
A MULTI-SLICE MODEL OBSERVER FOR

MEDICAL IMAGE QUALITY ASSESSMENT

L Zhang, C Cavaro-Ménard, P Le Callet, D Ge

To cite this version:

L Zhang, C Cavaro-Ménard, P Le Callet, D Ge. A MULTI-SLICE MODEL OBSERVER
FOR MEDICAL IMAGE QUALITY ASSESSMENT. ICASSP, Apr 2015, Brisbane, Australia.
<hal-01108109>

HAL Id: hal-01108109

https://hal.archives-ouvertes.fr/hal-01108109

Submitted on 22 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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ABSTRACT

Model observers (MOs) have been developed for the med-
ical image quality assessment. Nowadays, numerous mod-
ern medical instruments are capable of producing 3D images,
while few researchers have conducted MO studies on 3D data.
In this paper, we propose a multi-slice MO when consider-
ing a relatively more realistic diagnostic task: the detection-
localization of simulated multiple-sclerosis (MS) lesions on
3D magnetic resonance (MR) images. The jackknife free-
response receiver operating characteristic (JAFROC) method
was used to quantitatively analyse its performances and com-
pare them with those of human observers. Our preliminary
results showed that the proposed framework has the potential
to approach human detection-localization task performance.

1. INTRODUCTION

Recently, the task-based approach [1] has been widely ac-
cepted for medical image quality assessment. In task-based
evaluation, one or more observers perform one or more di-
agnostic tasks (e.g. detection task) using a set of images ob-
tained from the imaging systems being evaluated. The imag-
ing system that enables observers to get a better diagnostic
task performance is said to be better. Since the evaluation
using human observers is time-consuming and expensive, the
evaluation using model observer (MO) has become an attrac-
tive alternative [2]. While numerous MOs have been pro-
posed to perform a diagnostic task on solitary 2D images,
those for 3D images have not been extensively studied yet.
Compared to 2D images, 3D images provide more complete
information which could allow for a better distinction be-
tween true abnormalities and noises/background structures.
For some digital imaging modalities (e.g. MRI, CT), the 3D
visualization of the image data is even becoming the standard
for routine patient diagnostic care in different specialities (e.g.
neurology, cardiology). Thus, more researchers have started
to investigate 3D MOs which seems more clinically relevant.

Most existing 3D MOs are signal-known-exactly (SKE)
MOs [3, 4, 5, 6, 7, 8] that can only perform the detection of
one signal with known parameters (e.g. size and location) [9].

Although SKE MOs have successfully predicted human per-
formance in SKE detection tasks [10], SKE is not clinically
realistic. The truth is that human observers do not have such
a priori knowledge in clinical practice. That is why there are
increased demands of signal-known-statistically (SKS) MOs
for which signal parameters are specified only statistically.

For the detection of a signal with variable location, scan-
ning MOs have been proposed. They scan an image exhaus-
tively, then choose the location that gives the largest test
statistic (detection decision) as the tentative location and take
the largest test statistic as the final test statistic. The idea has
been adopted by Whitaker et al. [11] for 2D cases; and by
Gifford et al. [12] for 3D cases, in which a two-phase vi-
sual search paradigm was proposed to improve the scanning
process as a description of human search.

For the detection of a non-symmetrical signal with vari-
able orientation, MOs could be generalized by using efficient
channels which do not rely on signal symmetry, such as those
proposed in [13, 14, 15]. These efficient channels are 2D, but
they are not limited by the dimensionality of the problem by
definition. An alternative (a simpler way) is to assume that
the observer knows the mean reconstructed 3D signal profile
to allow some signal variabilities in the test images [7].

In this paper, we propose an alternative to address the
SKS task for 3D images. We tested the proposed MO for
the detection-localization task of multiple non-symmetrical
signals on MR images. Section 2 details the proposed MO.
Section 3 presents the human observer study and shows the
performance results of both observers. Section 4 concludes
the paper and discusses possible future works.

2. PROPOSED MULTI-SLICE MODEL OBSERVER

2.1. 3D MS lesions simulation

The lesion is modelled by a 3D Gaussian function here:

[x]p = a exp

(
−1

2
(p− q)

t
BtD−1B (p− q)

)
, (1)

where [x]p denotes the intensity value of the added signal
at the 3-D coordinate p. The signal intensity attenuation is



hereby modeled by a Gaussian function of peak amplitude a,
centerd at q. Without loss of generality, the diagonal matrix
D specifies the equatorial radii σ and bσ (along the x and
y axes) and the polar radius cσ (along the z-axis). We also
used the x-y-z convention with independent Euler angles φ,
θ, and ψ to construct the 3D rotation matrix B: the rotations
are applied firstly around the x-axis by φ, secondly around
the y-axis by θ and thirdly around the z-axis by ψ; each basic
rotation appears counter-clockwise and the axis about which
it occurs points toward the observer.

