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We show in microwave measurements and computer simulations that the contribution of each 
eigenchannel of the transmission matrix to the density of states (DOS) is the derivative with 
angular frequency of a composite phase shift. The accuracy of the measurement of the DOS 
determined from transmission eigenchannels is confirmed by the agreement with the DOS found 
from the decomposition of the field into modes. The distribution of the DOS, which underlies the 
Thouless number, is substantially broadened in the Anderson localization transition. We find a 
crossover from constant to exponential scaling of fluctuations of the DOS normalized by its 
average value. These results illuminate the relationships between scattering, stored energy and 
dynamics in complex media. 

The transmission matrix (TM) is the basis of a powerful approach to quantum and classical wave 
propagation that is able to explain the statistics of conductance [1-7] and transmission [8] and 
prescribe the degree to which the transmitted wavefront can be manipulated [9-15]. It was 
introduced by Dorokhov to explain the scaling of electronic conductance in wires1. For a wire 
connected to perfectly conducting leads that support N propagating channels, and similarly for a 
waveguide between segments of empty waveguides, the N N×  elements of thee TM, t, tba, are 
the field transmission coefficients through the sample between the incident channels a and 
outgoing channels b. The conductance in units of the quantum of conductance G/(e2/h) is 
equivalent to the classical transmittance T which can be expressed in terms of the transmission 

eigenvalues �n of the matrix product †tt , 
1

N

nn
T τ

=
=�  [1, 6]. The probability distribution of these 

transmission eigenvalues determines the statistics of transmission [1-5, 8, 16]. 

For diffusive samples, the average of T over a random ensemble is given by /T g Lξ≡ = , 

where �N=ξ  is the localization length and �  is the transport mean free path.[17] For g>1, 
transport is diffusive and the flux transmitted through disordered samples in eigenchannels of 
transmission varies over a wide range with a small number of highly transmissive channels 
among a multitude of dark eigenchannels[1-5]. The transmittance is dominated by the 
approximately g “open” channels with transmission eigenvalues �n>1/e.  

Recently, considerable attention has focused on the power of the TM to mold the flow of waves 
through random samples [14] and to modify the energy density inside the medium [18, 19]. The 
possibility of sharp focusing and enhanced transmission has been demonstrated for sound [20], 
elastic waves [21], light [9, 13, 22]  and microwave radiation [12]. These phenomena have been 
described in terms of the transmission eigenvalues [9-13, 21], but static transmission parameters 



cannot explain the dynamics of transmission or provide the DOS whose statistics control 
emission, absorption and wave localization and give the proclivity of a medium to emit radiation 
and store energy [23-33]. The crossover to wave localization reflects the changing character of 
the underlying modes, from extended to spatially peaked. This is characterized by the Thouless 
number �, which is essentially the ratio of the typical linewidth to the spacing of classical modes 
or quantum energy levels [17, 34]. But the full statistics of modal overlap, reflected in � have not 
been measured.  

In this Letter, we show that the DOS can be determined from measurements of spectra of the 
TM. The contribution of each eigenchannel to the DOS is the derivative with angular frequency 
of a composite phase of the eigenchannel. Summing the contributions from all eigenchannels 
provides the first direct measurement of the DOS of a multiply scattering medium as a whole. 
The DOS determined from the eigenchannels is found to be in excellent agreement with the DOS 
found from a decomposition of the transmitted field into modes. The probability distribution of 
the DOS broadens substantially in the crossover to Anderson localization reflecting the 
increasing spectral isolation of long-lived localized modes. The eigenchannel phase derivative, 
which is equal to the delay time in transmission, increases with �n. When normalized by the 
average delay time, the eigenchannel delay time versus �n for diffusive samples of different 
length is found to fall on universal curve.  

The DOS of a bounded open medium for classical waves is the density of quasi-normal modes or 
resonances of a region per unit angular frequency,[34]  
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Here nω  is the central frequency and nΓ  is the linewidth of the n
th mode. The integral over 

frequency of each mode in Eq. (1) is unity. Krein, Birman and  Schwinger [24-26] have shown  

that the DOS may be expressed in terms of the scattering matrix S, †1
( ) /

2
i TrS dS dρ ω ω

π
= − , 

where † /iS dS dω−  is the Wigner-Smith delay-time matrix whose trace is equal to the sum of 
scattering times in all 2N channels linked to the scattering region [27, 28]. This is proportional to 
the integral of the energy stored within the medium for unit incident flux in each channel, 

