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Abstract—In this paper, we propose an efficient channel 

shortening algorithm, applied to OFDM systems, exploiting 

a particular decomposition of the Toeplitz convolution channel 

matrix and of the channel shortening filter (CSF). Unlike 

classical methods which optimize the CSF following one single 

criterion applied to the whole response of the filter, our 

decomposition allows for addition of complementary criteria. 

Similarly to classical CS techniques, the proposed method tries to 

concentrate most of the energy of the shortened channel impulse 

response (SCIR) within the tolerated delay-spread window. 

However, our second applied criterion aims at limiting the noise 

enhancement on each sub-carrier by minimizing the spectral 

distortions related to the filtering function. The performance of 

the algorithm in terms of computational complexity and bit error 

rate (BER) is studied by simulations and compared to the 

reference algorithm of the literature referred to as maximum 

shortening signal to noise ratio (MSSNR) algorithm. 

Index Terms — OFDM, channel shortening, spectral distortion 

minimization. 

I. INTRODUCTION 

N multicarrier communication systems such as orthogonal 

frequency division multiplexing (OFDM), a guard interval 

is usually inserted between symbols to mitigate inter-symbol 

interference (ISI). When the channel delay spread is larger 

than the guard interval length, performance can drastically 

degrade. This phenomenon can be encountered in UWB 

communications as for example for some severe NLOS 

channels and high rate transmissions for which error floor 

appears [1]. Channel shortening (CS) technique was 

demonstrated to be an efficient technique to provide a smaller 

equivalent channel length to the OFDM demodulator [2]. CS 

can also be applied to allow the use of a shorter guard interval, 

thus leading to a better spectral efficiency. Then, it can be 

used in UWB systems, where channels are known to be very 

rich in multipaths. 

Various CS techniques applied to OFDM systems have 

already been proposed and discussed, however always 

considering that the CSF coefficients should be obtained 

through a one-shot computation, either by maximizing a given 

criterion or by minimizing the channel delay spread [3][2][4]. 

These classical algorithms have good BER performance, but 

lead to high computation complexity. 

One of the most famous and efficient CS techniques is the 

so-called maximum shortening signal to noise ratio (MSSNR) 

algorithm [5], that defines the CSF on the basis of a global 

channel energy optimization with a classical linear filter. The 

goal of this algorithm is to find the CSF that minimizes the 

energy of the shortened channel impulse response (SCIR) 

outside a target window, while keeping the amount of energy 

as constant inside that window. Another technique proposed in 

[6] is based on energy optimization but assumes CSF 

decomposition into two parts. In this method, the first part of 

the filter is dedicated to concentrate the SCIR energy in the 

desired window, while the second part of the filter is used to 

cancel the energy outside. Both of these techniques can 

however suffer from noise power boost in some situations 

where the channel shortening processing translates into the 

accentuation of some deep fades of the channel frequency 

response.  

In this paper, we propose an efficient CS method relying 

on a two-part CSF as in [6] but redesigning the two 

optimization criteria in a complementary fashion so that the 

noise power boost effect mentioned before is mitigated. The 

first part of the CSF is used to concentrate all energy in a 

small desired window. The second part of the filter is 

exploited to satisfy the second criterion that is chosen to limit 

the spectral distortion between the original channel response 

and the shortened one, hereby avoiding strong noise power 

increase after CS filtering. The proposed 2-part CS provides a 

lower complexity solution and a good bit error rate (BER) 

performance, compared with the classical 1-part CS MSSNR. 

The remainder of this paper is organized as follows. Section 

II presents the channel shortening principle and section III the 

system model. Section IV is dedicated to the design of the 

proposed method. Section V gives comparative performance 

results. Finally, VI concludes the paper. 

 

Notations 
1) Boldface lower case letters represent vectors, and boldface 

upper case letters are reserved for matrices. The notation  
H

A  

denotes transpose-conjugate of A  and 
T

A  the transpose of A . 
2) Non-boldfaced upper case letters are reserved for matrix 

frequency domain representation. 

3) The notation F  is used to represent the N N  unitary DFT 

matrix given by  
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II. CHANNEL SHORTENING PRINCIPLE 

A. Generic system  

We consider a baseband OFDM system (as shown in Fig. 

