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Abstract

Neutrino interactions beyond the standard model of particle physics are an open field
both from theoretical and experimental point of view. In this thesis we present how non-
standard neutrino properties can be constrained using cosmological observations and in
particular cosmic microwave background data like those of the Planck satellites. We will
consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions
mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken
global U(1) symmetry, as in, e.g., Majoron models or that secret contact interactions
among eV sterile neutrinos, mediated by a massive gauge boson X (with MX �MW )
exist. We will present constraints on the interaction strength and on the neutrino mass
allowed by cosmological data alone or in combination with astrophysical observations
and we will discuss the feasibility of the considered models.





Sommario

Le interazioni tra neutrini oltre il modello standard della fisica delle particelle sono
un campo aperto sia dal punto di vista teorico che sperimentale. In questa tesi
presentiamo come le proprietà non standard dei neutrini possano essere vincolate
usando le osservazioni cosmologiche e in particolare i dati della radiazione di fondo
cosmica, come i dati di Planck. Considereremo la possibilità che i neutrini posseggano
interazioni segrete scalari o pseudoscalari mediate da un bosone Nambu-Goldstone
di una simmetria globale spontaneamente rotta U(1) ancora sconosciuta, come ad
esempio i modelli che includono i Majoroni oppure quelle interazioni segrete di contatto
tra neutrini sterili leggeri (∼ 1 eV), mediati da un bosone di gauge massivo X (con
MX �MW ). Presenteremo vincoli sulla forza di interazione e sulla massa di neutrini
consentita dai dati cosmologici o in combinazione con osservazioni astrofisiche, infine
discuteremo la fattibilità dei modelli considerati.





Introduction

The observation of the Cosmic Microwave Background (CMB) radiation dramatically
changed how humanity perceived the Universe. The hot big bang theory proposed by
G.Gamow in the late 40’s was confirmed when in 1964 two American physicists, Arno
Penzias and Robert Wilson, observed an omnidirectional, homogeneous and isotropic
noise in the microwave bands, whose power was consistent with a black body at T = 3 K.
This discovery, that as several other discoveries in the scientific history was a fortunate
chance, was the evidence that long time ago the Universe was hotter and denser, hence,
it does behaves like an expanding thermodynamic system.

After the first observation, a sequence of spatial and atmospheric missions like
COBE (1989-1992), WMAP (2001-2008) and Planck (2009-today) and more than a
dozen other suborbital experiments, have revealed and are still revealing the existence
of a pattern of tiny anisotropies in the CMB temperature and polarization. This pattern
encodes a wealth of information about the Universe, for example its energy and matter
content, the expansion rate, the primordial spectrum of perturbations, and more. The
rapid series of experiments that has been performed transformed cosmology into a
precision science, moreover the new generation of ground based experiments, (Keck
Array, ACTpol, Simons Observatory), the balloon experiments (Spider, LSPE, Piper)
and the future space missions (COrE, LiteBird, Pixie) will increase the precision of the
observations, in particular for the polarized anisotropies.

Therefore, actual cosmological data, in particular the latest release of Planck data,
allow to study of the Universe evolution and constrain the cosmological parameters
below the percent level. Thanks to this precision we can use the primordial Universe
as a laboratory to test fundamental physics in particular in the neutrino sector. In
fact neutrinos are the most elusive particles in the standard model (SM) of particle
physics. We know that they are massive since we have observed the phenomenon of
flavour oscillations, however, their mass is so small that it has not yet been measured.
The smallness of their masses is itself a puzzle in the context of the SM and the mass
generation mechanism could be related to new physics beyond the SM. Purpose of this



thesis is to investigate neutrino properties using cosmological data, in particular testing
some extension of the standard model including “secret" interactions in the neutrino
sector.

This thesis is organized as follows:

1) In the first chapter, Ch.(1), we provide an overview of the standard cosmological
model (SCM). We start from the Cosmological Principle and General Relativity
in order to describe the background evolution of the Universe before introducing
the main aspects of the perturbation theory. We present the full set of Boltzmann
equations for the evolution of cosmological perturbations. Finally we provide a
brief introduction of the theory of inflation.

2) In the second chapter, Ch.(2), we move our attention on the CMB, which is the
main observable used in this thesis. The processes giving rise to the CMB are
outlined, we show how gravitational potential is connected to matter perturbations
and how their mutual influence changes the properties of the photon-baryon fluid.
In addition we derived the expression for the CMB temperature anisotropies
power spectrum (APS), describing in details the features and the physics encoded
within. After that we describe the polarization aspects of the CMB, i.e. how
polarization is originated and its treatment. At the end of this chapter we briefly
discuss the principal foreground contaminations.

3) Ch.(3) focuses on the neutrino figure. The role of this particle inside the standard
model of particle physics is reviewed in the beginning of the chapter. We also
present a quick review of the current observations regarding both the flavour
oscillations and mass constraints coming form laboratory experiments. Finally we
present the effects on the cosmological observables and the current cosmological
constraints on the neutrino properties.

4) In Ch.(4) we start to present the original work of this thesis. This part begins with
the introduction of non-standard interaction in the neutrino sector. We present the
formalism for a (pseudo)scalar-type interaction, its implication in the cosmological
framework and the expected signature in the CMB APS. After a brief overview
of the state of the art, we discuss the constraints for non-standard interaction
among massless neutrinos obtained using the the 2013 and 2015 Planck data
releases and some additional astrophysical dataset like geometrical information
form baryon acoustic oscillations or direct measurements of the Hubble constant.

5) In the last chapter we extend the analysis performed in the massless neutrino
framework to the massive one. This time we consider a Fermi-like interaction
between active and sterile neutrinos instead of a (pseudo)scalar interaction, in
particular we follow the model described in Ref. [158] and successively in Ref. [135].
Secret contact interactions among eV sterile neutrinos, mediated by a massive
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gauge boson X (with MX � MW ), and characterized by a gauge coupling gX ,
have been proposed as a mean to reconcile cosmological observations and short-
baseline laboratory anomalies. We proceed constraining this scenario using the
latest Planck 2015 data and some additional data coming from baryon acoustic
oscillations measurements. In analogy to what we have done in Ch. 4 we study
the effects of the interaction on the perturbation evolution. This time we follow
explicitly all the neutrino mass eigenstates in order to fully understand the impact
of the interaction on the anisotropies power spectra. After that we present the
constraints on both the

∑
mν and the interaction strength GX for the considered

models. Finally we compare our constraints with the results presented in literature.





1
The standard cosmological model

Non importa in quale parte di esso tu stai; sempre in
qualunque luogo stia qualunque persona, da ogni lato si
lascia sempre un tutto infinito. Inoltre, se si considera
tutto lo spazio come finito, e qualcuno arrivasse alle
ultime sponde di esso, e di là scagliasse una freccia,
pensi che essa, tirata a tutta forza, arrivi là dove è stata
mandata e voli a lungo più oltre, oppure che qualcosa
possa frapporsi e impedirle il volo? È necessario
assumere una di queste due opinioni, ma entrambe
chiudono ogni via di scampo e obbligano a riconoscere
che l’universo si estende senza confine.

