
Efficient Multicore Implementation of An Advanced

Generator of Discrete Chaotic Sequences

Karol Desnos, Safwan El Assad, Aurore Arlicot, Maxime Pelcat, Daniel

Menard

To cite this version:

Karol Desnos, Safwan El Assad, Aurore Arlicot, Maxime Pelcat, Daniel Menard. Efficient
Multicore Implementation of An Advanced Generator of Discrete Chaotic Sequences. Chaos-
Information Hiding and Security (CIHS), International Workshop on, Dec 2014, London, United
Kingdom. Chaos-Information Hiding and Security (CIHS), International Workshop on, 2014.
<hal-01094677>

HAL Id: hal-01094677

https://hal.archives-ouvertes.fr/hal-01094677

Submitted on 12 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/52998217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01094677

Efficient Multicore Implementation of An Advanced

Generator of Discrete Chaotic Sequences

Karol Desnos*, Safwan El Assad**, Aurore Arlicot**, Maxime Pelcat*, Daniel Menard*
* IETR, INSA Rennes, CNRS UMR 6164, Rennes, France

** IETR, Université de Nantes, CNRS UMR 6164, Nantes, France

Abstract— This paper details the design and

implementation performances of an efficient generator of

chaotic discrete integer valued sequences. The generator

exhibits orbits having very large lengths compared to those

given in the literature. It is implemented in C language and

parallelized using the Parameterized and Interfaced

Synchronous Dataflow Model of Computation (PiSDF

MoC). The proposed structure is shown to be scalable,

parallel and time efficient. The resulting implementation

combines a very long minimal chaotic sequence omin >

7*2
128

 32-bit samples and a very high throughput of

173Mbps on 4 cores of a General Purpose Processor.

Chaotic generator, pseudo-random number generator,

multicore implementation, performance analysis, dataflow model of

computation

I. INTRODUCTION

Many information hiding and security systems such as:
cryptosystems, key generation, steganography and digital
watermarking systems need pseudo-random number generators
(PRNGs) to achieve their objectives. An unpredictable physical
process such as plasmonic or resonant systems and quantum
physics [1] can be used to produce a non-deterministic random
number (or bit). Process-based algorithms are used to generate
numbers (bits) deterministically [2][3][4]. In the last two
decades, a class of PRNGs called chaotic PRNGs has attracted
much attention. Indeed, this class presents some desirable
properties such as: very big sensitivity to the initial conditions
and the parameters of the system, ergodicity, and ease of
implementation, that make them very good candidates for use
in information hiding and security systems.

We propose in this paper an efficient implementation of a
generator of discrete pseudo-chaotic sequences using N = 32
bits finite precision. The proposed structure integrates three
techniques: recursion, disturbance and cascading to avoid the
dynamical degradation. It is also very efficient in terms of
robustness and data rate. The generator results from a French
patent [15] and its PCT Extension.

Dataflow modeling and global multicore scheduling are
used to generate a parallel executable for the chaotic random
generator. Dataflow modeling consists in breaking the
computation into independent processes that communicate
through First-In First-Out (FIFO) data queues. Global
multicore scheduling consists of choosing a core for executing

each process and ordering their execution on each core. In this
paper, the chaotic generator is described by a Parameterized
and Interfaced Synchronous Dataflow graph (PiSDF) [5] that
serves as an input for the PREESM rapid prototyping tool [6].
PREESM is an open-source Eclipse-based tool that can
simulate and generate multicore code for a given topology, i.e.
organization of cores, and parallelism of architecture within
minutes.

The applications of such efficient generator are numerous
in the field of information hiding and security. The paper is
organized as follows. Related Works are presented in Section 2
and the description of the proposed chaotic generator in Section
3. Section 4 describes the proposed techniques of optimization.
Experimental results are given in Section 5, before concluding
in Section 6.

