fairness Poor Poor Best

Fairness towards CUBIC Best Poor -
Latecomer fairness Best Decent Good

Table 7.1: Qualitative comparison of CC algorithms with ngtcp2

Our observations have shown that BBR congestion can be highly suitable for SATCOM
links, providing better bulk download performance under lossy links - which can help
mitigate the impact of satellite propagation errors - and faster downloads with mice
flows. This suggests that BBR might be key for improving QoE in Internet applications
that involve large downloads (e.g., those in video streaming clients) and also smaller but
multiple concurrent downloads (e.g., web browsing). Using the latest BBRv2 also seems
to be the right choice for improving fairness, which is fundamental for the well-being on
the Internet, especially when the number of flows on the same link increases. It has also
been shown that link utilization appears to increase with a large number of simultaneous
flows - in some cases it might be more efficient to open multiple QUIC connections.

However, there are still clear issues with BBRv2: (1) the intra-protocol convergence
scores are still not acceptable when the number of concurrent flows grows, which can
be problematic when BBR traffic starts to gain more presence on the Internet; (2) the
unfairness between BBRv2 and BBRv1 (although it is expected that BBRv2 replaces
its previous version) and (3) an issue with BBRv2’s capability to use the available
bandwidth efficiently after congestion events for high RTT links. These should be further
investigated and addressed in upcoming BBR versions.

Another matter yet to be investigated is the impact of CC in multi-streaming scenarios.
With QUIC’s capability to multiplex streams with a common congestion controller, but
with stream-specific flow control, the CC choice might play an important role. This can
be studied through applications running over QUIC that make smart use of the stream
multiplexing feature.

72 Chapter 7 Discussion

7.3 Impact of BDP Frame Strategy

Even though the BDP frame strategy seemed to be a promising candidate for improving
QUIC’s performance over SATCOM, our results have been able to demonstrate any
benefits from its use, unlike the study in [36].

We suggest three possible reasons why our results might not be showing any improvements:

• The experimental scenario might not be properly designed to evaluate this strategy.

• The safety mechanisms to avoid CC being too aggressive might be preventing
optimization under the proposed satellite link emulation.

• The satellite emulation might be missing some lower layer mechanisms that play
an important role in CC convergence.

Anyways, this motivates further research into how the path parameter data exchanged
through BDP frames is actually used in the CC optimization.

7.4 Impact of ACK Frequency Strategy

The experimental evaluation in Block C has shown significant performance degradation
when link bandwidth asymmetry is present, which is very common in satellite broadband
services. As shown in Table 7.2, satellite broadband access providers such as HughesNet
or Viasat in USA or Eutelsat in Europe offer plans with high asymmetry, often surpassing
an asymmetry ratio of 95%. Even though asymmetry might not have been a problem in
the past, web browsing nowadays introduces significant uplink traffic (e.g., in the form of
cookies), and even more in interactive live streaming or videoconferencing.

Our results have revealed that, for a 95% asymmetric link with the presence of upload
traffic, download performance can get highly degraded due to congestion in the upstream
bottleneck, losing around 70% of download goodput. Luckily, we have witnessed great
benefits from the use of ACK policies powered by the ACK Frequency extension in
picoquic, which manage to maintain high performance over highly asymmetric links by
negotiating a reduced ACK delivery frequency. This motivates further study of these
policies and addition of this extension to other QUIC implementations.

Since delaying ACK delivery could also be dangerous for the well-being of loss recovery
mechanisms, these ACK policies should be carefully studied. An interesting approach
would be to make these ACK policies be dynamically fine-tuned according to the

Chapter 7 Discussion 73

bandwidth asymmetry in the link, so that no extreme ACK delay is introduced if it is not
necessary. Another possible approach would be to introduce ACK Congestion Control
over QUIC, such as the one proposed for TCP in RFC 5690 [111], allowing to adapt the
rate of sending ACKs according to the congestion in the uplink.

Provider Bandwidth Asymmetry Ratio
HughesNet (USA) Up to 25/3 Mbps 88%
Viasat (USA) Up to 100/3 Mbps 97%

Eutelsat (Europe) Up to 75/3 Mbps 96%

Table 7.2: Satellite broadband plans offered by some popular providers in USA and
Europe

Chapter 8

Conclusion

This thesis has investigated the convergence between major breakthroughs in the Internet
transport layer (i.e., QUIC and BBR) and new use cases for SATCOM broadband access,
identifying the challenges involved and evaluating performance-boosting solutions.

Our proposal has studied three different strategies to potentially improve the performance
of QUIC over SATCOM: (1) the use of BBR congestion control, (2) the early exchange
of path parameters between endpoints using the BDP extension and (3) the use of
custom ACK policies for reducing ACK congestion in return links. Performance results
have been obtained using a physical network testbed located at UiS and an emulated
satellite link based on netem/tc, with a 600 ms round-trip time and 20 Mbps of bottleneck
downstream bandwidth. Experiment orchestration and automation has been facilitated by
the development of an extended version of TEACUP, which allows to design experiments
using different QUIC implementations.

The complete set of experiment results allows us to answer the research questions
formulated in the beginning of this document. They also open up a series of questions
which might lead to future research paths which can be important for QUIC’s further
standardization and performance improvements over SATCOM broadband access.

Part of this work has also derived into an accepted publication for the Applied Networking
Research Workshop 2022 (ANRW’22). Further details on this publication, as well as a
pre-print for the paper, can be found in Appendix E.

8.1 Answers to the Research Questions

RQ1: Can the performance of QUIC over SATCOM links be improved using transport
protocol mechanisms?

75

76 Chapter 8 Conclusion

Yes. This study has proven that it is possible to improve QUIC’s performance
over SATCOM without the need of any proxies that compromise the end-to-
end principle, and merely by implementing a series of mechanisms in QUIC
endpoints that help to mitigate the challenges created by the satellite link.

• RQ1.1: Can better congestion control algorithms improve bandwidth utilization,
download speed and fairness?

Yes. Results have proven that using BBR congestion control instead of
CUBIC can greatly improve download performance in both large and
short downloads over SATCOM links, especially under the presence
of propagation errors. Using the latest version of BBR (BBRv2) has
also demonstrated being able to improve fairness towards CUBIC flows
and latecomer convergence. However, a series of issues with BBR CC
have also been identified: (1) unfair behavior between BBR flows and
(2) inability of BBRv2 to recover available bandwidth after congestion
events on long RTT links.

• RQ1.2: Can the early exchange of BDP information between endpoints using the
BDP Extension improve congestion control convergence?

It is unsure. While some early studies have shown a potential perfor-
mance gain with the use of this extension, our results do not show any
clear benefits from its use.

• RQ1.3: Can custom ACK policies on the client-side improve performance on
asymmetric satellite links?

Yes. Our results have proven that satellite-optimized ACK policies can
help minimize the performance degradation on highly asymmetric links,
especially under the presence uplink traffic.

RQ2: If the answer to RQ1 is positive, are these mechanisms safe and feasible to
implement?

They can be, with proper design. Some of the solutions evaluated and dis-
cussed can be benefitial for SATCOM broadband but also a bit aggressive.

Chapter 8 Conclusion 77

While BBR seems to be appropriate for both terrestrial and satellite links,
ACK policies or BDP Frame acceleration could introduce additional issues
unless proper safety checks are implemented along with them.

8.2 Future Directions

The outcome of this work also opens up a series of future research paths.

• Improve BBRv2 over SATCOM. Even though BBRv2 has proven to be great
for SATCOM, the algorithm needs to be further refined in order to tackle the
fairness issues identified. This involves investigating the BBRv2 bandwidth probing
state machine and experimenting with it in order to find solutions, potentially
contributing to further versions. It is also possible that these issues are not product
of the BBRv2 algorithm itself, but caused by its implementation over QUIC.

• Investigate CC ramp-up strategies using BDP Frame data. Even though
the experiments in this thesis did not show favorable results for the BDP Frame
extension, we believe that it should be further investigated, and that this approach
has potential for being a fundamental mechanism for QUIC over SATCOM.

• Investigate potential dynamic ACK policies. This thesis has demonstrated
the benefits of using custom ACK policies to improve performance under bandwidth-
asymmetric links. In this context, we suggest the design of ACK policies that adapt
to bandwidth asymmetry and return link congestion dynamically.

• Proxy-based solutions: MASQUE. As described in Chapter 3, MASQUE could
potentially be useful to implement SATCOM optimizations without breaking E2E
encryption and revealing minimal information to the proxies, through cooperation
between the endpoints and the network. We believe this will be a trendy study
topic in the next few years.

• More realistic emulation with OpenSAND. The testbed can be extended to
introduce OpenSAND satellite emulation, as indicated in Chapter 3. OpenSAND
implements many low layer mechanisms that are present in real satellite transpon-
ders and gateways, allowing to study QUIC performance over SATCOM over more
realistic scenarios.

List of Figures

1.1 Satellite Internet use cases . 3

2.1 PEP implementations: integrated (top) and distributed (bottom) 11
2.2 QUIC handshakes in comparison to TCP+TLS 14
2.3 The HTTP/3 protocol stack . 16
2.4 An example showing CUBIC behavior over a high latency GEO link (RTT

= 600 ms) . 20
2.5 An example showing BBR behavior over a high latency GEO link (RTT

= 600 ms) . 21

3.1 Illustration of BDP extension, using the BDP Frame approach 26
3.2 Illustration of the use of MASQUE to tunnel QUIC connections 28

4.1 Summary of research methodology . 33

5.1 Architecture of the network testbed . 36
5.2 Topology of the Experiment Networks . 36
5.3 Architecture of main TEACUP scripts . 39
5.4 Proposed experiment network topology for OpenSAND 44
5.5 Example qlog-JSON file generated by picoquic 46
5.6 Overview of the contents in the UiS Network Testbed repository 47

6.1 Overview of experimental scenarios . 51
6.2 Illustration of scenario A1 . 52
6.3 Illustration of scenario A2 . 52
6.4 Illustration of scenario A3 . 53
6.5 Illustration of scenario A4 . 54
6.6 Bulk download goodput over an ideal link (PLR=0) 57
6.7 Bulk download goodput with losses (PLR=0.1%) 57
6.8 Bulk download goodput with losses (PLR=1%) 58
6.9 Congestion window and RTT evolution for a randomly picked run, for each

CC algorithm, in the ideal (PLR=0) and high loss (PLR=1%) scenarios. . 60
6.10 Mice flow experiment results for BBR and CUBIC background traffic . . . 61
6.11 Intra-protocol fairness tests with two parallel flows, with ngtcp2 61
6.12 Intra-protocol fairness tests with different numbers of parallel flows, with

ngtcp2 . 62
6.13 Bandwidth utilization for intra-protocol fairness tests 62
6.14 Inter-protocol fairness tests for different CC combinations, with ngtcp2 . . 62
6.15 Relative bandwidth shares for 4-flow inter-protocol experiments with ngtcp2 63

79

80 LIST OF FIGURES

6.16 Latecomer experiment results for different CC in both the satellite and
terrestrial scenarios . 65

6.17 Download times for different object sizes, using 0-rtt and 0-rtt-bdp con-
nection resumption approaches . 66

6.18 Number of ACK frames sent and STREAM frames received by the client,
on the ideal scenario (PLR=0) . 67

6.19 Number of ACK frames sent and STREAM frames received by the client,
under loss conditions (PLR=1%) . 68

7.1 cwnd and Smoothed RTT on the sender for single-flow experiments
(BBRv1, 1BDP, 0% PLR) . 70

List of Tables

2.1 Mechanisms to boost TCP performance over SATCOM 9
2.2 Summary of PEP mechanisms . 11
2.3 Summary of the research that evaluates the performance of QUIC over

SATCOM links. Experiments column: R (real satellite), E (emulation)
and S (simulation) . 12

2.4 Summary of some QUIC implementations 18

3.1 Challenges and proposals for QUIC over SATCOM 24

5.1 Testbed node specifications . 37
5.2 Available features and default parameters for selected QUIC implementations 45

6.1 Link emulation parameters . 49
6.2 Summary of Experimental Scenarios . 51
6.3 Correspondence between asymmetry ratio values and link bandwidth . . . 56
6.4 Qualitative latecomer fairness evaluation for BBRv2, BBRv1 and CUBIC.

* For the SATCOM scenario . 64
6.5 Goodput ratio relative to symmetric scenario 66
6.6 Goodput ratio relative to symmetric scenario, with cross-traffic on the

upstream . 67

7.1 Qualitative comparison of CC algorithms with ngtcp2 71
7.2 Satellite broadband plans offered by some popular providers in USA and

Europe . 73

A.1 Guide to find the configuration files for the scenarios described in this work 84
A.2 List of most used parameters in TEACUP configuration files 84
A.3 Guide to find the configuration files for the scenarios described in this work 85

81

Appendix A

User manual for experiment
reproduction

This appendix aims to guide anyone with access to the UiS network testbed to reproduce
the results described in this work. To reproduce the experiments, three steps need to be
followed: (1) check the status of the testbed and perform sanity checks on it, (2) select
an scenario to reproduce and run the experiments, (3) perform the post-processing of
results.

