
Distributed Wikis: A Survey

Alan Davoust, Hala Skaf-Molli, Pascal Molli, Babak Esfandiari, Khaled Aslan

To cite this version:

Alan Davoust, Hala Skaf-Molli, Pascal Molli, Babak Esfandiari, Khaled Aslan. Distributed
Wikis: A Survey. Concurrency and Computation: Practice and Experience, Wiley, 2014,
pp.27. <10.1002/cpe>. <hal-01100371>

HAL Id: hal-01100371

https://hal.inria.fr/hal-01100371

Submitted on 14 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/52998084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01100371
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

“Distributed Wiki” is a generic term covering various systems, includ-
ing “peer-to-peer wiki,” “mobile wiki,” “offline wiki,” “federated wiki”
and others. Distributed wikis distribute their pages among the sites of
autonomous participants to address various motivations, including high
availability of data, new collaboration models and different viewpoint of
subjects. Although existing systems share some common basic concepts,
it is often difficult to understand the specificity of each one, the underlying
complexities or the best context in which to use it. In this paper, we de-
fine, classify and characterize distributed wikis. We identify three classes
of distributed wiki systems, each using a different collaboration model
and distribution scheme for its pages: highly available wikis, decentral-
ized social wikis and federated wikis. We classify existing distributed
wikis according to these classes. We detail their underlying complexities
and social and technical motivations. We also highlight some directions
for research and opportunities for new systems with original social and
technical motivations.

1

Distributed Wikis: A Survey

Alan Davoust1, Hala Skaf-Molli2, Pascal Molli2,
Babak Esfandiari1 and Khaled Aslan2

1Carleton University, 1125 Colonel By Drive,
Ottawa, Ontario K1S 5B6, Canada

2 LINA, Nantes University, 2 Chemin de la Houssinière,
44300 Nantes, France

January 14, 2015

1 Introduction

Wikis are typical Web 2.0 applications [1]; they demonstrate how a system can
turn strangers into collaborators. In these groupware [2] systems, a typical
task for a group of users is to write and maintain wiki pages, which are web
pages –hypertext documents– that can be edited directly in a web browser.
Traditional wikis are centralized: the wiki engine and collection of pages are
hosted by a single organization, which users access remotely. The best known
wiki is certainly Wikipedia, one of the most accessed sites on the Web. Despite
their success, wiki systems still suffer from many issues, such as:

(i) Scalability and cost: as the number of users and contributions increase,
so do the storage and bandwidth requirements. Every year, the Wikimedia
Foundation (which hosts Wikipedia) needs to raise millions of dollars to finance
its huge infrastructure costs;

(ii) Centralized control/single point of failure: a centralized wiki is controlled
by a single organization. If the organization disappears –e.g., if the Wikimedia
Foundation runs out of funds– all the knowledge contributed to the wiki may
disappear as well;

(iii) No offline access: if a user’s internet connection or the central wiki
system are temporarily unavailable, the user cannot work;

(iv) Handling transactional changes: a user cannot modify multiple pages
simultaneously before making modifications visible to other users. All incremen-
tal modifications are immediately visible to other users. In some cases, users
may observe inconsistent states of the wiki, as in a database system without
transactional support [3];

(v) Handling disagreements: even when changes to a page are not made with
malicious intent, they can still lead to “edit wars” [4] when different groups of
users disagree on the content that is being contributed and they attempt to

2

cancel or override the other groups’ input;
(vi) A single point of view: there is only one authoritative entry on each

topic, either because only one version is ever kept by the system, or because the
latest version is the one that is displayed to the user, and the user typically is
not encouraged to compare that latest version with previous ones. This is the
case for most wikis, including Wikipedia. In fact, Wikipedia strives for a single
point of view, the one that is deemed “neutral.” But neutrality is not always
easy to achieve, and it is often more desirable to be exposed to all point of views
on a given topic, particularly when it is a controversial one.

While large systems such as Wikipedia can manage scalability using a dis-
tributed infrastructure, this comes at a massive cost, for storage, bandwidth
and system maintenance. To address the different issues outlined above, many
systems have been proposed, such as Wooki [5], UniWiki [6], DistriWiki [7],
DSMW [3], git-wiki [8], Smallest Federated Wiki [9] and P2Pedia [10]. These
systems extend the wiki concept to a distributed infrastructure, under the names
“peer-to-peer wiki,” “mobile wiki,” “offline wiki,” “federated wiki” and others.
Although existing systems share some common basic concepts, it is often dif-
ficult to understand the specificity of each one or the best context in which to
use it. Currently, there is no classification that can be used to compare existing
systems.

In this paper, we propose to formally define the general concept of a “dis-
tributed wiki,” and to classify and characterize the different existing systems
that fit this concept. The main characteristic of distributed wikis is that the
wiki engine and the collection of wiki pages are distributed or replicated across
several physical sites, managed by autonomous participants [11]. The idea of
autonomous participants is that there is no single organization managing the
different sites. By this definition, Wikipedia’s distributed infrastructure [12] is
not a distributed wiki, as it is managed by a single organization. There are
many different motivations for distributing a wiki among autonomous partici-
pants. We have identified three fundamental motivations, each enabling us to
define a category of distributed wiki systems:

(1) Highly available wikis: in this category, the infrastructure is decentralized
between the participants, but for the users, the system’s functionality is iden-
tical to that of a traditional wiki. The decentralized infrastructure allows the
participants to share the cost of storage, bandwidth, and maintenance [13], and
provides availability, scalability, and fault-tolerance for the wiki. This category
of distributed wikis mainly tackles issues traditionally related to distributed
systems.

(2) Decentralized social wikis: this category of systems relies on an explicit
social network of participants and aims to support the multi-synchronous col-
laboration model [14] and offline access. In these systems, the collaborative
editing process follows cycles of divergence/convergence, where users publish
their changes, and acquire those published by others, at the time of their choos-
ing. In addition, users can be selective in the subset of changes that they
integrate. However, these changes are integrated automatically by algorithms
that enforce particular consistency models, which limit the freedom of the user

3

to select changes from others.
(3) Federated wikis: In this category of systems, users are connected via an

explicit social network of wikis, which are not expected to be consistent. Users
access each other’s pages through the social network and have complete freedom
to copy and reuse each other’s work. Federated wikis therefore promote multiple
viewpoints on topics, by allowing the participants to maintain different versions
of the pages, which are materialized by having multiple pages with the same
title. The users can view the different page versions and perceive disagreement
between participants [15]. This category of distributed wikis allows for the
emergence of different viewpoints.

The different categories of distributed wikis can be obtained by applying
different approaches to the distribution and replication of wiki pages across
the participants, ranging from the full replication of the wiki content, to the
partition of the collection of pages among the sites. The choice of distribution
scheme, change propagation and conflict resolution strategies will significantly
affect the performance of the system and its collaborative writing model [16].

In section 2, we define a formal model and some basic operations for tradi-
tional wikis. Then we show how this basic model is extended in the different
categories of distributed wikis identified above. For the description of the three
categories, we follow the same presentation plan. We start with an overview of
the main characteristics of the category, then we define the data model, spe-
cific operations for the category and a collaboration scenario in the category.
Finally, we describe some representative systems in the category. Section 3
presents highly available wikis. Section 4 presents decentralized social wikis.
Section 5 presents federated wikis. The last section concludes the paper and
points to future work.

2 Traditional Wikis

According to Ward Cunningham –the creator of the original Wiki– a wiki is
“the simplest online database that could possibly work” [1]. More specifically,
it is a collection of Web pages hosted on a server running a wiki engine, which
gives them the following characteristics:

(1) Page title uniqueness: Each page has a unique title within the wiki;
(2) Read-write: A wiki page can be edited directly through a web browser.

The textual content of a wiki is usually referred to as wikitext, and is typically
written using a simple mark-up language rendered by a wiki engine;

(3) Wikilinks: Wikis include internal hyperlinks; these are hyperlinks to
other pages of the same wiki, called wikilinks, which are part of the wikitext.
The target page of a wikilink can be specified simply by its title, as the title
uniquely identifies a page.

In this section, we formalize the concept of a traditional wiki. Later, we will
show how this formalization is extended in the different categories of distributed
wikis.

4

2.1 Data Model

We model a wiki as a graph of wiki pages connected by wikilinks:

Wiki A wiki is a tuple 〈id,G〉, where id is the identifier of the wiki (this is
usually the domain name of the wiki server); G = 〈P,E〉 is the graph of the
pages. The nodes P are the pages of the wiki, and the edges E ⊆ P ×P are the
wikilinks connecting them.

The wiki identifier is a handle whereby users can locate and access the wiki.

Wiki Page A wiki page P is a pair (L, content) where L is the title of the
page and content is the wikitext of the page; i.e., a sequence of text, wikilinks
(defined below), and embedded media content.

Wikilink A wikilink with label L is an annotated instance of L appearing
within the content of a wiki page. We use the notation [L].

Intuitively, the annotation means that L is no longer simply text, but a symbol
recognized by the system.

Edges Let W be the wiki 〈id,G〉 where G = 〈P,E〉. The edges E of the wiki
graph are defined as follows: Let P1 = (L1, content1) and P2 = (L2, content2)
two pages of P . Then: (P1, P2) ∈ E iff content1 contains the wikilink [L2].

Notice that while the annotation may be present in the wikitext, if the target
page does not exist, then, formally, the edge does not exist. The edges in the
graph represent the possibility of browsing from the page containing the wikilink
to its target page. If the target page does not exist, then this navigation is not
possible: typically, the link would then redirect to a page creation form. This
last functionality is not expressed in our model.

In a traditional wiki, the title L uniquely identifies a page on a wiki server
identified by id. The following property holds:

Unique Page Content Let W be the wiki 〈id,G〉 where G = 〈P,E〉, P1 =
(L1, content1), P2 = (L2, content2) and P1, P2 ∈ P . If L1 = L2 then content1 =
content2.

Note that this property does not hold in all distributed wikis. For instance,
it does not hold for Federated Wikis, described in section 5.

Example

As an example, we represent the page “Nantes” in the English-language Wikipedia.
This page and its outgoing edges to other pages (those visible in the example
wikitext) are illustrated in figure 1.

The identifier of this wiki is its domain name “en.wikipedia.org”. It can
be defined as 〈en.wikipedia.org,G〉 where G = 〈P,E〉 is the graph of English

5

en.wikipedia.org

Figure 1: Example: A small section of the English Wikipedia Graph.