II. RELATED WORK

Chaos can be generated by any non-linear dynamical
system. In discrete-time non-linear dynamical system the
generation of chaos is governed by a set of difference
equations, namely a chaotic map. In the literature, the number
of well-known one, two and three dimensional chaotic maps is
surprisingly limited, in spite of the fact that they are widely
used in many applications related-data security. In [7], we
studied some of them, namely, the Logistic map, the piecewise
linear chaotic map (PWLCM), the Frey map, and we designed
others, specifically, x cos(x), x exp[cos(x)], and 2-D Tmap. We
demonstrated that, when used alone, these chaotic maps don’t
exhibit very good statistical properties and especially their
cycle length is limited. These observations are generally
available for the others well-known chaotic maps such as: 1-D
Skew tent [8], 2D-Standrd map, 2D-Cat map, 2D- Baker map
[9] used in many cryptosystems to achieve the
confusion/diffusion effects, or Lozi maps [10] and 3-D Lorenz
map [11] used as chaotic generator. Lian et al. [12] studied in
detail the performance of the 2-D Standard, Cat and Baker
maps. They demonstrated that the Cat map has the smallest key
space, but the highest key sensitivity and that it is suitable for
cryptosystems using a different key in every iteration (dynamic
keys). In this manner the key space is enlarged and key
sensitivity is increased. The key spaces for Standard map and
Baker map are both larger than that of Cat map. But to keep
high key sensitivity, the number of iterations should be larger
than 4 for the Standard map and bigger than 12 for the Baker
map. These maps are more suitable for cryptosystems in which
the same key is used in different iterations.

 The authors wish to thank the French National Research Agency ANR,
the AtlanSTIC-CNRS FR2819 Federation and the SATT organization. This

work is carried out within the framework of the research project ACSCOM

(Apport du Chaos dans la Sécurité des systèmes Communicants Optiques et
Mobiles), the AtlanSTIC research cluster and the GenSeq project)

However, to keep a good confusion property, the average
distance change in the whole image must be greater than 40%,
and then, the number of iterations of the Cat map must be no
smaller than 6.

To enhance the statistical properties of the generated
sequences, the main ideas are based on the introduction of a
technique of disturbance of the pseudo-chaotic orbit and also
on the mixing of different components.

 In [8], René Lozi introduced new models of very weakly
coupled logistic and symmetric tent maps, based on a matrix of
disturbance and using single or double precision numbers. He
demonstrated that the 3-coupled tent maps with small value of
perturbation can be used as a generator of pseudo-chaotic
numbers with a uniform distribution over the interval [-1, +1].
The generated sequences have orbits of very long period,
greater than 109 and less than 1012.

In [13], Thomas E. Tkacik proposed a 32-bit hardware
random number generator based on a Linear Feedback Shift
Register (LFSR), and a Cellular Automata Shift Register
(CASR). The LFSR uses a primitive polynomial of degree
equal to 43 and then gives a cycle length of 243-1. The CASR
is based on 37-bit with a CA150 at cell site 28, and CA90s at
all other cell sites. So, it has a maximal length of 237-1. The
output of the generator is formed by 32 bits, selected and
permuted from the LFSR and the CASR, and then xored
together. The cycle length of the generator is close to 280. The
bit rate of such system depends on the maximum oscillators
frequencies that can be used, but the authors don’t give any
information about this important question.

Gerd Dirscherl et al. in their patent [14], proposed a
pseudorandom generator including a first non-linear feedback
shift register (NLFSR 1) with R memory cells combined with a
second one with S memory cells by a multiplication operator.
The result is then xored with a third NLFSR with T memory
cells to obtain a final signal representing a pseudorandom
number. The period length of the output sequences is equal to
(2R-1) (2S-1) (2T-1), but there is no information related to the
bit rate performance.