A.1 Testbed sanity checks

After getting access to the testbed, a series of sanity checks need to be performed. The
following list can be used as a check-list of tasks to make sure that the testbed is correctly
set up and healthy.

• Check that the controller and all testbed nodes are running.

• Access the controller and perform a series of tasks:

– Ping the experiment nodes to test that they are reachable.

– Check that SSH access to the testbed nodes without password is working.

– Check that experiments nodes are properly time-synchronized.

– Check that there is Internet connectivity in all the nodes.

• Make sure that the controller is SSH-able remotely through the UiS Intranet.

83

84 Appendix A User manual for experiment reproduction

• Run an example QUIC experiment (e.g., the one located in ’experiments/quic-
experiment’) and see that everything is going smoothly according to the configura-
tion file. If something is missing, debug according to experiment logs.

A.2 Running an experimental scenario

After the status of the testbed has been validated, select the experimental scenario to be
reproduced, and access the corresponding folder from the controller, as shown in Table
A.1

Scenario Folder
A1: Single-Flow Bulk Download experiments/single-flow
A2: Mice vs Elephant Flows experiments/multi-file
A3: Multi-Flow Fairness experiments/bbr2_fairness_multiflow
A4: Latecomer Issue experiments/bbr2_fairness_latecomers
B1: BDP Extension experiments/zero-rtt-bdp
C1: Asymmetric SATCOM links experiments/asymmetric

Table A.1: Guide to find the configuration files for the scenarios described in this work

Once moved to the corresponding folder, check the TEACUP configuration file config.py,
to get a clear understanding of how the scenario is set up. This configuration file is easily
readable and modifiable, and it defines all default values for experiments and parameter
sweeps. The main parameters to be modified in these experiments are listed in Table
A.2.

Parameter Description
TPCONF_enable_qlog ’1’ to enable qlog, ’0’ to disable it
TPCONF_runs Number of experiment runs executed
TPCONF_duration Duration in seconds of one experiment run
TPCONF_delays One-way delay introduced in the router queue in miliseconds
TPCONF_loss_rates Packet loss rates artificially introduced in the queue
TPCONF_bandwidths Bandwidth setups for downstream and upstream
TPCONF_aqms Queue management strategy (for this work we only use ’bfifo’)
TPCONF_buffer_sizes Buffer size values (if AQM is ’bfifo’, in bytes)
TPCONF_ccalgos CC algorithm for the sender: ’bbr2’, ’bbr’ or ’cubic’

Table A.2: List of most used parameters in TEACUP configuration files

In order to run an experiment, execute the following instruction in the command-line,

$./run.sh

or to run it in the background,

Appendix A User manual for experiment reproduction 85

$ screen -d -m ./run.sh

and wait for the experiments to conclude. One can keep track of the progress by looking
into the ’experiments_started.txt’ and ’experiments_completed.txt’ files.

Once the experiments are completed, download the qlog files generated under the
generated experiment folder (named ’exp_...’). This can be done remotely through SSH
using the scp tool.

A.3 Post-processing

Once the qlog files are available locally, the Python script for post-processing located in
the visualization folder need to be used, named ’visualize_qlog.py’. This python script
contains a long list of methods to extract different statistics from qlog files. Most of these
methods make use of the read_qlog() method, which takes the path to a compressed
qlog file, decompresses it using the gzip library, and extracts all events using the json
and jsonseq libraries.

Table A.3 specifies which methods have been used to generate the results for each of the
scenarios. The end of the Python script can be used to set up processing tasks by calling
these methods for the different sets of results, since qlog files are heavy and it takes time
to analyze them.

Scenario Folder
A1: Single-Flow Bulk Download analyze_goodput_bdp_single()
A2: Mice vs Elephant Flows analyze_download_time()
A3: Multi-Flow Fairness analyze_jfi_multiflow()
A4: Latecomer Issue plot_goodput_time()
B1: BDP Extension analyze_download_time()
C1: Asymmetric SATCOM links analyze_goodput_bdp_single()

Table A.3: Guide to find the configuration files for the scenarios described in this work

The results obtained can then be pasted into the R visualization scripts for generating
the plots and exporting them as PDF files.

Appendix B

QUIC traffic generators for
TEACUP

#
picoquic
#

Start picoquic server
@param

def start_picoquic_server(counter='1', file_prefix='', remote_dir='', port='',
srv_host='', extra_params='', check='', wait='',
kill_delay=0, ccalgo='', kill=''):

if port == '':
abort('Must specify port')

if srv_host == '':
abort('Must specify server host')

start picoquic
logfile = remote_dir + file_prefix + '_' + \

env.host_string.replace(':', '_') + '_' + counter + '_picoquic.log'

picoquic_cmd = '/home/aitor/picoquic/picoquic_sample server'
picoquic_cmd += ' %s /root/certs/cert.pem' % (port)
picoquic_cmd += ' /root/certs/key.pem /root/files %s' % (ccalgo)

if extra_params != '':
picoquic_cmd += ' ' + extra_params

wait_time = wait

87

88 Appendix B QUIC traffic generators for TEACUP

pid = runbg(command=picoquic_cmd, wait=wait_time, out_file=logfile)

bgproc.register_proc(env.host_string, 'picoquic', counter, pid, logfile, kill_delay)

Start picoquic client
@param

def start_picoquic_client(counter='1', file_prefix='', remote_dir='', port='',
srv_host='', extra_params='', check='',
wait='', kill_delay=0, download_size='', download_repeat=1):

if port == '':
abort('Must specify port')

if srv_host == '':
abort('Must specify server host')

start picoquic
logfile = remote_dir + file_prefix + '_' + \

env.host_string.replace(':', '_') +'_' + counter + '_picoquic.log'

picoquic_cmd = '/home/aitor/picoquic/picoquic_sample client %s %s' %(srv_host, port)
if download_size != '':

picoquic_cmd += ' /tmp file'+download_size

Multi-file download
if download_repeat > 1:

for i in range(download_repeat):
picoquic_cmd += ' file'+download_size

if extra_params != '':
picoquic_cmd += ' ' + extra_params

wait_time = wait
pid = runbg(command=picoquic_cmd, wait=wait_time, out_file=logfile)

bgproc.register_proc(env.host_string, 'picoquic', counter, pid, logfile, kill_delay)

Start picoquic sender and receiver
For parameters see start_picoquic_client() and start_picoquic_server()
def start_picoquic(counter='1', file_prefix='', remote_dir='', local_dir='',

port='', client='', server='', ccalgo='', download_size='',

Appendix B QUIC traffic generators for TEACUP 89

download_repeat=1, extra_params_client='', extra_params_server='',
check='', wait='', kill_delay=0):

"Start picoquic traffic sender and receiver"

server, server_internal = get_address_pair(server)
client, dummy = get_address_pair(client)
execute(start_picoquic_server, counter, file_prefix, remote_dir, port,

server_internal, extra_params_server, check, wait, kill_delay,
ccalgo, hosts=[server])

execute(start_picoquic_client, counter, file_prefix, remote_dir, port,
server_internal, extra_params_client, check, wait, kill_delay,
download_size, download_repeat, hosts=[client])

#
ngtcp2
#

Start ngtcp2 server
@param

def start_ngtcp2_server(counter='1', file_prefix='', remote_dir='', port='',
srv_host='', extra_params='', check='', wait='', kill_delay=0,
ccalgo=''):

if port == '':
abort('Must specify port')

if srv_host == '':
abort('Must specify server host')

Implement check here

kill previous idle processes

#run('pkill -f \'examples/server\'')

start ngtcp2
logfile = remote_dir + file_prefix + '_' + \

env.host_string.replace(':', '_') + '_' + counter + '_ngtcp2.log'
ngtcp2_cmd = '/home/aitor/ngtcp2/examples/server --quiet'

if config.TPCONF_enable_qlog =='1':
ngtcp2_cmd += ' --qlog-dir=/root/qlog'

90 Appendix B QUIC traffic generators for TEACUP

if extra_params != '':
ngtcp2_cmd += ' ' + extra_params

if ccalgo != '':
ngtcp2_cmd += ' --cc %s' %(ccalgo)

Uncap flow control windows
ngtcp2_cmd += ' --max-data 33554432 --max-stream-data-bidi-local 33554432'
ngtcp2_cmd += ' --max-stream-data-bidi-remote 33554432 --max-stream-data-uni 33554432'
ngtcp2_cmd += ' --max-window 0 --max-stream-window 0'

ngtcp2_cmd += ' %s %s /root/certs/key.pem /root/certs/cert.pem' %(srv_host, port)
wait_time = wait
pid = runbg(command=ngtcp2_cmd, wait=wait_time, out_file=logfile)

bgproc.register_proc(env.host_string, 'ngtcp2', counter, pid, logfile, kill_delay)

Start ngtcp2 client
@param

def start_ngtcp2_client(counter='1', file_prefix='', remote_dir='', port='',
srv_host='', extra_params='', check='',
wait='', kill_delay=0, ccalgo='', download_size='',
download_repeat=1, zerortt=0):

if port == '':
abort('Must specify port')

if srv_host == '':
abort('Must specify server host')

Implement check here

kill previous idle processes

#run('pkill -f \'examples/client\'')

start ngtcp2
logfile = remote_dir + file_prefix + '_' + \

env.host_string.replace(':', '_')+ '_' + counter + '_ngtcp2.log'
uri = ''
if download_size != '':

uri = 'file://root/files/file'+download_size
Multi-file download

Appendix B QUIC traffic generators for TEACUP 91

if download_repeat > 1:
for i in range(download_repeat-1):

uri += ' file://root/files/file'+download_size

ngtcp2_cmd = '/home/aitor/ngtcp2/examples/client --quiet
ngtcp2_cmd += ' --tp-file=/root/tp-file --download=/root/downloads'
if zerortt == 1:

ngtcp2_cmd += ' --session-file=/root/session-file'

if config.TPCONF_enable_qlog =='1':
ngtcp2_cmd += ' --qlog-dir=/root/qlog'

if extra_params != '':
ngtcp2_cmd += ' ' + extra_params

if ccalgo != '':
ngtcp2_cmd += ' --cc %s' %(ccalgo)

Uncap flow control windows
ngtcp2_cmd += ' --max-data 33554432 --max-stream-data-bidi-local 33554432'
ngtcp2_cmd += ' --max-stream-data-bidi-remote 33554432 --max-stream-data-uni 33554432'
ngtcp2_cmd += ' --max-window 0 --max-stream-window 0'

ngtcp2_cmd += ' %s %s %s' %(srv_host, port, uri)

wait_time = wait
pid = runbg(command=ngtcp2_cmd, wait=wait_time, out_file=logfile)

bgproc.register_proc(env.host_string, 'ngtcp2', counter, pid, logfile, kill_delay)

Start ngtcp2 sender and receiver
For parameters see start_ngtcp2_client() and start_ngtcp2_server()
def start_ngtcp2(counter='1', file_prefix='', remote_dir='', local_dir='',

port='', client='', server='', extra_params_client='',
extra_params_server='', ccalgo='', download_size='',
download_repeat=1, zerortt=0, check='', wait='', kill_delay=0):

"Start ngtcp2 traffic sender and receiver"

server, server_internal = get_address_pair(server)
client, dummy = get_address_pair(client)
execute(start_ngtcp2_server, counter, file_prefix, remote_dir, port,

92 Appendix B QUIC traffic generators for TEACUP

server_internal, extra_params_server, check, wait,
kill_delay, ccalgo, hosts=[server])

execute(start_ngtcp2_client, counter, file_prefix, remote_dir, port,
server_internal, extra_params_client, check, wait,
kill_delay, ccalgo, download_size, download_repeat, zerortt, hosts=[client])

Appendix C

QUIC loggers for TEACUP

def clean_qlog():

Remove qlog files from previous experiments

run('rm -r /root/qlog')
run('mkdir /root/qlog')

def get_qlog(path=''):

Get the name of generated qlog file(s)
output = run('ls /root/qlog')
files = output.split()
counter = 1
role = 'client'
if(env.host_string.endswith('11-1') or env.host_string.endswith('11-2')):

role = 'server'

if(env.host_string.endswith('10-1') or env.host_string.endswith('11-1')):
counter = 1

else:
counter = 2

for file in files:
output_file = role+str(counter)
if(file.endswith('.sqlog')):

ngtcp2
run('mv /root/qlog/' + file + ' /root/qlog/' + output_file + '.sqlog')
Compress

93

94 Appendix C QUIC loggers for TEACUP

run('gzip -f /root/qlog/' + output_file + '.sqlog')
Get file
get('/root/qlog/' + output_file + '.sqlog.gz', path)

else:
picoquic

if(file.endswith('.log')):
Convert binary to if it's a binary
run('/home/aitor/picoquic/picolog_t -f qlog -o /root/qlog /root/qlog/'+file,7
warn_only=True)

Remove binary file
run('rm /root/qlog/'+file)
splitted = file.split('.')
file = splitted[0]+'.qlog'

change name
run('mv /root/qlog/' + file + ' /root/qlog/' + output_file + '.qlog')
Compress
run('gzip -f /root/qlog/' + output_file + '.qlog')
Get file
get("/root/qlog/"+ output_file + '.qlog.gz', path)

counter += 2

Appendix D

Installation scripts for QUIC
implementations

This appendix contains the listings of the bash scripts that automate the process of
installing the QUIC implementations used in this work. These are intended to accelerate
the process of setting up the testbed if it needs to be re-installed.