Figure 2: Traditional Wiki

Wikipedia pages. We consider the wiki page (“Nantes”, content) ∈ P describ-
ing the French city of Nantes, in the English-language Wikipedia. The title of
this page is the string “Nantes,” and the content of this page (the “current”
version, as of August 6 th, 2013), includes the following wikitext :

Nantes, labeled art and history city, is the capital city

of the [[Pays de la Loire]] region and the [[Loire-Atlantique]]

department and also the largest city in the [[Grand-Ouest]],

North western France in English.

In Wikipedia, a wikilink is encoded by double square brackets; e.g., [[Loire-Atlantique]].
Therefore, if the page (“Loire-Atlantique”, content2) is in P , then the edge
((“Nantes”, content), (“Loire-Atlantique”, content2)) is in E.

2.2 Use Cases

We now present a functional view of a traditional wiki. Figure 2 shows the
client-server architecture of a traditional wiki system. In this example, the wiki
graph has six wiki pages that are connected by different wikilinks. The client is
a web browser that renders the user interface to the wiki. The main use cases
available to the users in a traditional wiki are view page, create page, delete page
and edit page. The server provides backend storage for the wiki system. We

6

formalize its functionality by a list of operations on the wiki graph. We first
present the use cases, then detail the formal operations that implement these
use cases.

2.2.1 Use Case: View page

Summary: the user requests a specific wiki page, which is displayed in the
browser.

The user can initiate the use case by either manually entering the URL of
a page, or following a wikilink from another page. This use case relies on a
single operation on the server: the operation lookup(L). The key information
sent to the wiki server is the page title L; the wiki server returns the content
associated to this title. If there is no page with the given title, then the user
may be redirected to an error page, or to a form to create the page (see use case
create page). The page content is then displayed to the user.

2.2.2 Use Case: Create page

Summary: the user creates a new page from a blank editing form.
This use case may be initiated through a special link in the user interface, or

by following a wikilink to a non-existent page. A blank editing form is displayed
to the user; the page title may already be filled in. The user writes some content,
then may decide to either submit the form and save this content, or cancel. If the
user chooses to submit the new page, the operation save(L, content) is called.
An error may occur if two users concurrently try to create a page with the same
title; see section 2.4 below.

2.2.3 Use Case: Delete page

Summary: the user deletes a wiki page.
When a user is viewing a page, the user interface may provide a link for users

to delete the page. When the user selects this link, the operation delete(L) is
invoked on the server, where L is the page title. The result is that the wiki
no longer has a page with the given title. In modern wikis, the user interface
typically does not allow end users to delete pages immediately. Instead, they
must initiate a deletion process, in which approval of other users is requested
and, after a delay, an administrator (a user with special priviledges) deletes the
page.

2.2.4 Use Case: Edit page

Summary: the user modifies an existing wiki page.
The user selects a link to modify an existing wiki page. The page is then

displayed in “write mode”; i.e., as an editing form, containing the page’s current
wikitext. The user modifies the page content by inserting or deleting text,
wikilinks and media content. Typically, the user cannot modify the page title.

7

The user may then submit the changes, which are sent to the server. This
invokes the operation save(L, content).

In the case where multiple users edit the page at the same time, there is a
risk that some of the changes may be lost. This problem and several possible
solutions are described in section 2.4.

2.3 Operations

We now formalize the semantics of each atomic operation handled by the server.
We express the operations lookup, delete, and save, as applied to a wiki W =
〈id,G〉 where G = 〈P,E〉; these operations are specified by algorithm 1. In these
definitions, we give the minimal definition of each operation, where concurrent
modifications are ignored. These definitions indicate the basic operation seman-
tics and must be extended to handle concurrent modifications (see section 2.4).

1 function lookup(L):-
2 PRE: ∃p ∈ P, p = (L, content)
3 EXECUTE:

4 return content
5

6 function delete(L):-
7 PRE: ∃p ∈ P, p = (L, content)
8 EXECUTE:

9 P ← P \ {p}
10 E ← E \ {e ∈ E|∃p1 ∈ P, e = (p, p1) ∨ e = (p1, p)}
11

12 function save(L, newContent):-
13 EXECUTE:

14 if ∃p ∈ P, p = (L, oldContent) then

15 oldContent=lookup(L)
16 else

17 oldContent = ∅
18 linksold ← {(L,Li)|[Li] ∈ oldContent ∧ ∃ci, (Li, ci) ∈ P}
19 linksnew ← {(L,Li)|[Li] ∈ newContent ∧ ∃ci, (Li, ci) ∈ P}
20 E ← (E \ linksold) ∪ linksnew

21 p← (L, newContent)
22 POST:

23 linksnew ⊆ E ∧ (linksold \ linksnew) ∩ E = ∅

Algorithm 1: Operations of a traditional wiki

Complexity Executing these operations involves a request sent from the
client to the server, local processing on the server, and a response to the client.
For such simple processing, the main latency factor is the HTTP request/re-
sponse. For comparison with the distributed setting, and in particular different
strategies for the save operation, we therefore measure the message complexity
of operations; i.e., the number of messages exchanged between different net-

8

worked components (here, clients and servers) until the final state is reached.
For all of these basic operations, exactly 2 messages are exchanged.

2.4 Collaboration in a Traditional Wiki: the Concurrent
Editing Problem

The problem of concurrent editing occurs when different users simultaneously
open the same page in editing mode, then make different changes. Without
any safeguards to detect this case, the last user to save her changes will simply
override the changes made by the others, without being aware that she has done
so.

Among the solutions to this problem, there are two main strategies [16]: the
sequential writing strategy, in which pages are locked while they are edited, and
the parallel writing strategy, in which the pages are not locked but concurrent
editing is detected at save time. Within the latter strategy, we further distin-
guish the “first arrived wins” approach — where the first save is applied then all
subsequent saves must go through a manual conflict resolution (merge) step —
from the solutions that use automatic merge algorithms. However, automatic
merge algorithms may produce undesirable results in the meaning of the text;
therefore, many algorithms aim to detect the more problematic cases and revert
to manual merging. This is the case of Wikipedia.

Both strategies require extending the data model of a page. Additional
information is necessary to detect editing conflicts: either a flag must be added
to indicate the page being locked, or a timestamp must be used to identify
out-of-date versions.

The cost of the edit operation, as measured by the message complexity,
differs depending on the chosen strategy. In the case of manual merges, the
process will require many back-and-forth messages, as each user must reload the
page and resubmit the resolved conflicts. If m users concurrently edit a page
and they all save their changes, then the total number of messages exchanged
between the clients and the server is m2 + 3m− 2 [17].

Collaboration Scenario

A scenario in which three contributors edit a Wikipedia page is illustrated in
figure 3. In this scenario, t represents a timestamp variable associated with a
page.

In this scenario, three contributors, user1, user2 and user3, concurrently
edit the page (p1, content). For simplicity, we assume that the content is a list
of characters: content = 〈abc〉 and each character has a position, starting from
position 0. We assume that users will make simple changes, such as inserting
or deleting a character.

First a lookup operation is called and a copy of the content of the page is
displayed in the browser of each user. The users then modify the content of
the page: (i) user1 inserts the character X between a and b (positions 0 and
1): insert(X, 〈abc〉, 0, 1); (ii) user2 deletes b: delete(〈abc〉), 1); and (iii) user3

9

user1 : edit(p1) user2 : edit(p1) user3 : edit(p1)

(〈abc〉, t = 2)← lookup(p1) (〈abc〉, t = 2)← lookup(p1) (〈abc〉, t = 2)← lookup(p1)

〈aXbc〉 ← insert(X, 〈abc〉, 0, 1) 〈ac〉 ← delete(〈abc〉, 1) 〈abY c〉 ← insert(Y, 〈abc〉, 1, 2)

〈ac〉 ← save(p1, t, 〈ac〉)

〈aXc〉 ← save(p1, t, 〈aXbc〉) save(p1, t, 〈abY c〉)[save fails]

〈abY c〉 ← save(p1, t, 〈abY c〉)

(〈abY c〉, t = 5)← lookup(p1) (〈abY c〉, t = 5)← lookup(p1) (〈abY c〉, t = 5)← lookup(p1)

Figure 3: Collaborative editing scenario in Wikipedia

inserts Y between b and c: insert(Y, 〈abc〉, 1, 2). First, user2 saves her changes:
no conflict is detected, and a new version of the page is submitted to the server
with a new timestamp. Later, user1 and user3 want to save their changes: the
system first handles user1’s request, and user3’s request is aborted. A conflict
is detected with the current version on the server published by user2, so user1
has to solve the conflict manually. In this case, user1 keeps user2’s changes
(deleting b), and the content of p1 on the server is 〈aXc〉. user3 then re-tries
to save, and as a conflict is detected, she must solve it manually. She dismisses
the other users’ changes and imposes her own version. The final content of p1
is 〈abY c〉.

By delegating conflict resolution task to users, Wikipedia cannot ensure that
all users’ contributions will be included. The last contributor decides on the
final content of the page1. Collaboration in Wikipedia produces content that is
validated by at least the last writer, with the risk of producing lost updates.

2.5 Distributed Wikis

Distributed wikis extend this basic model to a distributed setting, in which
several physical sites, interconnected but managed by autonomous participants,
host interoperable wiki engines and collections of wiki pages. In this setting,
the traditional wiki model must be adapted. The infrastructure can be modeled
as a graph N = 〈S,C〉, representing the participants S = {S1, S2, . . . , Sn} and
their physical connections C ⊂ Si × Sj , where Si, Sj ∈ S.

Beyond this common defining characteristic, the different distributed wiki
systems are driven by different motivations, and therefore make different choices
regarding the distribution of resources between the participants, and the func-
tionality that they offer.

The design of a distributed wiki can be characterized by the following crite-
ria:

1Extensions to MediaWiki such as http://www.mediawiki.org/wiki/Extension:

FlaggedRevs allow for the introduction of more sophisticated collaborative models.
These extensions are out of the scope of this paper.

10

http://www.mediawiki.org/wiki/Extension:FlaggedRevs
http://www.mediawiki.org/wiki/Extension:FlaggedRevs

(a) Replicated graph in an un-
structured wiki

(b) Partitioned graph in a struc-
tured wiki

Figure 4: Highly Available Wikis

• The topology of the graph of participants;

• the physical distribution and replication of pages;

• the change propagation and conflict resolution strategies.

