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Abstract— This paper details the design and 

implementation performances of an efficient generator of 

chaotic discrete integer valued sequences. The generator 

exhibits orbits having very large lengths compared to those 

given in the literature. It is implemented in C language and 

parallelized using the Parameterized and Interfaced 

Synchronous Dataflow Model of Computation (PiSDF 

MoC). The proposed structure is shown to be scalable, 

parallel and time efficient. The resulting implementation 

combines a very long minimal chaotic sequence omin > 

7*2
128

 32-bit samples and a very high throughput of 

173Mbps on 4 cores of a General Purpose Processor. 

Chaotic generator, pseudo-random number generator, 

multicore implementation, performance analysis, dataflow model of 

computation 

I. INTRODUCTION 

Many information hiding and security systems such as: 
cryptosystems, key generation, steganography and digital 
watermarking systems need pseudo-random number generators 
(PRNGs) to achieve their objectives. An unpredictable physical 
process such as plasmonic or resonant systems and quantum 
physics [1] can be used to produce a non-deterministic random 
number (or bit). Process-based algorithms are used to generate 
numbers (bits) deterministically [2][3][4]. In the last two 
decades, a class of PRNGs called chaotic PRNGs has attracted 
much attention. Indeed, this class presents some desirable 
properties such as: very big sensitivity to the initial conditions 
and the parameters of the system, ergodicity, and ease of 
implementation, that make them very good candidates for use 
in information hiding and security systems. 

We propose in this paper an efficient implementation of a 
generator of discrete pseudo-chaotic sequences using N = 32 
bits finite precision. The proposed structure integrates three 
techniques: recursion, disturbance and cascading to avoid the 
dynamical degradation. It is also very efficient in terms of 
robustness and data rate. The generator results from a French 
patent [15] and its PCT Extension. 

Dataflow modeling and global multicore scheduling are 
used to generate a parallel executable for the chaotic random 
generator. Dataflow modeling consists in breaking the 
computation into independent processes that communicate 
through First-In First-Out (FIFO) data queues. Global 
multicore scheduling consists of choosing a core for executing 

each process and ordering their execution on each core. In this 
paper, the chaotic generator is described by a Parameterized 
and Interfaced Synchronous Dataflow graph (PiSDF) [5] that 
serves as an input for the PREESM rapid prototyping tool [6]. 
PREESM is an open-source Eclipse-based tool that can 
simulate and generate multicore code for a given topology, i.e. 
organization of cores, and parallelism of architecture within 
minutes. 

The applications of such efficient generator are numerous 
in the field of information hiding and security. The paper is 
organized as follows. Related Works are presented in Section 2 
and the description of the proposed chaotic generator in Section 
3. Section 4 describes the proposed techniques of optimization. 
Experimental results are given in Section 5, before concluding 
in Section 6.   

II. RELATED WORK 

Chaos can be generated by any non-linear dynamical 
system. In discrete-time non-linear dynamical system the 
generation of chaos is governed by a set of difference 
equations, namely a chaotic map. In the literature, the number 
of well-known one, two and three dimensional chaotic maps is 
surprisingly limited, in spite of the fact that they are widely 
used in many applications related-data security. In [7], we 
studied some of them, namely, the Logistic map, the piecewise 
linear chaotic map (PWLCM), the Frey map, and we designed 
others, specifically, x cos(x), x exp[cos(x)], and 2-D Tmap. We 
demonstrated that, when used alone, these chaotic maps don’t 
exhibit very good statistical properties and especially their 
cycle length is limited. These observations are generally 
available for the others well-known chaotic maps such as: 1-D 
Skew tent [8], 2D-Standrd map, 2D-Cat map, 2D- Baker map  
[9] used in many cryptosystems to achieve the 
confusion/diffusion effects, or  Lozi maps [10] and 3-D Lorenz 
map [11] used as chaotic generator. Lian et al. [12] studied in 
detail the performance of the 2-D Standard, Cat and Baker 
maps. They demonstrated that the Cat map has the smallest key 
space, but the highest key sensitivity and that it is suitable for 
cryptosystems using a different key in every iteration (dynamic 
keys). In this manner the key space is enlarged and key 
sensitivity is increased. The key spaces for Standard map and 
Baker map are both larger than that of Cat map. But to keep 
high key sensitivity, the number of iterations should be larger 
than 4 for the Standard map and bigger than 12 for the Baker 
map. These maps are more suitable for cryptosystems in which 
the same key is used in different iterations.  
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However, to keep a good confusion property, the average 
distance change in the whole image must be greater than 40%, 
and then, the number of iterations of the Cat map must be no 
smaller than 6. 