Lucrezio, “De Rerum Natura I”, vv. 965-976

The formulation of a solid cosmological model is based on two ingredients: one
principle and a solid mathematical formalism. The cosmological principle is the natural
extension of the Copernican principle and assumes that the Universe is invariant
under translation and rotation; this leads to two important consequences: there are no
privileged observers and physics is the same everywhere. Every model that pretends
to be a suitable cosmological model cannot violate this principle. The mathematical
formalism used to describe the gravitational framework of the Universe is the theory of
General Relativity (GR) which has been formulated more than a century ago by Albert
Einstein. It succeeds in merging concepts such as Newtonian gravitation inside a curved
space without breaking the Lorentz invariance, basically it describes the space-time as
a Lorentzian manifold or a pseudo-Riemann manifold where every tangent space can
be considered as a flat Minkowski space. Nowadays there is no better theory able to
describe and explain the cosmological evolution and the gravitational behaviour of the
astrophysical objects.

In this chapter we will start focusing on the main aspects of these two ingredients



THE STANDARD COSMOLOGICAL MODEL

and finally we will provide a consistent description of the background evolution of the
Universe, as well as the linear evolution of cosmological perturbations.

1.1 All you need is a principle (cosmological principle and
mathematical framework)

The cosmological principle says that, on large scales, for any observer, the Universe
appears to be isotropic and homogeneous [41, 82, 117, 138, 173]. This is not obvious
looking at our galaxy and the nearby Universe, but observations on scales larger than
∼ 100 Mpc (where 1 Mpc = 3.086× 1022 m) such as Cosmic Microwave Background,
Large Scale Structure (LSS), etc... all show isotropy and homogeneity. While isotropy
means a simple concept: no preferred directions for any observer, homogeneity introduces
a stronger concept, it assumes that in every patch of the Universe we can find the
same physical properties (energy density, temperature, etc...). We can explain these
observations claiming that the Earth occupies a privileged position in the center of
the cosmos or assuming that there are no special observers at all. The second one is
the explanation proposed and universally accepted by the scientific community as the
Cosmological principle.

Paying more attention to the definitions, it is clear that isotropy does not imply
homogeneity and the other way around, i.e. assuming isotropy from a single point of
observation does not ensure homogeneity and measuring physical quantities in different
areas of the universe does not guarantee isotropy. Probing isotropy, at least, about two
different observables would be a confirmation of the cosmological principle, however,
observationally speaking, we are limited in space and time.

It is interesting to see how imposing the cosmological principle leads to a series of
implications: homogeneous and isotropic means that the the spacetime can be exfoliated
in a a series of 3D hyper-surfaces all characterized by a time coordinate; thus a comoving
observer sees the universe only in function of “t”. Starting from the most general metric:

ds2 = gµνdx
µdxν , (1.1a)

= g00(dx0)2 + 2g0idx
0dxi + gijdx

idxj , (1.1b)

where gµν is the metric tensor. The most convenient choice of coordinates is considered
g00 = −1, thus an universal time, while the third term of Eq.(1.1), hypothesizing an
expanding Universe where a ≡ a(t) is the scale factor of the expansion (giving the
current value of a as a(t0) = 1), takes the following form:

gij = a2γij (r) , (1.2)

− 11 −
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where γij (r) is the spatial part of the metric which, in light of isotropy assumption,
is function only of the radial coordinate r. Putting together the infinite foliations the
results is a metric for a 4D spacetime:

ds2 = −dt2 + a2γijdx
idxj , (1.3)

Notice that having a Universe which respect the cosmological principle is necessary
and sufficient in order to obtain the metric shown in Eq.(1.3). If we consider simply
connected spaces i.e. a space where, staying within the boundaries, every path between
two points can be continuously transformed into any other path, we can write a simpler
version of Eq.(1.3). This is known as Friedmann–Robertson–Walker (FRW) metric and
in 3D spaces of constant curvature takes the form :

ds2 = −dt2 + a2 dr2

1− κr2
+ r2dΩ2 , (1.4)

here κ is the curvature of the spacetime and dΩ2 = dθ2 + sin θ2dφ2. One again the
crucial point is the assumption of homogeneity and isotropy, considering the spacetime
as a series of layers or foliations independent on time makes sure that all we need
to know about its geometry is contained within a(t), κ and r. Moreover, constant
curvature means that κ is a dimensionless number which can take on only three discrete
values: κ = 0 in case of flat Universe, κ = −1 if the Universe has negative curvature,
and κ = 1 for a positively curved Universe.

General Relativity is the second ingredient of the model. As said before, the theory
has to be Lorentz covariant, this basically means passing from ∇2φN → �φN (� is
the d’Alembert operator) when the speeds under considerations are of the same order
of the speed of light (c). Thus, it could be thought of as a simple generalization of the
Newtonian gravity, i.e. a description of the gravitational potential which satisfies the
Poisson equation:

∇2φN = 4πGρm , (1.5)

where φN is the Newtonian potential and ρm represents the mass density, inside the
special relativity picture. In addition to Lorentz invariance, theory has to be always
attractive and must obey the principle of equivalence (PE), whose most powerful
definition says: “In any sufficiently local region of spacetime, the effect of gravity can
be transformed away”. Here "local" means that the observer must be in the same
reference system of the experiment and that the latter must be small with respect to
the variations of the gravitational potential. Roughly speaking PE suggests that gravity
is only a matter of geometry: an observer able to measure a portion of space to be flat
is exactly in the same condition of another observer, elsewhere in the Universe, who is
measuring an equivalent flat space. The metric derived from the cosmological principle,
Eq.(1.4) is exactly what is needed in order to built the theory. Thus, considering GR as

− 12 −
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a classical field theory allows to a self-consistent derivation of the equations of motion:

Gµν = 8πGTµν , (1.6)

where G and Tµν are the universal constant of gravitation and the energy momentum
tensor respectively and Gµν = Rµν − 1

2R gµν is the Einstein tensor in which appear the
Ricci tensor Rµν and the correspondent scalar R. Here c = ~ = 1. The left hand of
Eq.(1.6) contains the information about the variation of metric and curvature and rises
from the vacuum part of the Einstein Hilbert action, while in the right-hand side we
find the source of the curvature due to matter and energy. Einstein’s filed equation is a
second order differential equation for the metric tensor, since we deal with a symmetric
rank-2 tensor, there are 10 independent equations, however imposing some reasonable
properties would reduce the numbers of degrees of freedom. Imposing a statement of
energy conservation:

Dµ Tµν = 0 , (1.7)

which leaves us with only 6 truly independent equations.