Most of chaos-based generators of the literature rely on
floating-point data operations. This property leads to a problem
when the resolution or the rounding method is different on the
sender and on the receiver side. In a cryptographic system the
chaotic sequences generated by the emitter and by the receiver
will then be different. To avoid this problem, the generator
presented in this paper works on a fixed finite precision of N
bits. However, with a finite precision N, the chaotic dynamics
are degraded and short cycles can appear.

III. DESCRIPTION OF THE PROPOSED CHAOTIC GENERATOR

A. Architecture of the proposed chaotic generator

The architecture of the proposed chaotic generator is given
in Figure 1. It consists of: 28 basic chaotic generators, 4

analogical multiplexers 8 to 1, 3 XORs; a linear feedback shift
register (LFSR), an operation of elimination of a percentage of
samples and a block of quantification on Nq < N.

The proposed structure is modular, scalable, generic, and it
produces a very long orbit with a large secret key.

Every basic chaotic generator of Figure 1 integrates a
perturbation technique, based on linear feedback shift register
(LFSR), of the chaotic orbit which increases its cycle lengths
by a factor (2k-1), where k is the degree of the primitive
polynomial of the LFSR.

B. Structure of the basic chaotic generator

Figure 2 shows the recursive structure of each basic chaotic
generator (P-G) in the case of third order recursive filters. The
discrete Skew-tent map (NLF1) and the discrete piecewise
linear chaotic map (PWLCM, NLF2) are used as a non-linear
functions. The output (integer pseudo-chaotic values) of each
basic chaotic generator X (n) is given by the following
equations.

() 1() 2()= ⊕X n Xc n Xc n , (1)

{ }
[]3

1

1

1() 1(1), 1 1

1(1) mod 1 1() ,2
=

= − ⊕
 − = + × − ∑ N

i

i

Xc n skewtent F n P Q

F n In c Xc n i

, (2)

{ }
[]3

2

1

2() 2(1), 2 2

2(1) mod 2 2() ,2
=

= − ⊕
 − = + × − ∑ N

i

i

Xc n pwlcm F n P Q

F n In c Xc n i

(3)

1(), 2() () 1, 2 1 ∈ − NXc n Xc n and X n
,

Where P1 and P2 are the control parameters for the Skew

tent map, ranging from 1 to 2 1N − and for the PWLCM map

ranging from are and 1 to 12 1N− − respectively. Q1 and Q2 are
the perturbing signals produced by the LFSRs, ranging

respectively from 1 to 2 1−ks and 1 to 2 1−kp , where ks and
kp are the degrees of the primitive polynomials of the LFSRs
used to disturb the skew tent map and the PWLMC map. The
coefficients

11 12 13, ,c c c ,
21 22 23, ,c c c and the inputs In1 and

In2 are within the interval [1, 2 1N −].

Figure 1. General architecture of the proposed chaotic generator

Figure 2. Structure of a single basic chaotic generator (P-G)

p% Nq

y y7

Q2 Q1 Q0

Q2 Q1 Q0

 P-G28

 P-G26

 P-G18

 P-G22

 P-G20

 P-G16

 P-G24

1

2

3

4

5

6

 Mux4

 P-G27

 P-G23

 P-G25

 P-G17

 P-G21

 P-G19

1

2

3

4

5

6

 P-G15

 Mux3

y1

y2

y 3

y4

yq

y5 y6

Q2 Q1 Q0

1

2

3

4

5

6

 P-G14

 P-G12

 P-G4

 P-G8

 P-G6

 P-G2

 P-G10

1

2

3

4

5

6

 Mux2

 P-G13

 P-G11

 P-G3

 P-G7

 P-G5

 P-G1

 P-G9

 Mux1

 Q2 Q1 Q0

 = 1

Ck

X In1
 NLF1

x

 x

 x

+

c11

c12

c13

 LFSR1

+

+

Q1
Xc1

�−1

�−1

�−1

In2

�−1

�−1

�−1

Xc2
 NLF2

x

 x

 x

+

c21

c22

c23

 LFSR2

+

+

Q2

Figure 3. Single-rate dataflow graph exposing the parallelism of the random number generator