1). In this model, samples ( )x k  from the source are grouped 

into blocks of size N  equals to the number of subcarriers. 

Modulation and demodulation are performed by using simple 

inverse fast Fourier transform (IFFT) and FFT operations. The 

channel is assumed to be estimated at the receiver.  

 Channel shortening is performed by a filter w  placed at 

the receiver (Fig. 1). Then, the received signal ( )y k  is the 

transmitted signal ( )x k  affected by the shortened channel 

impulse response (SCIR) designed by h  and the noise sample 

( )n k . 

The SCIR represents the combined effect of the channel 

impulse response (CIR) h  and the CSF w . 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Communication system with CSF at the receiver. 

 

B. Synchronization and channel estimation 

In OFDM systems, a time synchronization of data blocks is 

necessary at the receiver to detect the symbol start. A classical 

solution for this is to process a sliding window to detect 

autocorrelation peaks in the received signal due to the 

presence of the cyclic prefix [7]. 

After this synchronization step, a least-squares algorithm 

based on pilot tones is generally used to estimate the channel 

in the frequency domain. It is then possible to estimate the 

CIR and to track the first significant path in the estimated CIR 

to refine time synchronization. This estimated and finely-

synchronized CIR can further be used by any CS algorithm, 

e.g. MSSNR, to compute the CSF coefficients. 

 

 
 

Fig. 2. Illustration of the CIR estimated after synchronization on the first path 

C. Channel shortening algorithm, re-synchronization and 

equalization of MSSNR [5] 

The delay spread of the SCIR is contained in a reduced 

window of size max hL L , but a shift d can occur depending 

on the way the CS is performed. 

 

 
 

Fig. 3. Illustration of the SCIR estimated 

 

In classical methods such as MSSNR, a window is placed 

on different positions by considering various possibilities of 

delays values. The objective is to search the ideal position that 

gives the optimal CSF. Then, if the algorithm finds the best 

CSF for a particular delay d , a new and simple 

synchronization operation is necessary before the equalization 

step. To do this, the first d  samples of the received signal y  

have to be dropped, as well as the first d  samples of the 

shortened channel h . The design of the MSSNR CSF, for a 

particular delay d  is described in appendix VII. 

At last, the OFDM equalization can be performed by using 

a frequency domain equalizer (FEQ), such as the zero forcing 

(ZF) equalizer that is based on the inversion of the gain of the 

synchronized shortened channel, estimated for each subcarrier. 

III. SYSTEM MODELS 

A. Shortening system in one shot 

Using a column vector representation, we define the CIR h  

of size hL  and the CSF w  of size wL  as follows 

 

 0 1 1, ,
h

T

Lh h h    h   (2) 

 0 2 1, , ,
w w

T

L Lw w w    w   (3) 

 

The convolution between these two impulse responses 

yields the following column vector  

 

 0 2 1
, , ,

T

L L
h h h       
   h h w   (4) 

 

of length 1
h w

L L L   , where   is the convolution 

operator. Defining appropriate notations, (4) can be written as    

 

 h Hw   (5) 

 

where H  is the Toeplitz convolution matrix of size  
w

L L  

and defined as  
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B. Two-part channel shortening filter (2P-CSF) 

We use the CSF decomposition adopted in [6]. Then, w  is 

divided into two parts as 

 
max min

T T T   w w w   (6) 

where 
maxmax 0 , ,

T

Lw w   w and 
maxmin 1 1, ,

w

T

L Lw w    w .  

Then, relation (5) can be represented as  

 
1 max

2 3 min

        
 H O w
h =

H H w
  (7) 

where 1H , 2H and 3H are Toeplitz matrices, of size 

maxL x maxL ,
max

L L x maxL and
max

L L x maxwL L  respective-

ely. As for the 2P-CSF, the SCIR may be decomposed into 

two regions as follows 

 
1 maxmax

2 max 3 minmin

        





H wh
h =

H w + H wh
  (8) 

Then, by equivalence, 
max 1 max

h H w  represents the desired 

window where the energy should be dominant and 

min 2 max 3 min
h H w + H w  the residual region, in which energy 

should be less pronounced. 