1.1.1 Dynamics of homogeneous and isotropic Universe

The first step to study the dynamics of an homogeneous and isotropic Universe is to
define the matter content in terms of its energy momentum tensor Tµν . For the main
components it is appropriate to approximate the energetic content as energy density
and pressure [41,82,117,138,173]. It is correct to assume the perfect fluid notation:

Tµν = (ρ+ P )VµVν − Pgµν , (1.8)

where ρ is the energy density, P is the pressure and Vµ is the 4-velocity. In order to
have a simplified description, from now on we are going to consider a flat Universe with
constant curvature κ = 0. Solving the 6 equations, one for every degree of freedom
of the theory, leads to the derivation of a famous set of equations named Friedmann
equations, the first one comes from the time-time component G00 = k/3T00:

H2 ≡
(
ȧ

a

)2

=
8πρG

3
, (1.9)

here H is the Hubble parameter. The latter parameter, measured today, is called
Hubble constant H0 and it is used as the unit of measurement to describe the expansion
of the Universe. It appears inside the empirical law which relates the distance of an
object with its recession velocity, known as Hubble law:

v = H0d . (1.10)

− 13 −



All you need is a principle (cosmological principle and mathematical
framework)

If, as observations have showed, every object in the sky is moving away from us following
the Hubble law, the only possible explanation is that the Universe itself is expanding.
Eq.(1.9) says us that the Hubble parameter (or the expansion rate) depends on the
energy content of the Universe and, thus, it is not constant during the its evolution.
On the other hand, the Hubble parameter, and consequently the Hubble law, are
local quantities that can be measured only in the local Universe. Considering the first
Friedmann equation and the space-space component i.e. Gij = k/3Tij , it comes:

ä

a
= −4πG

3
(3P + ρ) , (1.11)

that is called acceleration equation. A feature of Eq.(1.11) is that also pressure
contributes to gravitation, moreover if ρ + 3P < 0 the cosmic expansion would be
accelerated. Basically theory allows the possibility of an anti-gravitational fluid on
cosmological scales. Putting together Eqs.(1.9 and 1.11) a third one rises:

ρ̇+ 3
ȧ

a
(P + ρ) = 0 , (1.12)

which is a continuity equation or fluid equation, it simply expresses the conservation of
energy momentum tensor, Eq.(1.7). Since the last equation is not independent a fourth
equation describing properties of matter is needed in order to solve the system, the
choice falls on an equation of state P = P (ρ) in its simple linear form:

P = wρ , (1.13)

where w is a constant determining the properties of the matter. Thus the continuity
equation can be rewritten in function of the parameter w in the following way:

ρ̇+ 3Hρ (1 + w) = 0 (1.14a)

→ ρ = ρ0 a
−3(1+w) , (1.14b)

where a subscript 0 means that the quantity is evaluated today. Having this set of
equations we can analyse one by one the contributions of the different constituents of
the Universe. It is reasonable, in light of the observations done in the latest 60 years, to
classify the different energy densities into three main families: non relativistic matter
having w = 0 (baryon, dark matter), relativistic matter with w = 1

3 (radiation, light
neutrinos) and fluids having negative pressure with w = −1 (dark energy).

It is possible to solve Friedmann’s equations in all the three cases. The energy

− 14 −
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density of the different matter contents scales in the following way:

ρ ∝


a−4 if w = 1

3

a−3 if w = 0

const if w = −1

(1.15)

If the case of relativistic and nonrelativistic matter are well known, on the contrary
dark energy results more unusual. Historically it was proposed by Einstein in order to
have a static description of the Universe, he introduced a constant source Λ term in
Eq.(1.6), that does not violate the covariance derivative of the Einstein tensor:

Rµν −
1

2
R gµν + Λ gµν = 8πGTµν . (1.16)

Accordingly, the cosmological constant appears inside the first two Friendamnn’s
equations:

H2 =
8πρG

3
− κ

a2
+

Λ

3
, (1.17a)

ä

a
= −4πG

3
(3P + ρ) +

Λ

3
. (1.17b)

It is a curious fact that what was originally introduced to erase the acceleration of the
Universe, today is used to describe the observed accelerated expansion of the same.
From a theoretical and mathematical point of view there is no need for such an addition
inside the framework described till now, except for the fact that observations suggest it.
Indeed, in 1998 two independent projects, the Supernova Cosmology Project and the
High-Z Supernova Search Team, discovered the accelerated expansion of the Universe
using distant type Ia supernovae as standard candles [145, 151]. The cosmological
constant plays exactly this role: for a flat, Λ dominated Universe, the Friedmann
equation, Eq.(1.17b), takes the form:

ȧ2 =
8πGρΛ

3
a2 , (1.18)

since ρΛ is constant in time the latter equation can be rewritten as:

H0 =

(
8πGρΛ

3

) 1
2

. (1.19)

The solution for such an equation is an exponentially expanding scale factor,

a(t) = eH0(t−t0) . (1.20)

Finally let us remember that the fact that the Universe is expanding leads to a
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phenomenon that is known as redshift z. The wavelength of the light emitted by
a distance object which is receding from us results “shifted" towards lower energies,
i.e. “redshifted"; the other way around, objects that are moving towards us will be
“blueshifted".

1 + z ≡ λobs

λem
=

1

a
, (1.21)

This is a convenient definition that provides a simple way to measure distances, time
and the stretching factor of the Universe. It is relatively easy to measure the light
spectrum of a distant galaxy, hence, it is pretty easy to get its recession speed (e.g.
for low redshifts the standard Doppler z ' v/c is valid). Knowing how fast an object
is receding from us translates into a distance information thanks to the Hubble law,
Eq.(1.10), and, since the velocity of recession is related to the expansion rate, we are
measuring also the stretching factor a(t) of the Universe. It is possible to see the same
effect considering the momentum of a photon moving along a geodesics, if p is the
momentum of the particle emitted at tem in a flat space we can write:

ṗ = −Hp . (1.22)

Eq.(1.22) has an immediate solution in p ∝ 1/a(tem) which translates into the redshift
of the momentum of the considered particle in a FRW background.

1.1.2 Cosmological parameters

As we have seen, the expansion rate of the Universe is described by the Hubble parameter
H which depends on the energy density through Eq.(1.9). From Eq.(1.9), considering a
spatially flat Universe, is evident that exists a critical energy density:

ρc =
3H2

0

8πG
, (1.23)

thus the contribution that every species i gives can be parametrized in a dimensionless
parameter:

Ωi = ρi/ρc . (1.24)

Under this formalism, the Friedmann equation, Eq.(1.9), takes the following form:

H = H0

√∑
i

Ωi0 a
−3(1+w) . (1.25)

This set of parameters are the standard way to obtain an “identikit" of what the
Universe is composed of. For a spatially flat Universe the sum of all contribution must
be Ωtot = 1. Since the densities of various species scale as different powers of a (see
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Eqs.(1.15)) the Friedmann equation can be rewritten as a sum of contribution,

H = H0

√
Ωm0 a

−3 + Ωr0 a−4 + ΩΛ . (1.26)

Here Ωm0, Ωr0 and ΩΛ are the density parameters for nonrelativistic, relativistic matter
and dark energy respectively. Looking at the time dependencies inside Eq.(1.26) is
evident that different species dominates different ages: radiation or relativistic matter
is more important at early times, when the scale factor is small, but at a certain time
nonrelativistic matter starts to be the dominant part in terms of energy contribution.
Finally when the expansion has diluted matter and radiation components, the age of
cosmological constant domain starts. Basically the scale factor changes following the
Friedmann’s equations:

a(t) ∝


t

1
2 if w = 1

3

t
2
3 if w = 0

eHt if w = −1 .

(1.27)

The exact time of transition between two regimes depends on the amount of the
constituents, in Fig.(1.1) we show the different expansion regimes in the case of a
three component toy model (matter + radiation + cosmological constant). [153]. In

Figure 1.1: The scale factor a in function of the time t measured in
units of Hubble constant H0. The parameter used are
Ωm0 ∼ 0.3, Ωr0 ∼ 10−5, ΩΛ ∼ 0.7 and Ωκ = 0. [153]
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this model radiation gives way to matter at a scale factor aeq = Ωr0/Ωm0 ' 3× 10−4

corresponding to a time teq ' 5× 104 Yr. The cosmological constant, instead, starts to
dominate at amΛ = (Ωm0/ΩΛ)1/3 ' 0.75, corresponding to tmΛ ' 9.8 GYr. The age of
such a Universe is t0 ' 13.5GYr. Although it is a first, simple and not refined model,
the one described so far provides a good description of the most significant moments of
its history.