In the following sections, we will represent these choices using the formal
concepts introduced so far. We show how the data model and operations of
traditional wikis are extended for distributed wikis: Highly Available Wikis,
Decentralized Social Wikis and Federated Wikis.

The change propagation and conflict resolution strategies strongly define
the collaboration model supported by a distributed wiki. We will illustrate
the different collaboration models supported by these distributed wikis through
extensions of the scenario given for the Wikipedia example (fig. 3).

3 Highly Available Wikis

Highly available wikis use a peer-to-peer (P2P) infrastructure to provide scal-
ability, by sharing the storage and workload, and/or fault-tolerance, by repli-
cating the content in different locations. In these systems, the distribution and
replication of the content is “transparent” to the end users and maintained in
the background, beyond the users’ direct control. We distinguish between struc-
tured and unstructured highly available wikis, according to the underlying P2P
overlay network architecture.

11

3.1 Highly Available Structured Wikis

Highly available structured wikis are designed to share the load (and cost) of
the wiki across a distributed infrastructure, and thus provide scalability without
requiring a single organization to bear the cost of the infrastructure. This
distributed infrastructure is usually a Distributed Hash Table (DHT) [18, 19].

3.1.1 System Model

The collection of wiki pages is partitioned across the different nodes of the DHT.
Wikilinks can connect pages hosted at different nodes, and the entire set of pages
can still form a connected graph. No peer has a global knowledge of the wiki
graph.

Definition A highly available structured wiki is a tuple 〈G,N,M〉, where:

• G = 〈P,E〉, is a (traditional) wiki graph;

• N = 〈S,C〉 is a graph representing the structured overlay network: the
nodes S = {S1, . . . , Sn} are participants; each participant is uniquely iden-
tified and the edges C ⊂ Si×Sj represent their physical interconnections.
These connections C, and therefore the graph topology, are usually dic-
tated by a protocol ensuring connectedness of the graph;

• M : P → S is a function that maps the wiki pages to the participants;
this function is also implemented as part of the DHT protocol. Therefore,
the graph G = 〈P,E〉 is distributed among the autonomous participants
{S1, . . . , Sn}; i.e., each page p ∈ P is mapped to a host Si ∈ S.

Figure 4b shows an example of a structured P2P wiki. The wiki graph of
the traditional wiki in figure 2 is partitioned among the wiki servers, and the
requests associated to the different use cases are transparently routed to the
participant responsible for storing the relevant pages.

Highly available structured wikis may also include some degree of replication
to ensure fault-tolerance. In this case, the number of replicas is limited and
determined by the system. The replicated pages are stored as backup and not
directly accessed by the users. Optimistic replication [20] techniques can be used
to manage the consistency of replicas. In optimistic replication, modifications
are applied immediately to the replica where they were generated, then are
propagated to other replicas to be integrated; conflict resolution is needed in
some situations.

3.1.2 Use Cases and Operations

Highly available wikis aim to reproduce the use cases of a traditional wiki; they
can therefore be considered identical.

12

1 lookup(L):-
2 PRE: ∃p ∈ P, p = (L, content)
3 EXECUTE:

4 return DHT.get(L);
5

6 delete(L):-
7 PRE: ∃p ∈ P, p = (L, content)
8 EXECUTE:

9 DHT.remove(L)
10

11 save(L, newContent):-
12 PRE: ∃p ∈ P, p = (L, oldContent)
13 EXECUTE:

14 content← DHT.put(L, newContent)
15 return content

Algorithm 2: Wiki operations implementation in a DHT

The

traditional operations lookup, delete and save also have the same semantics
with respect to the system model (specified in algorithm 1). Typically, the
page title is used as a key for the data being stored, and the operations are
implemented using the classical DHT functions [19] get, remove and put, re-
spectively, as shown in algorithm 2. The functionality handled by the DHT is
mainly key-based routing, which consists of routing the operation requests to
the peers responsible for storing the pages being retrieved, deleted, or modified.
Formally, requests about a page Pi must be routed along the edges of the graph
N to the node Si = M(P).

Additional Use Cases In addition to the traditional wiki use cases, peers
can also join and leave the underlying network. These use cases are directly
implemented by the underlying DHT’s join and leave functions. These opera-
tions normally involve significant overhead, as the DHT routing tables must be
updated, and the pages in the network must be redistributed among the peers
to ensure load balancing and availability. In terms of our model, this involves
modifying the mapping function M .

Complexity The message complexity of the operations in a structured highly
available wiki is higher than those of a traditional wiki, due to the communi-
cation between the different DHT nodes. In a system with n participants,
(n = |S|) as defined in 3.1.1, where each wiki page is replicated k times (k < n),
the complexities of the operations have the complexities of the underlying DHT
functions, as follows:

• lookup: Complexity of get; i.e., the routing complexity, typically [21]
O(log(n)).

• remove, save: routing complexity, plus the cost of propagating the changes
to the k page replicas; if these are stored in neighbouring nodes of the main

13

data location, this can be done with O(k) messages. The complexity of a
remove or a basic save operation is therefore O(log(n) + k).

• join, leave: Depending on the DHT protocol, the message complexity of
updating routing tables can range from O(1) to O(log(n)). The cost of
redistributing pages depends on the size of the wiki itself: if the pages are
uniformly distributed, we can estimate that the number of pages to be
redistributed is O(k.|P|/n), where k is the degree of replication and |P | the
size of the wiki.

3.1.3 The Concurrent Editing Problem

The different strategies for handling the concurrent editing problem (sequential
writing, and parallel writing with automatic or manual merge, discussed in
section 2.4) are also applicable to highly available structured wiki systems. For
each wiki page Pi, there is a single node Si = M(Pi) responsible for managing
this page. Si can therefore apply the same strategies that a centralized wiki
server would.

3.1.4 Highly Available Structured Wiki Systems

Piki [22], DistriWiki [7], DTWiki [23] and UniWiki [6] are examples of highly
available structured wiki systems. Piki uses Key-based Routing [19] and a DHT-
based version control system [24] as a storage backend. Each page is assigned
to one primary owner and replicated by the primary owner on a number of
peers. Piki allows concurrent modifications, which are handled by the primary
owner using the “first arrival wins” rule (with manual merges). Unlike most
wiki systems, which are accessed through web browsers, Piki is a standalone
application. DistriWiki [7] uses the JXTA [25] protocol to build its peer-to-peer
network. There is no automatic replication: each node stores a set of wiki pages,
and users are expected to search for the latest version of each page in order to
edit it. The problem of concurrent modifications is not addressed in DistriWiki.

DTWiki [23] is a wiki system that addresses the problem of operating a wiki
system in an intermittent environment. It is built on a delay-tolerant network
(DTN) [26] and the TierStore [27] distributed file system. DTN manages com-
munications links as they go up and down, and TierStore provides a transparent
synchronization of file system contents, partial replication of shared data, and
detection and resolution of concurrent update conflicts on a single file. Tier-
Store manages concurrent update to file replicas by appending a suffix to each
remotely conflicting replica. DTWiki detects the presence of the conflict and
sends the user a message stating that a conflict has occurred and displays a
merge of the contents of the conflicting revisions; the user can choose the fi-
nal content of the file. Conflict resolution in DTWiki is similar to those in
traditional wikis, as explained in section 2.4.

UniWiki [6] consists of multiple wiki front-ends that fetch and store their
data over a DHT. It combines optimistic replication [20] techniques and DHT
techniques. The originality of UniWiki is that it performs automatic merges of

14

concurrent edits by running the WOOT [28] synchronization algorithm directly
in the DHT nodes, which allows the system to support unstable content with a
high rate of modifications while ensuring CCI consistency (see section 3.2.3 for
a definition of this concept).

3.2 Highly Available Unstructured Wikis

Most wikis in this category rely on a self-organized unstructured peer-to-peer
network. The collection of wiki pages is fully replicated across all the partici-
pants’ sites. The total replication scheme requires that all peers have the same
storage capability. The users are connected to one peer and interact with the
local page replicas: wikilinks are resolved locally; consequently, a user browsing
pages hosted at one physical site cannot follow a wikilink to a page hosted else-
where. Users are able to work even when their node is disconnected from the
rest of the network. When the network is connected, changes are automatically
propagated to the other nodes.

3.2.1 System Model

An unstructured highly available wiki is conceptually similar to a set of n in-
terconnected and automatically synchronized wikis.

Definition A highly available unstructured wiki is a tuple, 〈ΩG, N〉 where:

• ΩG = {G1, G2, . . . , Gn} is a set of wiki graphs;

• N = 〈S,C〉 is a graph representing an unstructured and self-organized
overlay network: the nodes S = {S1, . . . , Sn} are participants, each par-
ticipant is uniquely identified and the edges C ⊂ S × S represent their
physical interconnections. Participant Si hosts Gi;

• The wiki graphs Gi are eventually consistent : this notion is defined below.

The wiki appears centralized because the participant directly interacts only
with the local system, which is the wiki 〈Si, Gi〉. Propagation of updates hap-
pens behind the scenes, and to the user is indistinguishable from operations that
might happen concurrently on the local wiki if it was an isolated system. Even-
tually, the set of local page replicas at each node should converge to be identical.
As we will see further, ensuring that this happens is difficult. In order to define
eventual consistency, we must consider a highly available unstructured wiki to
be a system that evolves over time as a result of the user’s actions. We note

G
(t)
i the state of a graph Gi at time t.

Eventual Consistency Let W be a highly available unstructured wiki, W =
〈ΩG, N〉 as defined in 3.2.1. We consider a finite sequence of (arbitrary) user
actions, occurring at times t1, t2, . . . tk.

15

The wiki graphs {Gi}i∈[1...n] are eventually consistent if at some time later
than the last action Atk , all of the graphs Gi are identical. Formally,

∃tf > tk,∀i, j ∈ [1 . . . n] G
(tf)
i = G

(tf)
j

A highly available unstructured Wiki follows the optimistic replication tech-
nique [20], with the hypothesis of eventual delivery of operations; this is gen-
erally achieved by using the gossiping algorithm [29]. An anti-entropy algo-
rithm [30] supports intermittent connections. Figure 4a shows an example of an
unstructured wiki. In this figure, the graph of the traditional wiki from figure 2
is replicated on each wiki server.