To enhance the statistical properties of the generated 
sequences, the main ideas are based on the introduction of a 
technique of disturbance of the pseudo-chaotic orbit and also 
on the mixing of different components. 

 In [8], René Lozi introduced new models of very weakly 
coupled logistic and symmetric tent maps, based on a matrix of 
disturbance and using single or double precision numbers. He 
demonstrated that the 3-coupled tent maps with small value of 
perturbation can be used as a generator of pseudo-chaotic 
numbers with a uniform distribution over the interval [-1, +1]. 
The generated sequences have orbits of very long period, 
greater than 109 and less than 1012. 

In [13], Thomas E. Tkacik proposed a 32-bit hardware 
random number generator based on a Linear Feedback Shift 
Register (LFSR), and a Cellular Automata Shift Register 
(CASR). The LFSR uses a primitive polynomial of degree 
equal to 43 and then gives a cycle length of 243-1. The CASR 
is based on 37-bit with a CA150 at cell site 28, and CA90s at 
all other cell sites. So, it has a maximal length of 237-1. The 
output of the generator is formed by 32 bits, selected and 
permuted from the LFSR and the CASR, and then xored 
together. The cycle length of the generator is close to 280. The 
bit rate of such system depends on the maximum oscillators 
frequencies that can be used, but the authors don’t give any 
information about this important question. 

Gerd Dirscherl et al. in their patent [14], proposed a 
pseudorandom generator including a first non-linear feedback 
shift register (NLFSR 1) with R memory cells combined with a 
second one with S memory cells by a multiplication operator. 
The result is then xored with a third NLFSR with T memory 
cells to obtain a final signal representing a pseudorandom 
number. The period length of the output sequences is equal to 
(2R-1) (2S-1) (2T-1), but there is no information related to the 
bit rate performance. 

Most of chaos-based generators of the literature rely on 
floating-point data operations. This property leads to a problem 
when the resolution or the rounding method is different on the 
sender and on the receiver side. In a cryptographic system the 
chaotic sequences generated by the emitter and by the receiver 
will then be different. To avoid this problem, the generator 
presented in this paper works on a fixed finite precision of N 
bits. However, with a finite precision N, the chaotic dynamics 
are degraded and short cycles can appear. 

III. DESCRIPTION OF THE PROPOSED CHAOTIC GENERATOR 

A. Architecture of the proposed chaotic generator 

The architecture of the proposed chaotic generator is given 
in Figure 1.  It consists of:  28 basic chaotic generators, 4 

analogical multiplexers 8 to 1, 3 XORs; a linear feedback shift 
register (LFSR), an operation of elimination of a percentage of 
samples and a block of quantification on Nq < N. 

The proposed structure is modular, scalable, generic, and it 
produces a very long orbit with a large secret key. 

Every basic chaotic generator of Figure 1 integrates a 
perturbation technique, based on linear feedback shift register 
(LFSR), of the chaotic orbit which increases its cycle lengths 
by a factor (2k-1), where k is the degree of the primitive 
polynomial of the LFSR.    

B. Structure of the basic chaotic generator 

Figure 2 shows the recursive structure of each basic chaotic 
generator (P-G) in the case of third order recursive filters. The 
discrete Skew-tent map (NLF1) and the discrete piecewise 
linear chaotic map (PWLCM, NLF2) are used as a non-linear 
functions. The output (integer pseudo-chaotic values) of each 
basic chaotic generator X (n) is given by the following 
equations. 