1.1.3 Many distances

The topic of measuring distances is not trivial in a multicomponent expanding Universe
where the metric changes under the effect of different matter and energy species
contributions. One can measure different distances using different methodologies.

1 Proper distance dp between us and a cosmological object is measured imagining
to stop the expansion of the Universe and directly measure the distance. For the
multicomponent Universe shown in Sec.(1.1.2) the proper distance is:

dp =

∫ 1+z

1

c dz′

z′H(z′)
, (1.28a)

=
c

H0

∫ 1+z

1

dz√
Ωm0 z′ 3 + Ωr0 z′ 4 + ΩΛ

. (1.28b)

2 Luminosity distance dL measured using the flux emitted by a known source, e.g.
type Ia supernovae, considering the space as Euclidean. The observed flux from a
source is by definition:

F =
N hνem
∆tem

, (1.29)

where N is the number of photons, h is the Planck constant and νem is the
frequency of emitted photons. The luminosity of the source is:

L =
N hνob
A∆tob

, (1.30)

where ob means observed and A = 4πd2
p is the surface and the isotropic spherical

emission. Since frequency and time intervals are redshifted, (i.e. νob = νem(1 + z)

and ∆tob = ∆tem(1 + z)) the flux in terms of luminosity takes the form:

F =
L

4πd2
p (1 + z)2 . (1.31)

This implies that the luminosity distance is:

dL = dp (1 + z) . (1.32)
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3 Angular diameter distance dA of an object of known size l (standard ruler) in an
Euclidean space. The subtended angle between the observer and the emitter is
δθ = l/dA, considering that the size of the ruler is increasing due to expansion,
the angular diameter distance becomes:

dA =
dp

1 + z
(1.33a)

=
dL

(1 + z)2 . (1.33b)

Every definition of distance depends on the metric (here we have assumed a flat
geometry) and on the abundances of the species that contribute to the energy budget.

1.2 Thermodynamics of the early Universe

Before proceeding further let us introduce briefly the natural system units i.e. ~ =

c = kB = 1, where the latter is the Boltzmann constant. All dimensional quantities
now have dimension of length, time or mass (energy), for example G ≡ 1/m2

Pl and
mPl = 1.221× 1019GeV is the Planck mass.

Till now, starting only from the cosmological principle and the strong principle of
equivalence, we have built a simple but reasonable cosmological model. However in
order to yield a detailed description of dynamics and evolution of the Universe, we need
to know very well the properties of the species introduced in the previous section. One
of the main feature that rises in the picture described so far, and that we have not yet
discussed, is that because the Universe has a finite age and because it is expanding,
in the past it must have been smaller, hotter and denser. Thus we need to study the
thermodynamics properties of the species that populate the Universe today and in
the past [30]. We have good observational evidence (see chapter CMB) that the early
Universe was a system in local thermal equilibrium. If the expansion is slow enough,
particles have enough time to settle close to local equilibrium and since the Universe is
homogeneous, the local values of thermodynamics quantities are also global values. In
quantum mechanics, due to Uncertainty principle

∆p∆x ≥ ~/2 , (1.34)

the momentum of a particle can be described only considering a finite volume V . Solving
the Schroedinger equation inside this box gives us energy and momentum eigenstates.
Moving to phase space the state density of a particle having g internal degrees of
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freedom is:
density of states =

g
~

=
g

(2π)3 , (1.35)

All the information about how particles are distributed among momentum eigenstates is
contained in the probability distribution function f(~p). The number density of particles
is by definition:

n =
g

(2π)3

∫
d3p f(~p) , (1.36)

while to obtain the energy density we have to weight each momentum by its energy,

ρ =
g

(2π)3

∫
d3p f(~p)E(~p) . (1.37)

For pressure we have to consider the exchange of momentum as follows:

P =
g

(2π)3

∫
d3p f(~p)

p2

3E
. (1.38)

Moreover, particles are classified into two classes, fermions and bosons, depending on
the behaviours manifested when observed; in thermodynamic equilibrium fermions
follow the Fermi-Dirac distribution, while bosons follow the Bose-Einstein distribution.

f(~p) =
1

e(E−µ)/T ± 1
, (1.39)

where + is for fermions and - is for bosons. The distribution function in equilibrium
depends on two parameters: temperature (T ) and chemical potential (µ). Chemical
potential is the quantity that maps the response of the system to a change in particle
number, e.g. the entropy of a system can be written as:

dS =
dU + PdV − µdN

T
, (1.40)

thus, in binary processes, it implies that particles flow to the side of the reaction with
the lower chemical potential. In a 1 + 2↔ 3 + 4 scenario the system reach the chemical
equilibrium when µ1 + µ2 = µ3 + µ4. Thermal equilibrium is, instead, that condition in
which there is a common temperature among the species. In cosmology the expansion
of the Universe is slow enough to guarantee, instant by instant, the thermal equilibrium
of the fluid of particle. Given the distribution function the next step consists in carrying
out the integral on the momentum. The solutions are well known [111] and we just
review the relativistic and nonrelativistic limits.
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1.2.1 Relativistic and nonrelativistic limits

If the temperature is much greater than the mass of the particles an average energy
can be approximated as E =

√
m2 + p2 ' p. Considering the equilibrium described

above and assuming the chemical potential µ = 0, number, energy density and pressure
take the following form:

n =
g

(2π)3

∫ ∞
0

4πp2 dp

ep/T ± 1
=


3

4π2 g ζ(3)T 3 fermions

1
π2 g ζ(3)T 3 bosons

, (1.41)

ρ =
g

(2π)3

∫ ∞
0

4πp3 dp

ep/T ± 1
=


7
8
π2

30 gT 4 fermions

π2

30 gT 4 bosons
, (1.42)

P =
g

(2π)3

∫ ∞
0

4
3πp

3 dp

ep/T ± 1
=
ρ

3
. (1.43)

The average energy per particle is:

〈E〉 =


7π4

180ζ(3)T ' 3.15T fermions

π4

30ζ(3)T ' 2.70T bosons
, (1.44)

where ζ(3) is the Riemann zeta function. In the early Universe temperature was high
enough to allow the existence of a zoology of particles which have been relativistic for
a relative long time (it depends on their masses). The total radiation density is the
sum of all the contributions is:

ρr =
∑
i

ρi =
π2

30
g∗(T )T 4 , (1.45)

where i runs on the relativistic species present in the plasma and g∗ is the effective
number of relativistic degrees of freedom. The general formulation takes into account
the boson and fermion contribution in the following way:

g∗(T ) =
∑
i=b

gi

(
Ti
T

)4

+
7

8

∑
j=f

gj

(
Tj
T

)4

, (1.46)

where the b index stays for bosons while f for fermions. In case of thermal equilibrium
the temperature of the single component is the same of the fluid T and the dependence
vanishes.