3.2.2 Use Cases and Operations

Each user interacts with a single local site Si hosting a wiki Wi = 〈Si, Gi〉.
Let n = |S|, the number of peers in the system. The local wiki supports the
traditional use cases view page, create page, delete page, and edit page: the basic
definition of these use cases, with respect to the local wiki Wi, is as in the
traditional context (cf. section 2.2). The view page use case is implemented by
the lookup operation on the local wiki Wi. However, the propagation of changes
implies that the modifying use cases (create/edit/delete page) also affect the
other wikis in the network: the expectation is that every change initiated on
any node of the wiki is eventually applied to all of the other nodes as well. For
this purpose, the relevant use cases are extended as follows (the base being the
traditional operation, as described in section 2.2, applied to the local wiki Wi):

• the create page and edit page use cases are extended so that once the user
submits her changes, the save operation is called on every wiki of ΩG;

• the delete page use case is extended so that the delete operation is called
on every wiki of ΩG.

The condition of eventual consistency means that after all of the save and delete
operations have been applied, the wikis are identical. In order to ensure this
condition, the save operation must rely on an automatic merge algorithm, with
adequate consistency guarantees. This issue is discussed in more detail below.

Finally, as in highly available structured wikis, peers can join and leave
the network. For this class of systems, we will distinguish a node’s initial join
and final leave from a temporary disconnect, followed by a reconnect. For an
initial join, the new peer must copy the local wiki of another (arbitrary) peer,
as described in algorithm 3. During temporary disconnections, pending changes
are simply stored so that they can be propagated once the connections are re-
established. This simply results in a delayed application of the save and delete
operations generated by remote peers.

The use cases leave and disconnect do not require any particular processing.

16

1 join(s, sk):- (s is the new participant, sk an arbitrary node in S)
2 PRE: s /∈ S, sk ∈ S
3 EXECUTE:

4 S ← S ∪ {s}
5 C ← C ∪ {(s, sk)}
6 Gn+1 ←copy(Gk)

7 M(s)← Gn+1

8 POST:

9 s ∈ S

Algorithm 3: Join in an unstructured wiki

Complexity Aside from lookup operations, which only involve one peer, the
operations in an unstructured wiki are costly, due to full replication. Each
modifying operation must be broadcast to the full network, which requires a
minimum of O(n) messages.

The join operation is also costly, as the full contents of the wiki must be
copied to the new peer. Here the number of messages involved is not particularly
relevant; it is more appropriate to consider the number of bytes being transferred
as, because of the use of automatic merges, every page must be copied with its
entire edit history. Entire edit history is required once when joining the network;
reconnecting after disconnection just requires some anti-entropy rounds.

3.2.3 Concurrent Editing and Consistency

We now expand on the save operation and its relation to the problem of concur-
rent editing, and consistency. Unlike structured wikis, in unstructured wikis the
replicas of a page can be modified concurrently and independently on different
nodes.

In a structured wiki, there is one “master” copy of each page, and a small
number of “slave” replicas, which mirror the state of the “master” copy, with
some latency. In an unstructured wiki, the different replicas may be in an
inconsistent state not only because of latency, but due to modifications initiated
on different replicas by different users. In order to maintain consistency and
avoid lost updates, the sequential writing strategy is not applicable, as the
network may be temporarily disconnected, which would prevent page locks from
being propagated. With the parallel writing strategy, users may concurrently
edit pages and save their changes on different nodes, temporarily disconnected
from one another. This implies that conflicts may be detected only when the
peers reconnect, possibly long after the editing has occurred. The “first arrived
wins” rule would therefore be very impractical, if not downright impossible.

The only viable solution is to automatically merge conflicting changes. How-
ever, synchronization algorithms produce content that is not validated by hu-
man users, which implies that the text could be nonsensical. An interesting
solution to this problem could be to flag the content produced by algorithms,
thus producing concurrency awareness [31].

17

The save operation with an automatic merge can therefore be described as
in algorithm 4.

1 save(L, newContent):-
2 PRE: ∃p ∈ P, p = (L, oldContent)
3 EXECUTE:

4 oldContent← lookup(L)
5 content← merge(L, oldContent, newContent)
6 p← (L, content)
7 send(L, content, N)

8 return content

Algorithm 4: Save page in unstructured wiki

Concurrent modifications can be merged by different synchronization algo-
rithms, such as WOOT [28] or Logoot [32].

Synchronization algorithms implement different consistency models based
on the history of changes [17]. This history can be computed by classical tex-
tual differences algorithms (“diff”) between the old content and the new content
of the page. Causality [33] ensures that all sites have the same causal history
of changes but does not ensure that all copies are identical, whereas CCI con-
sistency [34] enforces (C)ausality, (C)onvergence and (I)ntention preservation.
These notions are defined as follows: (i) Causality: all operations are or-
dered by a precedence relation, in the sense of the Lamport’s happened-before
relation [33], and they will be executed in the same order on every site; (ii) Con-
vergence: the system converges if all replicas are identical when the system is
idle (eventual consistency); (iii) Intention Preservation: the intention of an op-
eration is the effects observed on the state when the operation was generated.
The effects of executing an operation at all sites preserve the intention of the
operation.

Causality does not imply necessarily convergence. Consider three insert
operations, as defined in section 2.4; op1 = insert(X,< be >, 0, 1), op2 =
insert(Y,< be >, 0, 1) and op3 = insert(Z,< be >, 0, 1) and the following causal
ordering op1 happened before op2, op1 happened before op3, op2 is concur-
rent to op3. Therefore, it is possible for user1 to receive op1; op2; op3, which
produces <bXYZe>, and user2 receives op1; op3; op2, which produces <bXZYe>.
In this simple example, causality is ensured; however, convergence is clearly
violated.

3.2.4 Highly Available Unstructured Wiki Systems

RepliWiki [35], Wooki [5], XWiki Concerto [36] and Swooki [37] are examples
of wikis built on unstructured networks of wiki servers. RepliWiki [35] aims
to provide a decentralized, multi-master implementation of Wikipedia by repli-
cating its content. It uses the Summary Hash History (SHH) [38], in which
each site maintains a tamper-evident update history that is used to determine
the exact set of updates to be transferred during the automatic synchronization
between peers. The synchronization algorithm of RepliWiki ensures causality

18

and convergence.
The aim of Wooki [5] and XWiki Concerto [36] is to support offline work;

they also replicate wiki pages on all servers. A modification on a peer is im-
mediately applied to its local copy, then it is propagated among peers using a
probabilistic epidemic broadcast [29]. An anti-entropy algorithm [30] is used
to recover missing updates for sites that were offline or crashed. Concurrent
changes are merged using the WOOT algorithm. This algorithm ensures CCI
consistency for connected peers. Swooki [37] is a peer-to-peer semantic wiki [39].
It extends the synchronization algorithm of Wooki to support semantic data.

3.3 Collaboration in Highly Available Wikis

Here we revisit the Wikipedia collaboration scenario from section 2.4.

user1 : edit(p1) user2 : edit(p1) user3 : edit(p1)

〈abc〉 ← lookup(p1) 〈abc〉 ← lookup(p1) 〈abc〉 ← lookup(p1)

〈aXbc〉 ← insert(X, 〈abc〉, 0, 1) 〈ac〉 ← delete(〈abc〉, 1) 〈abY c〉 ← insert(Y, 〈abc〉, 1, 2)

〈ac〉 ← save(p1, 〈ac〉)

〈aXc〉 ← save(p1, 〈aXbc〉)

〈aXY c〉 ← save(p1, 〈abY c〉)

〈aXY c〉 ← lookup(p1) 〈aXY c〉 ← lookup(p1) 〈aXY c〉 ← lookup(p1)

Figure 5: Collaborative editing scenario in a Highly Available Wiki

As noted previously, highly available wikis are designed to provide their users
with the same functionality as a centralized wiki, with additional availability
guarantees. However, the use of manual conflict resolution, as in the Wikipedia
scenario, is very impractical in a distributed setting, particularly when network
disconnections may occur. A viable scenario for a highly available wiki is one
in which changes are merged automatically, as shown in figure 5.

In this scenario, the concurrent edits made by the three users, user1, user2
and user3, are merged using a synchronization algorithm such as WOOT. As a
result, they are all able to save their changes without errors, and they eventually
see the result of the merge, which is the wikitext aXYc.

Highly available wikis provide traditional wiki functionality with additional
performance guarantees. Structured wikis provide fault-tolerance and allow the
cost of managing a large wiki to be shared between different organizations,
whereas unstructured wikis allow users to work even when the network is dis-
connected. However, as changes are automatically propagated and integrated,
users have limited control over the collaboration process. Users could be inter-
ested in sharing their changes only with trusted peers, or modify a set of pages
and publish the full changeset in one transaction: this would be particularly use-
ful in semantic wikis, where dependencies exist between pages. Transactional

19

Figure 6: DSMW, a Decentralized Social Wiki

changes, trust and real autonomy for participants are the main motivations of
Decentralized Social Wikis.

4 Decentralized Social Wikis

Decentralized social wikis aim to support a social collaboration network and
adapt many ideas from decentralized version control systems (DVCS) used
for software development. They promote the multi-synchronous collaboration
model [14], in which multiple streams of activity proceed in parallel. The main
structure of a decentralized social wiki is similar to that of a replicated wiki;
however, the unstructured overlay network is a social collaboration network:
its edges represent relationships between users who have explicitly chosen to
collaborate.

The synchronization of the nodes is not fully automated; instead, users
can choose pages to replicate and manually publish changes, including sets of
changes affecting multiple pages. The changes are propagated along the edges
of the social network, and users can select which changes to integrate.

As the published changes are propagated through the network, each wiki
graph incorporates a subset of the global sequence of changes, filtered through
the participants’ trust relationships. The task of integrating selected changes
can be automated by algorithms that may enforce different consistency models,
as in highly available wikis.

The explicit collaboration network and the manual publishing and integra-
tion of changes define the class of decentralized social wikis, an extension to the
main wiki concept.

20

4.1 System Model

Definition A decentralized social wiki is a tuple 〈ΩG, N〉, where:

• ΩG = {G1, G2, . . . , Gn} is a set of wiki graphs, as in a highly available
unstructured wiki;

• N = 〈S,C〉 is a graph representing a socially organized overlay network:
the nodes S = {S1, . . . , Sn} are uniquely identified participants, and the
edges C ⊂ S × S represent social connections through which operations
are exchanged. Each participant Si hosts Gi.

