
Microkernel dedicated for dynamic partial

reconfiguration on ARM-FPGA platform

Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel

To cite this version:

Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel. Microkernel dedicated for dynamic par-
tial reconfiguration on ARM-FPGA platform. The 4th Embedded Operating Systems Work-
shop (EWiLi’14), Nov 2014, Lisbon, Portugal. 11, pp.31 - 36, 2015, ACM SIGBED Review -
Special Issue on the 6th Workshop on Adaptive and Reconfigurable Embedded Systems (EWiLi
2014). <10.1145/2724942.2724947>. <hal-01113215>

HAL Id: hal-01113215

https://hal-insa-rennes.archives-ouvertes.fr/hal-01113215

Submitted on 4 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

https://hal.archives-ouvertes.fr
https://hal-insa-rennes.archives-ouvertes.fr/hal-01113215

Microkernel Dedicated for Dynamic Partial Reconfiguration
on ARM-FPGA Platform

Tian Xia, Jean-Christophe Prévotet and Fabienne Nouvel
Université Europe de Bretagne, France

INSA, IETR, UMR 6164, F-35708 RENNES
{tian.xia; jean-christophe.prevotet; fabienne.nouvel}@insa-rennes.fr

ABSTRACT
This paper describes the first implementation of a custom
micro-kernel on a ARM-FPGA platform capable of manag-
ing reconfigurable hardware parts dynamically. After de-
scribing the structure of the proposed micro-kernel, we will
focus on a custom specific system task dealing with the re-
configuration management, which is associated to a dedi-
cated scheduling mechanism. We will describe the hardware
platform on which the microkernel has been ported and pro-
vide a use case application in order to demonstrate the fea-
sibility of the approach. At the end of this paper, we will
provide quantitative results in terms of reconfiguration over-
head and microkernel timing performances.

Keywords
Microkernel, Real-Time Systems, FPGA, Embedded Sys-
tem, Reconfigurable Architectures

1. INTRODUCTION
During the last decades, with the development of com-

modity field-programmable gate array (FPGA), the tech-
nique of reconfigurable computing has gained increasing at-
tention for its potential in exploiting hardware resources.
Through time-multiplexed sharing of the FPGA fabric, a
higher integration of functionalities can be achieved. The
main drawback of traditional FPGA reconfiguration com-
puting is the lack of flexibility, because the whole fabric is
required to be reconfigured even when modification is only
required for a part of the FPGA. As a consequence, enor-
mous time overhead and power consumption are produced,
which severely limits reconfiguration in embedded systems.

As a solution, a more advanced technique enabling to re-
configure particular areas of an FPGA while the rest contin-
ues executing has been proposed and is known as Dynamic
Partial Reconfiguration (DPR). This technique has proved
to be quite prospective in the embedded domain because
of its runtime adaptivity for hardware algorithms and lower
power consumption compared to large-scale static circuits

EWiLi’14, November 2014, Lisbon, Portugal.
Copyright retained by the authors.

[1]. With DPR feature, hardware accelerators can be dy-
namically dispatched and managed, becoming as flexible as
software functions.

On the other hand, with the widespread applications of
handheld devices, reliability and security of embedded sys-
tems have become a serious concern. Dealing with microker-
nels constitutes a promising idea because it allows the user
to execute various applications (commodity APIs, real-time
tasks, etc.) in their own isolated container to ensure isola-
tion and thus security. Consequently, it has been a popular
research trend in the embedded systems domain for many
years[2].

In this paper, we describe and study a custom embedded
microkernel on a hybrid ARM-FPGA Zynq-7000 platform
[3]. This microkernel is a revised version of the NOVA mi-
crohypervisor [4], and is integrated with the management
and scheduling of reconfigurable hardware resources. This
proposed architecture allows for dynamic management of
SW/HW tasks, secure task isolation and efficient SW/HW
communication.

The remainder of the paper is organized as follows: Sec-
tion 2 presents current researches in management of DPR ar-
chitectures. In Section 3, an overall architecture of the pro-
posed platform is introduced. Section 4 focuses on the design
and implementation of the microkernel, with detailed intro-
duction to the hardware tasks management and scheduling
mechanisms. In Section 5, we present a case study to demon-
strate the capabilities of the proposed microkernel. Finally
section 6 concludes the paper.