In case of T � m Eq.(1.39) reduces to the Boltzmann distribution function f '
exp [p/T ], bosons and fermions cannot be distinguished and the statistical quantities
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becomes:

n = g
(
mT

2π

) 3
2

e−
m
T , (1.47)

ρ = n

(
m+

3T

2

)
, (1.48)

P = nT � ρ , (1.49)

〈E〉 = m+
3T

2
. (1.50)

Number density, energy density and pressure of a species drop down exponentially
once the temperature of the fluid becomes smaller than the its mass. The physical
interpretation of this behaviour is a massive particle-antiparticle annihilation, the same
processes happened also at higher temperatures (in the relativistic regime), but in this
case annihilations have been balanced by pair productions.

1.2.2 Entropy conservation

In order to describe in a proper way the thermal history of the Universe we need to
define a conserved quantity; energy and number of particles are not the correct choices,
as we have seen, however it can be shown that entropy is the right one (it is enough to
carry out the time derivative of Eq.(1.40)). In agreement with Eq.(1.40) the entropy
density S of a collection of different particles can be written as:

S =
∑
i

ρi + Pi
Ti

≡ 2π2

45
g∗ST

3 , (1.51)

where g∗S is the effective number of degrees of freedom in entropy,

g∗S =
∑
i=b

gi

(
Ti
T

)3

+
7

8

∑
j=f

gj

(
Tj
T

)3

, (1.52)

If all the relativistic species are in thermal equilibrium, g∗ = g∗S . Entropy conservation
leads to important consequences:

1 the number density in a comoving volume is constant and proportional to the
number Ni ≡ ni/S,

2 the entropy per comoving volume is conserved, S ∝ g∗S T
3
0 a

3 = const, thus as
long as the effective number of degrees of freedom is constant, the temperature of
the fluid is proportional to the inverse of the scale factor.
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1.2.3 Boltzmann equation

Now we have a model for the description of the spacetime dynamics and a set of
thermodynamic quantities that ensure a complete description of both relativistic and
nonrelativistic energetic content of the Universe. The first approximation in order to
have a rough indication of these dynamics is considering a 2 ↔ 2 reaction and the
associated ratio between the scattering rate Γ of the species and the Hubble rate of
expansion H,

Γ > H coupled , (1.53)

Γ < H decoupled . (1.54)

The left-hand side of the latter equation can be written as:

Γ = n〈σv〉 , (1.55)

where σ is the interaction cross section and v is the average velocity of the particles,
while the Hubble rate H is derived from the Friedmann equation, Eq.(1.9). This rule
is surprisingly accurate but the correct way in order to reconstruct the phase-space
evolution of the distribution function is to provide an equation able to merge the
behaviour of the thermodynamic quantities introduced in the previous section with the
metric evolution. The Boltzmann transfer equation is the correct tool:

L̂ [f(E, t)] = Ĉ [f(E, t)] , (1.56)

where L̂ is the Liouville operator and Ĉ is the collisional term. The covariant relativistic
generalization of the Liouville operator is:

L̂ = pµ
∂

∂xµ
− Γµνγp

νpγ
∂

∂xµ
. (1.57)

In a FRW metric the left-hand side of Eq.(1.56) takes the following form:

L̂ [f(E, t)] = E
∂f

∂t
−H|~p|2 ∂f

∂E
. (1.58)

Multiplying by g/2π and integrating over the momentum we get the evolution of the
number density of a species:

dni
dt

+ 3H ni =
gi

2π3

∫
C [Ei, t]

d3pi
Ei

. (1.59)

The equation above is describing a change in number density due to the Hubble rate of
expansion (3H ni) and to the interaction (the collisional term). The collisional term
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of the Boltzmann equation is a complicated object in this case, i.e a binary process
1 + 2↔ 3 + 4, under some approximations (CP invariance and absence of Bose-Einstein
condensation or Fermi degeneracies [111]) it can be written in the following way:

dni
dt

+ 3H ni =−
∫
dΠ1 dΠ2 dΠ3 dΠ4 (2π)4|M|2

× δ4 (p3 + p4 − p2 − p1) [f1f2 − f3f4] ,

(1.60)

where the integral is carried on the momentum space dΠi =
(
gi/2π

3
) (
d3pi/Ei

)
and

|M|2 is the matrix containing the scattering amplitudes. At this point, while the
Universe is expanding two main processes may happen:

1 the interaction rate of the binary scattering processes becomes smaller than the
Hubble rate of expansion preventing the 2↔ 2 interactions,

2 the temperature T of the fluid becomes of the order of the mass of the species x
(T < mx) and the relativistic to nonrelativistic transition occurs.

If a massive particle remained in thermal equilibrium until the present day its abundance
would be suppressed following Eq.(1.47), while, if the interaction rate becomes smaller
than the Hubble rate, Eq.(1.53), that species can have a significant relic abundance
today. In this case the Boltzmann equation can be rewritten as [30,111]:

1

a3

d
(
n1 a

3
)

dt
= −〈σv〉

[
n1n2 −

(
n1n2

n3n4

)
eq

n3n4

]
. (1.61)

Here neq means the number density calculated at the equilibrium. Writing the latter in
terms of comoving density Ni (see Sec.(1.2.2) for details) we get:

d lnN1

d ln a
= −Γ1

H

[
1−

(
N1N2

N3N4

)
eq

N3N4

N1N2

]
, (1.62)

where Γ1 ≡ n2〈σv〉 and the right-hand side of the equation describes the interaction
efficiency. When Γ� H the system evolves in function of the comoving number density:
if N1 � N eq

1 the interaction efficiency results negative and particles of type 1 are
destroyed during the scattering/annihilation process and the other way around. On
the contrary if Γ� H the right-hand side of Eq.(1.62) gets suppressed and N1 goes
asymptotically to a constant value.
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1.3 Thermal history of the early Universe

Living in an expanding and adiabatically cooling Universe means that, at early times,
it must have been denser and hotter. If we push this concept to the extreme, at a
certain time, the macroscopic quantities described so far and the theory developed
by Einstein diverge and the physical description that we are carrying out here is no
longer valid. This condition or singularity of the theory is called Big bang (BB). It
is known that the term “big bang" was coined by F.Hoyle for describing the initial
stage of hot and dense Universe in a contempt sense: initially he did not believe in
the model of expanding Universe. Today we refer to the big bang as the primordial
singularity or the extrapolation of the expansion, back in time, of the universe which
yields an infinite temperature and density at a finite time in the past. Physicists suggest
that after the BB the Universe has experienced an epoch of exponential expansion
called inflation. The existence of this era is needed by several discrepancies between
theory and observations that are brilliantly fixed by inflation, Sec.(1.5). This is the
earliest time in the Universe history that we are sure existed and nowadays there are
several models of inflation [109, 123], however every one has to end with a suitable
mechanism for generating particles, otherwise the Universe would have been diluted by
the expansion (See Sec.(1.5) for more details). Nevertheless, at a certain point of the
evolution, the Universe was a hot and dense phase, in this primordial fluid, composed
by all the species described in the standard model of particles, we can make a safe
approximation assuming local thermal equilibrium. Once we made this assumption we
are going to consider the primordial fluid as a system in which particles interact each
other mainly through binary processes, i.e. 1 + 2↔ 3 + 4.