The social connections can be defined as “follow and synchronize” relation-
ships [40], in which a user can follow the changes made by specific peers and
periodically integrate some or all of these changes. Decentralized social wiki sys-
tems may provide a full-blown publish-subscribe protocol (e.g., DSMW, which
uses “feeds,” shown in figure 6), or simply a social acquaintance relationship that
underlies the fact that the “follower” regularly “pulls” (in DVCS terminology)
and integrates changes from the “followed” user.

In decentralized social wikis, the content of a wiki graph could be different
from one wiki to the next; there is no expectation of consistency at the level of
the full wiki. However, automatic synchronization algorithms can still be used;
we discuss the consistency issues that they raise in section 4.3.

4.2 Use Cases and Operations

4.2.1 Use Cases

Each user interacts with a single local site Si hosting a wiki Wi = 〈Si, Gi〉,
as defined in 4.1. This local wiki supports the traditional wiki use cases, with
unchanged semantics: view page, create page, delete page, edit page.

The social propagation of the changes requires additional use cases, whereby
the users publish and integrate changes:

• publish changes: The user selects a set of changes from one or several
pages, represented as a list of atomic insertions and deletions, and stores
this changeset in a location available to other users, using the operation
publish. A user can publish other users’ changes. Therefore, users can re-
ceive the same changes by different channels several times. Consequently,
the merge algorithm has to be idempotent to avoid duplication;

• integrate changes: After retrieving a changeset from another user through
a social connection (operation retrieveChanges), the user selects a subset
of the operations in the changeset and applies them to her local wiki,
using the operation integrateChange. Integrating the changes may be
automated, using algorithms such as those used in highly available wikis
(e.g., WOOT). We discuss the issue of consistency in section 4.3.

21

We note that the synchronization process assumes that the users discover the
published changes in some way, either through a formal publish/subscribe pro-
tocol or by a query protocol. We do not represent this aspect, which may vary
between systems and does not really affect the overall collaboration model.

Finally, users can establish or remove social connections to other users: the
follow and unfollow use cases. These two use cases could happen in very different
ways in different systems and we simply describe them below as operations,
giving their semantics on the system model.

4.2.2 Operations

In addition to the traditional operations on the local wiki, the publishing and in-
tegration of changes is supported by the following additional operations: publishChanges,
retrieveChanges, integrateChange. Conceptually, publishing a set of changes
consists of making the state of the local wiki visible to other users, so that
they can at least partially synchronize their local wikis with the published wiki.
However, it would be impractical and extremely inefficient to transfer the full
state of the wiki over the network, so most systems manipulate a representation
of the wiki that describes the new state of the wiki as a list of changes from
a shared previous version. The representation is a changeset, which includes
a reference to a previous version, and a list of atomic operations. Therefore,
while these notions are not indispensable to the DSW concept, they are the
most sensible data model for synchronization. The synchronization operations
in a decentralized social wiki are sketched in algorithm 5 and make use of these
concepts. See reference [3] for a formal description of the above operations in
the decentralized social wiki DSMW.

1 publishChanges(changeSet, url):-
2 PRE: the peer has selected a changeset to publish

3 EXECUTE:

4 bind(url, changeSet)
5 notifySubscribers()

6 POST: the changeset is available at URL url
7

8 retrieveChanges(url):-
9 PRE: a peer Si has published a changeset at URL url

10 EXECUTE:

11 changeset← connect(url)
12 return changeset
13

14 integrateChange(op):-
15 PRE: op applies to page p ∈ P, p = (L, localContent)
16 EXECUTE:

17 localContent← lookup(L)
18 content← merge(localContent, op)

Algorithm 5: Synchronization operations in a decentralized social wiki

22

Complexity The average communication complexity is the number of mes-
sages exchanged by a group of trusted participants to converge to the final
state. This complexity is O(M), where M is the average degree of the nodes in N
(number of “follow and synchronize” relations of a participant). Convergence is
achieved only on shared objects among participants that defined a “follow and
synchronize” relation on that object.

4.3 Consistency in a Decentralized Social Wiki

In Highly Available Unstructured Wikis, synchronization algorithms with strong
consistency guarantees (WOOT, Logoot...) ensure that once the system is idle,
the wikis on the different nodes converge and eventually reach a state where they
are all identical. In a decentralized social wiki, users can choose which users
they collaborate with, and can choose to ignore some changes published even
by the users they collaborate with. It can therefore be expected that the users’
local wikis will be inconsistent. The rationale of this approach is that groups
of users should collaborate on subsets of the wiki, and within such groups, sets
of pages should be consistent while the collaboration lasts. Once a user chooses
not to integrate an operation op0, then all the operations that follow op0 can
no longer be integrated by consistency-ensuring algorithms. This implies that
there is a trade-off between the benefits of user autonomy and the consistency
guarantees provided by synchronization algorithms.

4.4 Decentralized Social Wiki Systems

Gollum [41], git-wiki [8] and Olelo [42] are wiki systems based on the distributed
version control system Git [43]. These systems support the multi-synchronous
collaboration model, in which users can work in parallel on their local replica
and synchronize their modifications when they decide to, using git primitives
such as pull and merge. We note that the Git merge algorithm is designed
to identify edit conflicts at the granularity of a line (changes are conflicting if
they affect the same line) and does not resolve these conflicts automatically.
Git ensures convergence on shared histories. Convergence on shared objects in
a workspace is ensured only if the merge operation is commutative, associative
and idempotent, as defined in Commutative, Replicated Data Type CRDT [44]
and Summary Hash History (SHH) [38]. This is not the case for the merge
algorithm in Git.

Distributed Semantic MediaWiki (DSMW) [3, 40] is an extension of Seman-
tic MediaWiki (SMW) [45] that allows SMW servers to be connected and form
a decentralized social semantic wiki network. The social links in DSMW are
“follow and synchronize” relations. Users create their own collaboration net-
work by creating and subscribing to feeds, which are named communication
channels for propagating operations. In DSMW, when a wiki page is updated
on a participating node, an operation is generated, describing the change. The
operation is executed immediately against the page and is logged for future
publication. A user can then decide to publish a set of changes to a feed called

23

push feed, and subscribers to this feed may then pull the changeset and integrate
the changes to their local wiki graph through a pull feed, as shown in figure 6.
A pull feed cannot exist alone: it must be associated with at least one push
feed. If needed, multiple changesets can be merged in the integration process,
either generated locally or received from other participants. DSMW manages
the synchronization of shared pages with the Logoot [32] algorithm, ensuring
CCI consistency.

4.5 Collaboration in Decentralized Social Wikis

As mentioned earlier, decentralized social wikis promote the multi-synchronous
collaboration model, in which multiple streams of activity proceed in parallel.
The collaborative work is made up of divergence/convergence cycles: partic-
ipants can work in isolation from each other, during which time divergence
occurs; then, from time to time, users share their changes with each other and
integrate these changes to achieve a consistent state.

user1 : edit(p1) user2 : edit(p1) user3 : edit(p1)

〈abc〉 ← lookup(p1) 〈abc〉 ← lookup(p1) 〈abc〉 ← lookup(p1)

〈aXbc〉 ← insert(X, 〈abc〉, 0, 1) 〈ac〉 ← delete(〈abc〉, 1) 〈abY c〉 ← insert(Y, 〈abc〉, 1, 2)

〈ac〉 ← save(p1, 〈ac〉, url200)

〈aXbc〉 ← save(p1, 〈aXbc〉, url100) 〈abY c〉 ← save(p1, 〈abY c〉, url300)

〈aXc〉 ← retrieve(p1, url100)

ll

〈aXY c〉 ← retrieve(p1, url300)

22

publish(p1, 〈aXY c〉, url200)

〈aXY c〉 ← retrieve(p1, url200)

11

Figure 7: Collaborative editing scenario in Decentralized Social Wikis

Again we revisit the scenario from section 2.4. Each user can work in isola-
tion on her own copy of the page. We suppose that the decentralized social wiki
implements a synchronization algorithm that ensures CCI consistency. While
saving their modifications, user1, user2 and user3 decide to make them available
at the addresses url100, url200 and url300, respectively.

In this scenario, user1 decides to communicate her modifications to user2.
A connection is created between user1 and user2. user3 also decides to com-
municate her modification to user2, and user2 communicates her modification
to user1 only. The social network is as follows:

24

user2
follow and synchronize−−−−−−−−−−−−−−−→ user1

user1
follow and synchronize−−−−−−−−−−−−−−−→ user2

user2
follow and synchronize−−−−−−−−−−−−−−−→ user3

Now user2 can retrieve the new published modifications of both users, and
user1 can retrieve modifications of user2. As shown in figure 7, the replicas of
p1 of user1 and user2 converge, but they are divergent from user3’s replica.

The divergence/convergence cycles also occur in unstructured wikis, but the
divergence is supposed to be temporary and the role of the system is to ensure
convergence. In decentralized social wikis, divergence is a possible choice for
any user, and is observable and measurable [46]. Users can define their own
collaboration networks and synchronize their work with others at their chosen
frequency.

A decentralized social wiki can have the same properties as an unstructured
wiki if the social network is connected through the “publish and synchronize”
relation and the users publish all of their changes; the system can then en-
sure eventual consistency. The eventual consistency is defined only for shared
objects of each strongly connected component of the social graph. The multi-
synchronous collaboration model creates communities with different focal points
within the wiki. In a way, decentralized social wikis allow divergence and multi-
ple points of view, but they do not allow users to search and browse the global
network and discover these different points of view. Federated wikis support
this process, as we will discuss in the next section.

5 Federated Wikis

The term “Federated Wiki” was coined by Ward Cunningham, for his Smallest
Federated Wiki [9] project (hereafter SFW). The main principle of federated
wikis is to allow divergence with no restrictions; that is, two participants can
host pages on the same topic (identified by the page title), without having to
synchronize them. This allows for multiple points of view to be represented. The
key difference with decentralized social wikis is that users can search and browse
the global network, thus being exposed to the different points of view expressed
by the participants. The participants of a federated Wiki are organized in
a social network and use this social network to search and browse the pages
hosted by their peers. In federated wikis, users collaborate by copying and
reusing material from their peers, without directly altering it in another user’s
repository.