95

96 Appendix D Installation scripts for QUIC implementations

#######################
ngtcp2 Installation
#######################

export home_dir="/home/aitor"

Set library path

export LD_LIBRARY_PATH="/usr/local/lib:/usr/local/lib64"

Set it automatically on startup

cp files/libraries.sh /etc/profile.d/

Install dependencies

zypper install -y pkg-config autoconf automake make cmake libtool
zypper install cunit-devel libev-devel gcc-c++ gcc8 gcc8-c++
zypper refresh
zypper install -y autotools-dev

Install OpenSSL

cd $home_dir
git clone --depth 1 -b OpenSSL_1_1_1m+quic https://github.com/quictls/openssl
cd openssl
./config enable-tls1_3 --prefix=$PWD/build
make -j$(nproc)
make install_sw
cd ..

Install nghttp3

git clone https://github.com/ngtcp2/nghttp3
cd nghttp3

cmake .
make all
make install

autoreconf -i
./configure --prefix=$PWD/build --enable-lib-only
make -j$(nproc) check
make install

cd ..

Install ngtcp2

git clone https://github.com/ngtcp2/ngtcp2
cd ngtcp2

cmake .
make all
make install
autoreconf -i

Gotta compile with gcc 8 or higher, otherwise it does not work

./configure PKG_CONFIG_PATH=$PWD/../openssl/build/lib/pkgconfig:$PWD/../nghttp3/build/lib/pkgconfig LDFLAGS="-Wl,-rpath,$PWD/../openssl/build/lib" CC=gcc-8 CXX=g++-8
make -j$(nproc) check

Appendix D Installation scripts for QUIC implementations 97

#########################
picoquic Installation
#########################

Move to home directory
cd /home/aitor

Install required packages
zypper install -y cmake openss-devel

Clone and build picotls
git clone https://github.com/h2o/picotls.git
cd picotls
git submodule init
git submodule update
cmake .
make
make check

Clone and build picoquic
cd /home/aitor
git clone https://github.com/private-octopus/picoquic
cd picoquic
cmake .
make

Copy 'picoquicdemo' to path
cp picoquicdemo /usr/bin

Copy certificate folder to root directory
cp -r certs /root

Appendix E

Accepted publication for ANRW’22

Some of the results obtained in this thesis have derived into an accepted publication on
the Applied Networking Research Workshop (ANRW) 2022 [112], which takes
place on July 23-29 at Philadelphia (USA), along with the IETF-114 meeting. This
academic workshop, sponsored by ACM SIGCOMM and the Internet Research Task Force
(IRTF), encourages researchers to present their work on applied networking research with
new Internet protocols.

This paper titled ’On the Suitability of BBR Congestion Control for QUIC over GEO
SATCOM Networks’, includes some partial results of Block A: Better Congestion Control.

The following pages contain a pre-print of the paper.

99

On the Suitability of BBR Congestion Control for
QUIC over GEO SATCOM Networks
Aitor Martin

Department of Electrical
Engineering & Computer Science
University of Stavanger, Norway

a.martin@stud.uis.no

Naeem Khademi
Department of Electrical

Engineering & Computer Science
University of Stavanger, Norway

naeem.khademi@uis.no

ABSTRACT
Satellite broadband connectivity has received significant
level of interest in recent years, partly due to the emer-
gence of 5th and 6th generations of cellular networks and
their novel use-cases. High-throughput GEO satellites are
therefore expected to become an integral part of such net-
works both for access and backhauling. Almost simultane-
ously, major breakthroughs have occurred within the In-
ternet transport layer and its congestion control mecha-
nisms – i.e., with the increasing deployment of user-space
QUIC protocol and BBR congestion control. The impact of
these innovations and their overall performance on the In-
ternet paths traversing over satellite links is yet to be inves-
tigated. Although traditionally TCP-splitting methods with
Performance-Enhancing-Proxies (PEPs) were used to boost
the transport performance over the satellite links, such ap-
proaches are proven to be extremely hard if not impossible
for QUIC due to its encrypted nature. This leads to QUIC’s
poor performance over satellite links, which is currently be-
ing investigated by the IETF’s QUIC WG. In addition, the
transport performance depends on the choice of congestion
control and QUIC implementation. In this work we will ex-
plore these aspects and the suitability of BBR congestion
control for QUIC over SATCOM networks through real-life
experimentation in an emulated testbed environment.

CCS CONCEPTS
• Networks → Transport protocols; Network experi-
mentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANRW ’22, July 23-29, 2022, Philadelphia, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
BBRv2, congestion control, satellite, QUIC
ACM Reference Format:
Aitor Martin and Naeem Khademi. 2022. On the Suitability of BBR
Congestion Control for QUIC over GEO SATCOM Networks . In
Proceedings of Applied Networking Research Workshop (ANRW ’22).
ACM, New York, NY, USA, 8 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Although they have been instrumental for delivering con-
tinuous broadband services to remote locations over vast
areas of the globe for several decades, geosynchronous (GEO)
satellite networks have just begun to receive significant in-
terest in recent years. This is both due to the emergence of
high-throughput satellites (HTS) and 5th/6th generation of
cellular networks (5G/6G) and their novel use-cases. In such
networks, broadband services can either be delivered by the
ISPs to the end-user either directly or through a SATCOM-
enabled cellular network in locations where terrestrial con-
nectivity is limited or non-existent.

Simultaneously, recent years have witnessed major inno-
vations within the Internet transport layer. This has mainly
been focused on two areas: (1) de-ossifying transport proto-
col stack by deploying QUIC – a user-space transport pro-
tocol with a UDP substrate – to traverse the misbehaving
middleboxes which made the transport evolution impossible
[1]; (2) improving congestion control (CC) mechanisms to
better utilize the available bandwidth while maintaining low
latency through deployment of Bottleneck Bandwidth and
Round-trip propagation time (BBR) congestion control [2].
Initially designed by Google and currently under standardiza-
tion at the IETF, QUIC is a UDP-based, reliable, multiplexed
and fully-encrypted transport protocol, aiming to solve many
of TCP’s shortcomings [3][4][5]. Although the IETF’s QUIC
standard specifies a CC similar to the TCP NewReno [5],
different implementations of QUIC offer support for BBR CC.
BBR’s objective is to adapt the congestion window (cwnd)
according to the actual level of congestion on the path by
taking into consideration the increase in Round-Trip Time
(RTT) and maximum achievable bandwidth – i.e., by mostly

ANRW ’22, July 23-29, 2022, Philadelphia, USA Martin and Khademi

maintaining cwnd around an optimal value above which an
increase in cwnd ceases to yield more bandwith yet incurs
more latency [2]. Initial investigation of BBR’s performance
over TCP and its related coexistence issues with loss-based
CCs [6] has lead to the introduction of BBRv2 [7]. Unlike
BBR, which was deemed to be too aggressive due to lack of
reaction to packet loss and thus penalizing competing loss-
based CCs, BBRv2 aims to score a better level of fairness by
reacting to loss beyond a certain threshold.

Preliminary investigations of web performance with BBR-
enabled QUIC over satellite links show that BBR can out-
perform the loss-based CUBIC in presence of packet loss
[8]. While the work in [8] focuses on small and medium
size web objects, a more thorough and general investiga-
tion of these CCs over satellite links particularly with the
addition of BBRv2 is yet to be performed. Satellite links are
shown to pose significant challenges to the transport proto-
cols and congestion control algorithms [9] due to their high
bandwidth-delay product (BDP) and likely asymmetric na-
ture. While these issues were traditionally mitigated through
the use of connection splitting methods and Performance
Enhancing Proxies (PEPs) for TCP traffic [10], this has been
proven to be very challenging for QUIC due to its end-to-end
encrypted nature limiting the level of optimization methods
that can be implemented on the middleboxes (e.g., SATCOM
gateways). Recent discussions at the IETF aiming to address
this issue involve several potential approaches: (a) improving
end-to-end QUIC performance tailored for SATCOM envi-
ronments, e.g., providing signaling of essential path charac-
teristics (e.g., BDP) between the QUIC end-points [11]; and
(b) voluntarily exposing certain header fields in QUIC to the
middleboxes [12].
This paper aims to thoroughly explore the suitability of

BBR and BBRv2 for QUIC over satellite broadband links,
which are yet to be fully investigated. The contributions of
this paper are four-fold as follows:
(1) to the best of our knowledge, it is the first work to

investigate the performance of QUIC with BBRv2 in
satellite environments using real-life experiments in
an emulated network testbed.

(2) it evaluates several important aspects of CC perfor-
mance over long-haul satellite links such as inter- and
intra-protocol fairness, latercomer fairness issues, and
mice versus elephant flows.

(3) investigates the impact of QUIC implementation on
the transport performance over satellite links by em-
ploying two commonly used QUIC implementations.

(4) elaborates on the suitability of BBR for QUIC over
satellite links, current issues and potential solutions.

The remainder of this paper is structured as follows: Sec-
tion 2 outlines the related works on QUIC over satellite net-
works and BBR congestion control; Section 3 presents in

detail the network testbed setup used for our real-life evalu-
ations; Section 4 presents our evaluation scenarios and their
experimental results; Section 5 provides a discussion based
on our evaluation results on the suitability of BBR for QUIC
over satellite links, its implications and potential solutions;
and finally, Section 6 concludes the paper.

2 BACKGROUND
This section offers a context for our work by providing back-
ground on common transport layer issues over satellite links
both for TCP and QUIC, and existing and proposed solutions
to mitigate such issues. In addition, it presents prior works on
the evaluation of BBR CC particularly over satellite links and
also investigates the works performed on the performance
of different QUIC implementations.

2.1 Transport Layer over Satellite
The presence of a GEO satellite link along the network path
introduces several challenges for transport layer mechanisms
[13], often resulting in underutilized links. Firstly, as a con-
sequence of large delays introduced by the signal propaga-
tion to GEO, the path’s RTT increases significantly – e.g.,
to an order of 0.5 sec. This increases the transport’s feed-
back loop, leading to the slow cwnd growth during both TCP
slow-start and congestion avoidance phases hence leading to
poor link utilization. A high RTT thus implies a higher BDP,
requiring buffers and windows in both the endpoints and
the satellite transponder to be large, to be able to handle the
large amounts of in-flight unacknowledged data [13]. Sec-
ondly, satellite links can introduce higher bit error rate than
terrestrial paths. This can be problematic for loss-based CCs
such as NewReno or CUBIC which take packet loss as an in-
dication of network congestion. Thirdly, satellite links can
be asymmetrical, which can result in the upstream buffers
becoming filled with ACKs. This can reduce downstream
performance, since it adds extra delay to protocol feedback
and triggers unnecessary retransmissions [14].
These challenges can be confronted by optimizing TCP

mechanisms for satellite environments – for instance, satellite-
optimized CCs (e.g., TCP Hybla [15]), window scaling solu-
tions (e.g., the TCP window scale option [16]) or different
ACK handling strategies. However, most satellite service
providers have relied on PEPs to mitigate the issues of TCP
over satellite [10].
Although PEP solutions can be diverse in terms of both

topology and performance-boosting mechanisms, most of
them rely on connection splitting. Split-TCP connections
allow optimizations such as local loss recovery, ACK segment
spoofing to accelerate the TCP initial handshake [10], or the
use of satellite-optimized CC only for the satellite segment.
Open-source PEP implementations such as PEPsal [17] have
been fundamental for the research of TCP solutions over

On the Suitability of BBR Congestion Control for QUIC over GEO SATCOM Networks ANRW ’22, July 23-29, 2022, Philadelphia, USA

satellite. Other solutions like QPEP [18] propose a distributed
PEP topology – i.e., with one proxy at each end of the satellite
link – to tunnel TCP connections using QUIC.
Nevertheless, more challenges arise QUIC traffic is intro-

duced to the satellite networks [9]. Given the current trend
with QUIC’s deployment on the Internet (7.9% of all websites
are already using QUIC [19]), the wide use of QUIC over
satellite links is to be expected. Since QUIC advocates for
complete end-to-end confidentiality with full header encryp-
tion, these PEP solutions become unfeasible, unless there is
some cooperation mechanism between the endpoints and
the network or some header information exposed. The inabil-
ity to use PEPs with QUIC has been shown to dramatically
degrade performance in several studies [20, 21, 22].
Since then, efforts have been made at IETF’s QUIC WG

to study newly proposed experimental QUIC features that
could boost its end-to-end performance over satellite links
[9]. These include: (1) the BDP Frame extension [11], which
suggests a mechanism that allows endpoints to remember
path characteristic parameters (i.e., the RTT and bottleneck
bandwidth) from previous connections and reuse them to
accelerate the startup of following connections to the same
server; (2) the ACK Frequency extension [23], which allows
receivers to modify the ACK sending rate and avoid intro-
ducing congestion in the upstream link; and (3) the use of
Forward Error Correction (FEC) to mitigate the effect of
transmission errors in the satellite link [24].