An example of a set of original images and those with
simulated 3D lesions is shown in Fig. 1. Note that a 3D sig-
nal appears brighter and possibly bigger on its central slice
compared to its appearances on the adjacent slices.

Slices in an original healthy volumetric/3D image

Corresponding slices + simulated 3D lesions

Above circled regions after being zoomed in  

Fig. 1. The 1st row shows contiguous slices extracted from
a healthy 3D image. The 2nd row shows the corresponding
slices plus simulated 3D signals. One signal is highlighted
to illustrate its appearances on 2D slices: marked by a red
square on its central slice and by red circles on the adjacent
slices. The highlighted regions are zoomed in the 3rd row.

2.2. msPCJO

The proposed MO is illustrated in Fig. 2, called multi-slice
perceptually relevant channelized joint observer (msPCJO)
hereafter. The msPCJO regards the detection-localization di-
agnostic task as two steps: (1) the first step is a global search
to locate some 3D lesion candidates; (2) the second step is a
cognitive analysis and interpretation of each candidate.

2.2.1. First step - Candidates localization

For this step, we take the assumption of conventional multi-
slice MOs that radiologists interpret 3D images by pre-
processing the image slice-after-slice (in x-y plane) and then
integrate the information across the slices along z-axis [9].

We firstly apply a human visual system (HVS) model,
visible differences predictor (VDP) [16], on each slice of
an input volumetric image. The VDP produces a map of
probabilities of detecting the differences between a reference
image and a distorted image (as a function of their location
in the input images), through several functions modelling
various HVS properties (e.g. contrast sensitivity, orienta-
tion/frequency selectivity...). On the assumption that radiol-
ogists know what a healthy image should be like and refer to

it in their minds during the diagnostic process, we took an
image of a healthy person as reference image (such as images
of the 1st row in Fig. 1) and the same image with simulated
signals as distorted image (such as images of the 2nd row in
Fig. 1). Then the VDP actually predicted the probability that
the signal was visible in the radiologists’ perceptual domain.

With detection probability maps for all the slices, 3D
coordinates (z-coordinate is the slice number) with detection
probability superior to the empirical threshold Tp (Tp = 0.9
in this paper, since a detection probability often quoted
is 90% [17] are preselected. These selected coordinates
{yn}1,...,N are then classified based on a Gaussian mixture
model (GMM) since the signal intensity is itself a Gaussian
function (cf. Eq.(1)) and the problem here is to inverse the
mixture (de-mix) of a linear superposition of an unknown
number of Gaussian distributions. We here used one of the
well-known methods of classification based on the GMM: the
expectation-maximization (EM) algorithm [18]. For a given
class number I , the EM algorithm draws confidence ellip-
soids (centers and covariances). The Bayesian Information
Criterion (BIC) is then computed to assess the number of
classes. The minimization of the BIC solves the over-fitting
problem (likelihood tends to infinity if one class is created for
each data xn) by using a penalization term on the number of
free parameters k (directly related to the number of classes):

BIC = −2

N∑
n=1

log

{
I∑

i=1

πiN (yn |μi,Σi)

}
+ k log(N)

The estimated number of classes is the estimated number
of 3D signals and the corresponding centers of ellipsoids are
then output as candidates centers.

The outputs of the first step are 3D coordinates of candi-
date centers and 2D blocks with a lesion candidate at the cen-
ter extracted from the central slice of candidates. The block
size M ×M is pre-defined to cover biggest lesions.