2. RELATED WORK
Compared with the traditional full reconfiguration mech-

anism, the DPR technique benefits from the following major
advantages [3]:

• Reduced hardware resource utilization

• Improved design efficiency

• Reduced reconfiguration latency and better robustness

Despite of the enhanced flexibility provided by DPR tech-
niques, the reconfiguration overhead remains a crucial issue
in practice. In modern high-end FPGAs which may have
tens of millions of configuration points, one reconfiguration
of a complex module will be very time-consuming. Numer-
ous studies have been led to propose efficient hardware re-
configuration management with dedicated architecture and
OS support. A custom DPR controller was introduced in
[5] to realize high-speed on-chip reconfiguration. In [6], a

specific operating system CAP-OS was proposed to provide
clients with hardware task management and priority-based
scheduling. Other researches were made in the OveRSoC
project, which provided a model at high-level abstraction
and allowed to efficiently simulate and validate embedded
RTOS for reconfigurable platforms [7]. Most researches on
traditional DPR devices (i.e. Virtex FPGA family) employ
embedded processors such as MicroBlaze or PowerPC, whose
computing ability is relatively limited.

Compared to classical devices, the Zynq-7000 platform
integrates the ARM Cortex-A9 processor with various on-
board resources and brings up enormous possibilities for em-
bedded techniques. In this platform, the programmable fab-
ric is considered as a unique auxiliary computing resource
to this fully capable processing system, and the reconfigu-
ration management is expected to be one of many tasks in
the system. Hence, a specific kernel is the ideal solution to
rationally dispatch both hardware and software resources.

While considerable efforts have been made to port micro-
kernel techniques to traditional embedded systems, such as
the OKL4 from Open Kernel Labs [2], most existing micro-
kernels on ARM do not consider reconfigurable hardware.
Instead, most of the works only use a micro-kernel to man-
age heterogeneous platforms i.e. software and static hard-
ware parts. For example, in [8], a L4 kernel is ported to
manage hardware and software tasks, but without using dy-
namic reconfiguration. In parallel, research in [9] discussed
the reconfiguration management on Zynq platform at the
application level, without using any operating system and
thus with poor flexibility.

3. PROPOSED PLATFORM
The motivation of the proposed hybrid ARM-FPGA plat-

form framework is to establish a user-practical environment
with a highly abstract microkernel. The management of
hardware resources is integrated as a user application, with
relatively easy access. Both software and hardware tasks are
registered and scheduled by a custom microkernel. A block
diagram of the proposed platform is shown in Fig. 1.

On the proposed platform, computing resources are divid-
ed into Processing System (PS) and Programmable Logic
(PL). On the PS side, a simplified microkernel hosts mul-
tiple software applications, including Guest OSes and user
applications executing within the user space. Each appli-
cation is housed in an individual isolated space of the mi-
crokernel, which is referenced as an execution context (EC).
By scheduling and switching ECs, the ARM processor is
shared among guests according to time multiplexing. The

AXI Interconnection

DDR
Microkerne l

AXI4-HP Master

PRR1 PRR2 PRR3

PCAP

GIC

DecCfg
Bit
file

Bit
file

Bit
file

HW Task
Manager

User
App

I/O
Driver

ARM Cor tex-A9

HW task data

AXI4-Lite Slave

Config. Reg1
Config. Reg2
Config. Reg3

PPR reg
group

PPR reg
group

PPR reg
group

PRR Controller

Config.

PS

PL

Figure 1: Diagram of the Proposed Hybrid Platform

FPGA fabric is engaged in several hardware acceleration op-
erations, which are executing concurrently with SW tasks.
A specific hardware task management routine is proposed to
control and reconfigure the hardware accelerators dynami-
cally. Such a routine runs as a guest to the microkernel and
is scheduled whenever the management of HW tasks is re-
quired. The mechanism related to this part will be described
in detail in Section 4. In this way, the FPGA resource is
seen as a standard user application by the microkernel and
thereby hardware and software tasks can be managed con-
currently in our framework.