( ) 1( ) 2( )= ⊕X n Xc n Xc n  ,  (1) 
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Where P1 and P2 are the control parameters for the Skew 

tent map, ranging from 1 to 2 1N −  and for the PWLCM map 

ranging from are and 1 to 12 1N− − respectively. Q1 and Q2 are 
the perturbing signals produced by the LFSRs, ranging 

respectively from 1 to 2 1−ks  and 1 to 2 1−kp , where ks and 
kp are the degrees of the primitive polynomials  of the LFSRs 
used to disturb the skew tent map and the PWLMC map. The 
coefficients 

11 12 13, ,c c c , 
21 22 23, ,c c c  and the inputs In1 and 

In2 are within the interval [1, 2 1N − ].  

 

 

  

 



 

Figure 1.  General architecture of the proposed chaotic generator 

 

Figure 2.  Structure of a single basic chaotic generator (P-G) 
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Figure 3.   Single-rate dataflow graph exposing the parallelism of the random number generator

The discrete equations of the Skew tent and the PWLCM 
maps are given by [16][17]. The secret key of each basic 
generator is formed by : 6 initial conditions  Xc1(n-1),  Xc1(n-
2),  Xc1(n-3),  Xc2(n-1),  Xc2(n-2), Xc2(n-3) (6N bits); 2 initial 
conditions of the LFSRs (ks + kp bits) 6 parameters of the 
recursive cells 

11 12 13 21 22 23, , , , ,c c c c c c  (6N bits); 2 

parameters of the skew tent and pwlcm maps (P1 + P2 bits) 
and 2 inputs In1, In2 (2N bits). With N = 32, ks = 23, kp = 21, 
the size of the secret key of the basic chaotic generator is 555 
bits. The size of the secret key of the generating system of 
figure 1 is therefore:  

28 555 15540≅ × =K bits
 

C. Sequence of execution of the chaotic generator 

The proposed generator of Figure 1 is running as follows: 

1) Initialization of the twenty eight perturbed generators 

and the LFSR. 

2) In every state 1, 2,...,7j = of the LFSR (implemented 

by the following primitive polynomial: 3( ) 1= + +g x x x  and 

commended by the clock Ck), the length of the chaotic 

sequence at output y7 is given by the least common multiple 

(lcm) of several secondary outputs. For example:  

min5 1 2, =  j j jo lcm o o    (4) 

is the length of the chaotic sequence at output y5 where: { }(2 1) (2 1)

(2 1) (2 1)1 2 1 , 2 1− −
− −

   = − × − ×   j j

j j

ks kp
j ks kpo lcm ∆ ∆  

(5) 

is the length of the chaotic sequence at output y1 and { }(2 ) (2 )

(2 ) (2 )2 2 1 , 2 1   = − × − ×   j j

j j

ks kp
j ks kpo lcm ∆ ∆  (6) 

is the length of the chaotic sequence at output y2 and so on. 

,
m mks kp∆ ∆ (m = 1 to 28) are respectively the nominal 

periods of the first and the second cells of the basic chaotic 

generator without perturbation. The period of the clock Ck of 

the LFSR is given by: 

1,2, 7min7 =
 =  jCk jo Min o


   (7) 

The minimal length of the chaotic sequence at output y is: 

[ ]min 7 1 %= × −Cko o p     (8) 

It is extremely long. 

IV. PROPOSED METHODS FOR OPTIMIZING 

IMPLEMENTATION 

To obtain an efficient implementation of the chaotic generator, 
parallelization at different levels is carried out. A data flow 
description is used to parallelize the different actors and the 
actor execution time is minimized by optimizing the actor C 
code.  