C. Channel representation in frequency domain for 2P-CSF 

Let H  and H  be the frequency domain representation of 

the CIR and the SCIR, respectively. After a zero-padded 

operation to get vectors columns of sizes N , we can write  

 
      and    

hN L N L

H F H F
 

            


h h

0 0
 (9) 

Substituting h  by his expression given in (5), H takes the 

following form  

    , wN L LN L

H F F


             





P

Hh
= w Pw

00
  (10) 

where P  is a wN L  matrix. As the CSF and the SCIR, the 

matrix P  is divided into 2 parts as follows 

 
max min

   P P P   (11) 

where maxP and minP , represents matrices constructed by 

considering the first maxL columns and the last columns of P , 

respectively. Then, integrating (11) in (10) yields 

 
max max min min

H   P w P w   (12) 

We define a real-value function of complex vector variable, 

given for a fixed maxw  as 

 

min

max

2

min max max max min
2

min max min min

:
L

H H

H H

f

H


  



 


w

w = w Aw w Bw

w Cw w Dw

  (13) 

 

where max max

HA P P , max min

HB P P , min max

HC P P , and  

min min

HD P P   are matrices of size maxL  maxL , 

maxL   maxw
L L ,  maxw

L L  maxL and 

 maxw
L L   maxw

L L , respectively. 
2

is the 2-norm. 

max
f

w
will be used as a cost function in IV, to design the CSF.  

IV. PROPOSED ALGORITHM 

A. Calculation of the CSF coefficients  

Most of classical channel shortening methods aim at 

optimizing a performance criterion (SNR, SINR...). For 

instance the MSSNR technique aims at maximizing energy in 

the target window while minimizing it outside this window 

(see appendix). In this paper, thanks to the use of the 2P-CSF,  

we propose to apply two criterions: i) to maximize the energy 

into the target window and ii) to minimize spectral distortion 

to avoid noise increase when applying the CSF filter.  

Our algorithm is made of 2 steps: 

- The first step consists in computing  minw  as a function 

of maxw  in order to reduce the spectral distortions. We 

can then express 
min
h as a function of maxw .   

- The second one consists in computing maxw in order to 

concentrate all the energy of the SCIR within the 

allowed window and to minimize the energy outside 

thanks to the Rayleigh quotient.  

Step1: the second part of the CSF, denoted by 
minopt

w is 

given by the following optimization problem 

    
min min

2 22

min 22 2
arg min arg min

opt
H H H   

 
w w

w  (14) 

 since 
2

2
H  is a constant for a given CIR. Then, solving (14) 

is equivalent to find the optimal solution 
minopt

w that minimizes 

the function 
max

f
w

for a given maxw .  

We define 
z
, the complex gradient operator with respect 

to the complex vector z by 

  1 2
/ , / , , /

T

N
z z z       

z
  (15) 



Only one of the following conditions is necessary and 

sufficient to determine a stationary point of 
max

f
w

[8]. 

 
max min maxmin

min min
( ) 0     or     ( ) 0H f f   

w w ww
w w   (16) 

Thus, the optimal solution is given by 

 

1

1

min max 1 maxopt

  
K

w D C w K w   (17) 

Step2: We calculate now maxw  which allows for 

concentration of most of the energy of the SCIR inside the 

predefined target region and that simultaneously minimizes 

energy outside this window. Substituting (17) into (8), we 

obtain the new expression of 
min
h : 

 
min 2 3 1 max

( ) h H H K w   (18) 

Then, energy inside and outside the target window is given, 

respectively, by 
 

 
max max max max max max

H H   h h w Q w  (19) 

 
min min min max min max

H H   h h w Q w  (20) 
 

where max 1 1

HQ H H  and min 2 3 1 2 3 1( ) ( )H  Q H H K H H K  

are matrices of dimensions maxL x maxL . Then, the optimal 

value of maxw  designed by 
maxopt

w , is the solution of the 

following Rayleigh quotient problem (21).  

 
max

max max max

max

max min max

Argmax
opt

H

H

    w

w Q w
w

w Q w
 (21) 

Finally, the optimal CSF is given by the concatenation of the 

two column vectors, 
maxopt

w and 
minopt

w .  