The discrete equations of the Skew tent and the PWLCM
maps are given by [16][17]. The secret key of each basic
generator is formed by : 6 initial conditions Xc1(n-1), Xc1(n-
2), Xc1(n-3), Xc2(n-1), Xc2(n-2), Xc2(n-3) (6N bits); 2 initial
conditions of the LFSRs (ks + kp bits) 6 parameters of the
recursive cells

11 12 13 21 22 23, , , , ,c c c c c c (6N bits); 2

parameters of the skew tent and pwlcm maps (P1 + P2 bits)
and 2 inputs In1, In2 (2N bits). With N = 32, ks = 23, kp = 21,
the size of the secret key of the basic chaotic generator is 555
bits. The size of the secret key of the generating system of
figure 1 is therefore:

28 555 15540≅ × =K bits

C. Sequence of execution of the chaotic generator

The proposed generator of Figure 1 is running as follows:

1) Initialization of the twenty eight perturbed generators

and the LFSR.

2) In every state 1, 2,...,7j = of the LFSR (implemented

by the following primitive polynomial: 3() 1= + +g x x x and

commended by the clock Ck), the length of the chaotic

sequence at output y7 is given by the least common multiple

(lcm) of several secondary outputs. For example:

min5 1 2, = j j jo lcm o o (4)

is the length of the chaotic sequence at output y5 where: { }(2 1) (2 1)

(2 1) (2 1)1 2 1 , 2 1− −
− −

 = − × − × j j

j j

ks kp
j ks kpo lcm ∆ ∆

(5)

is the length of the chaotic sequence at output y1 and { }(2) (2)

(2) (2)2 2 1 , 2 1 = − × − × j j

j j

ks kp
j ks kpo lcm ∆ ∆ (6)

is the length of the chaotic sequence at output y2 and so on.

,
m mks kp∆ ∆ (m = 1 to 28) are respectively the nominal

periods of the first and the second cells of the basic chaotic

generator without perturbation. The period of the clock Ck of

the LFSR is given by:

1,2, 7min7 =
 = jCk jo Min o

 (7)

The minimal length of the chaotic sequence at output y is:

[]min 7 1 %= × −Cko o p (8)

It is extremely long.

IV. PROPOSED METHODS FOR OPTIMIZING

IMPLEMENTATION

To obtain an efficient implementation of the chaotic generator,
parallelization at different levels is carried out. A data flow
description is used to parallelize the different actors and the
actor execution time is minimized by optimizing the actor C
code.

A. Dataflow description

A dataflow description is used to model the application as a
directed graph. Dataflow descriptions provide advanced
semantics for expressing parallelism in an algorithm regardless
of the targeted hardware architecture. The directed edges of the
description model the flow of the data and the actors,
corresponding to the graph nodes, model the transformations
applied to the data. The hierarchical PiSDF description of the
algorithm is transformed by PREESM into a single-rate graph
that exposes the maximum parallelism from the graph. This
graph is displayed in Figure 3. It contains actors for PWLCM
and SkewTent nonlinear functions, XOR operations as well as
a key source actor “ReadKeys” and a sequence sink actor
“WriteResults”. The “Fork” actor is a generated actor that
automatically distributes data tokens to make the right data
available for each actor. In case of large generated sequences,

the processing time is dominated by the PWLCM and
SkewTent nonlinear functions. In the studied setup, 4 PWLCM
and 4 SkewTent functions can be executed in parallel, bringing
useful parallelism to the execution. In our experiments, the
large amount of data to send between processes limits this
parallelism to 2.24 on 4 cores (see Section 5.C). The parallel
code generation process is described in [18]. One C thread is
generated for each core and synchronized with the other
threads. Communications are implemented via shared memory
and synchronization.