1.3.1 Early age

Start at sufficiently early times (T > 100GeV), all the known species were ultrarela-
tivistic; the temperature of the soup was larger enough to consider the masses negligible
and the cross section for the processes that took place in this era has the following
form:

σ ∼

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

∼ α2

T 2
, (1.63)

where α is the generalized coupling constant for such an interaction mediated by
a gauge boson. From Eq.(1.41) the number density for ultrarelativistic particles is
proportional to T 3, as a result the reaction rate, Eq.(1.55) becomes:

Γ ∼ α2T . (1.64)
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The Hubble rate, considering Eq.(1.25), in the radiation dominated era the energy
density scales proportionally to T 4, thus:

H ∼ T 2

mPl
. (1.65)

The ratio between the scattering rate and Hubble rate thus scales as Γ/H ∼ α2mPl/T ∝
1/T that ensures an efficient mechanism for maximizing the entropy of the system.
This is exactly the situation of thermodynamic and chemical equilibrium in which
the distribution function of fermions and bosons are the Fermi-Dirac or Bose-Einstein
distribution respectively.

As soon as the temperature falls below the mass of a particle T � m, that
species becomes nonrelativistic and the number density is exponentially suppressed.
In Fig.(1.2) we show the evolution of the comoving number density in function of
the mass-temperature ratio m/T for a species that encounters both the relativistic to
nonrelativistic transition and the decoupling.

Figure 1.2: Simple evolution of the number density of a species in func-
tion of the m/T ratio; at high temperature (m/T � 1)
it is relativistic and follows the equilibrium distribution
function, then when the m/T ∼ 1 it starts to be expo-
nentially suppressed until the scattering ratio becomes of
the order of the Hubble expansion rate. This inhibits the
scattering processes and originates a relic density [30].

This process happened for every component of the primordial soup that is kept in
equilibrium by scattering processes. In agreement with the prediction of SM and with
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the results obtained in laboratory experiments [144], the evolution of the number of
relativistic degrees of freedom can be summarized in Fig.(1.3), in particular it shows how
the annihilations processes impact on g∗. During the early stages of the evolution of the

Figure 1.3: Evolution of the number of relativistic degrees of freedom
assuming the species zoology provided by the SM. The top
is the heaviest particle and annihilates at T ∼ 1/6mt =
30GeV and so on following the mass hierarchy. The dotted
line represent g∗S [30].

Universe the matter was in a hot plasma state, during the expansion and the associated
cooling, the state of the primordial plasma encounters two phase transitions the first
one is the Electroweak (EW), at T ∼ 300 GeV. In this transition the SM provides
an elegant and precise mechanism to generate the mass of the particles: the Higgs
mechnism [99]. At this point quarks and leptons populate the plasma, the coupling
constant for strong interactions gs is small enough such that quarks behave like free
particles. Usually this state is called quark-gluon plasma (QGP). From now, every
time a fermion becomes nonrelativistic, due to annihilations or decays, g∗ decreases
of a factor 7/8 × gf , while for a boson, for the same reasons, the reduction of g∗ is
by a factor gb. The first species that encounters this fate is the heaviest lepton: the
top (t). The Universe cools further more, bottom b, charm c and tau τ− annihilate
following the mass hierarchy, until temperatures reach scales ∼ 300 − 100 MeV. At
this point we can no longer assume gs negligible, a new phase transition is predicted
there: the Quantum chromo dynamics (QCD) phase transition. With the increase of
the strong coupling constant the QGP gets replaced with the hadronic phase in which
quarks are confined inside (neutrally coloured) baryons and mesons. After the QCD
phase transition the quarks that survived to the annihilations processes are bound
mainly in protons, neutrons (qqq) and mesons (qq̄). Protons and neutrons can be
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considered very stable particles (neutrons have a mean lifetime of τn ∼ 890 s that is
larger than the Universe life-time at that epoch, protons are considered stable particles),
while mesons like π+, π− and π0 and muons µ± annihilate when T . mµ ∼ 100 MeV.
At this point the only relativistic particles left in the primordial soup are photons,
neutrinos and electrons, the processes involving these species are very important and
have consequences on the entropy conservation (dotted line in Fig.(1.3)), hence, we will
see them in details later. In table, Tab.(1.1) we show a brief summary.

T ∼ 200 GeV All species

T < 170 GeV t annihilation Start when t acquires mass

T ∼ 100 GeV Electroweak transition Mass generation

T < 80 GeV W±, Z0 annihilation

T < 1 GeV b, c, τ− annihilation

T < 150 MeV QCD phase transition hadron phase

T < 100 MeV π+, π−, π0 annihilation e±, γ, ν left

Table 1.1: In this table we show a summary of the main steps that oc-
cur in the hot (T > 100 MeV) primordial Universe. Notice
that the temperature values are suggested values, annihila-
tions and phase transitions are not instantaneous processes.

1.3.2 Neutrino decoupling

It is clear that, if the equilibrium had lasted and if every particle was annihilated,
today Universe would have been composed mostly by photons, indeed, there is a
mechanism that ensure the persistence of certain species. Deviations from equilibrium
guarantee processes like decoupling and freeze-out of both massless and massive particles.
When the T ≤ 100 GeV, under the scale of electroweak symmetry breaking, the weak
interaction mediators acquire mass mZ0 ∼ mW± , and the cross section for weak
processes becomes:

σ ∼

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

∼ G2
F T

2 , (1.66)

where

GF =

√
2

8

g2

m2
W

= 1.1664× 10−5 GeV−2 , (1.67)
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is the Fermi weak coupling constant and g is the associated dimensionless coupling
constant. For the ratio Γ/H:

Γ

H
∼
(

T

1 MeV

)3

, (1.68)

hence, the weak interaction goes out of equilibrium very quickly (with the power to the
temperature cube) once the mean temperature of the primordial fluid is less then 1 MeV.
This process is called decoupling and leads to a conservation of the number density
called freeze-out. The temperature T ∼ 1 MeV is a crucial point in the history of the
Universe: till that time a series of annihilation have depleted the variety of species (as
shown in the previous section), leaving a few relativistic particles such ad electrons,
neutrinos and photons. In this scenario neutrinos, that have been in equilibrium due to
weak interactions:

νe + ν̄e ↔ e+ + e− , (1.69a)

e− + ν̄i ↔ e− + ν̄i , (1.69b)

decoupled from the rest of the components, that means reactions, Eq.(1.69) no longer
occur. Since we know that neutrinos have tiny masses (3H decay Troitsk and Mainz
experiments) at T ∼ 1 MeV they were ultrarelativistic at the decoupling time and their
distribution function was a pure Fermi-Dirac; thus when they decouple from the rest
of the plasma they preserve their distribution. In order to see such a feature it is a
good choice defining a time independent quantity that is unaffected by the expansion,
Eq.(1.22) implies that p ∝ a−1 and thus the choice falls on the time-independent
momentum q ≡ ap. Rewriting the Fermi-Dirac distribution in function of q as:

fD =
1

eq/aT + 1
, (1.70)

implies that the neutrino distribution at later times is therefore again a Fermi-Dirac
function.