25

Figure 8: Example: A hypergraph of pages from a Federated Wiki

5.1 System Model

5.1.1 Wikilink Semantics and the Hypergraph Model

In a Federated Wiki, the title of a page no longer uniquely identifies a page:
property 2.1 no longer holds. Wikilinks therefore acquire different semantics. A
wikilink is defined by a page title and gives access to all or any of the pages in
the network sharing this title. In functional terms, following a wikilink implies
selecting one of the target pages of the hyperedge. This selection can be done
automatically by the system, or else by the user. We therefore model wikilinks
as directed hyperedges, and the federated wiki as a directed hypergraph2.

Figure 8 shows an example hypergraph, a small set of pages from a hypothet-
ical federated wiki. In contrast with the traditional wiki graph shown in figure
1, for each page title, there are several page versions. Version A of the “Nantes”
page has wikilinks to the pages “Grand-Ouest” and “Pays de La Loire,” whereas
version B of the “Nantes” page has wikilinks to the pages “Pays de la Loire” and
“Loire-Atlantique.” Each of these wikilinks is a hyperedge, because following it
will retrieve all the versions of its target page.

Definition A Federated Wiki is a tuple, 〈H,N,M〉 where:

• H = 〈P,Eh〉 is the hypergraph of wiki pages; H is composed of nodes (the
pages P) and directed hyperedges Eh ⊂ P × P(P);

• N = 〈S,C〉 is a graph representing the network of participants, where
the nodes S = {Si} are the participant sites and the edges C ⊂ S × S
represent their social connections;

• M : P → P(S) is a function that maps the wiki pages to sets of partici-
pants; this is not a function that can be expressed by a defined algorithm
(as in the case of structured wikis), but rather describes a relationship
that is under the control of the users. Each page p ∈ P may be hosted by
one or several participants.

2Specifically in the sense discussed by Gallo et al. [47]

26

5.1.2 Unique Page Identification

Although page titles are not globally unique in a Federated Wiki, they may be
locally unique (property 5.1.2). In this case, any single participant of a Federated
Wiki, taken in isolation, is a traditional wiki. In some Federated Wikis (such
as P2Pedia), this weaker property does not hold either.

Locally Unique Page Titles A federated wiki 〈H,N,M〉, where H = 〈P,Eh〉,
has locally unique page titles if the following holds: if P1 = (L, content1),
P2 = (L, content2), P1, P2 ∈ P and content1 6= content2, then: ∀s ∈ S, s ∈
M(P1)⇒ s /∈M(P2).

As pages are not uniquely identified by their title, additional identifiers can
be introduced to act as globally unique identifiers (GUID), so that a page is a
triple (id, L, content), where id is unique.

If page titles are locally unique, then for any page p, the combination of the
page title L with M(p) (or any element of M(p)) uniquely identifies p and can
be used as a GUID.

Alternatively, a GUID can be obtained by hashing the page contents. Once
each page is uniquely identified, the GUID can be used to create hyperlinks to
specific pages, provided the system implements a mechanism to dereference a
GUID. Such “version-specific” links induce a graph structure and can comple-
ment the wikilinks.

5.2 Page Distribution

As users are free to make any changes they like to a page, they are also free to
host pages on whichever topics they like. In addition, they can copy another
user’s entire page without changing it, and this page is therefore replicated. As
a result, the different pages of the hypergraph are replicated “socially”: for
each unique page, there may be any number of copies, distributed in arbitrary
locations.

Figure 9 shows an example distribution of the federated wiki pages of figure
8. In this example, pages titles are not locally unique. Instead, the page title
plus the version act as a GUID for illustrative purposes. Some pages are more
replicated (more “popular”) than others: the page “Pays de la Loire v.C” is
hosted by all three participants, whereas the “Loire-Atlantique” pages are only
hosted at one site.

5.3 Use Cases

The “social” distribution of pages requires an additional use case, which consists
of copying a page version from one participant to another: the fork page use case.
We note that for decentralized social wikis, content is also transferred manually
between participants. However, a page version is not fully transferred; rather,
the changes –the differences from a previous version shared by the transfer
initiator and recipient– are transferred. In a federated wiki, as there are no

27

Figure 9: Federated Wikis without the Local Unique Page Assumption. Wik-
ilinks are not shown, to avoid overcrowding the graph.

consistency guarantees or assumptions, no previous version can be expected
to be shared between the participants. Pages are therefore copied in full. In
federated wikis with local page title unicity, any previously existing local version
(i.e., another page sharing the same title) is deleted.

The semantics of traditional wiki use cases are modified as follows:

• View Page: In a traditional wiki, users request specific pages by entering
the page title in their browser, or by following wikilinks. As several pages
may share the same title, pages are requested in a two-step operation:

1. Find a list of pages with the requested title in the network;

2. Select one page to display: the selection can be manual or automatic.
This triggers the lookup operation, which retrieves the page content
based on the unique page identifier.

These two conceptual steps can be illustrated by the following sequence:

L
search−−−−→ {〈P1,M(P1)〉, . . . 〈Pj ,M(Pj)〉︸ ︷︷ ︸

∀i,Pi=(L,contenti)

} select−−−−→ contentk

• Create Page: users can create new pages, which are stored locally. There
is no longer any precondition limiting which pages may be created, unless
the page titles are locally unique. In the system model, all hyperedges
pointing to other pages with the same title now also point to the new
page;

• Delete Page: users can delete only local pages. If other copies of the page
exist elsewhere, they are not deleted;

28

• Edit Page: As users have control over their local material only, the two-
step edit-save action cannot be reduced to the effect of saving a new ver-
sion. Instead, there are now three steps: fork-edit-save. The “fork” step
consists of making a local copy of the original page to be edited. This local
copy is then edited, then saved, while the remote page is unchanged. The
fork operation is specific to federated wikis and is detailed below. Once
the page has been edited, it is saved locally, as for a new page (see above).
Then, outgoing links must be updated, as in a traditional wiki.

The manual management of the social network requires the following addi-
tional use cases:

• Joining and Leaving the network: the participants can join or leave the
network. Formally, this corresponds to the node being added to or re-
moved from the graph N , as defined in 5.1.1. No pages are necessarily
transferred as a result of the operation.

• Social Network Operations: the participants maintain their social network
by establishing or dropping links with others. These operations are, again,
edges added or removed in N .

5.4 Operations

The traditional operations of a wiki, and the additional fork operation, are
modified as shown in listing 6. We describe them as implemented by a node S0.

29

1 lookup(id):-
2 PRE: ∃pid ∈ P, pid = (id, L, content)
3 EXECUTE:

4 return content
5

6 delete(id):-
7 PRE: ∃pid ∈ P, pid = (id, L, content)
8 EXECUTE:

9 M(pid)←M(pid) \ {S0}
10 if M(pid) = ∅ then:

11 P ← P \ {pid}
12 forall h in E such that h = 〈pid, pset〉 do:

13 Eh ← Eh \ {h}
14 forall h in Eh, h = 〈p, pset〉, pid ∈ pset do:

15 h← (p, pset \ {pid})
16 if pset = ∅ then Eh ← Eh \ h
17

18 save(L, newContent):-
19 EXECUTE:

20 id← generateGUID(L, newContent)

21 pid = (id, L, newContent)
22 P ← P ∪ {pid}
23 M(pid)← {S0}
24 forall h in Eh, h= 〈p, pset = {(i1, L, c1), . . . (in, L, cn)}〉 do:

25 h← 〈p, pset ∪ {pid}〉
26

27 fork(L, content):-
28 EXECUTE:

29 M((pid)←M(pid) ∪ {S0}

Algorithm 6: Operations of a federated wiki

Complexity Most of the operations have very low communication costs, as
they are often local. However, the lookup operation implies searching the entire
network for a copy of the requested page, as pages are not automatically assigned
to a particular location. In an unstructured network, a broadcast search requires
at least O(n) messages to reach all of the peers.

5.5 Federated Wiki Systems

The Smallest Federated Wiki project [9], led by W. Cunningham, is a set of
interconnected and interoperable wiki servers, belonging to different users. Users
can seamlessly browse the pages of the different wiki servers: wikilinks are
dereferenced by automatically selecting the first available page according to a
preference function over the known participating servers. Pages from the user’s
local server are selected in priority, then pages from the neighboring servers in
the network. If no page with a given title is found, then the user is directed to
a page creation form. The user interface shows several pages at the same time,

30

side by side. This makes it easy to edit pages by dragging and dropping from
other users’ pages. The pages also have a “fork” button. As the page titles are
locally unique, when a page is forked, any existing local page with the same title
is deleted. The network of servers is automatically discovered and maintained
by browsing and forking pages (forks are recorded in the history of pages), which
gives the user only indirect control over the social network structure. The full
Federated Wiki (i.e., the known network) can also be searched, and users can
see all the available versions of each page. Search results are visible as version-
specific links, identifying the host of each version.

The P2Pedia wiki [48, 10] explores a very similar idea, but implemented over
a P2P file-sharing network. The peers may share any version (or set of versions)
of each page. Wikilinks are dereferenced by a P2P file-sharing “search” function,
and manual selection of the target page by the user, among the search results.
In order to assist the user in this choice, search results can be ranked according
to different trust indicators, based on the popularity of each page version, and
on the social network. Page replicas are identified by a GUID based on the page
content’s hash. When the user browses pages, each page is automatically forked;
i.e., it is downloaded not only to the browser cache, but also to the user’s local
repository. When a page is edited, the previous version is also kept, unless the
user explicitly deletes it. In addition to these two federated wikis, the different
language editions of Wikipedia share some aspects of federated wikis. Articles
on the same topic in different languages may represent alternative views on
the topic and interlanguage links provide a means of navigating between them.
Cap [15] also discusses the different points of view adopted by different wikipedia
languages and proposes an “Every Point Of View” approach that matches the
motivation of the federated wiki idea. The approach is not implemented, and its
technical details have only been sketched out. Presumably, the different versions
of each page would be still stored in a centralized repository and users would
have access to all of them. This proposal could be a centralized equivalent of
the federated wiki concept. However, the centralization goes against one of the
fundamental principles of federated wikis: their decentralized control model, in
which each user can modify only her own set of pages.

6 Conclusion and Research Directions

6.1 Summary and Comparison

Distributed wikis consist of a network of autonomous participants that host a
set of wiki pages. A distributed wiki must handle the maintenance of the net-
work, the distribution of the pages in the network, the corresponding retrieval
of pages, and the propagation and integration of the edits made to the pages.
The different existing systems are motivated by different social and technical is-
sues and therefore adopt different solutions for each of these technical problems,
with different complexities. We have classified them into three general classes,
defined by their general motivation.