B. Computational complexity 

To figure out the computational complexity of the proposed 

algorithm, we count the number of complex multiplications 

required in the algorithm. The calculation for each method is 

done in two steps:  

- In the first step, we compute maxQ and minQ for the 2P-

CSF. For the MSSNR algorithm, matrices dA  and dB (see 

appendix VII) are calculated for each delay.  

 - In the second step, we use the Rayleigh quotient problem 

in each method for which computation complexity is provided 

in [6] [8]. The number of multiplications needed for the 2P-

CSF is in the order of 3

max11 / 3L  where maxL is the desired 

window size and is also the size of matrices maxQ and minQ . 

Note that it is also possible to control the complexity of our 

method by reducing maxL . The MSSNR method requires a 

complexity of 311 / 3wL  for each delay d  where wL is the size 

of the CSF and is also equals to size of matrices dA  and dB . 

Over dN  delay possible candidates, the number of 

multiplications is then approximately of order 3(11 / 3)w dL N . 

This leads to high computation complexity for a large value 

of wL . 

 
TABLE I 

COMPLEXITY OF CHANNEL SHORTENING SCHEMES 

Algorithm Total Complexity 

 

2P-CSF 

3 3 2

max max max

2 2

max max max

(11/ 3 2) ( ) ( )

( 3 )

w w

w

L L L L L N

L N L L L NL

    
   

 

MSSNR [10]  3 2
(11 / 3)

w w d
L L L N   

C. Delay analysis 

It is shown that CSF is sensitive to delay parameter, when 

small size filter is used [10]. 

In our proposed method however, all energy of the SCIR is 

concentrated in the first coefficients. This is due to the 

particular decomposition of the CSF [6] in which the first part 

of the filter fixes the region where the energy should be 

dominant. Then, in the proposed method there is no need to 

include a delay search algorithm like MSSNR case (as shown 

in Fig. 3), to find the best CSF. But the second criterion that is 

chosen to avoid the strong noise power increase after CS 

filtering yields an optimal channel shortening filter with good 

BER performance.  

On the other hand, the proposed algorithm is used for long 

channels delay spread, and imposes filter sizes equal or longer 

than the CIR size. Thus, performances sensitivity to delay 

parameter for small filter sizes can be ignored. 

V. SIMULATION RESULTS 

The algorithm to be compared with the proposed one is the 

classical MSSNR [5]. We also compare BER results with and 

without the use of the CSF. For all simulations, we assume 

perfect estimated channels and perfect synchronization on the 

first significant path of the CIR. For each algorithm, we take 

the optimal maxL that gives the best BER. Two examples of 

UWB channel models (CM) denoted CM4 and based on 

Saleh-Valenzuela for indoor applications [11], with 

approximately 63 significant taps ( 62hL  ) and with different 

spectra, are used for simulations. For the rest of the article, we 

denote by C1 and C2 the 2 chosen channels over CM4 models.  

These channels have delay spread longer than the longest 

guard interval specified for UWB transmissions with OFDM 

waveform leading to the well-known error floor phenomenon 

in BER performance. The noise is considered to be additive 

white Gaussian (AWGN). The FFT size, the filter size, and the 

size of the CP (cyclic prefix) used to mitigate inter-symbol 

interference, is 128N  , 63wL   and 33  , respectively. 

Uncoded 4-QAM and 16-QAM modulations are used. 

Fig. 4 and 7 provide channel impulse response before and 

after channel shortening, for C1 and C2 respectively. Fig. 5 

and 8 present the SNR for each subcarrier before and after 

channel shortening for C1 and C2 respectively that allow for 

representing the spectral distortion brought to the initial 

spectrum after CS. Fig. 6 and 9 provide BER performance of 



systems (without/with channel shortening).  

Channel 1: with max 30L   for the two algorithms (MSSNR 

and proposed method). Delay optimization has been applied 

for the MSSNR technique to get the best CSF leading to 

5d  . 