( ) ( )
2

,
N

V
I r dVαα

ρ ω ω∝� �  [28, 30]. The difficulty of carrying out measurements over all possible 

scattering channels has so far precluded a determination of the DOS based on the scattering 
matrix. However, the calculations of Brandbydge and Tsukada [29] of the local DOS of electrons 
based on the scattering matrix show that the DOS can be determined from measurements of the 
TM. The DOS can be obtained from the summation of the derivative of composite phase of the 
transmission eigenchannels with angular frequency. The phase derivative of the nth transmission 

eigenchannel, * *1
( )n n n

n n

d d d

d i d d

θ

ω ω ω
= −

u v
u v , where vn and un are nth columns of the unitary 

matrices V and U, may be obtained from the singular value decomposition of the TM, †t U V= Λ
[35]. Λ  is a diagonal matrix with elements 

nτ . The DOS is then 
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Each term in the sum is the contribution of a single eigenchannel to the DOS, the eigenchannel 
density of states (EDOS).  

This relation is an extension to multichannel systems of the equality between the DOS and the 
transmission delay time in 1D systems [31]. The eigenchannel phase derivative /nd dθ ω

corresponds to the delay time ( )nt ω∆  of energy for a transmitted pulse composed of a 

superposition of waves in the nth eigenchannel centered at � in the limit of vanishing bandwidth 
[35]. 

Measurements of the TM for which the impact of absorption is removed are carried out in a 
copper waveguide containing randomly positioned alumina spheres [10, 16, 35, 36]. The empty 
waveguide supports ~ 66N  modes for diffusive waves and ~ 30N  for localized waves. 
Measurements are made for linearly polarized horizontal and vertical components of the field 
over the front and back surfaces of the waveguide by translating and rotating wire antennas on a 
square grid. The TM is computed using N/2 points for each polarization for diffusive wave. For 
localized waves, the measurements reported here are made for only a single polarization. The 
measurement of the TM on a grid for a single polarization is incomplete [11, 13], but we find 
that the statistics of the TM are well represented by the measured TM provided that the measured 
size of the TM, N', is much greater than the value of dimensionless conductance g in the sample 
[11, 16]. New configurations are obtained by briefly rotating and vibrating the sample tube. For 
diffusive waves, the TM was measured for three sample lengths, L=23, 40 and 61 cm, while for 
localized waves, measurements are reported here for samples of length L= 40 cm. 

Microwave spectra of 
nτ  and /nd dθ ω  for a single random configuration drawn from an 

ensemble of diffusive samples with g=6.9 and localized samples with g=0.37 are shown in Fig. 
1. In Fig. 2 we compare the DOS determined from the sum in Eq. (1) of contributions from all 
modes to the DOS given by the sum over eigenchannels in Eq. (2). The comparison is made for 
waves in the crossover to Anderson localization for which the degree of modal overlap is 
appreciable but still small enough that the full set of mode central frequencies �n and linewidths 
�n and so the contribution to the DOS for each mode can be accurately determined from a 
decomposition of field spectra [37]. The DOS found from the modal decomposition involves the 
analysis of the entire field spectrum and modes can be found from measurements of the TM as 
well as from measurements of field spectra within the interior of the sample [35], from which it 
is impossible to find the transmission eigenchannels. In contrast, the analysis of the transmission 
eigenchannels requires only the TM at two slightly shifted frequencies so that the derivative of 
the phase can be found. Thus the DOS determined from an analysis of modes and channels is 
independent. A plot of the spectrum of the individual modes corresponding to the terms in Eq. 
(1) is shown in Fig. 2a. Good agreement is found in Fig. 2b between the sums of the 
contributions to the DOS of all eigenchannels and of all modes determined from the TM and 
from spectra of the field inside the sample. The analysis of the TM can thus be used to find the 
DOS in samples with strong modal overlap for modal analysis is not possible. 