2.2 BBRv1 and BBRv2
Traditional TCP CCs such as CUBIC or NewReno use packet
loss as a sign of network congestion, which can lead to poor
link utilization on lossy network paths. On the contrary, BBR
aims to improve link utilization by searching for the optimal
cwnd value that maximizes the bandwidth achieved while
trying to minimize RTT.
The BBR algorithm can therefore be summarized into

four main phases: (1) the STARTUP phase, which increases
the cwnd exponentially to quickly fill the bottleneck queue
and measures how much bandwidth is available on the net-
work path; (2) the DRAIN phase, in which the bottleneck
queue is drained to remove the congestion introduced dur-
ing STARTUP phase; (3) the PROBE-BW phase, in which
the algorithm cycles through different pacing rate values,
aiming to continuously search the maximum available band-
width, but also regularly draining the queue in order to not
dominate over other competing flows; (4) the PROBE-RTT,
which allows the sender to re-measure the minimum RTT
value within regular intervals.

Some early studies have shown that the first version of
BBR [2] is able to significantly outperform CUBIC in many
scenarios, especially when packet loss becomes significant
[25]. However, later studies identify that BBR can be unfair

towards loss-based CC, as a consequence of the aggressive
STARTUP and PROBE-BW phases [6, 26, 27]. These works
have also identified RTT unfairness with BBR – i.e., par-
allel flows with different minimum RTTs do not share the
available bandwidth fairly.
These issues have led to an update to the algorithm, first

proposed in 2019 - and referred to as BBRv2 hereafter - that
aims to find a balance between BBR and loss-based CCs, to
reach high link utilization yet behaving less aggressively
when sharing the link with CCs such as CUBIC, through
the use a more complex probing algorithm [7], which we
will not fully explain here for the sake of brevity. While
BBRv1 did not react to packet loss at all, BBRv2 uses packet
loss and Explicit Congestion Notification (ECN) signaling
as inputs for the probing mechanism. BBRv2 also reduces
the cwnd decrease rate in the PROBE-RTT phase, for a less
aggressive throughput fluctuation. Several works have al-
ready evaluated BBRv2 for TCP over terrestrial networks [28,
29, 30, 31]. Authors in [28] show that BBRv2 significantly
improves fairness when in competition with loss-based CC.
Additionally, results in [29] and [30] provide in-depth analy-
sis of intra-protocol and inter-protocol fairness, and point
out convergence problems between BBRv2 flows when using
large bottleneck buffers. Researchers in [31] also identified
issues regarding BBRv2’s capability of adapting to changing
network conditions - e.g., bandwidth dynamics or random
losses - and suggest new mechanisms to alleviate them.
Even though BBRv2 has been deeply evaluated experi-

mentally over terrestrial networks and with TCP, none of
these studies: (1) investigate its performance, inter- and intra-
protocol fairness when traversing over high-BDP links (e.g.,
satellite links); and (2) investigate BBRv2 performance over
QUIC. This paper investigates these two previously unex-
plored areas in detail.

2.3 QUIC implementations
Currently, there are several open-source IETF QUIC imple-
mentations available for experimentation. However, even
though they are based on the same reference specifications,
these implementations are highly heterogeneous [32]. Thus,
QUIC performance evaluation results can be highly depen-
dent on the particular implementation. As researchers in
[33] show through the use simulated and real satellite links,
some implementations can perform weekly when used as a
client, as a server or even both - e.g., their results show the
ngtcp2 implementation performing poorly as a client, but
better as a server.

3 EXPERIMENTAL TESTBED SETUP
Our approach in this work is based on real-life experimen-
tation in an emulated network environment. We make use
of a physical network testbed located at the University of

ANRW ’22, July 23-29, 2022, Philadelphia, USA Martin and Khademi

host1

host2

host3

host4

router

172.16.10.0/24 172.16.11.0/24

.101

.102

.1 .1

Link emulation
with netem/tc

TEACUP Controller

Control and monitoring
Experiment traffic

10.0.0.1/24

.2
.3 .4

.6.5

.1

.101

.102

Figure 1: UiS TEACUP network testbed topology

CPU 4 x Intel(R) Core i5-3470 @ 3.20GHz
RAM 16 GB Micron DDR3 1600 MHz
OS OpenSUSE Leap 15.1 Linux (Kernel 5.4.0)
HDD 500 GB (100 GB for OS and Swap, 400 GB for /home)

Table 1: UiS TEACUP testbed hardware specification
Stavanger (UiS) with a dumbbell topology as shown in Fig-
ure 1. The testbed contains two pairs of hosts that act as
endpoints: hosts 1 and 2 in network act as clients and hosts
3 and 4 in network act as servers, Another machine acts as
a router between the two networks, and performs satellite
link emulation.

All hosts and the router in the networks are commodity off-
the-shelf products and have identical hardware specifications
as presented in Table 1. Each endpoint has two Ethernet
interfaces, one for the control network traffic and another
for the experimental traffic. The router has an extra Ethernet
interface, to perform routing between the two experiment
networks. The nodes are interconnected using a Gigabit
Ethernet switch.

3.1 Experiment Orchestration with
TEACUP

TCP Experiment Automation Controlled Using Python (i.e.,
TEACUP) developed by CAIA [34], is designed to orchestrate
and run TCP experiments on emulated network testbeds.
It is based on a set of Python scripts that allow for easy
experiment design and automation. The scripts are run from
a controller node running FreeBSD, which uses the Fabric
Python library to control the experiment nodes remotely
and extract statistics from them. The TEACUP architecture
separates the control network from the experiment network
to isolate the experimental traffic from control traffic. For this
work, we have extended the TEACUP to run experiments
and extract statistics with multiple QUIC implementations.

3.2 Link emulation with netem/tc
To perform our evaluations at the transport layer level, we
emulate a network path with typical characteristics of a
satellite link using netem/tc in the router. Table 2 shows

SAT TERR
One Way Delay (OWD) 300ms 50ms
Bottleneck Bandwidth 20Mbps 20Mbps
Bottleneck Buffer Size 0.25|0.5|1.0|2.0 x BDP

Table 2: Network path emulation parameters

ngtcp2 picoquic
Initial Window 1 MB 1 MB
Max ACK Delay 25 10
Available CC BBRv2/v1, Cubic BBRv1, Cubic
HTTP/3 Yes Yes

Table 3: Default settings and parameters for QUIC im-
plementations

the parameter values used for two scenarios: the satellite
scenario (SAT) and the terrestrial scenario (TERR).

3.3 QUIC Traffic generation and logging
In our evaluations, we make use of two major QUIC imple-
mentations: ngtcp2 [35] and picoquic [36]. Table 3 shows the
default parameters and available features for both implemen-
tations. Since QUIC runs in user-space, no kernel tool was
needed to extract transport layer statistics. We therefore used
qlog, an easily structured, human-readable and standardized
event-logging format for QUIC [37] that is offered by most
QUIC implementations.

4 EXPERIMENTS AND RESULTS
This chapter describes a series of scenarios designed to eval-
uate different aspects of CC performance, along with their
corresponding results. Experiments were run varying dif-
ferent parameters: the bottleneck buffer size, the number of
flows, object sizes and the number of objects. Experiments
are repeated with all the available CC algorithms available
in QUIC implementations. All experiments are repeated 10
times, and run over the SAT link scenario unless specified
otherwise.

4.1 Bulk Download Performance
In order to test the bulk download performance, the client
start the download of a 1GB file stored in the server, the
download is terminated after 2 minutes and the average
goodput is measured. Figure 2 shows the average goodput
obtained in this scenario using different QUIC implementa-
tions and CC algorithms, and setting the bottleneck buffer
size to different fractions of the BDP, for both the satellite
and terrestrial scenarios.

Results show that, as expected, link utilization is worse in
the satellite scenario. It can be seen that picoquic performs
better, especially in the satellite scenario. Irrespective of the
buffer size, BBRv1 provides a slightly higher goodput than

On the Suitability of BBR Congestion Control for QUIC over GEO SATCOM Networks ANRW ’22, July 23-29, 2022, Philadelphia, USA

0.25 0.5 1 2
14

16

18

20

0.25 0.5 1 2

ngtcp2 - bbr2 ngtcp2 - bbr1 ngtcp2 - cubic picoquic - bbr1

picoquic - cubic

Bottleneck Buffer Size (BDP) Bottleneck Buffer Size (BDP)

G
o
o
d

p
u
t

(M
b

p
s)

SAT scenarioSAT scenarioSAT scenario TERR scenarioTERR scenarioTERR scenario

Figure 2: Bulk download average goodput with differ-
ent implementations and CC. Left: SAT; Right: TERR

2 4 8 16 32 64
0.2

0.4

0.6

0.8

1

2 4 8 16 32 64 2 4 8 16 32 64

Number of Flows Number of Flows Number of Flows

Ja
in

's
Fa

ir
n
e
ss

In
d
e
x

(J
FI

)

BBRv2BBRv2BBRv2 BBRv1BBRv1BBRv1 CubicCubicCubic

Figure 3: JFI for multi-flow intra-protocol fairness
tests with ngtcp2

BBRv2. However, CUBIC has an advantage in comparison
with both BBR versions for high buffer sizes.

4.2 Intra- and Inter-Protocol Fairness
When studying CC, it is essential to evaluate the level of fair-
ness between multiple parallel flows. This scenario launches
a number of simultaneous long downloads, and terminates
them after 5 minutes. In order to measure fairness between
parallel flows, we use Jain’s Fairness Index (JFI) [38]. Due
to the abscence of a BBRv2 implementation in picoquic, we
evaluate fairness using only ngtcp2.
First, intra-protocol fairness (i.e., fairness between same

CC flows) is evaluated. Figure 3 shows the obtained JFI for
different numbers of parallel flows, for a bottleneck buffer
size to 1 BDP. We omitted presenting fairness results with
different buffer sizes, since they did not appear to have a
significant impact in our results.
Results in Figure 3 show that BBRv1 achieves the best

fairness score for the 2-flow scenario, never going below a
JFI value of 0.970 and staying very close to 1. As the number
of flows increases, while CUBIC is achieving outstanding
fairness levels even with 64 flows, with a JFI value of 0.977±
0.006, both BBR versions show a very significant decrease
in the fairness score, reaching JFI values below 0.4 in the
case of BBRv1. Despite these fairness issues, we observed an
improvement in link utilization for higher number of flows
for all CC algorithms.

To evaluate inter-protocol fairness (i.e.- fairness between
competing flows with different CC) three different scenarios

have been defined for different CC combinations: (A) BBRv2
vs BBRv1, (B) BBRv2 vs CUBIC and (C) BBRv1 vs CUBIC.
Figure 4 shows the obtained JFI for the different scenarios
with 2 and 4 flows, and all possible distributions. It reveals
that BBRv2 behaves very fairly towards CUBIC in all configu-
rations, in contrast to the low JFI values in scenario C (BBRv1
vs CUBIC). We also see fairness issues between BBRv1 and
BBRv2; however, this may not be too critical since BBRv2 is
intended to replace BBRv1.

A B C

0.4

0.6

0.8

1

A B C A B C A B C

Scenario Scenario Scenario Scenario
JF

I

2 flows2 flows2 flows 4 flows - 2v24 flows - 2v24 flows - 2v2 4 flows - 3v14 flows - 3v14 flows - 3v1 4 flows - 1v34 flows - 1v34 flows - 1v3

Figure 4: JFI for multi-flow inter-protocol fairness
tests with ngtcp2
4.3 Latecomer Issue
In the context of CC fairness, the latecomer issue is another
common problem flows, which implies latecomer flows either
(1) being penalized by previously started flows, and thus not
receiving a fair bandwidth share, or (2) penalizing existing
flows. To evaluate this issue, a scenario was designed with
4 flows start at 0, 40, 80 and 120 seconds respectively, all of
them lasting for 180 seconds.
Figures 5, 6 and 7 show the goodput achieved with each

flow over time, as well as the aggregate goodput and the
smoothed RTTs, for BBRv2, BBRv1 and CUBIC respectively.
While results with CUBIC show latecomer flows underper-
forming, they show good convergence and fairness in the
long term coexistence. BBRv1 shows the most aggressive
performance: latecomer flows gain a great share of available
bandwidth faster, and they overtake previous flows; mean-
while, BBRv2 shows a less aggressive behaviour. BBRv2 re-
sults also show that the remaining Flow number 4 fails to
recover the available bandwidth in the last tens of seconds,
which might be a problem in the ngtcp2 BBRv2 implemen-
tation. Looking at the smoothed RTT over time for both
BBR versions, we observe the expected behavior with the
queue drains and the changes in the PROBE-RTT phase,
which makes the RTT fluctuate more smoothly in the BBRv2
update.