In Fig. 4, the shortened CIR is compared with the original 

one. Since CIR has significant energy outside the guard 

interval ( 33  ), ISI leads to error floor phenomenon as 

observed on Fig. 6. As expected, with CS, energy is well 

concentrated inside the desired window. SNR observed after 

CS is represented on Fig. 5 are quite similar for both methods. 

As results, in Fig. 6, the BER of each system similarly 

improved and the error floor even disappears thanks to CS. 

Complexity: in this case, the MSSNR algorithm requires 

approximately 132.445.530 multiplications, where the 

proposed algorithm requires 1.670.571. 

Channel 2: with max 28L   for the proposed method and 

29 for the MSSNR. Delay optimization has been applied for 

the MSSNR technique to get the best CSF. Then 34d  .  

Here, the proposed method outperforms the MSSNR 

algorithm. In fact, our method does not only concentrate the 

energy inside the allowed window (Fig. 7), but also reduce the 

spectral distortion between the original and the resulting 

spectrum after CS as can be observed on Fig. 8. The deeper 

the fadings after CS, the greater the noise power on the 

concerned subcarriers and thus the smaller the global 

performance (Fig. 9). 

Complexity: in this case, the MSSNR algorithm requires 

approximately 133.854.525 multiplications, where the 

proposed algorithm requires 1.663.400. 
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Fig. 4. The original CIR versus the normalized shortened channel C1 
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Fig. 5. SNR distribution over frequency for C1 
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Fig. 6. BER performance versus SNR for C1 
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Fig. 7. The original CIR versus the normalized shortened channel C2 

 

0 20 40 60 80 100 120
-100

-80

-60

-40

-20

0

20

40

Subcarrier index

S
N

R
 [
d
B

]

 

 
Orginal

Proposed method

MSSNR

 
 

Fig. 8. SNR distribution over frequency for C2 
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Fig. 9. BER performance versus SNR for C2 



VI. CONCLUSION 

   A channel shortening design for OFDM systems has been 
proposed and analyzed. The algorithm is based on energy 

optimization of the SCIR and on the maximization of the SNR 

while reducing spectral distortions between the CIR and the 

SCIR, by exploiting the CSF decomposition [6]. We show by   

simulations that, the proposed method provides very good 

BER performance especially in case of channels with long 

delay spread like CM 4 channel in ultra-wide band 

communications. Simulation results clearly indicate that the 

proposed method outperform the MSSNR at the price of a 

lower computational complexity.  

VII. APPENDIX: REVIEW OF THE MSSNR ALGORITHM 

SYNCHRONIZATION ISSUE [5] 

Let d  be the optimal delay introduced by the algorithm to 

get the best CSF. The MSSNR technique divides the SCIR 
d
h  

into:  

- a desired window of size max 1L  , defined as follows 

maxmax 1, ,
d

T

d d d Lh h h       h  

- and a residual window of size max 2L L L  
h w

 

maxmin 0 1 1 2, ,
d h w

T

d d L L Lh h h h            h  

Vectors 
maxd

h and 
mind

h can be rewritten as follows, after 

decomposing the convolution matrix into  
maxd

H  and 
mind

H  

 
max maxd d

h H w  (22) 

where 

max max max

1 1

1 2

max

1 1

w

w

d

w

d d d L

d d d L

d L d L d L L

h h h

h h h

h h h

  
  

     

        





  


H  

and 
min mind d

h H w  (23) 

where 
max max max

0

1 2

min

1 2

1

0 0

0 0

w

d

w

h

d d d L

d L d L d L L

L

h

h h h

h h h

h

  
     



           


  





  


H  

Desired and residual energy is given, respectively as  

 
min min min mind d d d

H H H H

d
 h h w H H w = w A w  (24) 

 
max max max maxd d d d

H H H H

d
 h h w H H w = w B w  (25) 

The MSSNR design can be formulated as a single generalized 

Rayleigh quotient optimization defined as (26). Then, the CSF 

is the eigenvector that corresponds to the largest generalized 

eigenvalue [12]. When a delay search algorithm is included, 

the final CSF is the eigenvector corresponding to the largest 

eigenvalue, over all dN delay candidates. This solution 

provides the best bit error ratio. 

 arg max
H

d

d H

d

    
w

w A w
w

w B w
 (26) 
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