2.2.2. Second step - CJO detection decision

In this step, a test statistic is calculated for each output 2D
block using the channelized joint detection-estimation ob-
server (CJO). The CJO was originally proposed for the detec-
tion of an SKS signal on a 2D image in our earlier study [15],
that can be summarized into a training stage and a test stage:

Training stage: The inputs are two sets of image blocks
(with-signal and without-signal) whose ground truth is known
for the CJO, including the SKS signal profile xα (α is the sig-
nal parameter vector). Note that the signal is always located
at the block center. The outputs of this stage are the estimated
channelized reference signal x′

0 and a template w:

x̂′
0 = 〈A′

αx
′
α〉 = 〈A′

α(U
t
0xα)〉, (2)

w =
(
Σ̂′

b

)−1

x̂′
0, (3)

where



RSlice  No.1

Slice  No.1 
+ Simulated 
Signals

HVS Model 
(VDP) Candidates

(blocks with a 
suspicious lesion 

at the centre)

Training Blocks 
(without signal)

Training Blocks 
(with simulated signal at the center)

Template 

CJO - 
Training Phase

CJO - 
Test Phase

Test Statistic 
for each 

test block  

Centre Position
of each candidate 

on x-y plane 

Figure of Merit
(e.g. Area Under 

the JAFROC1 
Curve)

Candidates localization

Slice  No.2

Slice  No.2 + 
Simulated Signals

HVS Model 
(VDP)

Slice  No.P

Slice  No.P + 
Simulated Signals

HVS Model 
(VDP)

Find the centers 
of 3D lesions 
using the EM 
algorithm and 

output blocks of 
lesions on their 
central slices

Detection 
Probability 

Map

Detection 
Probability 

Map

Detection 
Probability Map

Detection decisionAn input 3D image
(a stack of slices)

Fig. 2. Structure diagram of the multi-slice PCJO (msPCJO): the outputs of each step are highlighted in red.

Σ̂′
b =

1

2
〈(g′ − 〈g′ |H0〉) (g′ − 〈g′ |H0〉)t |H0〉+

1

2
〈[(g′ − x′

α)− 〈(g′ − x′
α) |H1〉]

· [(g′ − x′
α)− 〈(g′ − x′

α) |H1〉]t |H1〉; (4)

g′ = A′
αU

t
0g (5)

where the channel matrix U0 reduces the data dimensional-
ity, and A′

α maps the channelized parametric signal x ′
α onto

the channelized reference signal x ′
0 : A′

αx
′
α = x′

0.
To search the optimal parameters in the channel domain

without loss of accuracy, one possible channel design (U0

and A′
α) for the amplitude-orientation-scale-unknown case

was proposed in [15] and adopted in this study. Note that K
orientation-steerable channels and J scale-shiftable channels
were used to construct U0.

Test stage: w and x̂′
0 are used to estimate the signal pa-

rameters, as well as to calculate the test statistic λ for each
input test image block whose ground truth is unknown to the
CJO. For a fixed number of equally spaced signal parameters,
the maximum of the test statistics yielded by all the possible
parameter combinations is chosen as the final test statistic:

λ =max
α

(λα)

=max
α

⎛⎜⎝ wt∥∥∥U (A′
α)

t
∥∥∥2
F

(
A′

αg
′ − 1

2
x̂′
0

)⎞⎟⎠ . (6)

Because the optimization in (6) takes place in the channel
domain, the maximization of (6) is still relatively fast, even
when done using a brute-force search.

3. RESULTS AND DISCUSSIONS

3.1. Experimental images

We collected 20 healthy subjects’ MR brain images (3D axial
stacks, T2 FLAIR sequence). Half of them were used for the

CJO training stage, in which 1000 different 2D white mat-
ter (WM) regions were extracted (500 without signal and 500
with a simulated signal). The other 10 images were used as
test images (for both human observers and the msPCJO), on
which we added simulated 3D lesions as introduced in Sec-
tion 2.2. The lesion locations were indicated manually to
make sure that the lesions were added to the WM (quasi-
randomly); the number of lesions in each 3D image was dif-
ferent, but fewer than 15 (to shorten the experiment time).

Fig. 3. Human observer study GUI.

3.2. Human observer study

We conducted a multi-slice free-response experiment, in
which 6 radiologists were asked to detect and locate simu-
lated MS lesions by scrolling back and forth the test images.
When detecting a suspicious lesion, they selected its central
slice and clicked the lesion center on the central slice. Then
a dialog box popped up to ask the confidence rate (0-100).



Radiologists 1 and 2 were MS experts, with respectively 21
and 10 years of experience; Radiologists 3-6 were not MS
experts, with respectively 6, 3, 8 and 5 years of experience.

3.3. Results and discussions

We used the software “JAFROC 4.1” [19] to evaluate the task
performance, and conducted the DBM-MRMC significance
test (integrated in the software) to examine JAFROC1 (figure
of merite) values’ difference between each pair of observers.