3.1 Hardware Tasks
In a reconfigurable embedded system, hardware tasks are

implemented using functional fabric structures in the FPGA,
which can be user-defined computing blocks or commercial
IP cores. As shown in Fig. 1, the FPGA fabric is divided in-
to multiple partial reconfigurable black boxes or containers,
which are capable of housing hardware tasks independent-
ly. These containers are defined as partial reconfigurable
regions (PRR). The hardware task which is running in each
container is run-time switchable under the control of the
hardware task manager. Different sizes of blocks are allo-
cated to different PRRs for different task purposes.

The resource that holds the fabric information of hardware
tasks is contained in a bitstream file. Different bitstream
files can be stored in various memory devices and be ac-
cessed via a simple look-up table. Note that, the container
corresponding to each HW task has always the same con-
strained location in the FPGA. A HW task is dispatched by
transferring the corresponding bitstream file to the assigned
PRR. Normally, HW tasks with similar or close function-
alities should be distributed to the same PRR, so that the
coherence of HW task interfaces can be guaranteed. Each
HW task should have one corresponding SW application to
monitor and control its behaviour.

One of the crucial features regarding hardware tasks is
the reconfiguration overhead, which is linearly correlated to
the size of the bitstream, thus, the PRR size. This means
all HW tasks implemented in the same PRR will have the
same time overhead for reconfiguration.

3.2 HW/SW Task Communication
To connect PL with PS, two interface types based on the

standard AXI bus protocol are employed. Offering a unified
mapping to the processor and being accessed as a normal
memory access, the AXI GP is intended for low-speed gen-
eral purpose communication. As in Fig. 1, the processing
system takes control of two master AXI GP interfaces as
main methods to configure and read back the states of the
HW tasks.

AXI HP is aimed for high performance data exchange
with burst transfer, which may transfer data blocks as large
as 4KB in one burst, and is sufficient for generic data pro-
cessing applications. On our platform, 4 AXI HP interfaces
are used and in charge of accessing both on chip memo-
ry(OCM) and DDR. Since HW tasks access AXI HP as mas-
ters, data is fetched and written back without acknowledging
the processor, allowing the processor to run simultaneously
with HW tasks.

3.3 Reconfiguration Interface
Two methods for partial reconfiguration are supported on

Table 1: Description of PRR Configuration Regis-
ters

Reg Name Width Description

Proc status 16

Mark process status:

Bit[0]: start data processing

Bit[1]: pause data processing

Bit[2]: interrupt handling over

PRR Int status 16

Mark interrupt status:

Bit[0:7]: PRRs interrupt enable

Bit[8:15]: PRRs interrupt status

PRR status 16

Mark PRR enable status:

Bit[0:7]: PRRs enable

Bit[8:15]: PRRs switch enable.

PRR Reco rdy 16
PRR’s status for reconfiguration:

Bit[0:7]: PRR ready

PRR delay 32 Time overhead for current reconfiguration

PRR gpr[7:0] 32
General-purpose registers defined by user: HW

task ID, working mode, parameters, etc.

the Zynq platform: Processor Configuration Access Port (P-
CAP) and Internal Configuration Access Port (ICAP). Us-
ing PCAP, as shown in the datapath of Fig.1, PS is en-
abled to initialize bitstream transfers from memory to PL
through the Device Configuration Interface (DevCfg) at high
throughput (130MB/s). In contrast, ICAP is designed for
self-configuration from the PL side with a AXI4-Lite as
transfer port. Such a mechanism severely limits the recon-
figuration speed (19MB/s). ICAP is less interesting also
because it requires additional hardware resources and will
occupy at least one AXI interface. On our platform, PCAP
is selected for its better compatibility with software appli-
cations and higher throughput.

3.4 PRR Controller Block
As shown in Fig. 1, a PRR controller block is introduced

to monitor and manage the states of HW tasks. This block
runs as a state machine under the supervision of the HW
task manager. Through the AXI GP interface, we have im-
plemented a group of configuration registers(PPR reg group)
which are mapped into memory space and accessible to the
processor. By configuring these registers, a SW service is
able to set up HW tasks, such as defining working modes,
and data address. Since the number of PRRs is pre-fixed, we
provide each PRR a PPR reg group for configuration. The
context of the registers is left for user-definition to adjust to
different HW tasks. Table 1 describes the configuration of
this register group.