The degree of overlap of the modes of the medium is a fundamental indicator of the nature of 
wave propagation. This is encapsulated in the Thouless number, which is essentially the average 
of the ratio of the spectral width and spacing of modes [17, 37]. A more comprehensive 
representation of the nature of modal overlap in random systems would be the probability 
distribution of the relative DOS, ( ) ( )/ρ ω ρ ω< > , which can be constructed from spectra of 
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of samples with /effL ξ  ranging from 0.14 to 2 are shown in Fig. 3a. The effective sample length 

[38] is 2eff bL L z= +  with intensity extrapolation lengths beyond the sample reflecting internal 

reflection of zb=6 cm for localized waves and 13 cm for diffusive waves [10]. The distributions 
are seen to broaden with increasing sample length L, particularly beyond the crossover to 
localization at / 1L ξ =  when distinct peaks begin to emerge in the spectrum of the DOS. For 

/ 2.08effL ξ = , the probability distribution of the DOS, ( )P ρ , is seen in Fig. 3b to exhibit an 

algebraic tail as 4.81/ ρ  in agreement with simulations for this sample [35]. For ξ>>L , the tail 
of the time delay distribution for transmitted waves in a random 1D sample, which is the same as  
the DOS, is 2( ) 1/P ρ ρ∝  [39, 40]. The probability distribution of transmittance, ( )P T , for 
quasi-1D samples is found to approach the log-normal distribution predicted for ξ>>L  in 1D 
samples [41] only when the participation number of transmission eigenchannels12, 

2 2

1 1
( ) /τ τ

= =
≡ � �

N N

n nn n
M  is very close to unity. ( )P T  for the sample with Leff/�=2.08 is a one-

sided log-normal distribution [16] and we would not expect ( )P ρ  to reach its asymptotic form 
for / 1L ξ >> .  

We carry out two-dimensional numerical simulations using the recursive Green’s function 
method [42] to explore the fluctuations of the DOS as well as to determine the impact of an 
incomplete measurement of the TM on estimates of the DOS. Spectra of /nd dθ ω  for a diffusive 

sample with / 0.69L ξ =  and N=33 in which fluctuations in spectra of the EDOS are still 

appreciable are shown in Fig. 4a. /nd dθ ω  is seen to coincide with normalized spectra of the 

integral of the energy density over the sample volume for a transmission eigenchannel 

( ),
n

V
I r dVω� �[35], confirming that /nd dθ ω  is the contribution of the n

th eigenchannel to the 

DOS, the EDOS. However, it is difficult to excite and detect all channels and the measured TM 
for diffusive waves is typically incomplete. ( / ) /nd dθ ω π  is then no longer equal to the EDOS 

and its sum does not give the DOS. Similarly, it is not possible to construct a fully transmitted 
incident wave when the TM is not complete [11]. We estimate that the best agreement between 
measurements of /nd dθ ω� �  and simulations of /nd dθ ω� �  shown in Fig. 5b occurs when we 

construct the simulated TM using a fraction / 0.7N N′ =  of the channels of the system. The best 
agreement between measurements and calculations of the probability distribution of transmission 
eigenvalues is also obtained for / 0.7N N′ =  [35].  

In Fig. 4a slight differences between spectra of the sum of /nd dθ ω  for a complete TM and for a 

sample with / 0.7N N′ =  are observed. The probability distributions 
1

( / )
N

nn
P d dθ ω

=�  shown in 



Fig. 4b are quite similar when 'N M>> . Significant deviations arise, however, for diffusive 
samples in which M is comparable to or larger than N ′ . The number of measured channels is 
then insufficient to accurately reflect the nature of transport. 

In Fig. 4b and 4c, we show the results of simulation of the scaling of the variance of 
( ) ( )/ρ ω ρ ω< >  for samples with N=16 and N=33 together with the result obtained from the 

distribution shown in Fig. 3 for / 2.07effL ξ = . In this case 'N M>> . Measurements are seen to be 

in good agreement with simulations. The variance for diffusive waves, for / 1L ξ < , is flat with a 
value of ~ 0.003  for N=33 and ~ 0.007  for N=16. Rigidity in the spectrum of the central 
frequencies of electromagnetic modes when many modes fall within the mode linewidth [43] is 
likely the origin of the constant value of the variance of ( ) ( )/ρ ω ρ ω< >  for each value of N. For 

deeply localized waves, mode spacing typically exceeds the linewidth so that fluctuations of the 
DOS increases rapidly with L/� as modal linewidths fall. The variance of ( ) ( )/ρ ω ρ ω< >  is seen 

in Fig. 4c to increases exponentially as 1.6 /Le ξ . Thus fluctuations of the DOS provide an 
experimental measure of L/� and of the degree of modal overlap for both diffusive and localized 
waves [43]. 