Radiologists’ JAFROC1 values are shown in Table 1, p-
values in Table 2. Table 3 shows the msPCJO’s JAFROC1
values w.r.t. different number of steerable channels K and
number of scale-shiftable channels J (cf. Section 2.2.2).
Table 4 shows the p-values for the msPCJO with different
(K, J) settings and 6 radiologists. Note that p-values< 0.05
are highlighted in red, which means that there is a significant
difference between two corresponding JAFROC1 values.

Table 1. JAFROC1 values of six radiologists.
JAFROC1 FOM Standard Error

Radiologist 1 0.9267 0.0161
Radiologist 2 0.9106 0.0274
Radiologist 3 0.7837 0.0636
Radiologist 4 0.9192 0.0420
Radiologist 5 0.6547 0.0852
Radiologist 6 0.6320 0.0995

Table 2. The p-values for each pair of the radiologists.
Rad1 Rad2 Rad3 Rad4 Rad5 Rad6

Rad 1 - - - - - -
Rad 2 0.93 - - - - -
Rad 3 0.15 0.27 - - - -
Rad 4 0.95 0.93 0.26 - - -
Rad 5 0.03 0.04 0.29 0.03 - -
Rad 6 0.02 0.02 0.21 0.02 0.85 -

Table 3. The JAFROC1 values of the msPCJO.
(K,J) JAFROC1 FOM Standard Error
(3,3) 0.7076 0.1320
(3,4) 0.7645 0.1057
(3,5) 0.7820 0.0991
(5,3) 0.7029 0.1336
(5,4) 0.7622 0.1094
(5,5) 0.7785 0.1033
(7,3) 0.7099 0.1324
(7,4) 0.7622 0.1102
(7,5) 0.7797 0.1019

We see that from Table 3 that the number of steerable
channels K hardly influences the msPCJO’s performances,
while the number of scale-shiftable channels J does. Ta-
ble 4 shows that there is no significant difference between

Table 4. The p-values for the msPCJO vs. 6 radiologists.
(K,J) Rad1 Rad2 Rad3 Rad4 Rad5 Rad6
(3,3) 0.02 0.02 0.40 0.02 0.56 0.40
(3,4) 0.07 0.09 0.83 0.09 0.22 0.14
(3,5) 0.11 0.14 0.98 0.13 0.16 0.10
(5,3) 0.01 0.02 0.37 0.02 0.59 0.43
(5,4) 0.07 0.10 0.81 0.08 0.23 0.15
(5,5) 0.10 0.13 0.95 0.12 0.17 0.11
(7,3) 0.02 0.04 0.41 0.02 0.54 0.39
(7,4) 0.07 0.10 0.81 0.08 0.23 0.15
(7,5) 0.10 0.15 0.96 0.12 0.17 0.10

the msPCJO’s JAFROC1 values and those of 6 radiologists
(p > 0.05) when J > 3.

Note that when (K, J) = (3, 5) (i.e. 3 × 5 = 15 chan-
nels are used), the msPCJO attains its maximum detection-
localization task performance (around 0.78), which is near-
est to the 6 radiologists’ average level 0.8045. That means
when we use the msPCJO in practice, we can approach av-
erage human performance with not much calculation burden
(less channels, less calculation burden).

4. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a novel 3D MO called the
msPCJO in order to predict human performance in a study
that has some relevance for diagnostic tasks which better
describe clinical practice (multi-slice, multiple-signal...). To
our knowledge, we are the first ones to propose such an MO
that can perform the joint detection-localization of multiple
3D signals with random amplitude, orientation, size, location
and number of lesions. By integrating an HVS model, the
msPCJO also considers human visual characteristics. The
inherent training stage in the 2nd step of the msPCJO allows
modelling the training and the decision making process of
radiologists to some extent.

We also conducted a human observer study close to the
clinical paradigm to get the detection-localization task perfor-
mance of six radiologists when volumetric information was
available. The results are promising for our studied modality
and pathology: the msPCJO is close to the average human
performance with reasonable calculation amount.

One limitation of the study is the small number of 3D test
images (mainly because it is difficult to get healthy patients).
More test images will be needed to enrich the experimental
validation in the further. Another interesting aspect to investi-
gate consist in the extension of the 2D CJO to 3D CJO. Then
in the 2nd step of the msPCJO, the CJO will be applied on
3D cubes with a lesion candidate at the center, instead of 2D
blocks only on the central slice.
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