3.4.1 Reconfiguration security
In case of a PRR reconfiguration, a switch of HW task

is normally required. The PRR Controller is proposed to
guarantee the HW task security, avoiding invalid data out-
put and undesired task state. Based on these considerations,
following features are included:

• In case of a certain multi-block pipeline structure, the
pipeline should be emptied before any HW task switch,
so that invalid output data are avoided.

• To maintain the integrity of the data structure being
processed, the PRR controller avoids reconfigurations
interrupting of data frames.

• A reset should be asserted to initialize the reconfigured
PRR before being allowed to be activated.

3.4.2 Interrupts Management
The PRR controller is able to generate general-purpose

interrupts through the Shared Peripheral Interrupts (SPI)

connected to the generic interrupt controller (GIC). 8 SPI
resources are used to provide the PS with different HW task
information such as task completion or critical errors.

4. REAL TIME MICROKERNEL
To facilitate the management of multiple guest SW appli-

cations and HW tasks, we developed a simplified microkernel
based on Mini-NOVA, one revision of the NOVA hypervi-
sor. In this section, we propose a specific HW task manager
service and a scheduling strategy to support dynamic PR
management.

4.1 Microkernel Description
The microkernel runs on top of bare-metal hardware. By

implementing the basic OS functionalities, the microkernel
establishes an abstraction layer of the hardware platform to
user applications. The application of microkernel benefits
in the way that higher security level can be achieved with
virtualization technique. One of the essential features of this
microkernel is security, so the principle of least privilege is
strictly followed in our framework to make sure that a min-
imal tested computing base (TCB) is achieved. Such a fea-
ture will also improve performance with a quicker execution
of context switches.

The proposed microkernel has simplified functionality and
reduced complexity, which makes it more suitable for em-
bedded systems and also more adaptable. Since the initial
Mini-NOVA is designed for x86 architecture, several modifi-
cations have been made to execute on the ARM Cortex-A9
which is available on the Zynq-7000 platform. Besides, addi-
tional mechanisms and a new scheduling strategy have also
been provided to the system. The main features of the pro-
posed microkernel are:

• Modified bootloader and boot sequence for both Zynq
platform (e.g. FPGA initialization, DDR initializa-
tion, etc.) and ARM Cortex-A9 processor(e.g. kernel
boot, user boot, paging table, exception vector, etc.)

• Separate virtual memory mapping for kernel and user
space while providing isolated execution context for
each user application

• System calls and IRQs provided to user applications

• Specific Priority-based round-robin to support PR

• Supporting virtualized OS(e.g. uC/OS-II)

We should note that, to minimize the TCB size of the
kernel and guarantee system security, most board-specific
support APIs and services are implemented in user space,
including HW task manager, AXI support, and supports for
on-board peripheral resources (UART, SD card, interrupt
controller, TCC Timer, etc.).

The virtual memory space of our system is divided into
several domains. As described in Table 2, the kernel space
and user space are access-isolated by virtual mapping. A
range of 256MB memory space on the upper side is dis-
tributed to the microkernel, whereas user applications exe-
cute in the lower memory space. Besides the user space and
kernel space, an extra space up to 256MB is allocated to
store the bitstream files dealing with HW tasks. This area
is programmed to be only accessible from the user space.

The execution context (EC) is the major kernel object,
which is the abstraction of user threads or applications in

Table 2: System Address Mapping
Name Addr Range Accessibility Description

Kernel
0xC0000000 -

0xDFFFFFFF
Kernel Kernel space

User 0x0 - 0x2FFFFFFF Kernel, User User space

HW Task
0x30000000 -

0x3FFFFFFF

Kernel, User,

PL

Bitstreams,

HW task data

PL
0x40000000 -

0xBFFFFFFF
User (AXI GP) PL Memory Space

Peripheral
0xE0000000 -

0xFDFFFFFF
Kernel, User

Platform and

Peripheral regs

Table 3: Structure of the bit descriptor Class
Obj. member id addr len delay prr id

Contents
HW task

ID

Bitfile

Address

Bitfile

Length

Reconfig.