1.3.3 Electron-positron annihilation

Other processes together with Eqs.(1.69) were in the primordial Universe, in particular
one of the most important is the electron-positron annihilation and the associated pair
creation:

e+ + e− ↔ γ + γ , (1.71)

since the electron mass is me = 0.511 MeV, the energy needed in order to make couple
creation happen is exactly of the MeV order, this implies that, in a realistic case in
which neutrino decoupling is not an instantaneous process, the time window in which
couple creation starts to be inefficient partially overlap with the neutrino decoupling
process. From Eq.(1.51) it is easy to see that entropy of the Universe is conserved in
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agreement with the second law of thermodynamics (at least until we are considering
it as a close adiabatically expanding thermodynamic system), however an injection of
photons in the primordial plasma slightly change the evolution of relativistic degrees of
freedom g∗S (see the dotted line in Fig.(1.3)). Photons are thus heated with respect
neutrinos, i.e.

g∗S =

2 + 7
8 × 4 = 11

2 T ≥ me

2 T ≤ me

, (1.72)

after electron annihilation the injection of energy leads to an increase of the entropy
and consequently it would be redistributed in the temperature of the photon fluid Tγ
that increases of a factor (11/4)1/3 while Tν remains the same. Taking the photon
temperature as the reference temperature, we get:

Tν =

(
4

11

)1/3

Tγ . (1.73)

When the electron-positron annihilation finished at T � me it is useful to separate the
weight of the relativistic species into the count of the degrees of freedom,

g∗ ≡ 2 +
7

8
× 2× 3

(
4

11

)4/3

, (1.74)

where the factor 3 is the number of neutrino families in the standard model of particles.
This is what we would expect if neutrino decoupling was an instantaneous process.
However, as we have said previously, it took some time for weak interactions to go
out of equilibrium and the result is that these processes (neutrino decoupling and
electron-positron annihilation) have been overlapping for a while. Part of the entropy
released in the e+ e− annihilation process was transferred to the neutrino sector. This
leads to an extra contribution which has been parametrised using an effective number
of neutrino families Neff ,

g∗ ≡ 2 +
7

8
× 2×Neff

(
4

11

)4/3

. (1.75)

Taking this into account these considerations the standard value is Neff = 3.046 (3.045

as calculated more precisely by [55]). Using this parametrisation it is also possible to
take into account other species that could contribute to the relativistic energy density in
the early Universe or any other deviation from the standard prediction for this quantity
(e.g. chemical potential for the neutrinos or low-reheating scenarios). In that case Neff

is a free parameter of the model.
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1.3.4 Big bang nucleosynthesis

At temperature T > 1 MeV that corresponds to t < 1 second after the big bang, protons
and neutrons are no longer relativistic and their number densities follow the Maxwell
Boltzmann distribution, Eq.(1.47). Neutrons have larger masses with respect to protons
Qn = mn −mp = 1.29 MeV and they are unstable τn ∼ 890 s and decay through weak
interactions in:

n→ p+ + e− + ν̄e , (1.76)

However, until weak interactions are in equilibrium, i.e. t < 1s neutron decay is a
negligible process, instead we have to consider the following:

n+ νe ↔ p+ + e− , (1.77)

n+ e+ ↔ p+ + ν̄e . (1.78)

After neutrino decoupling Eqs.(1.78) do not affect the neutrino distribution since the
number density of neutrons and protons is small. The neutron to proton (n-p) ratio
remains almost constant except neutrons decay, Eq.(1.76). The neutron to proton ratio,
using Eq.(1.47), is: (

nn
np

)
eq

=

(
mn

mp

)3/2

e−Qn/T , (1.79)

that basically show us the exponential drop of the n-p ratio once the mean temperature
of the fluid is T � Qn. In a more detailed way, using the Boltzmann equation, Eq.(1.61)
wit 1 = neutrons, 2, 4 = leptons and 3 = protons we find:

1

a3

d
(
nn a

3
)

dt
= −n`〈σv〉

[
nn −

(
nn
np

)
eq

np

]
(1.80)

Defining Xn = nn/(nn + np) as the neutron fraction it is possible to find (see [30,62]
for more details) its value when the reaction becomes slow:

X∞n ≡ Xn (Q/T →∞) = 0.15 . (1.81)

In this way the neutron decay can be calculated by multiplying the latter by an
exponential decay factor:

Xn(t) = X∞n e−
t
τn . (1.82)

The processes which take into account neutrons described so far are fundamental, they
set the initial condition for the nucleosynthesis of the light elements in the primordial
Universe. Indeed we have to consider that other reactions are in equilibrium in the
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primordial plasma:

p+ + p+ ↔ D + e+ + ν̄e , (1.83)

n+ n ↔ D + e− + νe , (1.84)

n+ p+ ↔ D + γ , (1.85)

the first two processes are suppressed with respect to the third one because of the
Columbian repulsive potential between two equally charged particles and the weakness
of the weak interaction respectively. While the third one is the so called Deuterium
nucleosynthesis. The binding energy of deuterium is mn + mp − mD = 2.22 MeV,
applying the same procedure used in Eq.(1.79) we write down an equation for the
deuterium-to-proton ratio: (

nD
np

)
eq

' η
(
T

mp

)
e
QD
T , (1.86)

where η is the baryon-to-photon ratio [144]:

η = nb/nγ ∼ (5.1− 6.5)−10 (95%CL) . (1.87)

It is useful to express the deuterium-to-proton ratio in terms of η, this is telling us that
the production of D is inhibited until the temperature drops well beneath the binding
energy QD. Notice the huge amount of photons with respect baryons that comes from
the series of annihilation precesses described so far.

When the mean temperature of the primordial fluid drops below T ∼ 0.2MeV

(t ∼ 100 s), helium cannot form directly, the density is too low and there is not enough
time, this leads to a obliged path whose steps are:

D + p+ ↔ 3He+ γ , (1.88)

D + 3He ↔ 4He+ p+ . (1.89)

(1.90)

In Fig.(1.4) one can see the fractional abundance evolution as a function of the
temperature. Since the binding energy of helium is larger than the deuterium one (in
Tab.(1.2) we show the main Qi for the lightest nuclei), the Boltzmann equation favours
the production of helium. It is possible to calculate the helium-to-proton ratio in the
following way:

nHe
np

=
1

2
Xn(tnuc) ∼

1

16
, (1.91)

where tnuc ∼ 250 s is the temperature at which BBN light elements production ends.
Other elements have been produced in relatively low abundance during BBN such as
lithium 7Li, and beryllium 7Be, but the synthesis of heavier elements is hampered by
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AZ Qi [MeV]

2H 2.22
3H 8.48

3He 7.72
4He 28.3

Table 1.2: Binding energies for the lightest nuclei produced during the
BBN, A is the mass number and Z is the atomic number
of the element.

Figure 1.4: Fractional abundance of the lightest elements produced
during BBN in fuction of temperature [30].

the absence of stable nuclei with A = 8.