The variation of the transmission delay time with the transmission eigenvalue in diffusive 
samples is shown in Fig. 5a. /nd dθ ω� �  increases with nτ  and sample length so that delay times 

are lengthened in coherent eigenchannels with high transmission. When normalized by the 
ensemble average of the photon delay time, which is the average of the single channel delay time 

between channels a and b weighted by the transmitted intensity 
2

bat , 
2 2

/ / /ab ab abab ab
d d t d d tϕ ω ϕ ω� � =< > < >� � , the measurements collapse to a single curve 

(Fig. 5b). This is confirmed in simulations as shown in Fig. 5c. The constant ratio of the delay 
time /nd dθ ω� �  averaged over eigenchannels of fixed nτ , to the average delay time together 

with the scaling of /d dϕ ω  as L2 for diffusive waves [44] indicates that the EDOS for a given 

value of �n scales as L2, as seen in Fig. 5d for 0.1nτ =  and 1. Though the EDOS scales as L2, the 

DOS is seen in Fig 5d to scale as L, as expected, since the number of open channels with 1/n eτ >

is proportional to /g Lξ= [1, 2], falls inversely with L.

We have shown that it is possible to measure the dynamics and stored energy in addition to the 
transmission of each transmission eigenchannel. This makes it possible to measure the DOS as 
well as the transmittance for both diffusive and localized waves. Fluctuations in the DOS can 
provide a rich picture of the changing nature of transport in the Anderson localization transition. 
The cumulant correlation function with frequency shift of the DOS normalized to its average 
may yield the statistics of the spacing of energy levels and the probability of return of scattered 
particle of the wave to a coherence volume within the sample vs. time delay. The wave becomes 
localized when the probability of return integrated over time equals unity [43, 45]. Selective 
excitation of highly-transmissive, long-lived eigenchannels can enhance energy collection and 
lower the threshold of random lasers. 
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FIGURES

FIG. 1 (color online). Spectra of 
nτ  (a,c) and spectra of ( )/nd dθ ω  (b,d) for eigenchannels 

n=1,5,15,25 for diffusive waves of sample length L=23 cm with g=6.9 (a,b), and n=1,2 for 
localized waves of length L=40 cm and g=0.37 (c,d).  



FIG. 2 (color online). (a) Contributions of the individual modes in Eq. (1) to the DOS. (b) 

Comparison of the DOS determined from the TM (red curve) by summing spectra of ( )/nd dθ ω

and modes found from spectra of the field at the output (black curve) and from spectra of the 
field inside the sample (grey dotted curve). 



FIG. 3 (color online). (a) Measurement of probability distribution of the DOS normalized by its 
average value determined from the sum of /nd dθ ω  for Leff/�=0.14 (blue squares), Leff/�=0.25 
(green triangles) and Leff/�=2.08 (black circles). (b) Probability distribution of the DOS for 
Leff/�=2.08 in a semilog scale. The black line is a fit of the tail as 1/�4.8. 



FIG. 4 (color online). (a) Spectra of /nd dθ ω  (full curves) and the normalized integral of the 
energy density In(z) inside the sample (circles), for eigenchannels with 0.8τ =  (blue line), 

0.5τ =  (green line), 0.01τ =  (red line) for N=33 and L/�=0.69. The black curve is ( )ρ ω . The 

red dashed curve is 
'

1
/

N

nn
d dθ ω

=�  for an incomplete measurement of the TM with N'/N=0.7. (b) 

Probability distribution ( / )P ρ ρ< >  for / 0.07L ξ =  (red line), / 0.69L ξ =  (black line) and 

/ 2.2L ξ =  (blue line). The corresponding dashed curves are 
' '

1 1
( / / / )

N N

n nn n
P d d d dθ ω θ ω

= =
< >� �

with '/ 0.7N N = . (c) Variation of the variance of the normalized DOS, var( / )ρ ρ< > , as a 
function of /L ξ  in simulation with N=16 (black crosses) and N=33 (black stars) and in 
measurements (squares). The red line is an exponential fit of the data for localized waves, 

/ 1L ξ > . The results are obtained from 5000 simulations of samples with the same length but 
different degree of disorder. (d) Linear plot of var( / )ρ ρ< >  for diffusive waves.  