31

Highly available wikis, the largest category of distributed wiki systems, are
designed to address the technical limitations of a centralized infrastructure: lack
of scalability, high cost, and central point of failure. Their defining characteristic
is that all of the problems above are handled automatically by the system: wiki
pages are either partitioned or replicated across a self-organized network of wiki
servers, and edits to the pages are automatically propagated and integrated,
using algorithms that guarantee the consistency of the replicated pages. The
complexity of the lookup and save operations depends on the size of the network.

Decentralized social wikis are designed to support the multi-synchronous col-
laboration model and to allow users to organize social collaboration networks.
The participants are therefore organized in a social network and modifications to
the wiki are manually published, and propagated through communication chan-
nels following the social network edges. Different communities will be formed
around different focal topics. Within each collaborative community, the conver-
gence of page replicas is ensured by automatic synchronization algorithms.

Federated wikis allow and encourage divergence, in order to accommodate
multiple points of view. Federated wikis achieve this by giving users the greatest
level of control over the different functionalities. In particular, the system does
not enforce any consistency between pages on the same topic, and collaboration
is limited to manually copying and reusing the work of others. Many pages may
therefore share the same title, and wikilinks cannot simply point to a single wiki
page. Instead, they point to all the versions sharing a given title, allowing users
to browse the different versions. This is best modeled by a hypergraph of pages
that are socially replicated across the sites. A key difference with decentralized
social wikis is that users can browse pages from the whole network.

These classes of systems are summarized in table 1. For each system, the
table indicates the network organization, the page distribution scheme, the con-
sistency model, the change propagation method, the scope of page retrieval
(i.e., the set of pages that users can directly retrieve for viewing), and finally
the complexities of the lookup and save operations. These parameters for the
complexity values are mainly n, the size of the network, and d is the average
node degree (for decentralized social networks).

6.2 New Challenges and Opportunities for Distributed
Wikis

Recent developments in Web techologies are offering new opportunities for dis-
tributed wikis.

Technological opportunities and real-time editing Existing distributed wikis
are complex to deploy. This is a severe limitation for their adoption by end
users. Recent advances in web protocols such as webRTC3 make it easy
to deploy complex distributed infrastructures, even for end users. New

3http://www.webrtc.org/

32

Table 1: Classes of Distributed Wiki Systems

Highly Available Wikis Decentralized Federated
Structured Unstructured Social Wikis Wikis

Network self-organized social social
Organization

Distribution
Scheme

partition full replica-
tion

user-controlled
(partial)

user-controlled
(partial)

Page Re-
trieval

global local local global

Change
Propagation

system social social

Consistency N/A eventual
consistency

eventual consis-
tency (sets of
pages)

no consistency
required

Lookup O(log(n)) O(1) O(1) O(n)
Complexity

Save O(log(n)) O(n) O(d) O(1)
Complexity

Collaboration
Model

parallel editing multi-
synchronous

N/A

Systems Piki [22], Dis-
triWiki [7],
DTWiki [23],
UniWiki [6]

RepliWiki [35],
XWiki Con-
certo [36],
Wooki [5],
Swooki [37]

Gollum [41],
git-wiki [8],
Olelo [42],
DSMW [3, 40]

SFW [9],
P2Pedia [48, 10]

33

systems such as ShareFest4, PeerCDN5 or webtorrent6 demonstrate how
direct connections, unstructured P2P networks or DHTs can be deployed
directly in web browsers. Such technology can transform any of billions of
devices running compatible browsers into distributed wiki participants in
one click. This can greatly improve the user experience with distributed
wikis and allow researchers to set up new experiments much more easily.

Furthermore, such technologies also introduce distributed real-time editing
for web authoring. It is already possible for a wiki instance to integrate a
real-time editor such as ShareJs 7, but WebRTC can improve the user ex-
perience with fully decentralized browser-to-browser data channels. This
raises issues about collaboration models where some contributors edit to-
gether in real-time while others may prefer to edit offline. How should
slow coarse-grained changes be combined with fast fine-grained changes?
How can real-time editing sessions served by different wiki instances be
detected and accommodated?

Federated Semantic Wikis The Semantic Web is a major opportunity and
an interesting challenge for distributed wikis. Thanks to the Linking Open
Data Project (LOD) [49], the Semantic Web makes millions of RDF triples
from a network of autonomous participants available to the public. How-
ever, data quality is a major issue [50, 51]. Wiki systems have demon-
strated how communities of users can improve the quality of shared doc-
uments, and semantic wikis [39] or wikidata [52] apply the wiki approach
to improving semantic documents and data. Other work [53] aims to
transform wikis into collaborative integrated development environments
mixing text, data and applications. Such wikis allow simple semantic web
applications to be quickly developed and shared.

Surprisingly, in such approaches, wikis remain centralized while the data
is hosted in a federation of linked data. In fact, current semantic wikis
allow authoring of one local dataset, even if this dataset is linked to oth-
ers datasets of the LOD cloud. A federated semantic wiki should allow
authoring of linked data across the federation, as part of it, or as a new
federation accessing the existing federation of linked data.

The decentralized social wiki approach has been already applied to build-
ing a decentralized social semantic wiki [40]. However, this system has
several drawbacks:

• Semantic data is modified as a side-effect of text modification. The
advantage is that the text is kept synchronized with semantic data
embedded in the text, but the draback is that semantic data cannot
be modified directly. Consequently, other authoring tools for seman-

4sharefest.me
5peercnd.com
6https://github.com/feross/webtorrent
7http://sharejs.org/

34

tic web such as Protégé or SPARQL Update cannot be used safely
on the same semantic data authored through a semantic wiki.

• If different autonomous participants collaborate directly on semantic
data in a system such as [54], then text and semantic data get out of
synch.

• Fundamental replication techniques used to build distributed wikis
force all the participants, in the worst case, to have the same storage
capacity, and generate considerable amounts of traffic on the network.
As the amount of data hosted can be very large, this approach is
problematic.

The federated class of wikis seems more appropriate for building a feder-
ated semantic wiki. A federated semantic wiki should be able to “editorial-
ize” data collected from LOD, i.e., to author meaningful, human-readable
documents from linked data. Such documents could then be further edited,
and changes would be propagated to the federation of semantic wikis and
the federation of linked data. In other words, a federated semantic wiki
should be able to make the web of data understandable and editable by
humans.

However, a major issue is that the federated wiki and semantic wiki models
cannot be applied directly to federated semantic wikis. In particular, there
is a mismatch between the graph model of most semantic wikis, where
concepts are generally associated with a unique page, and the hypergraph
model of federated wikis, which represents the multiplicity of perspectives
over shared concepts.

Many more issues can be added to this list: what is a suitable graph
model? how should collected data be “editorialized”? Since linked data is
mainly read-only, how should federated semantic wikis push back changes?
How should data providers trust changes authored in federated semantic
wikis? How would concurrent changes be managed,specifically the changes
coming from human users within federations of semantic wikis and the
changes computed by algorithms on federations of linked data?

References

[1] Leuf B, Cunningham W. The Wiki Way: Quick Collaboration on the Web.
Addison-Wesley, 2001.

[2] Ellis CA, Gibbs SJ, Rein GL. Groupware: Some Issues and Experiences.
Communications of the ACM January 1991; 34(1):39–58, doi:http://doi.
acm.org/10.1145/99977.99987.

[3] Skaf-Molli H, Canals G, Molli P. DSMW: Distributed semantic mediawiki.
ESWC (2), Lecture Notes in Computer Science, vol. 6089, Aroyo L, Anto-
niou G, Hyvönen E, ten Teije A, Stuckenschmidt H, Cabral L, Tudorache
T (eds.), Springer, 2010; 426–430.

35

[4] Sumi R, Yasseri T, Rung A, Kornai A, Kertész J. Edit wars in wikipedia.
SocialCom/PASSAT, IEEE, 2011; 724–727.

[5] Weiss S, Urso P, Molli P. Wooki: a P2P wiki-based collaborative writing
tool. Web Information Systems Engineering, Nancy, France, 2007.

[6] Oster G, Mondéjar R, Molli P, Dumitriu S. Building a collaborative peer-
to-peer wiki system on a structured overlay. Computer Networks 2010;
54(12):1939–1952.

[7] Morris J. DistriWiki:: a distributed peer-to-peer wiki network. Proceedings
of the 2007 international symposium on Wikis 2007; :69–74.

[8] Rozet S. git based wiki: http://atonie.org/2008/02/git-wiki 2008. URL
http://atonie.org/2008/02/git-wiki.

[9] Cunningham W. Smallest federated wiki project.
https://github.com/WardCunningham/Smallest-Federated-Wiki/.

[10] Davoust A, Craig A, Esfandiari B, Kazmierski V. Decentralized collabora-
tion with a peer-to-peer wiki. Proceedings of the 2012 International Con-
ference on Collaboration Technologies and Systems (CTS 2012), 2012.

[11] Enslow J PH. What is a ”distributed” data processing system? Computer
1978; 11(1):13–21, doi:10.1109/C-M.1978.217901.

[12] Bergsma M. Wikimedia infrastructure. 2007.
Http://www.nedworks.org/˜mark/presentations/san/Wikimedia ar-
chitecture.pdf.

[13] Lua EK, Crowcroft J, Pias M, Sharma R, Lim S. A survey and comparison
of peer-to-peer overlay network schemes. IEEE Communications Surveys
and Tutorials 2005; 7:72–93, doi:10.1109/COMST.2005.1610546.

[14] Dourish P. The Parting of the Ways: Divergence, Data Management and
Collaborative Work. Proceedings of the European Conference on Computer-
Supported Cooperative Work - ECSCW’95, 1995; 215–230.

[15] Cap CH. Towards content neutrality in wiki systems. Future Internet 2012;
4(4):1086–1104, doi:10.3390/fi4041086.

[16] Lowry PB, Curtis A, Lowry MR. Building a Taxonomy and Nomenclature
of Collaborative Writing to Improve Interdisciplinary Research and Pratice.
Journal of Business Communication January 2004; 41(1):66–99, doi:http:
//dx.doi.org/10.1177/0021943603259363.