4.4 Mice versus Elephant Flows
Since satellites are widely used for Internet access, it is also
relevant to study the download time of small objects, which
lead to the called ’mice flows’. Figure 8 shows the down-
load time for different object sizes and numbers of objects,

ANRW ’22, July 23-29, 2022, Philadelphia, USA Martin and Khademi

0

5

10

15

20

0 40 80 120 160 200 240 280

600

800

1000

1200

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d
p
u
t

(M
b
p
s
)

R
T
T
 (

m
s
)

Figure 5: Latecomer fairness with 4 BBRv2 flows

0

5

10

15

20

0 40 80 120 160 200 240 280

600

800

1000

1200

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d
p
u
t

(M
b
p
s
)

R
T
T
 (

m
s
)

Figure 6: Latecomer fairness with 4 BBRv1 flows

0

5

10

15

20

0 40 80 120 160 200 240 280

600

800

1000

1200

Flow 1 Flow 2 Flow 3 Flow 4 Aggregate

Time (s)

G
o
o
d
p
u
t

(M
b
p
s
)

R
T
T
 (

m
s
)

Figure 7: Latecomer fairness with 4 CUBIC flows

1KB 10KB 100KB 1MB
0

10

20

30

40

50

1KB 10KB 100KB 1MB 1KB 10KB 100KB 1MB

1 object

10 objects

100 objects

Object Size Object Size Object Size

D
o
w

n
lo

a
d
 T

im
e
 (

s)

BBRv2BBRv2BBRv2 BBRv1BBRv1BBRv1 CubicCubicCubic

Figure 8: Download time of different number of ob-
jects, for various object sizes

with ngtcp2. These experiments are run with the presence of
background BBR traffic, to emulate a more realistic scenario.
The 100x1MB case was omitted for the sake of better visual-
ization. Results show an exponential relationship between
the download time and the amount of objects downloaded,
which is a consequence of the exponential increase of the
cwnd in the CC startup. It is also noticeable that download
times are higher with CUBIC, especially for larger object
sizes and amounts of objects - e.g., for the 100x100KB case,

download time with CUBIC is around double the amount
obtained with BBRv1.

5 DISCUSSION
Our study has revealed that heterogeneity in the different
QUIC implementations affects performance on different lev-
els, since we clearly see picoquic providing better utilization
over satellite links. We believe that this is consequence of
some features introduced in picoquic by default that make
clients and servers that recognize high BDP links, and adapt
the QUIC sockets to the needs of satellite links (e.g., delay-
ing ACKs in clients, or allowing flow control windows to
increase higher than usual). We also believe that the lack of
Path MTU Discovery in ngtcp2 is having an impact on the
results. These solutions are expected to become instrumental
in the context of encrypted transport over satellite.
Multi-flow fairness experiments also reveal some impor-

tant matters. Firstly, we see very high unfairness between
competing BBR flows over satellite, especially when the num-
ber of flows grows, which could be especially problematic
for satellite backhauling scenarios. Secondly, we can observe
that the newest BBR version solves the previous fairness is-
sues against CUBIC, which is fundamental since BBR traffic
will have coexist with CUBIC traffic in the Internet.

When looking at the mice flow results, it becomes clear
that BBRv1 and BBRv2 outperform CUBIC when download-
ing a large number of files. This stresses the relevance of
using BBR to minimize user-perceived latency in the satellite
scenario, which could be key not only for web browsing, but
also for interactive applications.

Nevertheless, being unable to use PEP optimizations still
leaves QUIC in great disadvantage in comparison to TCP, es-
pecially for mice flow traffic. This raises some interest to eval-
uate QUIC application proxy solutions, such as Multiplexed
Application Substrate over QUIC Encryption (MASQUE) [12],
which could introduce performance-enhancing solutions.

6 CONCLUSION
This work has studied the suitability of BBR congestion con-
trol over emulated satellite networks and using different
QUIC implementations. Our results suggest BBR can signifi-
cantly boost mice flow performance and that BBRv2 solves
fairness issues against CUBIC. However, we could spot a
series of drawbacks: (1) CUBIC is performing better than
BBR in many cases; (2) both BBR versions still show clear
intra- protocol fairness issues and (3) the latecomer issue is
still present.

Future work will look at more realistic web browsing sce-
narios, where the download of complex websites will be
emulated in our testbed, following their tree-shaped struc-
ture.

On the Suitability of BBR Congestion Control for QUIC over GEO SATCOM Networks ANRW ’22, July 23-29, 2022, Philadelphia, USA

REFERENCES
[1] Giorgos Papastergiou, Gorry Fairhurst, David Ros, Anna

Brunstrom, Karl-JohanGrinnemo, PerHurtig, NaeemKhademi,
Michael Tüxen, Michael Welzl, Dragana Damjanovic, and Si-
mone Mangiante. 2017. De-ossifying the internet transport
layer: a survey and future perspectives. IEEE Communica-
tions Surveys Tutorials, 19, 1, 619–639. doi: 10.1109/COMST.
2016.2626780.

[2] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil
Hassas Yeganeh, and Van Jacobson. 2016. Bbr: congestion-
based congestion control.ACMQueue, 14, September-October,
20 –53. http://queue.acm.org/detail.cfm?id=3022184.

[3] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-
Based Multiplexed and Secure Transport. RFC 9000. (May
2021). doi: 10.17487/RFC9000. https://www.rfc-editor.org/
info/rfc9000.

[4] Martin Thomson and Sean Turner. 2021. Using TLS to Secure
QUIC. RFC 9001. (May 2021). doi: 10.17487/RFC9001. https:
//www.rfc-editor.org/info/rfc9001.

[5] Jana Iyengar and Ian Swett. 2021. QUIC Loss Detection and
Congestion Control. RFC 9002. (May 2021). doi: 10.17487/
RFC9002. https://www.rfc-editor.org/info/rfc9002.

[6] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Ex-
perimental evaluation of BBR congestion control. In 2017
IEEE 25th International Conference onNetwork Protocols (ICNP).
IEEE, Toronto, ON, (October 2017), 1–10. isbn: 978-1-5090-
6501-1. doi: 10.1109/ICNP.2017.8117540. Retrieved 04/04/2022
from http://ieeexplore.ieee.org/document/8117540/.

[7] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian
Swett, and Van Jacobson. 2022. BBR Congestion Control.
Internet-Draft draft-cardwell-iccrg-bbr-congestion-control-
02.Work in Progress. Internet Engineering Task Force, (March
2022). 66 pages. https://datatracker.ietf.org/doc/html/draft-
cardwell-iccrg-bbr-congestion-control-02.

[8] Yue Wang, Kanglian Zhao, Wenfeng Li, Juan Fraire, Zhili
Sun, and Yuan Fang. 2018. Performance Evaluation of QUIC
with BBR in Satellite Internet. In 2018 6th IEEE International
Conference on Wireless for Space and Extreme Environments
(WiSEE). ISSN: 2380-7636. (December 2018), 195–199. doi:
10.1109/WiSEE.2018.8637347.

[9] Tom Jones, Gorry Fairhurst, Nicolas Kuhn, John Border,
and Stephan Emile. 2021. Enhancing Transport Protocols
over Satellite Networks. Internet-Draft draft-jones-tsvwg-
transport-for-satellite-02. Work in Progress. Internet En-
gineering Task Force, (October 2021). 29 pages. https : / /
datatracker.ietf.org/doc/html/draft-jones-tsvwg-transport-
for-satellite-02.

[10] Jim Griner, John Border, Markku Kojo, Zach D. Shelby, and
Gabriel Montenegro. 2001. Performance Enhancing Proxies
Intended to Mitigate Link-Related Degradations. RFC 3135.
(June 2001). doi: 10 . 17487 /RFC3135. https : / /www. rfc -
editor.org/info/rfc3135.

[11] Nicolas Kuhn, Francklin Simo, David Pradas, and Emile
Stephan. 2021. Evaluating BDP FRAME extension for QUIC.
en. arXiv:2112.05450 [cs], (December 2021). arXiv: 2112.05450.
Retrieved 01/18/2022 from http://arxiv.org/abs/2112.05450.

[12] Tommy Pauly and David Schinazi. 2022. QUIC-Aware Prox-
ying Using HTTP. Internet-Draft draft-pauly-masque-quic-
proxy-03.Work in Progress. Internet Engineering Task Force,
(March 2022). 19 pages. https://datatracker.ietf.org/doc/
html/draft-pauly-masque-quic-proxy-03.

[13] Luis A. Sanchez, Mark Allman, and Dr. Dan Glover. 1999. En-
hancing TCP Over Satellite Channels using Standard Mech-
anisms. RFC 2488. (January 1999). doi: 10.17487/RFC2488.
https://www.rfc-editor.org/info/rfc2488.

[14] S Oueslati-Boulahia, A Serhrouchni, and S Tohm. 2000. TCP
Over Satellite Links : Problems and Solutions. en, 12.

[15] Carlo Caini and Rosario Firrincieli. 2004. TCP Hybla: a TCP
enhancement for heterogeneous networks. en. International
Journal of Satellite Communications and Networking, 22,
5, (September 2004), 547–566. issn: 1542-0973, 1542-0981.
doi: 10 . 1002 / sat . 799. Retrieved 04/26/2022 from https :
//onlinelibrary.wiley.com/doi/10.1002/sat.799.

[16] David Borman, Robert T. Braden, Van Jacobson, and Richard
Scheffenegger. 2014. TCP Extensions for High Performance.
RFC 7323. (September 2014). doi: 10.17487/RFC7323. https:
//www.rfc-editor.org/info/rfc7323.

[17] C. Caini, R. Firrincieli, and D. Lacamera. 2006. Pepsal: a
performance enhancing proxy designed for tcp satellite con-
nections. In 2006 IEEE 63rd Vehicular Technology Conference.
Volume 6, 2607–2611. doi: 10.1109/VETECS.2006.1683339.

[18] James Pavur, Martin Strohmeier, Vincent Lenders, and Ivan
Martinovic. 2020. Qpep: a quic-based approach to encrypted
performance enhancing proxies for high-latency satellite
broadband. ArXiv, abs/2002.05091.

[19] [n. d.] Usage Statistics of QUIC forWebsites, May 2022. (). Re-
trieved 05/03/2022 from https://w3techs.com/technologies/
details/ce-quic.

[20] Nicolas Kuhn, François Michel, Ludovic Thomas, Emmanuel
Dubois, and Emmanuel Lochin. 2020. QUIC: Opportunities
and threats in SATCOM. In 2020 10th Advanced Satellite Mul-
timedia Systems Conference and the 16th Signal Processing for
Space Communications Workshop (ASMS/SPSC). ISSN: 2326-
5949. (October 2020), 1–7. doi: 10.1109/ASMS/SPSC48805.
2020.9268814.

[21] Jorg Deutschmann, Kai-Steffen Hielscher, and Reinhard Ger-
man. 2019. Satellite Internet Performance Measurements. en.
In 2019 International Conference on Networked Systems (Net-
Sys). IEEE, Munich, Germany, (March 2019), 1–4. isbn: 978-
1-72810-568-0. doi: 10.1109/NetSys.2019.8854494. Retrieved
01/07/2022 from https : / / ieeexplore. ieee.org/document/
8854494/.

[22] John Border, Bhavit Shah, Chi-Jiun Su, and Rob Torres. 2020.
Evaluating QUIC’s Performance Against Performance En-
hancing Proxy over Satellite Link. In 2020 IFIP Networking
Conference (Networking). (June 2020), 755–760.

[23] Jana Iyengar and Ian Swett. 2021. QUIC Acknowledgement
Frequency. Internet-Draft draft-ietf-quic-ack-frequency-01.
Work in Progress. Internet Engineering Task Force, (October
2021). 12 pages. https://datatracker.ietf.org/doc/html/draft-
ietf-quic-ack-frequency-01.

ANRW ’22, July 23-29, 2022, Philadelphia, USA Martin and Khademi

[24] Ian Swett, Marie-Jose Montpetit, Vincent Roca, and François
Michel. 2020. Coding for QUIC. Internet-Draft draft-swett-
nwcrg-coding-for-quic-04. Work in Progress. Internet Engi-
neering Task Force, (March 2020). 17 pages. https://datatracker.
ietf.org/doc/html/draft-swett-nwcrg-coding-for-quic-04.

[25] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil
Hassas Yeganeh, and Van Jacobson. 2016. BBR: Congestion-
Based Congestion Control: Measuring bottleneck bandwidth
and round-trip propagation time. en. Queue, 14, 5, (Octo-
ber 2016), 20–53. issn: 1542-7730, 1542-7749. doi: 10.1145/
3012426.3022184. Retrieved 04/04/2022 from https://dl.acm.
org/doi/10.1145/3012426.3022184.

[26] Benedikt Jaeger, Dominik Scholz, Daniel Raumer, Fabien
Geyer, and Georg Carle. 2019. Reproducible measurements
of tcp bbr congestion control. Computer Communications,
144, 31–43. issn: 0140-3664. doi: https://doi.org/10.1016/
j.comcom.2019.05.011. https://www.sciencedirect.com/
science/article/pii/S0140366419303470.

