

The importance of local thermal non-equilibrium in the modeling of a fractured hot dry rock reservoir

Rachel Gelet, Benjamin Loret

▶ To cite this version:

Rachel Gelet, Benjamin Loret. The importance of local thermal non-equilibrium in the modeling of a fractured hot dry rock reservoir. Deep Goethermal Days, Apr 2014, Paris, France. www.d-geo-d.com>. <hal-01079184>

HAL Id: hal-01079184

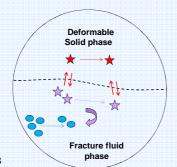
https://hal.archives-ouvertes.fr/hal-01079184

Submitted on 31 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The importance of local thermal non-equilibrium in the modeling of a fractured hot dry rock reservoir

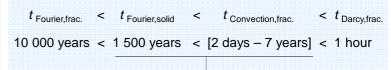

UNIVERSITÉ DE GRENOBLE

Rachel Gelet⁽¹⁾, Benjamin Loret⁽²⁾

Abstract Thermal recovery from a HDR reservoir, viewed as a deformable fractured medium, is investigated with a focus on the assumption of local thermal non-equilibrium. The numerical model is used to investigate the coupled thermo-hydromechanical behavior of the Fenton Hill site. The time profile of the outlet fluid temperature displays a double-step pattern, a feature which is interpreted as characteristic of established local thermal non-equilibrium.

The constitutive model uses a two-phase mixture and accounts for:

- ✓ Generalized diffusion
 - Hydraulic (Darcy)
 - Thermal (Fourier) →
- ✓ Thermal convection
- ✓ Heat transfer

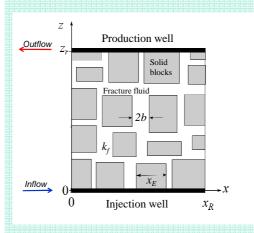


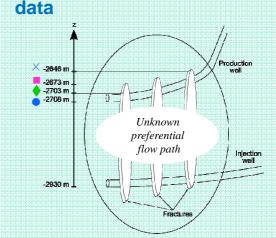
The significant contribution is

the local thermal non-equilibrium

Characteristic times

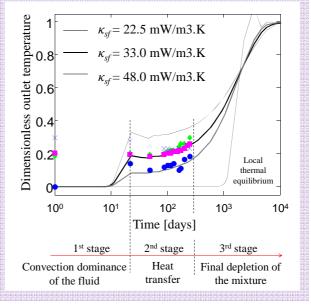
- Large difference in characteristic times between thermal diffusion in the solid phase and convection in the fluid phase
- Local thermal non-equilibrium is required to accurately represent the overall thermo-hydro-mechanical behavior
- The thermally induced effective stress will trigger thermal shrinkage across the body of the reservoir that may lead to permeability change and fluid loss


Site: Fenton Hill (US)


FE Simulation tools

- SUPG method
- · Non-linear analysis treated with
- a Newton-Raphson algorithm
- Fortran language

Numerical setup



Compared with experimental data

THM coupled Results: relative temperature outlet versus time along the production well:

- Three parameters of the model are calibrated, namely the permeability k_f = 8.0 mD, the porosity n_f = 0.005 and the specific interphase heat transfer coefficient κ_{sf} = 33.0 mW/m³.K
- Three stages characteristic of local thermal non-equilibrium are identified
- Local thermal non-equilibrium is characterized by a double step curve, while local thermal equilibrium is recognized by a single-step pattern

Summary

- Numerical results compare well with experimental ones
- The thermal drawdown curve is characterized by three stages, characteristic of local thermal nonequilibrium

Perspectives

Start experimental CHM and THM measures on real samples (ANR project in development)