Overhead

PRR

ID

the kernel space. Each EC is exclusively attached to one us-
er application and is able to maintain and manipulate user
applications’ features such as the CPU/FPU register state,
stack location, and scheduling sequence. By resuming its
EC, a given task can be completely restored. When sensi-
tive operations (page allocation, thread creation, cache op-
eration, etc.) are required, the user space may access the
kernel services by generating system calls, which are also
handled through an EC.

4.2 HW Task Manager
The HW task manager is defined as a special user appli-

cation serving other applications. Though executed in user
space, this service cooperates closely with the kernel and is
an essential part of the PR control flow in the system. In
the following, we describe its different features.

4.2.1 Bitstreams Management
The switch of HW tasks is based on the download of dif-

ferent bitstream files. As introduced in Section 3, each bit-
stream corresponds to one HW task, and its PRR container
is pre-fixed (but not exclusive), which also determines its
reconfiguration overhead. All bitstream files are loaded to
the HW task memory space shown in Table 2, at the kernel
bootload stage. A descriptor is provided to each available
bitstream file by defining a bit descriptor class. We also cre-
ated a look-up table for all bit descriptor objects indexed by
a unique ID number. In fact, the object members given in
Table 3, bit descriptor::id is the only information that a nor-
mal user application should know about HW tasks. Other
pieces of information such as location and length are only
used by the HW task manager.

4.2.2 Calling the HW Task Manager
Any attempt to dispatch, reconfigure, modify or disable

HW tasks should be accomplished by the HW task manag-
er. In other words, operations towards HW tasks are isolated
from other user applications. We employed this mechanism
to ensure the security of the FPGA fabric. For user ap-
plications which are cooperating with HW tasks, the only
accessible memory space is the HW task data section, which
is used for massive SW/HW data exchange.

As described in Section 3, the behavior of HW tasks are
controlled by writing parameter values to their correspond-
ing PRR configuration registers, for which the contexts of
parameters are defined by user application and are not in
the concern of the HW task manager. All the information
required by the HW manager are the ID of HW task and
the arguments to be transferred to the register group.

EC
SW App

SW
Application

EC
HW Manager

HW
Manager

HW task
data

PRR1

Bitfile1

Bitfile2

Bitfile3

PRR2 PRR3

AXI4-Lite AXI4

Regs1 Regs2 Regs3

Syscall_HW_Manager(1, 0, arg01, arg02, arg03)

Proc_status
PPR_stastus

Int_status
PPR_delay

id addr length dalay prr_id
1 A1 L1 D1 1

Syscall_yield()

prr_ transferbitfile()

Bitfile descriptor table

Config

PCAP

arg01 ~arg03

kernel user

Rescheduling()

Figure 2: Execution of the HW Task Manager

A block diagram describing the execution of the HW task
manager is shown in Fig. 2. As demonstrated, a specific
system call from user space will require the kernel to launch
the HW task manager. Arguments are passed through to
the HW manager. The prototype of this specific system call
is:

Syscall HW Manager(HW id, irq en, arg01, arg02, arg03)

By handling this system call, the kernel invokes a resched-
ule process and returns to user space, passing control to the
HW task manager. In this process, arguments are also de-
livered to the HW manager. The HW manager will compare
the HW id with the executing HW task. If it is already im-
plemented in PRR, then only the parameters are changed by
writing arguments to the register group, otherwise a PCAP
transfer will be configured to reload the target PRR with
the desired HW task. The irq en argument will indicate
whether the PL interrupt is enabled for the corresponding
PRR by setting values in the PRR Int status register. After
accomplishing the required operation, the HW task manager
gives back control to the previously interrupted application.

In some cases, a PR request cannot be acknowledged im-
mediately. As the scenarios described in Section 3, a HW
task may be in the middle of a data frame process and not
ready for reconfiguration. In such situations, to avoid mo-
nopolizing the CPU, the HW task manager will be pulled
up and give up its CPU usage to other SW applications.
When the data frame is completely processed, the target
PRR informs the HW task manager by triggering an IRQ
IRQ Reco rdy, then the service will be relaunched to start
the PCAP bitstream download.