B. Actor C code optimization

To minimize each actor execution time, the actor C code is
optimized. After a code profiling analysis, the optimizations
focus on repetitive structures (loops) and mathematical
functions, which consume a significant part of the total
execution time. Loop parameters are set to constant values at
the compile–time to benefit from compiler optimization
dedicated to loop. Loop unswitching is carried-out to remove
conditional structures from loop kernels. This optimization
eliminates over-cost due to tests and conditional branching.
Instead of using functions from the mathematical library,
functions, like modulo, are rewritten and simplified for our
specific use case. These different code optimizations combined
with compiler optimizations allow reducing the actor execution
time of one order of magnitude.

V. EXPERIMENTAL RESULTS

A. NIST test and mapping

NIST test consists of a battery of 188 tests (globally 15
different tests) to conclude regarding the randomness or non-
randomness of binary sequences [19]. We generated 100
sequences each with a different secret key and containing one
million bits, and then we performed on them the NIST test. The
proposed generator passes all the tests and therefore, it is robust
against statistical attacks.

B. Bit rate Performance

TABLE I gives the measured mean bit rate (in Mbits/s) of
the complete generator, with delay equals to 3, for the
sequential implementation and the parallel implementation.
The tests are made on a computer with quad-core Intel Xeon
E31225 @ 3.1GHz. A very high bit rate of 173 Mbit/s is
obtained on 4 cores.

TABLE I. BIT RATE PERFORMANCE

Implementation Bit rate (Mbit/s)

Sequential implementation 77

2-core implementation 148

4-core implementation 173

C. Details of the Multicore Execution Performances

Figure 4 shows the bit rate of the random generator for core
numbers between 1 and 4 and different sequence lengths
ranging from 1 to 32768 32-bit samples. A sequence is a list of
samples generated by a single iteration of the algorithm. One

may remark that a fair speedup of up to 2.24 is obtained
between sequential execution and execution on 4 cores. The
performance obtained on 3 cores is very equivalent to the one
on 2 cores due to unbalanced core loads. A minimal sequence
length is required in order to obtain enough parallelism for the
multicore execution. In our use case, a generated sequence of
4K samples = 128Kbits provides a near maximum parallelism.
For short sequences, the amount of communication dominates
the computation in terms of time.

Figure 4. Bit rate performance (in bit/s) versus the size of the generated

sequence (in 32-bit samples)

Figure 5 displays the memory necessary to compute the
random sequence generator. For generated sequences over 256
samples, the memory needs grow linearly at a rate of about 128
Bytes/sample. The used dataflow parallelization method
provides a quasi-constant memory requirement when the
number of cores increases.

Figure 5. Necessary memory (in Bytes) versus the size of the generated

sequence (in 32-bit samples)

VI. CONCLUSION

We presented in this paper a generator of discrete chaotic
sequences and its efficient multicore implementation. The
resulting implementation combines a very long minimal

chaotic sequence 128
min 7 2> ×o samples and a very high

throughput of 173Mbps on 4 cores. A possible future work is
the extension of the algorithm to obtain higher parallelism for
equivalent cycle length properties.

VII. REFERENCES

[1] A. K. Hartmann. “Practical guide to computer simulations”, World
Scientific, 2009.

[2] L. Blum, M. Blum, M. Shub. “A simple unpredictable pseudo random
number generator”, SIAM J. Comput. 1986, 15, pp. 364-383.

[3] P. L'Ecuyer, Random numbers for Simulation”, Communications of the
ACM, 1990, vol. 33, n°. 10, pp. 85-97.

[4] B. Elaine, K. John. ”Recommendation for random Number Generation
using deterministic random bit generators”, Technical report. NIST SP
800-90 Rev A. 2012.