[27] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel
Raumer, Fabien Geyer, and Georg Carle. 2018. Towards a
deeper understanding of tcp bbr congestion control. In 2018
IFIP Networking Conference (IFIP Networking) andWorkshops,
1–9. doi: 10.23919/IFIPNetworking.2018.8696830.

[28] Jose Gomez, Elie Kfoury, Jorge Crichigno, Elias Bou-Harb,
and Gautam Srivastava. 2020. A Performance Evaluation of
TCP BBRv2 Alpha. In 2020 43rd International Conference on
Telecommunications and Signal Processing (TSP). (July 2020),
309–312. doi: 10.1109/TSP49548.2020.9163512.

[29] Yeong-Jun Song, Won-Ju Eom, Jeong-Keun Kim, Chang-
Hoon Park, Geon-Hwan Kim, and You-Ze Cho. 2020. Intra-
protocol Convergence Problem in BBRv2’s Bandwidth Prob-
ing. In 2020 International Conference on Information and
Communication Technology Convergence (ICTC). ISSN: 2162-
1233. (October 2020), 1016–1018. doi: 10.1109/ICTC49870.
2020.9289384.

[30] Yeong-Jun Song, Geon-Hwan Kim, Imtiaz Mahmud, Won-
Kyeong Seo, and You-Ze Cho. 2021. Understanding of BBRv2:
Evaluation and Comparison With BBRv1 Congestion Con-
trol Algorithm. IEEE Access, 9, 37131–37145. Conference
Name: IEEE Access. issn: 2169-3536. doi: 10.1109/ACCESS.
2021.3061696.

[31] Furong Yang, QinghuaWu, Zhenyu Li, Yanmei Liu, Giovanni
Pau, and Gaogang Xie. 2022. BBRv2+: Towards balancing
aggressiveness and fairness with delay-based bandwidth
probing. en. Computer Networks, 206, (April 2022), 108789.
issn: 1389-1286. doi: 10.1016/j .comnet.2022.108789. Re-
trieved 02/22/2022 from https://www.sciencedirect.com/
science/article/pii/S1389128622000226.

[32] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax.
2020. Same Standards, Different Decisions: A Study of QUIC
and HTTP/3 Implementation Diversity. en. In Proceedings of
the Workshop on the Evolution, Performance, and Interoper-
ability of QUIC. ACM, Virtual Event USA, (August 2020), 14–
20. isbn: 978-1-4503-8047-8. doi: 10.1145/3405796.3405828.
Retrieved 04/04/2022 from https://dl.acm.org/doi/10.1145/
3405796.3405828.

[33] Sebastian Endres, Jörg Deutschmann, Kai-Steffen Hielscher,
and Reinhard German. 2022. Performance of QUIC Imple-
mentationsOver Geostationary Satellite Links. arXiv:2202.08228
[cs], (February 2022). arXiv: 2202.08228. Retrieved 04/04/2022
from http://arxiv.org/abs/2202.08228.

[34] 2016. TCP Experiment Automation Controlled Using Python
(TEACUP) – A Tool for Automated TCP Testbed Experi-
ments. (2016). Retrieved 04/26/2022 from http://caia.swin.
edu.au/tools/teacup/.

[35] 2022. Ngtcp2. original-date: 2017-06-25T08:28:58Z. (April
2022). Retrieved 04/26/2022 from https://github.com/ngtcp2/
ngtcp2.

[36] 2022. Picoquic. original-date: 2017-06-26T19:08:37Z. (April
2022). Retrieved 04/26/2022 from https://github.com/private-
octopus/picoquic.

[37] Robin Marx, Luca Niccolini, and Marten Seemann. 2022.
Main logging schema for qlog. Internet-Draft draft-ietf-quic-
qlog-main-schema-02. Work in Progress. Internet Engineer-
ing Task Force, (March 2022). 49 pages. https://datatracker.
ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-02.

[38] R. Jain, D. Chiu, andW. Hawe. 1998. A Quantitative Measure
Of Fairness And Discrimination For Resource Allocation
In Shared Computer Systems. arXiv:cs/9809099, (September
1998). arXiv: cs/9809099. Retrieved 04/10/2022 from http:
//arxiv.org/abs/cs/9809099.

Bibliography

[1] Transmission Control Protocol. RFC 793, September 1981. URL https://www.
rfc-editor.org/info/rfc793.

[2] User Datagram Protocol. RFC 768, August 1980. URL https://www.rfc-editor.
org/info/rfc768.

[3] Kurose James and Ross Keith. Computer Networking: A Top-Down Approach.
Boston, June 2016. ISBN 978-0-13-359414-0.

[4] Randall R. Stewart. Stream Control Transmission Protocol. RFC 4960, September
2007. URL https://www.rfc-editor.org/info/rfc4960.

[5] Sally Floyd, Mark J. Handley, and Eddie Kohler. Datagram Congestion Control
Protocol (DCCP). RFC 4340, March 2006. URL https://www.rfc-editor.org/
info/rfc4340.

[6] QUIC: Design Document and Specification Rationale, . URL https://docs.
google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/
edit?usp=embed_facebook.

[7] Martin Thomson. Version-Independent Properties of QUIC. RFC 8999, May 2021.
URL https://www.rfc-editor.org/info/rfc8999.

[8] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport. RFC 9000, May 2021. URL https://www.rfc-editor.org/info/
rfc9000.

[9] Martin Thomson and Sean Turner. Using TLS to Secure QUIC. RFC 9001, May
2021. URL https://www.rfc-editor.org/info/rfc9001.

[10] Jana Iyengar and Ian Swett. QUIC Loss Detection and Congestion Control. RFC
9002, May 2021. URL https://www.rfc-editor.org/info/rfc9002.

[11] Louis J. Ippolito. High Throughput Satellites, pages 398–422. 2017. doi: 10.1002/
9781119259411.ch15.

109

https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4340
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit?usp=embed_facebook
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit?usp=embed_facebook
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit?usp=embed_facebook
https://www.rfc-editor.org/info/rfc8999
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9002

Bibliography BIBLIOGRAPHY

[12] Key elements for integration of satellite systems into Next Generation Access
Technologies. Report ITU-R M.2460-0, page 19, July 2019.

[13] Chris Daehnick, Isabelle Klinghoffer, Ben Maritz, and Bill Wiseman. Large LEO
satellite constellations: Will it be different this time? page 13.

[14] Tom Jones, Gorry Fairhurst, Nicolas Kuhn, John Border, and Stephan
Emile. Enhancing Transport Protocols over Satellite Networks. Internet-
Draft draft-jones-tsvwg-transport-for-satellite-02, Internet Engineering Task
Force, October 2021. URL https://datatracker.ietf.org/doc/html/
draft-jones-tsvwg-transport-for-satellite-02. Work in Progress.

[15] Jim Griner, John Border, Markku Kojo, Zach D. Shelby, and Gabriel Montenegro.
Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations.
RFC 3135, June 2001. URL https://www.rfc-editor.org/info/rfc3135.

[16] Carlo Caini and Rosario Firrincieli. TCP Hybla: a TCP enhancement for het-
erogeneous networks. International Journal of Satellite Communications and
Networking, 22(5):547–566, September 2004. ISSN 1542-0973. doi: 10.1002/sat.799.
URL https://doi.org/10.1002/sat.799.

[17] Ludovic Thomas, Emmanuel Dubois, Nicolas Kuhn, and Emmanuel Lochin. Google
QUIC performance over a public SATCOM access. International Journal of Satellite
Communications and Networking, 37(6):601–611, 2019. ISSN 1542-0981. doi:
10.1002/sat.1301. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
sat.1301. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sat.1301.

[18] Usage Statistics of QUIC for Websites, May 2022, . URL https://w3techs.com/
technologies/details/ce-quic.

[19] S Oueslati-Boulahia, A Serhrouchni, and S Tohm. TCP Over Satellite Links :
Problems and Solutions. page 12.

[20] Mahesh Sooriyabandara, Gorry Fairhurst, Venkata Padmanabhan, and Hari Bal-
akrishnan. TCP Performance Implications of Network Path Asymmetry. RFC
3449, December 2002. URL https://www.rfc-editor.org/info/rfc3449.

[21] Satellite frequency bands. URL https://www.esa.int/Applications/
Telecommunications_Integrated_Applications/Satellite_frequency_
bands.

[22] TCP extensions for long-delay paths. RFC 1072, October 1988. URL https:
//www.rfc-editor.org/info/rfc1072.

https://datatracker.ietf.org/doc/html/draft-jones-tsvwg-transport-for-satellite-02
https://datatracker.ietf.org/doc/html/draft-jones-tsvwg-transport-for-satellite-02
https://www.rfc-editor.org/info/rfc3135
https://doi.org/10.1002/sat.799
https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1301
https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1301
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-quic
https://www.rfc-editor.org/info/rfc3449
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Satellite_frequency_bands
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Satellite_frequency_bands
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Satellite_frequency_bands
https://www.rfc-editor.org/info/rfc1072
https://www.rfc-editor.org/info/rfc1072

Bibliography 111

[23] Luis A. Sanchez, Mark Allman, and Dr. Dan Glover. Enhancing TCP Over
Satellite Channels using Standard Mechanisms. RFC 2488, January 1999. URL
https://www.rfc-editor.org/info/rfc2488.

[24] David Borman, Robert T. Braden, Van Jacobson, and Richard Scheffenegger.
TCP Extensions for High Performance. RFC 7323, September 2014. URL https:
//www.rfc-editor.org/info/rfc7323.

[25] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Dr. Allyn Romanow. TCP
Selective Acknowledgment Options. RFC 2018, October 1996. URL https://www.
rfc-editor.org/info/rfc2018.

[26] Carlo Caini, Rosario Firrincieli, and Daniele Lacamera. PEPsal: a Performance
Enhancing Proxy for TCP satellite connections (and future research directions at
UoB). page 22.

[27] James Pavur, Martin Strohmeier, Vincent Lenders, and Ivan Martinovic. QPEP:
A QUIC-Based Approach to Encrypted Performance Enhancing Proxies for High-
Latency Satellite Broadband. arXiv:2002.05091 [cs], February 2020. URL http:
//arxiv.org/abs/2002.05091. arXiv: 2002.05091.

[28] Nicolas Kuhn, François Michel, Ludovic Thomas, Emmanuel Dubois, and Em-
manuel Lochin. QUIC: Opportunities and threats in SATCOM. In 2020 10th
Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing
for Space Communications Workshop (ASMS/SPSC), pages 1–7, October 2020.
doi: 10.1109/ASMS/SPSC48805.2020.9268814. ISSN: 2326-5949.

[29] Cristian Mogildea, Jörg Deutschmann, Kai-Steffen Hielscher, and Reinhard Ger-
man. QUIC OVER SATELLITE: INTRODUCTION AND PERFORMANCE
MEASUREMENTS. page 10.

[30] John Border, Bhavit Shah, Chi-Jiun Su, and Rob Torres. Evaluating QUIC’s
Performance Against Performance Enhancing Proxy over Satellite Link. In 2020
IFIP Networking Conference (Networking), pages 755–760, June 2020.

[31] Ana Custura, Tom Jones, and Gorry Fairhurst. Impact of Acknowledgements
using IETF QUIC on Satellite Performance. In 2020 10th Advanced Satel-
lite Multimedia Systems Conference and the 16th Signal Processing for Space
Communications Workshop (ASMS/SPSC), pages 1–8, October 2020. doi:
10.1109/ASMS/SPSC48805.2020.9268894. ISSN: 2326-5949.

[32] Han Zhang, Tianqi Wang, Yue Tu, Kanglian Zhao, and Wenfeng Li. How Quick
Is QUIC in Satellite Networks. In Qilian Liang, Jiasong Mu, Min Jia, Wei Wang,

https://www.rfc-editor.org/info/rfc2488
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc2018
https://www.rfc-editor.org/info/rfc2018
http://arxiv.org/abs/2002.05091
http://arxiv.org/abs/2002.05091

Bibliography BIBLIOGRAPHY

Xuhong Feng, and Baoju Zhang, editors, Communications, Signal Processing, and
Systems, Lecture Notes in Electrical Engineering, pages 387–394, Singapore, 2019.
Springer. ISBN 978-981-10-6571-2. doi: 10.1007/978-981-10-6571-2_47.

[33] Yue Wang, Kanglian Zhao, Wenfeng Li, Juan Fraire, Zhili Sun, and Yuan Fang.
Performance Evaluation of QUIC with BBR in Satellite Internet. In 2018 6th
IEEE International Conference on Wireless for Space and Extreme Environments
(WiSEE), pages 195–199, December 2018. doi: 10.1109/WiSEE.2018.8637347.
ISSN: 2380-7636.

[34] Siyu Yang, Hewu Li, and Qian Wu. Performance Analysis of QUIC Protocol in
Integrated Satellites and Terrestrial Networks. In 2018 14th International Wireless
Communications Mobile Computing Conference (IWCMC), pages 1425–1430, June
2018. doi: 10.1109/IWCMC.2018.8450388. ISSN: 2376-6506.