One major drawback of the PR technique is its significant
reconfiguration time overhead. To reduce its effect on perfor-
mance, we abort the polling-for-done mechanism. Instead,
the completion of a PCAP transfer is not acknowledged to
the HW task manager. Once the HW task manager launch-
es the PCAP transfer, it gives up the CPU control and wait
for the next call. A HW task is set to automatically start
an operation as soon as reconfiguration is done, thereby the
reconfiguration time overhead is overlapped by CPU opera-
tions. SW applications are able to be synchronized with a
HW task state by its general-purpose IRQ. This functional-
ity is enabled by the PRR Int status register. For example,
imagine a simple application with an image displayer SW
task that is using a HW Image filter accelerator. It will
fetch the target image and write the results back to memory
through AXI4 automatically. Once the image processing is

Table 4: HW Task Manager API
API Description

XDcfg Initialize(); Instantiate DevCfg

AXI4 lite Init(); Instantiate master AXI4-lite

fpga start(); fpga pause();

fpga interrupt done()

Pass signals to whole fpga fabric by writing

values to corresponding PPR controller regs.

check current ppr(HW id)
Check current implemented HW tasks’ IDs

to determine whether PR is necessary.

check reco rdy(HW id)
Check if target PRR is ready for PR, if not,

use sys yield() to quit HW manage.

prr set mode(HW id,irq en,

arg01,arg02,arg03)

Set up PRR Int status and register group

of specific PRR.

prr transferbitfile(HW id) Launch PCAP to transfer target bitstream.

prr register read(off,val)

prr register write(off, val)

Basic access method to all prr controller

registers by master AXI4-Lite

finished, the HW filter will generate an IRQ to inform the
displayer task that another operation can be executed.

4.2.3 HW Task Manager API
The driver API of DevCfg is supported by the Xilinx SDK

tool, which deals with the non-secure/secure PCAP transfer.
Besides of the DevCfg API, several additional functions are
developed to facilitate and simplify the HW management.
In Table 4, the API supporting HW task management is
listed and described.

4.3 SW Tasks Scheduling
The scheduling strategy of SW tasks in Mini-NOVA is a

priority-based round-robin mechanism. The scheduler man-
ages the execution sequence by manipulating ECs. Each EC
obtains its own priority level at its creation, which is change-
able afterwards. Within the same priority level, SW tasks
share the CPU through round-robin scheduling. Among dif-
ferent priority levels, high-priority tasks will always preempt
low-priority tasks since the scheduler always selects the high-
est priority EC and dispatches the SW task attached to it.

Basically, all general SW tasks execute at the same prior-
ity level (1 by default). However, to fulfill the timing con-
straints for specific requests such as real-time tasks and PR
requests, different priority levels are introduced. In this case,
specific tasks should be of higher priority so that they can be
dispatched in time. Since our current system mainly deals
with HW management, only the HW task manager is being
discussed here.

Fig. 3 presents the scheduling mechanism based on prior-
ity. At each priority level, ECs are organized as a double-
linked queue, which is indexed by a list prio[] structure.
list prio[] is a list of EC pointers indexed by a priority lev-
el. Each list prio[] element points to a certain priority level
EC queue. The run queue is composed of different priority
level EC queues, and the prio top signal identifies the high-
est priority level in current run queue. When reschedule()
is invoked, prio top is used to access the highest-priority-
level EC queue by dispatching list prio[prio top]. Once dis-
patched, the queue will keep executing until another resched-
ule() is invoked.

As shown in Fig. 3, the EC of the HW task manager is
registered in the microkernel at its creation with a default
priority level 2. Initially, the HW manager is not included in
run queue as Fig. 3(a). When Syscall HW Manager() is ex-
ecuted, the microkernel will launch HW Manager Enqueue()
to add the HW task manager into the run queue as shown
in Fig. 3(b). Then, the reschedule() function is launched to
update the schedule and dispatch the HW task manager as
the highest priority EC by selecting list prio[2]. When the
HW task manager finishes its task or enters the pull-up s-

Task1 Task2 Task3
List_prio[1]
List_prio[2]

List_prio[prio_top] HW
Manager

prio_top = 2

Task1 Task2 Task3

List_prio[1]
List_prio[2]

prio_top = 1

run_queue

run_queue

(b)

(a)
HW_Manager_Enqueue()HW_Manager_Dequeue()

List_prio[prio_top]

Activated Suspended

Figure 3: Microkernel Scheduling Mechanism. (a)
prio top=1; (b) prio top=2

tate, HW Manager Dequeue() is called to remove the EC of
the HW task manager from the run queue, as shown in Fig.
3(a), thus low-priority SW tasks are permitted to execute.
Through this strategy, the PR of an HW accelerator is able
to preempt other SW tasks and a quick response for the HW
task management is guaranteed.