[5] K. Desnos , M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, S. Aridhi,
“PiMM: Parameterized and Interfaced Dataflow Meta-Model for
MPSoCs Runtime Reconfiguration”, SAMOS XIII, 2013

[6] Available online: http://preesm.sourceforge.net

[7] S. El Assad, H. Noura, I. Taralova. «Design and analyses of efficient
chaotic generators for crypto-systems», Advances in Electrical and
Electronics Engineering- IAENG Special Edition of the World Congress
on Engineering and Computer Science 2008, vol. I, pp. 3-12, ISBN:
978-0-7695-3555-5.

[8] M. Hasler, Y. L. Maistrenko. ”An introduction to the synchronization of
chaotic systems: coupled Skew tent maps”, IEEE Trans on Circuits and
Systems, part I: Fundamental, theory and applications, vol. 44. N0. 10,
October 1997, pp. 856-866.

[9] J. Fridrich, "Symmetric Ciphers Based no Two-Dimensional Chaotic
Maps," International Journal of Bifurcation and Chaos, vol. 8, no. 6,
1998, pp. 1259-1284.

[10] R. Lozi, “Giga-periodic orbits for weakly coupled Tent and Logistic
discretized maps”, Proc. Conf. Intern. On Industrial and Appl. Math.,
New Delhi, India, Dec. 2004, Invited conference, pp. 1-45.

[11] A. Senouci, I. Benkhaddra, A. Boukabou, K. Busawon. ”Implementation
and evaluation of an hyperchaos-based PRNG”. The Fifth International
Conference on Communications and Electronics, ICCE, 2014, Da Nang,
Vietna, July, 6 pages.

[12] S. Lian, J. Sun, Z. Wang. “Security analysis of a chaos-based image
encryption algorithm”, Elsevier, Physica A, 351, 2005, pp. 645-661.

[13] T. E. Tkacik. “A hardware random number generator”, International
Workshop on Cryptographic hardware and embedded systems, August,
2002, pp. 450-453.

[14] G. Dirscherl, G. Markt, R. Gottfert. “Pseudo random number generator”,
Patent US 2005/0097153 A1, May 5, 2005.

[15] S. El Assad, H. Noura. "Generator of chaotic Sequences and
corresponding generating system" WO Patent WO/2011/121,218, 2011.

[16] N. Masuda, G. Jakimoski, K. Aihara, and L. Kocarev, "Chaotic block
ciphers: from theory to practical algorithms," IEEE Transaction on
Circuits and Systems, vol. 53, no. 6, pp. 1341-1352, 2006.

[17] S. Lian, J. Sun, J. Wang, Z. Wang, "A chaotic stream cipher and the
usage in video protection ''Chaos, Solitons & Fractals, 2007, vol. 34,
Issue 3, pp. 851-859.

[18] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi
(2014), PREESM: A Dataflow-Based Rapid Prototyping Framework for
Simplifying Multicore DSP Programming. EDERC 2014, Milan, Italy.

[19] A. L. Rukhin, J. Soto, J. R. Nechvatal, M. Smid, E. B. Barker, S. Leigh,
M. Levenson, M. Vengel, D. Banks, A. Heckert, J. Dray, S. Vo, 2008.
“A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic applications”. Technical report. NIST SP
800-22 Rev. 1.

	I. Introduction
	II. Related Work
	III. Description of the proposed chaotic generator
	A. Architecture of the proposed chaotic generator
	B. Structure of the basic chaotic generator
	C. Sequence of execution of the chaotic generator
	1) Initialization of the twenty eight perturbed generators and the LFSR.
	2) In every stateof the LFSR (implemented by the following primitive polynomial: and commended by the clock Ck), the length of the chaotic sequence at output y7 is given by the least common multiple (lcm) of several secondary outputs. For example:

	IV. Proposed Methods for Optimizing Implementation
	A. Dataflow description
	B. Actor C code optimization

	V. Experimental Results
	A. NIST test and mapping
	B. Bit rate Performance
	C. Details of the Multicore Execution Performances

	VI. Conclusion
	VII. References