[17] Ignat CL, Oster G, Molli P, Cart M, Ferrié J, Kermarrec AM, Sutra P,
Shapiro M, Benmouffok L, Busca JM, et al.. A comparison of optimistic
approaches to collaborative editing of wiki pages. CollaborateCom, IEEE,
2007; 474–483.

36

http://atonie.org/2008/02/git-wiki

[18] Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I. Looking
up data in P2P systems. Communications of the ACM February 2003;
46(2):43.

[19] Dabek F, Zhao B, Druschel P, Kubiatowicz J, Stoica I. Towards a Com-
mon API for Structured Peer-to-Peer Overlays. Lectures Notes in Computer
Science 2003; 2735:33–44.

[20] Saito Y, Shapiro M. Optimistic Replication. ACM Computing Surveys
2005; 37(1):42–81, doi:http://doi.acm.org/10.1145/1057977.1057980.

[21] Lua EK, Crowcroft J, Pias M, Sharma R, Lim S. A survey and comparison
of peer-to-peer overlay network schemes. IEEE Communications Surveys
and Tutorials 2005; 7(1-4):72–93.

[22] Patrick Mukherjee CL, Schurr A. Piki - a peer-to-peer based wiki engine.
Eighth International Conference on Peer-to-Peer Computing, IEEE, 2008;
185–186.

[23] Du B, Brewer EA. Dtwiki: a disconnection and intermittency tolerant wiki.
WWW ’08: Proceeding of the 17th international conference on World Wide
Web, ACM: New York, NY, USA, 2008; 945–952, doi:http://doi.acm.org/
10.1145/1367497.1367624.

[24] Mukherjee P, Leng C, Terpstra WW, Schürr A. Peer-to-peer based version
control. ICPADS, IEEE, 2008; 829–834.

[25] Oaks S, Gong L. Jxta in a Nutshell. O’Reilly & Associates, Inc.: Sebastopol,
CA, USA, 2002.

[26] Fall K. A delay-tolerant network architecture for challenged internets. Pro-
ceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, SIGCOMM ’03, ACM: New
York, NY, USA, 2003; 27–34.

[27] Demmer MJ, Du B, Brewer EA. Tierstore: A distributed filesystem for
challenged networks in developing regions. FAST, Baker M, Riedel E (eds.),
USENIX, 2008; 35–48.

[28] Oster G, Urso P, Molli P, Imine A. Data Consistency for P2P Collabora-
tive Editing. Proceedings of the ACM Conference on Computer-Supported
Cooperative Work - CSCW 2006, ACM Press: Banff, Alberta, Canada,
2006.

[29] Eugster PT, Guerraoui R, Handurukande SB, Kouznetsov P, Kermarrec
AM. Lightweight Probabilistic Broadcast. ACM Transactions on Computer
Systems November 2003; 21(4):341–374, doi:http://doi.acm.org/10.1145/
945506.945507.

37

[30] Demers A, Greene D, Hauser C, Irish W, Larson J, Shenker S, Sturgis
H, Swinehart D, Terry D. Epidemic Algorithms for Replicated Database
Maintenance. Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing - PODC’87, ACM Press: Vancouver, British Columbia,
Canada, 1987; 1–12, doi:http://doi.acm.org/10.1145/41840.41841.

[31] Alshattnawi S, Canals G, Molli P. Concurrency awareness in a P2P wiki
system. International Symposium on Collaborative Technologies and Sys-
tems, IEEE, 2008; 285–294.

[32] Weiss S, Urso P, Molli P. Logoot : a scalable optimistic replication algo-
rithm for collaborative editing on P2P networks. 32nd International Con-
ference on Distributed Computing Systems, IEEE Computer Society, 2009;
404–412.

[33] Lamport L. Times, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM July 1978; 21(7):558–565, doi:http:
//doi.acm.org/10.1145/359545.359563.

[34] Sun C, Jia X, Zhang Y, Yang Y, Chen D. Achieving Convergence, Causality
Preservation, and Intention Preservation in Real-Time Cooperative Editing
Systems. ACM Transactions on Computer-Human Interaction March 1998;
5(1):63–108, doi:http://doi.acm.org/10.1145/274444.274447.

[35] RepliWiki – A Next Generation Architecture for Wikipedia. http://isr.
uncc.edu/repliwiki/.

[36] Canals G, Molli P, Maire J, Laurière S, Pacitti E, Tlili M. Xwiki concerto:
A P2P wiki system supporting disconnected work. CDVE, Lecture Notes
in Computer Science, vol. 5220, Luo Y (ed.), Springer, 2008; 98–106.

[37] Skaf-Molli H, Rahhal C, Molli P. Peer-to-peer semantic wikis. DEXA, Lec-
ture Notes in Computer Science, vol. 5690, Bhowmick SS, Küng J, Wagner
R (eds.), Springer, 2009; 196–213.

[38] Kang B. Summary Hash History for Optimistic Replication of Wikipedia.
http://isr.uncc.edu/shh/.

[39] Krötzsch M, Vrandecic D, Völkel M, Haller H, Studer R. Semantic
wikipedia. Journal of Web Semantic 2007; 5(4):251–261.

[40] Rahhal C, Skaf-Molli H, Molli P, Weiss S. Multi-synchronous collaborative
semantic wikis. 10th International Conference on Web Information Systems
Engineering - WISE ’09, LNCS, vol. 5802, Springer, 2009; 115–129.

[41] Gollum. A wiki built on top of git. https://github.com/github/gollum.git
2010.

[42] Mendler D. Olelo, a wiki with a git backend, http://www.gitwiki.org/ 2013.
URL http://www.gitwiki.org/.

38

http://isr.uncc.edu/repliwiki/
http://isr.uncc.edu/repliwiki/
http://isr.uncc.edu/shh/
http://www.gitwiki.org/

[43] Torvalds L. Git - a fast version control system. http://git-scm.com/.

[44] Shapiro M, Preguiça N, Baquero C, Zawirski M. Conflict-free replicated
data types. 13th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), 2011.

[45] Krötzsch M, Vrandecic D, Völkel M. Semantic mediawiki. International
Semantic Web Conference, Lecture Notes in Computer Science, vol. 4273,
Cruz IF, Decker S, Allemang D, Preist C, Schwabe D, Mika P, Uschold M,
Aroyo L (eds.), 2006; 935–942.

[46] Aslan K, Alhadad N, Skaf-Molli H, Molli P. Scho: An ontology based model
for computing divergence awareness in distributed collaborative systems.
ECSCW, Bødker S, Bouvin NO, Lutters WG, Wulff V (eds.), Springer,
2011; 373–392.

[47] Gallo G, Longo G, Pallottino S. Directed hypergraphs and applications.
Discrete Applied Mathematics 1993; 42(2):177–201.

[48] Craig A, Davoust A, Esfandiari B. A distributed wiki system based on
peer-to-peer file sharing principles. Web Intelligence, 2011; 364–371.

[49] Bizer C, Heath T, Berners-Lee T. Linked data-the story so far. International
Journal on Semantic Web and Information Systems 2009; 5(3):1–22.

[50] Ibez LD, Skaf-Molli H, Molli P, Corby O. Col-graph: Towards writable
and scalable linked open data. The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, October 19-23, Riva del Garda,
Trentino, Italy, 2014.

[51] Acosta M, Zaveri A, Simperl E, Kontokostas D, Auer S, Lehmann J. Crowd-
sourcing linked data quality assessment. The Semantic Web - ISWC 2013
- 12th International Semantic Web Conference, Sydney, NSW, Australia,
October 21-25, 2013, Proceedings, Part II, 2013; 260–276.

[52] Vrandečić D. A new platform for collaborative data collection. Proceed-
ings of the 21st International Conference Companion on World Wide Web,
WWW ’12 Companion, ACM: New York, NY, USA, 2012; 1063–1064, doi:
10.1145/2187980.2188242. URL http://doi.acm.org/10.1145/2187980.

2188242.

[53] Arapov P, Buffa M, Ben Othmane A. Wikinext: A wiki for exploiting the
web of data. Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, ACM: New York, NY, USA, 2014; 727–734, doi:
10.1145/2554850.2554962. URL http://doi.acm.org/10.1145/2554850.

2554962.

[54] Ibáñez LD, Skaf-Molli H, Molli P, Corby O. Live linked data: synchro-
nising semantic stores with commutative replicated data types. IJMSO
2013; 8(2):119–133, doi:10.1504/IJMSO.2013.056605. URL http://dx.

doi.org/10.1504/IJMSO.2013.056605.

39

http://doi.acm.org/10.1145/2187980.2188242
http://doi.acm.org/10.1145/2187980.2188242
http://doi.acm.org/10.1145/2554850.2554962
http://doi.acm.org/10.1145/2554850.2554962
http://dx.doi.org/10.1504/IJMSO.2013.056605
http://dx.doi.org/10.1504/IJMSO.2013.056605

	1 Introduction
	2 Traditional Wikis
	2.1 Data Model
	2.2 Use Cases
	2.2.1 Use Case: View page
	2.2.2 Use Case: Create page
	2.2.3 Use Case: Delete page
	2.2.4 Use Case: Edit page

	2.3 Operations
	2.4 Collaboration in a Traditional Wiki: the Concurrent Editing Problem
	2.5 Distributed Wikis

	3 Highly Available Wikis
	3.1 Highly Available Structured Wikis
	3.1.1 System Model
	3.1.2 Use Cases and Operations
	3.1.3 The Concurrent Editing Problem
	3.1.4 Highly Available Structured Wiki Systems

	3.2 Highly Available Unstructured Wikis
	3.2.1 System Model
	3.2.2 Use Cases and Operations
	3.2.3 Concurrent Editing and Consistency
	3.2.4 Highly Available Unstructured Wiki Systems

	3.3 Collaboration in Highly Available Wikis

	4 Decentralized Social Wikis
	4.1 System Model
	4.2 Use Cases and Operations
	4.2.1 Use Cases
	4.2.2 Operations

	4.3 Consistency in a Decentralized Social Wiki
	4.4 Decentralized Social Wiki Systems
	4.5 Collaboration in Decentralized Social Wikis

	5 Federated Wikis
	5.1 System Model
	5.1.1 Wikilink Semantics and the Hypergraph Model
	5.1.2 Unique Page Identification

	5.2 Page Distribution
	5.3 Use Cases
	5.4 Operations
	5.5 Federated Wiki Systems

	6 Conclusion and Research Directions
	6.1 Summary and Comparison
	6.2 New Challenges and Opportunities for Distributed Wikis