5. USE-CASE IMPLEMENTATION
In order to test the SW/HW scheduling mechanism on the

platform, a use-case application based on a real scenario has
been proposed. In this scenario, a mobile wireless terminal
is capable of dynamically change its configuration in order to
obtain the best level of performances according to the chan-
nel conditions. For example, if the channel is very noisy, the
transmitter will deal with a simple but very efficient QAM
modulation to the detriment of the throughput. As soon
as the channel conditions allow to increase the throughput,
the mobile device may reconfigure itself to change its inner
hardware modulator and rapidly adapt to the environment.

5.1 Implementation Description
In the proposed use-case scenario, the application is di-

vided into two main software tasks running on the processor
and two additional hardware tasks running in the FPGA.

The SW ChannelSensor task performs a channel estima-
tion in order to evaluate the maximum level of performance
to be obtained in terms of throughput and error rate. The
SW HardwareManager is an instance of the HW task man-
ager, as described in Section 4.

Concerning the hardware parts, two reconfigurable HW
tasks sets have been considered which respectively deal with
the modulation scheme and the IFFT used in the OFDM
context. The HW Modulation task deals with the nature
of modulation to be implemented i.e. the constellation size.
In this work, three constellations sizes have been considered:
4-QAM, 16-QAM and 64-QAM. Regarding the second hard-
ware task, HW IFFT, several configurations have also been
implemented according to the number of points to consider.
In our application, a range of number of points for I-FFT
(from 256 points to 8192 points) was implemented depend-
ing on the channel bandwidth to be considered. All HW
task execute in their corresponding PPR (PRR0 - PRR3).

Since HW Modulation and HW IFFT execute in pipeline,
the reconfiguration of these HW tasks will suspend the entire
pipeline. To minimize the significant time overhead, we pro-
pose a multiple-path structure. A block diagram depicts this

QAM1 IFFT1

IFFT2QAM2

FIFO1

CrossBar

Q

I

AXI4

FIFO2

PRR0

PRR1

PRR2

PRR3

HW_Modulation HW_IFFT

HW_QAM4
HW_QAM16
HW_QAM64

HW_IFFT256

HW_IFFT8192

...

Figure 4: Use-Case Implementation

Microkernel
SW_ChannelSensor

SW_HWManager

PRR0 (HW_QAM4)
PCAP Transfer

t1 t2 t3 t4 t5 t6
t

task

PPR2 (HW_IFFT256)

t1: syscall_HW_Manager() t2: reschedule() t3: prr_transferbitfile(); syscall_yield()
t4: reschedule() t5: PCAP_Done t6: Data frame over

t7 t8 t9 t10 t11 t12

PRR1 (HW_QAM16)

PPR3 (HW_IFFT512)

SW/HW Execution Reconfiguration Pipeline suspension

Figure 5: Gantt Chart of the Tasks’ Execution

structure in Fig. 4. Both HW Modulation and HW IFFT
consist of a pair of identical PRRs. While the current PPR
continues working, SW ChannelSensor may alter the HW
task by reconfiguring the other PRR, and activating the new
datapath after reconfiguration. Thus, the overhead caused
by reconfiguration is reduced.

With a 18,800 bits data frame size and 100MHz FPGA
clock frequency, a Gantt chart for the result of proposed s-
cenario on our platform is given in Fig.5. The application
begins with the SW ChannelSensor task deciding to change
the hardware configuration because the the channel’s condi-
tions are not suitable for the default configuration (a QAM4
modulation scheme and a 256 points I-FFT). In this case, the
task calls the SW HardwareManager to manage its request
of switching I-FFT mode to 512 points (t1 - t2). Since PRR3
is idle and ready for reconfiguration, SW HardwareManager
launches the PCAP transfer to implement HW IFFT512 to
PRR3 while the QAM4-IFFT256 pipeline continues comput-
ing (t2 - t5). After the completion of PCAP transfer (t5),
the pipeline holds for currently-processed data frame to be
completely processed (t5 - t6) before the HW IFFT512 is ac-
tivated at t6. The same procedure is executed again, when
SW ChannelSensor decides to switch from QAM4 modula-
tion to QAM16 (t7 - t12). Some attributes of SW/HW tasks
are listed in Table 5.