FIG. 5 (color online). (a) Averages of measured /nd dθ ω  and (b) / / /nd d d dθ ω ϕ ω , vs. 

nτ  for L=61cm (red circles), L=40 cm (green triangles) and L=23 cm (blue filled circles). The 

black curve is obtained from simulations in which / 0.7N N′ = . (c) simulations for the complete 

TM of / / /nd d d dθ ω ϕ ω  with / 0.06L ξ =  (blue dots), / 0.1L ξ =  (cyan squares), 

/ 0.17L ξ =  (magenta triangles) and / 0.25L ξ =  (black crosses). (d) Scaling of /nd dθ ω  for 

eigenchannels with 1τ =  (blue dots) and 0.1τ =  (blue triangles), of /d dϕ ω  (blue stars), and 

of ρ< >  (red crosses). 
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1. Derivation of the density of states in terms of eigenchannel dwell times 

Krein, Birman and Schwinger [1-5] have shown that the density of states (DOS) is given as,  

     †1
( ) /

2
i TrS dS dρ ω ω

π
= −      (1)

Here S is the scattering matrix consisting of four N N× matrices, in transmission and reflection for 

waves incident on the two open boundaries of the sample, 
'

'

r t
S

t r

� �
= � �
� �

. The unprimed matrices are for 

the wave coming in on the left and the primed matrices  indicate the wave is incident on the right side 
of the sample. The DOS can thus be expressed in terms of the components of the scattering matrix,  

  † † † † †( ) ( ') ( ')
( ( ) ) ( ' + ' )

2 2

i dS i dr dt d t d r
Tr S Tr r t t r

d d d d d

ω
ω

π ω π ω ω ω ω
− = − + +    (2)

Following the approach of Brandbydge and Tsukada [6] who calculated the local DOS of electrons in 
terms of the derivative of the phase of the transmission eigenchannel with respect to the change of 
local potential, we show that the DOS can be obtained from the measurement of the TM, for a non-
absorbing system with time-reversal symmetry.  

Via the singular value decomposition of the TM, †t U V= Λ , †( )
dt

Tr t
dω

 is given by, 

†
† 2 † 2( ) Im[ ( )]

dt dU d dV
iTr t Tr U V

d d d dω ω ω ω

Λ
− = Λ + Λ + Λ       (3) 

Because Λ is a real matrix,  
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Since, V is a unitary matrix, †VV I= ,  this yields 
†

†dV dV
V V

d dω ω
= − . Eq. (3) can then be written as,  
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Finally, this leads to,  

   † * *

1
( ) ( )

Nn n n
n n n nn n

d d ddt
iTr t i

d d d d

θ
τ τ

ω ω ω ω=
− = − − =� �

u v
u v    (6) 

Where, * *1
( )n n n

n n

d d d

d i d d

θ

ω ω ω
= −

u v
u v . 

Because of the time-reversal symmetry ( ')Tt t= , the contributions from the two transmission matrices 
are the equal, 

     †

1

'
( ' )

N n
nn

ddt
iTr t

d d

θ
τ

ω ω=
− =�     (7) 



Due to the conservation of flux, the eigenvalues of the †rr  and †' 'r r are, 1 nτ−  and the matrices †rr

and †' 'r r  can be written with the unitary matrices U and V, † *( ) Trr V I Vτ= −  and † †' ' ( )r r U I Uτ= − . 
Following the same procedure as above, we obtain,  

    † † '
( + ' ) 2(1 ) n

n

ddr dr
iTr r r

d d d

θ
τ

ω ω ω
− = −     (8) 

Summing Eq. (6-8) gives the DOS, 

    †

1

( ) 1
( ( ) )

2

N n

n

di dS
Tr S

d d

θω
ω

π ω π ω=
− = �     (9) 

Equation (9) shows that ( / ) /nd dθ ω π  is the contribution of the nth eigenchannel to the DOS.  

In Fig. S1 we explore the relationship between the integral of the energy density inside the sample for 

the nth eigenchannel, denoted by ( ),n
V

I r dVω�  and /nd dθ ω  with computer simulations. We consider 

a scalar wave within a two-dimensional disordered waveguide with semi-infinite ideal leads with 
index of refraction of unity and perfectly reflecting transverse sides. The disordered region within a 
multimode waveguide is modeled by a random position-dependent dielectric constant ( , )x yε . The 

wave equation 2 2
0( , ) ( , ) ( , ) 0E x y k x y E x yε∇ + =  is discretized on a square gird. Here, 0k is the wave 

number in the sample leads. The Green’s function at points on the grid is calculated via the recursive 
Green’s function method [7] . 