[35] Mihail Zverev, Pablo Garrido, Fátima Fernández, Josu Bilbao, Özgü Alay, Simone
Ferlin, Anna Brunstrom, and Ramón Agüero. Robust QUIC: Integrating Practical
Coding in a Low Latency Transport Protocol. IEEE Access, 9:138225–138244, 2021.
ISSN 2169-3536. doi: 10.1109/ACCESS.2021.3118112. Conference Name: IEEE
Access.

[36] Nicolas Kuhn, Francklin Simo, David Pradas, and Emile Stephan. Evaluating
BDP FRAME extension for QUIC. arXiv:2112.05450 [cs], December 2021. URL
http://arxiv.org/abs/2112.05450. arXiv: 2112.05450.

[37] Mike Kosek, Hendrik Cech, Vaibhav Bajpai, and Jörg Ott. Exploring Prox-
ying QUIC and HTTP/3 for Satellite Communication. Technical Report
arXiv:2205.01554, arXiv, May 2022. URL http://arxiv.org/abs/2205.01554.
arXiv:2205.01554 [cs] type: article.

[38] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, August 2008. URL https://www.rfc-editor.org/info/rfc5246.

[39] Giorgos Papastergiou, Gorry Fairhurst, David Ros, Anna Brunstrom, Karl-Johan
Grinnemo, Per Hurtig, Naeem Khademi, Michael Tüxen, Michael Welzl, Dragana
Damjanovic, and Simone Mangiante. De-ossifying the internet transport layer: A
survey and future perspectives. IEEE Communications Surveys Tutorials, 19(1):
619–639, 2017. doi: 10.1109/COMST.2016.2626780.

[40] Florian Gratzer. QUIC - Quick UDP Internet Connections. page 8, 2016.

[41] QUIC, a multiplexed transport over UDP. URL https://www.chromium.org/
quic/.

http://arxiv.org/abs/2112.05450
http://arxiv.org/abs/2205.01554
https://www.rfc-editor.org/info/rfc5246
https://www.chromium.org/quic/
https://www.chromium.org/quic/

Bibliography 113

[42] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. TCP
Fast Open. RFC 7413, December 2014. URL https://www.rfc-editor.org/
info/rfc7413.

[43] Adam Langley, Nagendra Modadugu, and Bodo Moeller. Transport Layer Security
(TLS) False Start. RFC 7918, August 2016. URL https://www.rfc-editor.org/
info/rfc7918.

[44] A. Roy-Chowdhury, J.S. Baras, M. Hadjitheodosiou, and S. Papademetriou. Se-
curity issues in hybrid networks with a satellite component. IEEE Wireless
Communications, 12(6):50–61, 2005. doi: 10.1109/MWC.2005.1561945.

[45] Mike Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-Draft
draft-ietf-quic-http-34, Internet Engineering Task Force, February 2021. URL
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34. Work
in Progress.

[46] Roy T. Fielding, Mark Nottingham, and Julian Reschke. HTTP Seman-
tics. Internet-Draft draft-ietf-httpbis-semantics-19, Internet Engineering Task
Force, September 2021. URL https://datatracker.ietf.org/doc/html/
draft-ietf-httpbis-semantics-19. Work in Progress.

[47] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys,
Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616, June 1999. URL https://www.rfc-editor.org/info/rfc2616.

[48] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540, May 2015. URL https://www.rfc-editor.org/
info/rfc7540.

[49] Charles ’Buck’ Krasic, Mike Bishop, and Alan Frindell. QPACK: Header Com-
pression for HTTP/3. Internet-Draft draft-ietf-quic-qpack-21, Internet Engineering
Task Force, February 2021. URL https://datatracker.ietf.org/doc/html/
draft-ietf-quic-qpack-21. Work in Progress.

[50] Tommy Pauly, Eric Kinnear, and David Schinazi. An Unreliable Datagram Ex-
tension to QUIC. RFC 9221, March 2022. URL https://www.rfc-editor.org/
info/rfc9221.

[51] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure,
Christian Huitema, and Mirja Kühlewind. Multipath Extension for
QUIC. Internet-Draft draft-ietf-quic-multipath-01, Internet Engineering
Task Force, March 2022. URL https://datatracker.ietf.org/doc/html/
draft-ietf-quic-multipath-01. Work in Progress.

https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc7918
https://www.rfc-editor.org/info/rfc7918
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-21
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-21
https://www.rfc-editor.org/info/rfc9221
https://www.rfc-editor.org/info/rfc9221
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01

Bibliography BIBLIOGRAPHY

[52] Quentin De Coninck. The packet number space debate in multipath QUIC. CoRR,
abs/2112.01068, 2021. URL https://arxiv.org/abs/2112.01068.

[53] Xavier Artiga, Jose Nunez-Martinez, Ana Perez-Neira, Gorka Juan Lendrino Vela,
Juan Mario Fare Garcia, and Georgios Ziaragkas. Terrestrial-satellite integration in
dynamic 5g backhaul networks. In 2016 8th Advanced Satellite Multimedia Systems
Conference and the 14th Signal Processing for Space Communications Workshop
(ASMS/SPSC), pages 1–6, 2016. doi: 10.1109/ASMS-SPSC.2016.7601470.

[54] Nicolas Kuhn, Stephan Emile, Gorry Fairhurst, Tom Jones, and Christian Huitema.
BDP Frame Extension. Internet-Draft draft-kuhn-quic-bdpframe-extension-00,
Internet Engineering Task Force, March 2022. URL https://datatracker.ietf.
org/doc/html/draft-kuhn-quic-bdpframe-extension-00. Work in Progress.

[55] Nicolas Kuhn, Stephan Emile, Gorry Fairhurst, Tom Jones, and Christian Huitema.
Carefully Resume QUIC Session. Internet-Draft draft-kuhn-quic-careful-resume-01,
Internet Engineering Task Force, May 2022. URL https://datatracker.ietf.
org/doc/html/draft-kuhn-quic-careful-resume-01. Work in Progress.

[56] Jana Iyengar and Ian Swett. QUIC Acknowledgement Frequency.
Internet-Draft draft-ietf-quic-ack-frequency-01, Internet Engineering Task
Force, October 2021. URL https://datatracker.ietf.org/doc/html/
draft-ietf-quic-ack-frequency-01. Work in Progress.

[57] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementation Diversity. In
Proceedings of the Workshop on the Evolution, Performance, and Interoperability
of QUIC, pages 14–20, Virtual Event USA, August 2020. ACM. ISBN 978-1-4503-
8047-8. doi: 10.1145/3405796.3405828. URL https://dl.acm.org/doi/10.1145/
3405796.3405828.

[58] Marten Seemann. Interop Test Runner, May 2022. URL https://github.com/
marten-seemann/quic-interop-runner. original-date: 2019-10-15T21:36:56Z.

[59] Sebastian Endres, Jörg Deutschmann, Kai-Steffen Hielscher, and Reinhard Ger-
man. Performance of QUIC Implementations Over Geostationary Satellite Links.
arXiv:2202.08228 [cs], February 2022. URL http://arxiv.org/abs/2202.08228.
arXiv: 2202.08228.

[60] aioquic, May 2022. URL https://github.com/aiortc/aioquic. original-date:
2019-02-04T23:27:58Z.

https://arxiv.org/abs/2112.01068
https://datatracker.ietf.org/doc/html/draft-kuhn-quic-bdpframe-extension-00
https://datatracker.ietf.org/doc/html/draft-kuhn-quic-bdpframe-extension-00
https://datatracker.ietf.org/doc/html/draft-kuhn-quic-careful-resume-01
https://datatracker.ietf.org/doc/html/draft-kuhn-quic-careful-resume-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-01
https://dl.acm.org/doi/10.1145/3405796.3405828
https://dl.acm.org/doi/10.1145/3405796.3405828
https://github.com/marten-seemann/quic-interop-runner
https://github.com/marten-seemann/quic-interop-runner
http://arxiv.org/abs/2202.08228
https://github.com/aiortc/aioquic

Bibliography 115

[61] LiteSpeed Tech. LiteSpeed QUIC (LSQUIC) Library README, May 2022.
URL https://github.com/litespeedtech/lsquic. original-date: 2017-09-
22T20:33:18Z.

[62] microsoft/msquic, May 2022. URL https://github.com/microsoft/msquic.
original-date: 2019-10-26T04:10:24Z.

[63] facebookincubator/mvfst, May 2022. URL https://github.com/
facebookincubator/mvfst. original-date: 2018-04-09T22:49:15Z.

[64] How Facebook is bringing QUIC to billions, October 2020. URL
https://engineering.fb.com/2020/10/21/networking-traffic/
how-facebook-is-bringing-quic-to-billions/.

[65] Neqo, an Implementation of QUIC written in Rust, May 2022. URL https:
//github.com/mozilla/neqo. original-date: 2019-02-18T19:20:20Z.

[66] ngtcp2, May 2022. URL https://github.com/ngtcp2/ngtcp2. original-date:
2017-06-25T08:28:58Z.

[67] picoquic, May 2022. URL https://github.com/private-octopus/picoquic.
original-date: 2017-06-26T19:08:37Z.

[68] QUICHE, May 2022. URL https://github.com/google/quiche. original-date:
2021-07-27T18:19:46Z.

[69] cloudflare/quiche, May 2022. URL https://github.com/cloudflare/quiche.
original-date: 2018-09-29T18:22:05Z.

[70] quicly, May 2022. URL https://github.com/h2o/quicly. original-date: 2017-
06-06T14:27:42Z.

[71] Lucas Clemente. A QUIC implementation in pure Go, May 2022. URL https:
//github.com/lucas-clemente/quic-go. original-date: 2016-04-06T20:16:27Z.

[72] Sally Floyd. Congestion Control Principles. RFC 2914, September 2000. URL
https://www.rfc-editor.org/info/rfc2914.

[73] Tom Henderson and Sally Floyd. The NewReno Modification to TCP’s Fast
Recovery Algorithm. RFC 2582, April 1999. URL https://www.rfc-editor.org/
info/rfc2582.

[74] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann, Lars Eggert, and
Richard Scheffenegger. CUBIC for Fast Long-Distance Networks. RFC 8312,
February 2018. URL https://www.rfc-editor.org/info/rfc8312.

https://github.com/litespeedtech/lsquic
https://github.com/microsoft/msquic
https://github.com/facebookincubator/mvfst
https://github.com/facebookincubator/mvfst
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://github.com/mozilla/neqo
https://github.com/mozilla/neqo
https://github.com/ngtcp2/ngtcp2
https://github.com/private-octopus/picoquic
https://github.com/google/quiche
https://github.com/cloudflare/quiche
https://github.com/h2o/quicly
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://www.rfc-editor.org/info/rfc2914
https://www.rfc-editor.org/info/rfc2582
https://www.rfc-editor.org/info/rfc2582
https://www.rfc-editor.org/info/rfc8312

Bibliography BIBLIOGRAPHY

[75] Lawrence S. Brakmo, Sean W. O’malley, and Larry L. Peterson. Tcp vegas: New
techniques for congestion detection and avoidance. In In SIGCOMM, 1994.

[76] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett,
and Van Jacobson. BBR Congestion Control. Internet-Draft draft-
cardwell-iccrg-bbr-congestion-control-02, Internet Engineering Task
Force, March 2022. URL https://datatracker.ietf.org/doc/html/
draft-cardwell-iccrg-bbr-congestion-control-02. Work in Progress.

[77] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168, September 2001. URL
https://www.rfc-editor.org/info/rfc3168.

[78] Fred Baker and Gorry Fairhurst. IETF Recommendations Regarding Active Queue
Management. RFC 7567, July 2015. URL https://www.rfc-editor.org/info/
rfc7567.

[79] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. TCP Congestion Control.
RFC 5681, September 2009. URL https://www.rfc-editor.org/info/rfc5681.

[80] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. Bbr: Congestion-based congestion control. ACM Queue, 14, September-
October:20 – 53, 2016. URL http://queue.acm.org/detail.cfm?id=3022184.

[81] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-Based Congestion Control: Measuring bottleneck
bandwidth and round-trip propagation time. Queue, 14(5):20–53, October 2016.
ISSN 1542-7730, 1542-7749. doi: 10.1145/3012426.3022184. URL https://dl.acm.
org/doi/10.1145/3012426.3022184.

[82] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation of
BBR congestion control. In 2017 IEEE 25th International Conference on Network
Protocols (ICNP), pages 1–10, Toronto, ON, October 2017. IEEE. ISBN 978-1-
5090-6501-1. doi: 10.1109/ICNP.2017.8117540. URL http://ieeexplore.ieee.
org/document/8117540/.

[83] Benedikt Jaeger, Dominik Scholz, Daniel Raumer, Fabien Geyer, and Georg
Carle. Reproducible measurements of tcp bbr congestion control. Computer
Communications, 144:31–43, 2019. ISSN 0140-3664. doi: https://doi.org/10.
1016/j.comcom.2019.05.011. URL https://www.sciencedirect.com/science/
article/pii/S0140366419303470.