5.2 Discussion
As shown in the Gantt chart, the major overhead of re-

configuration is fully circumvented by both SW and HW
tasks running in parallel. For data processing, the only
overhead caused by the HW task switch is the delay re-
quired to process a complete data frame(worst case 0.168
ms, in case of 8096 points I-FFT). Due to the simplified
kernel and scheduling mechanism, a quick response to PR
is achieved (0.0119 ms). We should note that the tremen-
dous reconfiguration overhead of I-FFT tasks result from the
massive computing-intensive structure of I-FFT blocks. Im-
plemented by Xilinx Planahead synthesis tool, it consumes
5600 LUTs and 1600 SLICEs, which takes up to 13% FPGA

Table 5: SW/HW Tasks’ Attributes

Task name Type
Execution

Time(ms)

Reconfig.

Time(ms)

Resource

Usage

SW ChannelSensor SW 3 no no

SW HW Manager SW 0,0096 no no

EC Switch SW 0,00232 no no

HW QAM (4/16/64) HW 0,09-0.03(1 frame) 0.231 2%

HW IFFT (256-8192) HW 0,006-0,168(1 frame) 2.72 13%

resources on chip. For static FPGA circuits, implementing
multiple I-FFT blocks with different points will cost consid-
erable FPGA area, while on our platform only 26% FPGA
resources (2 I-FFT blocks) are used to hold multiple I-FFT
blocks. Thus the chip cost is significantly reduced.

6. CONCLUSION
In this paper, we have presented a custom ARM-specified

microkernel on a partially reconfigurable FPGA platform.
This approach allows to dynamically manage reconfigurable
HW accelerators and SW tasks by developing a specific schedul-
ing mechanism. Efforts have been made to maximize the
performance of the FPGA fabric and minimize the overhead
caused by partial reconfiguration. We are currently working
on the virtualization of guest OS. By implementing differ-
ent OSes based on the microkernel, we intend to establish a
complete virtualizable embedded system

7. REFERENCES
[1] D. Thomas, J. Coutinho, and W. Luk, “Reconfigurable

computing: Productivity and performance,” in
Asilomar Conference on Signals, Systems and
Computers, pp. 685–689, 2009.

[2] G. Heiser, “The role of virtualization in embedded
systems,” in Proceedings of the 1st workshop on
Isolation and integration in embedded systems,
pp. 11–16, ACM, 2008.

[3] “Ug585: Zynq-7000 all programmable soc technical
reference manual,” Xilinx Inc., March 2013.

[4] U. Steinberg and B. Kauer, “Nova: a microhypervisor
based secure virtualization architecture,” in Proceedings
of the 5th European conference on Computer systems,
pp. 209–222, 2010.

[5] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner,
and J. Becker, “A multi-platform controller allowing for
maximum dynamic partial reconfiguration throughput,”
in Field Programmable Logic and Applications,
pp. 535–538, IEEE, September 2008.

[6] D. Göhringer, M. Hübner, E. N. Zeutebouo, and
J. Becker, “Operating system for runtime reconfigurable
multiprocessor systems,” International Journal of
Reconfigurable Computing, vol. 2011, January 2011.

[7] J. C. Prevotet, A. Benkhelifa, and e. a. B. Granado, “A
framework for the exploration of rtos dedicated to the
management of hardware reconfigurable resources,” in
International Conference on Reconfigurable Computing
and FPGAs, pp. 61–66, IEEE, 2008.

[8] K. D. Pham, A. K. Jain, J. Cui, and et al, “Microkernel
hypervisor for a hybrid arm-fpga platform,” in 24th
International Conference on Application-Specific
Systems, Architectures and Processors, pp. 219–226,
IEEE, 2013.

[9] K. Vipin and S. A. Fahmy, “A high speed open source
controller for fpga partial reconfiguration,” in FPT,
pp. 61–66, IEEE, 2012.