A. Dataflow description  

A dataflow description is used to model the application as a 
directed graph. Dataflow descriptions provide advanced 
semantics for expressing parallelism in an algorithm regardless 
of the targeted hardware architecture. The directed edges of the 
description model the flow of the data and the actors, 
corresponding to the graph nodes, model the transformations 
applied to the data. The hierarchical PiSDF description of the 
algorithm is transformed by PREESM into a single-rate graph 
that exposes the maximum parallelism from the graph. This 
graph is displayed in Figure 3. It contains actors for PWLCM 
and SkewTent nonlinear functions, XOR operations as well as 
a key source actor “ReadKeys” and a sequence sink actor 
“WriteResults”. The “Fork” actor is a generated actor that 
automatically distributes data tokens to make the right data 
available for each actor. In case of large generated sequences, 

 

 



the processing time is dominated by the PWLCM and 
SkewTent nonlinear functions. In the studied setup, 4 PWLCM 
and 4 SkewTent functions can be executed in parallel, bringing 
useful parallelism to the execution. In our experiments, the 
large amount of data to send between processes limits this 
parallelism to 2.24 on 4 cores (see Section 5.C). The parallel 
code generation process is described in [18]. One C thread is 
generated for each core and synchronized with the other 
threads. Communications are implemented via shared memory 
and synchronization. 

B. Actor C code optimization  

To minimize each actor execution time, the actor C code is 
optimized. After a code profiling analysis, the optimizations 
focus on repetitive structures (loops) and mathematical 
functions, which consume a significant part of the total 
execution time. Loop parameters are set to constant values at 
the compile–time to benefit from compiler optimization 
dedicated to loop. Loop unswitching is carried-out to remove 
conditional structures from loop kernels. This optimization 
eliminates over-cost due to tests and conditional branching.  
Instead of using functions from the mathematical library, 
functions, like modulo, are rewritten and simplified for our 
specific use case. These different code optimizations combined 
with compiler optimizations allow reducing the actor execution 
time of one order of magnitude.      

 

V. EXPERIMENTAL RESULTS 

A. NIST test and mapping 

NIST test consists of a battery of 188 tests (globally 15 
different tests) to conclude regarding the randomness or non-
randomness of binary sequences [19]. We generated 100 
sequences each with a different secret key and containing one 
million bits, and then we performed on them the NIST test. The 
proposed generator passes all the tests and therefore, it is robust 
against statistical attacks.  
 

B. Bit rate Performance 

TABLE I gives the measured mean bit rate (in Mbits/s) of 
the complete generator, with delay equals to 3, for the 
sequential implementation and the parallel implementation. 
The tests are made on a computer with quad-core Intel Xeon 
E31225 @ 3.1GHz. A very high bit rate of 173 Mbit/s is 
obtained on 4 cores. 

TABLE I.  BIT RATE PERFORMANCE 

Implementation Bit rate (Mbit/s) 

Sequential implementation 77 

2-core implementation 148 

4-core implementation 173 

C. Details of the Multicore Execution Performances 

Figure 4 shows the bit rate of the random generator for core 
numbers between 1 and 4 and different sequence lengths 
ranging from 1 to 32768 32-bit samples. A sequence is a list of 
samples generated by a single iteration of the algorithm. One 

may remark that a fair speedup of up to 2.24 is obtained 
between sequential execution and execution on 4 cores. The 
performance obtained on 3 cores is very equivalent to the one 
on 2 cores due to unbalanced core loads. A minimal sequence 
length is required in order to obtain enough parallelism for the 
multicore execution. In our use case, a generated sequence of 
4K samples = 128Kbits provides a near maximum parallelism. 
For short sequences, the amount of communication dominates 
the computation in terms of time.  

 

Figure 4.   Bit rate performance (in bit/s) versus the size of the generated 

sequence (in 32-bit samples) 

Figure 5 displays the memory necessary to compute the 
random sequence generator. For generated sequences over 256 
samples, the memory needs grow linearly at a rate of about 128 
Bytes/sample. The used dataflow parallelization method 
provides a quasi-constant memory requirement when the 
number of cores increases.  

 

Figure 5.   Necessary memory (in Bytes) versus the size of the generated 

sequence (in 32-bit samples) 

VI. CONCLUSION 

We presented in this paper a generator of discrete chaotic 
sequences and its efficient multicore implementation.  The 
resulting implementation combines a very long minimal 

chaotic sequence 128
min 7 2> ×o samples and a very high 

throughput of 173Mbps on 4 cores. A possible future work is 
the extension of the algorithm to obtain higher parallelism for 
equivalent cycle length properties. 
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