[84] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien
Geyer, and Georg Carle. Towards a deeper understanding of tcp bbr congestion

https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc7567
https://www.rfc-editor.org/info/rfc7567
https://www.rfc-editor.org/info/rfc5681
http://queue.acm.org/detail.cfm?id=3022184
https://dl.acm.org/doi/10.1145/3012426.3022184
https://dl.acm.org/doi/10.1145/3012426.3022184
http://ieeexplore.ieee.org/document/8117540/
http://ieeexplore.ieee.org/document/8117540/
https://www.sciencedirect.com/science/article/pii/S0140366419303470
https://www.sciencedirect.com/science/article/pii/S0140366419303470

Bibliography 117

control. In 2018 IFIP Networking Conference (IFIP Networking) and Workshops,
pages 1–9, 2018. doi: 10.23919/IFIPNetworking.2018.8696830.

[85] Jose Gomez, Elie Kfoury, Jorge Crichigno, Elias Bou-Harb, and Gautam Srivastava.
A Performance Evaluation of TCP BBRv2 Alpha. In 2020 43rd International
Conference on Telecommunications and Signal Processing (TSP), pages 309–312,
July 2020. doi: 10.1109/TSP49548.2020.9163512.

[86] Yeong-Jun Song, Won-Ju Eom, Jeong-Keun Kim, Chang-Hoon Park, Geon-Hwan
Kim, and You-Ze Cho. Intra-protocol Convergence Problem in BBRv2’s Bandwidth
Probing. In 2020 International Conference on Information and Communication
Technology Convergence (ICTC), pages 1016–1018, October 2020. doi: 10.1109/
ICTC49870.2020.9289384. ISSN: 2162-1233.

[87] Yeong-Jun Song, Geon-Hwan Kim, Imtiaz Mahmud, Won-Kyeong Seo, and You-
Ze Cho. Understanding of BBRv2: Evaluation and Comparison With BBRv1
Congestion Control Algorithm. IEEE Access, 9:37131–37145, 2021. ISSN 2169-
3536. doi: 10.1109/ACCESS.2021.3061696. Conference Name: IEEE Access.

[88] Furong Yang, Qinghua Wu, Zhenyu Li, Yanmei Liu, Giovanni Pau, and Gaogang
Xie. BBRv2+: Towards balancing aggressiveness and fairness with delay-based
bandwidth probing. Computer Networks, 206:108789, April 2022. ISSN 1389-
1286. doi: 10.1016/j.comnet.2022.108789. URL https://www.sciencedirect.
com/science/article/pii/S1389128622000226.

[89] Ian Swett, Marie-Jose Montpetit, Vincent Roca, and François Michel. Coding
for QUIC. Internet-Draft draft-swett-nwcrg-coding-for-quic-04, Internet Engineer-
ing Task Force, March 2020. URL https://datatracker.ietf.org/doc/html/
draft-swett-nwcrg-coding-for-quic-04. Work in Progress.

[90] Tommy Pauly and David Schinazi. QUIC-Aware Proxying Using HTTP.
Internet-Draft draft-pauly-masque-quic-proxy-03, Internet Engineering Task
Force, March 2022. URL https://datatracker.ietf.org/doc/html/
draft-pauly-masque-quic-proxy-03. Work in Progress.

[91] Multiplexed Application Substrate over QUIC Encryption (masque). URL https:
//datatracker.ietf.org/wg/masque/about/.

[92] David Schinazi. Proxying UDP in HTTP. Internet-Draft draft-ietf-masque-connect-
udp-13, Internet Engineering Task Force, June 2022. URL https://datatracker.
ietf.org/doc/html/draft-ietf-masque-connect-udp-13. Work in Progress.

[93] David Schinazi and Lucas Pardue. HTTP Datagrams and the Capsule Pro-
tocol. Internet-Draft draft-ietf-masque-h3-datagram-09, Internet Engineering

https://www.sciencedirect.com/science/article/pii/S1389128622000226
https://www.sciencedirect.com/science/article/pii/S1389128622000226
https://datatracker.ietf.org/doc/html/draft-swett-nwcrg-coding-for-quic-04
https://datatracker.ietf.org/doc/html/draft-swett-nwcrg-coding-for-quic-04
https://datatracker.ietf.org/doc/html/draft-pauly-masque-quic-proxy-03
https://datatracker.ietf.org/doc/html/draft-pauly-masque-quic-proxy-03
https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-udp-13
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-udp-13

Bibliography BIBLIOGRAPHY

Task Force, April 2022. URL https://datatracker.ietf.org/doc/html/
draft-ietf-masque-h3-datagram-09. Work in Progress.

[94] Zsolt Krämer, Mirja Kühlewind, Marcus Ihlar, and Attila Mihály. Cooperative per-
formance enhancement using quic tunneling in 5g cellular networks. In Proceedings
of the Applied Networking Research Workshop, ANRW ’21, page 49–51, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450386180. doi:
10.1145/3472305.3472320. URL https://doi.org/10.1145/3472305.3472320.

[95] Mirja Kühlewind, Matias Carlander-Reuterfelt, Marcus Ihlar, and Magnus West-
erlund. Evaluation of quic-based masque proxying. In Proceedings of the
2021 Workshop on Evolution, Performance and Interoperability of QUIC, EPIQ
’21, page 29–34, New York, NY, USA, 2021. Association for Computing Ma-
chinery. ISBN 9781450391351. doi: 10.1145/3488660.3493806. URL https:
//doi.org/10.1145/3488660.3493806.

[96] Antoine Auger, Emmanuel Lochin, and Nicolas Kuhn. Making Trustable Satellite
Experiments: an Application to a VoIP Scenario. pages 1–5, 2019. URL https:
//doi.org/10.1109/VTCSpring.2019.8746404.

[97] OpenSAND. URL https://www.opensand.org/.

[98] SNS3. URL https://www.sns3.org/content/home.php.

[99] TCP Experiment Automation Controlled Using Python (TEACUP) – A Tool for
Automated TCP Testbed Experiments. URL http://caia.swin.edu.au/tools/
teacup/.

[100] Einar Haeger Solfjell. Networking Experiment Reproducibility: A Case of BBR
Congestion Control. Bachelor’s Thesis in Computer Science, University of Stavanger,
May 2020.

[101] The FreeBSD Project. URL https://www.freebsd.org/.

[102] Welcome to Fabric! — Fabric documentation. URL https://www.fabfile.org/.

[103] Sebastian Zander and Grenville Armitage. TEACUP v1.0 – A System for Automated
TCP Testbed Experiments. page 45, 2015.

[104] Robin Marx, Luca Niccolini, and Marten Seemann. Main logging schema
for qlog. Internet-Draft draft-ietf-quic-qlog-main-schema-02, Internet Engineer-
ing Task Force, March 2022. URL https://datatracker.ietf.org/doc/html/
draft-ietf-quic-qlog-main-schema-02. Work in Progress.

https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-09
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-09
https://doi.org/10.1145/3472305.3472320
https://doi.org/10.1145/3488660.3493806
https://doi.org/10.1145/3488660.3493806
https://doi.org/10.1109/VTCSpring.2019.8746404
https://doi.org/10.1109/VTCSpring.2019.8746404
https://www.opensand.org/
https://www.sns3.org/content/home.php
http://caia.swin.edu.au/tools/teacup/
http://caia.swin.edu.au/tools/teacup/
https://www.freebsd.org/
https://www.fabfile.org/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-main-schema-02

Bibliography 119

[105] tc-netem(8) - Linux manual page. URL https://man7.org/linux/man-pages/
man8/tc-netem.8.html.

[106] Chris Rapier. rapier1/web10g, October 2020. URL https://github.com/
rapier1/web10g. original-date: 2013-10-22T19:15:01Z.

[107] FreeBSD. siftr(4). URL https://www.freebsd.org/cgi/man.cgi?query=siftr&
sektion=4&manpath=FreeBSD+8.2-RELEASE.

[108] Robin Marx, Luca Niccolini, and Marten Seemann. QUIC event definitions
for qlog. Internet-Draft draft-ietf-quic-qlog-quic-events-01, Internet Engineer-
ing Task Force, March 2022. URL https://datatracker.ietf.org/doc/html/
draft-ietf-quic-qlog-quic-events-01. Work in Progress.

[109] Robin Marx, Luca Niccolini, and Marten Seemann. HTTP/3 and QPACK qlog
event definitions. Internet-Draft draft-ietf-quic-qlog-h3-events-01, Internet En-
gineering Task Force, March 2022. URL https://datatracker.ietf.org/doc/
html/draft-ietf-quic-qlog-h3-events-01. Work in Progress.

[110] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure Of Fairness And Discrim-
ination For Resource Allocation In Shared Computer Systems. arXiv:cs/9809099,
September 1998. URL http://arxiv.org/abs/cs/9809099. arXiv: cs/9809099.

[111] Jana Iyengar, David Ros, Andres Arcia, and Sally Floyd. Adding Acknowledgement
Congestion Control to TCP. RFC 5690, February 2010. URL https://www.
rfc-editor.org/info/rfc5690.

[112] Applied Networking Research Workshop (ANRW ’22). URL https://irtf.org/
anrw/2022/.

https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://github.com/rapier1/web10g
https://github.com/rapier1/web10g
https://www.freebsd.org/cgi/man.cgi?query=siftr&sektion=4&manpath=FreeBSD+8.2-RELEASE
https://www.freebsd.org/cgi/man.cgi?query=siftr&sektion=4&manpath=FreeBSD+8.2-RELEASE
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-quic-events-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-quic-events-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-h3-events-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlog-h3-events-01
http://arxiv.org/abs/cs/9809099
https://www.rfc-editor.org/info/rfc5690
https://www.rfc-editor.org/info/rfc5690
https://irtf.org/anrw/2022/
https://irtf.org/anrw/2022/

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Use Cases
	1.3 Problem Definition and Research Questions
	1.4 Objectives
	1.5 Outline

	2 Background
	2.1 Transport Layer over SATCOM
	2.1.1 Challenges
	2.1.2 TCP Solutions
	2.1.2.1 TCP Protocol Optimizations
	2.1.2.2 Performance-Enhancing Proxies

	2.1.3 QUIC over SATCOM

	2.2 QUIC protocol
	2.2.1 New Features of QUIC
	2.2.2 HTTP/3
	2.2.3 Relevant QUIC Extensions
	2.2.4 QUIC Implementations

	2.3 Congestion Control
	2.3.1 Loss-based CC: CUBIC
	2.3.2 Model-based CC: BBR

	3 Proposed Solutions
	3.1 Introduction
	3.2 End-to-end solutions
	3.2.1 Better Congestion Control
	3.2.2 Accelerate path parameter discovery
	3.2.3 Reduce ACK load in the return link
	3.2.4 Forward Error Correction

	3.3 Application Proxies
	3.3.1 MASQUE

	3.4 Selected Solutions

	4 Research Methodology
	4.1 Satellite Experimentation
	4.2 Experimental Methodology
	4.3 Data Collection and Analysis

	5 Testbed Implementation
	5.1 Testbed Overview
	5.1.1 Controller Setup
	5.1.2 Endpoint Setup
	5.1.3 Router Setup

	5.2 Experiment Orchestration with TEACUP
	5.2.1 Extending TEACUP for QUIC support
	5.2.1.1 New traffic generators
	5.2.1.2 New loggers
	5.2.1.3 Others

	5.3 Satellite Emulation
	5.3.1 tc-netem
	5.3.2 OpenSAND

	5.4 QUIC implementations
	5.5 Event Logging for QUIC
	5.6 Github Repository

	6 Experiments and Results
	6.1 Experiment Design
	6.2 Metrics
	6.3 Scenarios
	6.3.1 Block A: Better Congestion Control
	6.3.1.1 Scenario A1: Single-Flow Bulk Download
	6.3.1.2 Scenario A2: Mice vs Elephant Flows
	6.3.1.3 Scenario A3: Multi-Flow Fairness
	6.3.1.4 Scenario A4: Latecomer Issue

	6.3.2 Block B: Faster path parameter discovery
	6.3.2.1 Scenario B1: Connection Resumption with BDP Extension

	6.3.3 Block C: ACK policies for reducing congestion in return link
	6.3.3.1 Scenario C1: Bulk download on asymmetric SATCOM

	6.4 Results
	6.4.1 Block A results
	6.4.1.1 A1: Bulk download results
	6.4.1.2 A2: Mice-flow results
	6.4.1.3 A3: Multi-flow fairness results
	6.4.1.4 A4: Latecomer test results

	6.4.2 Scenario B1 results
	6.4.3 Scenario C1 results

	7 Discussion
	7.1 Impact of QUIC Implementation
	7.2 Impact of Congestion Control
	7.3 Impact of BDP Frame Strategy
	7.4 Impact of ACK Frequency Strategy

	8 Conclusion
	8.1 Answers to the Research Questions
	8.2 Future Directions

	List of Figures
	List of Tables
	A User manual for experiment reproduction
	A.1 Testbed sanity checks
	A.2 Running an experimental scenario
	A.3 Post-processing

	B QUIC traffic generators for TEACUP
	C QUIC loggers for TEACUP
	D Installation scripts for QUIC implementations
	E Accepted publication for ANRW'22
	Bibliography