Figure S1 | Relationship between dwell times and DOS. (a) Intensity inside the sample for 
eigenchannels with �n=0.8 (blue line), �n=0.5 (green line), �n=0.1 (red line) and �n =0.001 (cyan line).
for N=33 and L/�=0.69. (b) Corresponding spectra of the eigenchannels delay times (circles)  and the 
EDOS (curves).  

We choose a diffusive sample with L/�=0.69 so that fluctuations in spectra of /nd dθ ω  are clearly 
observed. The variation of intensity integrated over the sample cross section versus depth z into the 



sample is shown in Fig. S1a for a number of transmission eigenchannels. Plots of ( ),n
V

I r dVω�  and 

/nd dθ ω  normalized to the average over channels are presented in Fig. S1b and are seen to coincide.  

These results confirm that /nd dθ ω  is also proportional to the energy stored in the nth eigenchannel. 

Just as the sum of nτ  gives T, the sum of ( / ) /nd dθ ω π  gives the DOS showing that propagation in 

multichannel samples can be regarded as the sum of characteristics of independent 1D systems. 

2. Measurement of the TM and determination of the modes of a random system using the 

spectra of the field inside the sample 

Measurements of the TM are carried out in a copper waveguide of diameter 7.3 cm containing 
randomly positioned alumina spheres [8, 9]. The impact of absorption is removed by Fourier 
transforming field spectra to form a pulse into the time domain, multiplying the time dependent field 
by a factor exp( / 2 )at τ , where 1 / aτ  is the absorption rate, and finally Fourier transforming back into 
the frequency domain [10, 11]. Measurements are analyzed in two frequency ranges 14.7-14.94 GHz 
and 10-10.24 GHz in which the wave is diffusive and localized, respectively. Measurements are made 
for linearly polarized horizontal and vertical components of the field over the front and back surfaces 
of the waveguide by translating and rotating wire antennas on a square grid with spacing of 9mm. For 
diffusive waves, the TM was measured for three sample lengths, L=23, 40 and 61 cm for 23, 4 and 6 
sample configurations, respectively, while for localized waves, measurements are reported here for 
samples of length L= 40 cm for 60 sample realizations. 

The determinations of the DOS from the analyses of modes and transmission eigenchannels in Fig. 2 
are in principle distinct and independent. The DOS found from the modal decomposition at each 
frequency involves the analysis of the entire spectrum of the Green’s function, while the analysis of 
the transmission eigenchannels requires only the TM at two slightly shifted frequencies so that the 
derivative of the phase can be found. Field spectra from at any set of points within the medium could 
therefore be utilized as well to find the modes. This is demonstrated in Fig. 2 of the main text in 
comparisons of the DOS obtained from Eq. (1) with modal properties nω and nΓ found from a fit of the 

expression  
/ 2

( , ', ) ( , ')
/ 2 ( )

n
nn

n n

E r r a r r
i

ω
ω ω

Γ
=

Γ + −
�  to measurements of the field at points inside the 

sample and a determination based on transmission eigenchannels utilizing Eq. (2) in the main text.  

To determine the modes from the field inside the medium, the same L=40 cm copper tube and 
scattering medium used in all the measurements reported here except for five 3-mm-diameter holes in 
a line along the length of the tube separated by 1 cm from 35-39 cm. The TM was measured with 45 
input points and 45 output points. The modes were determined from the field transmission coefficients 
between a source antenna at various points on the input surface and a detection antenna moved to the 
center of each of the five holes. The DOS spectra of modes determined from measurement of the 
microwave field along the length of the sample and of channels determined from measurements 
through the sample are seen in Fig. 2b of the main text to be in reasonable agreement.  

3. Relation between eigenchannel phase derivative and eigenchannel delay time 

The DOS given by Eq. (2) can alternatively be expressed in terms of single channel delay times 
/abd dϕ ω , weighted by the scattered intensity Iab over the 2N incoming and outgoing channels on 

both sides of the sample [12, 13], 

     ( )
2

,

1
.

N ab
aba b

d
I

d

ϕ
ρ ω

π ω
= �     (10) 

The single channel delay times is the time spent in the sample by a wave injected into channel a and 
emerging in channel  b in the limit of vanishing pulse bandwidth [14-16],



   ( ) ( )
00 0 0 0( ) lim ; , / ; , |ab

ab ab ab

d
t I t tdt I t dt

d
ω ω

ϕ
ω ω ω ω ω

ω∆ →∆ = ∆ ∆ =� �  (11) 

Here ( ) ( ) 2
0 0; , | ; , |ab abI t t tω ω ω ω∆ = ∆  is the transmitted pulse with carrier frequency 0ω  and  

bandwidth ω∆ . The time varying field ( )0; ,abt t ω ω∆  is the inverse Fourier transform of the field 

spectrum ( ) abi

ab abt I e
ϕω =  with 

2

ab abI t= .   

In this section, we demonstrate that the delay time of an eigenchannels ( )0 ,nt ω ω∆ ∆  for a pulse with 

vanishing bandwidth is the composite eigenchannel phase derivative /nd dθ ω . We define ( )nav t  as 

the component in channel a of the time-dependent wave composed from a narrow bandwidth of 

singular vector components ( )nav ω  of unit incident flux in ( )nv ω . vna(t) is the inverse Fourier 

transforms of ( ) ( )nav Gω ω , where G(�) is an envelope with a narrow bandwidth. An example of 

( )nav t and the corresponding waveforms ( ) ( ) ( ) ( )1
nb n nbu t FT u Gλ ω ω ω−= 	 
� �  are presented in the 

inset of Fig. S2 for a Gaussian envelope.  

Figure S2 | Pulse transmission for transmission eigenchannel determined from measured spectra 

of the transmission eigenchannel in a single random realization of the sample. (a)  plot of the time 
variation of the incident and outgoing field for the n=1 transmission eigenchannel for which the 
spectrum of /nd dθ ω is shown in Fig. 1a of the main text. The blue curve represents the incident 
wave and the red curve the outgoing wave. The sample configuration is drawn from a sample with 
g=6.9. The field variation is obtained from the inverse Fourier transforms vna(�) (blue curve) and 
�n(�)una(�) (red curve). (b) Semilog-plot of the intensity variation for the n=1 transmission 
eigenchannel averaged over all channels.  

The single-channel delay time in Eq. (11) gives the decay in transmission for an incident pulse centred 
at t=0. For the eigenchannel delay time ( )0 ,nt ω ω∆ ∆ , the incident pulse reflects the spectrum of the nth

transmission eigenchannel and the time delay reflects the difference between the outgoing and incident 
pulse for this transmission eigenchannel. The eigenchannel delay time is then the average of the time 
delays on the outgoing and incident sides of the sample averaged over all output channels a and output 
channels b weighted by the corresponding fluxes 
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  (12) 

Since the incident pulse ( )nav t  is not centered at t=0 the time corresponding to its barycenter is 

subtracted from the delay time associated to ( )nbv t . In the limit of vanishing pulse bandwidth, ( )nλ ω

is constant over the bandwidth so that ( ) ( ) ( ) ( ) ( )1 1
n nb n nbFT u G FT u Gλ ω ω ω λ ω ω− −	 
 	 
� � � ��  and the 

frequency variation of the singular values need not be considered.  

The derivative of the phase of unb(�), ( ) /u

nbd dϕ ω , is given by  
( ) 1v

nb nb

nb

d du

d u d

ϕ

ω ω
= . The singular vectors 

are random variables with statistically independent real and imaginary parts and are normalized so that 
2 2

1na nba b
v u= =� � . The average phase derivative weighted by intensity over the outgoing 

channels b is thus 
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d d i d
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u
u . Using Eq. (2), 
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time shift of the barycenter of ( )nbv t  averaged over channels b,
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The relation between the transmission delay time and the /nd dθ ω  is then,   

    ( )0 0lim , /n nt d dω ω ω θ ω∆ → ∆ ∆ =     (14) 

This relation is verified by the agreement of the spectra of nt∆ and /nd dθ ω  in Fig. S3. Note that the 

demonstration presented here regarding the equality of /nd dθ ω  and the transmission eigenchannel 

delay time does not involve any assumption regarding the degree of completeness of the measured 
TM. Equation (14) holds as well in the case of a lossy medium. 

Figure S3 | Measured spectra of eigenchannel phase derivative and delay time in a single 

realization of the random sample. The spectra for eigenchannels n=1,5,9,13,17,21,25 of /nd dθ ω
for a sample of diffusive waves with g=6.9 (lines)  are compared to the delay times of the 
corresponding eigenchannels found with Eq. (12) (circles).  

4. Tail of the distribution of the DOS for localized waves 

In the main text, the distribution of the measured DOS for localized waves and Leff/�=2.08 is seen to 
exhibit an algebraic tail as 4.81/ ρ  . This is reminiscent of one-dimensional theoretical studies showing 



that the distribution of the DOS has an algebraic tail as 1 / ρ for localized waves and L → ∞  [17, 18]. 

In Fig. S4, we show that this scaling of the tail is in agreement with computer simulations. ( )P ρ  is 

also seen to have an algebraic tail, with 4( ) 1 /P ρ ρ∝   for ρ ρ< >� . 

  
In our multichannel system the contribution of the second eigenchannel to the EDOS cannot be 
neglected for L/� not much larger than one. We attribute the difference of the exponent giving the best 
fit to this contribution as well as the finite value of L.  

Figure S4 | Probability distribution of the DOS for localized waves. (a) Measurement of the 
probability distribution of the DOS for Leff/�=2.08 (blue circles). The blue line is an algebraic tail 
as 4.81/ ρ . (b) Simulations of the probability distribution of the DOS for L/�=2.5 and N=33. The black 

line is an algebraic tail as 41 / ρ . 

5. Relation between the EDOS and the transmission eigenvalues for localized waves 

The variation of the transmission delay time normalized by the average single channel delay time 
/ / /nd d d dθ ω ϕ ω �  �  with the transmission eigenvalue in diffusive samples is seen to collapse to a 

single curve for different values of /L ξ  in Fig. 5c of the main text. For localized waves, only a single 

eigenchannel contributes significantly to transmission. To explore the variation of /nd dθ ω  with 

transmission, we consider sub-ensembles of  /nd dθ ω  for fixed values of nτ . The average of those 

sub-ensembles is denoted by /nd d τθ ω< >  for transmission τ . / / /nd d d dτθ ω ϕ ω< > < >  is seen in 

Fig. S5 to increase with τ< >  for localized waves / 1L ξ >  as was the case for diffusive waves for 

/ 1L ξ < . This reflects that high transmission is associated with deeper penetration into the sample. 

The integral of the intensity  profile is therefore higher for more strongly transmitting eigenchannels 
and  along with this the DOS is higher. 



The curves for normalized delay time / / /nd d d dτθ ω ϕ ω< > < >   vs. τ< >  do not overlap for 

localized waves, as was the case for diffusive waves; rather the normalized delay time increases with 
/L ξ for the a given value of transmission. Because the wave is transmitted through sharp resonances 

for larger values of /L ξ , fluctuations of the EDOS are expected to be larger than for diffusive waves 

and the delay time in transmission normalized by its average can reach much higher values  when the 
wave is on resonance with a mode and transmission is high. 

Figure S5 | Simulations of the variation of the EDOS with transmission for localized waves.

Simulations for the complete TM give / / /nd d d dτθ ω ϕ ω< > < >  with for L/�=0.18 (blue circles), 

L/�=0.58 (red dots), L/�=1.35 (green triangles) and L/�=3.4 (black squares).

6. Incomplete measurement of the transmission matrix 

It is not possible to capture all the transmitted energy in all the outgoing channels and excite the 
sample with all possible incident channels. In optics, the incompleteness of the measurement of TM of 
a disordered slab is due to the finite size of the illumination beam, the finite numerical aperture of the 
collecting lens and loss of energy because of the scattered photons escaping from the sides of the 
sample. In our microwave measurements, only a fraction of the transmitted energy is measured since 
the TM is determined by measuring the transmission coefficients on a grid with a finite number of 
points [8]. The impact of the incomplete measurement of the TM upon the probability density of 
eigenvalues of the TM has been recently investigated by Goetschy and Stone [19]. They explored the 
change in the density of transmission eigenvalues from the bimodal distribution to a distribution 
characteristics of Gaussian random matrices as the ratio of measured channels N� and total number of 
channels N on the input side m1=N1�/N and output side m2=N2�/N  decreases. Since the spacing of the 
grids on which the source and detector are moved is the same, we assume then m1=m2. The density of 
the transmission eigenvalues for the incomplete TM depends only upon on the value of m and the ratio 
of the transport mean free path � and the sample length L, which is close to the value of average total 
transmission <Ta>. Here a indicates the particular incident channel or position of the detector. In our 
sample, the value of <Ta> is g/N= 0.115. The best agreement between measured probability 
distribution of the eigenvalues in our diffusive samples of length L = 23 cm and the theoretical 
calculation is obtained for a value of m = 0.7. This is consistent with the degree of control reported in 

the main text by comparing the measured / / /n bad d d dθ ω φ ω  and simulations in which only 

70% of the channels are used. 
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