1.3.5 Recombination, photon decoupling and last scattering

We continue to follow the expansion of the Universe, the next fundamental step
encountered is the formation of neutral matter, i.e. atoms. At T ≥ 1 eV the primordial
soup is made of e− (survived to electron-positron annihilation due to matter-antimatter
asymmetry), γ, p+ and the light nuclei produced during BBN; neutrinos are free-
streaming and do not influence directly the dynamics that we are going to describe. In
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this situation electromagnetic interaction guarantee the process:

p+ + e− ↔ H + γ , (1.92)

which, however, does not provide the formation of neutral matter because of the great
efficiency of the photo-dissociation process (remember the huge amount of photons with
respect baryons Eq.(1.87)). Photons were tightly coupled to electrons via Compton
scattering while Coulomb force kept tied protons with electrons. The equilibrium
abundance ratio among hydrogen atoms, protons and electrons is given by the following
formula: (

nH
ne np

)
eq

=
gH
ge gp

(
mh

memp

2π

T

)3/2

e
QH
T , (1.93)

where QH = mp + me −mH = 13.6 eV is the binding energy of the hydrogen atom.
Assuming np = ne and following exactly what we have done in the previous section for
deuterium and protons, Eq.(1.86), we can define a free electron fraction:

Xe =
ne
nb
, (1.94)

and finally write the Saha equation:(
1−Xe

X2
e

)
eq

=
2ζ(3)

π2
η

(
2πT

me

)3/2

e
QH
T . (1.95)

When 90% of electrons are bound with protons the mean temperature is Trec ∼ 0.3 eV

which correspond to zrec ∼ 1300, notice that it is almost two orders of magnitude lower
than the hydrogen binding energy, but once again it is due to the η ratio: the great
number of photons increases the statistical weight of the tail of photon distribution,
that is, when the mean temperature is of the order of QH , there are still many photons
with T � 13.6 eV that prevent recombination. When hydrogen recombines the free
electron density drops down quickly, photons inside the plasma, that were kept tied by
Compton scattering, no longer interact and therefore are free to stream in a neutral
Universe. This process takes the name of photon decoupling, the physics under the
process cannot be explained only using the Saha equation, see Fig.(1.5), we need a
complete discussion through the Boltzmann equation, however in order to estimate the
temperature and time of photon decoupling we can compare Γγ(T ) = nbXe(T )σTh and
H(T ) = H0

√
Ωm (T/T0)3/2 (here T0 is the temperature of photons today). We find

that decoupling happened at
Tdec ∼ 0.27 eV , (1.96)
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Figure 1.5: Free electron fraction in function of the redshift z or
temperature T , hydrogen recombination is well described
by the Saha equation that starts to fail when the photon
decoupling happens [30].

which corresponds to

zdec ∼ 1100 , (1.97)

tdec ∼ 380 000 Yr . (1.98)

These processes originate a last scattering layer that, compared with the Universe
time scale, can be considered a Last Scattering Surface, this is the last moment when
photons interact with the primordial plasma. From now on they are free to travel in
the Universe that is, now, transparent to electromagnetic radiation. These photons
carry on information of the pre-last-scattering Universe, this relic radiation is known as
Cosmic Microwave Background (CMB) radiation and it is one of the most important
discoveries of mankind.

1.4 Inhomogeneous Universe

So far, following the cosmological principle, we have considered and treated the Universe
as a homogeneous system, however the complete description of the evolution of particle
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densities during the thermal history of the Universe and the observations such as the
CMB anisotropies [9], and the formation of large-scale structures, requires to introduce
a perturbation theory able to describe the evolution of the different species i.e. baryons,
dark matter, photons, neutrinos and dark energy inside the proper theoretical framework.
In this section we will provide a description of the relativistic perturbation theory and
of the associated Einstein and Boltzmann equations for the perturbed Universe. We
will follow the approach described in [127], taking as time variable the conformal time
dτ = dt/a and going to the Fourier space in order to simplify the problem facing of
differential equation problem instead of partial differential equations.

1.4.1 Perturbation theory

Considering small perturbations δgµν of the FRW metric ḡµν1, the perturbed metric
takes the form:

gµν = ḡµν + δgµν , (1.99)

with |δgµν | << |ḡµν |. As we said before we are going to consider two gauges in which it
is possible to write down the equations, in the Newtonian gauge the perturbations are
characterized by two scalar potentials ψ and φ:

ds2 = a2 (τ)
[
− (1 + 2ψ) dτ2 + (1− 2φ) dxidxi

]
, (1.100)

the advantages of this gauge choice is that the metric tensor gµν is diagonal, however
as it appears it is valid only for scalar modes of the metric. Making the choice of the
synchronous gauge the perturbed metric, Eq.(1.3) becomes:

ds2 = a2 (τ)
[
−dτ2 + (δij + hij) dx

idxj
]
, (1.101)

where the perturbation to the spatial part of the metric can be decomposed in

hij = h(~x, τ)δij/3 + h
‖
ij(~x, τ) + h⊥ij(~x, τ) + hTij(~x, τ) . (1.102)

The terms in the right hand side are, in order of appearance: the trace part h = hii,
the longitudinal and transverse traceless parts where hδij/3 + h

‖
ij represent the scalar

modes, h⊥ij corresponds to the vector modes and finally hTij is the tensor mode source.
In the Fourier space we introduce two fields h(~k, τ) and η(~k, τ), which are related to
h(~x, τ) and h‖ij(~x, τ):

hij (~x, τ) =

∫
d3k ei

~k · ~x
[
k̂ik̂j h(~k, τ) +

(
k̂ik̂j −

1

3
δij

)
6 η(~k, τ)

]
. (1.103)

1In this section the unperturbed terms will be defined with an overbar.
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Considering only the scalar modes, in the k-space it is possible to connect the syn-
chronous and Newtonian gauge potentials through the following relations:

ψ(~k, τ) =
1

2k2

[
ḧ(~k, τ) + 6η̈(~k, τ) +

ȧ

a

[
ḣ(~k, τ) + 6η̇(~k, τ)

]]
, (1.104)

φ(~k, τ) = η(~k, τ)− 1

2k2

ȧ

a

[
ḣ(~k, τ) + 6η̇(~k, τ)

]
. (1.105)

Let us describe only the synchronous gauge case. Once established the potential in
both gauges the following step consist in writing a set of linear Einstein equations, in
analogy to what we have done in the unperturbed case, the starting point is the energy
momentum tensor, Eq.(1.8), the perturbed form of Tµν = T̄µν + δTµν is given by:

T 0
0 = −(ρ̄+ δρ) , (1.106a)

T 0
i = −T i0 = −(ρ̄+ P̄ )Vi , (1.106b)

T ij = (P̄ + δP )δij + Σi
j , (1.106c)

where Σi
j = T ij − δijT kk /3 is the anisotropic shear and δρ, δP are the density and

pressure perturbations respectively. In the Synchronous gauge, in light of the perturbed
energy momentum tensor, the Einstein equations take the form:

k2η − 1

2

ȧ

a
ḣ = 4πGa2δT 0

0 , (1.107a)

k2η̇ = 4πGa2(ρ̄+ P̄ )θ , (1.107b)

ḧ+ 2
ȧ

a
ḣ− 2k2η = −8πGa2δT ij , (1.107c)

ḧ+ 6η̈ + 2
ȧ

a

(
ḣ+ 6η̇

)
− 2k2η = −24πGa2(ρ̄+ P̄ )σ . (1.107d)

with (ρ̄ + P̄ )θ = ikjδT 0
j and (ρ̄ + P̄ )σ = −(k̂i · k̂j − 1

3δij )Σ
i
j , the divergence of the

velocity of the fluid is θ = ikjVj and σ is the anisotropic stress. We report also the
Newtonian gauge version of the latter system of equations:

k2φ+ 2
ȧ

a

(
φ̇+

ȧ

a
ψ

)
= 4πGa2δT 0

0 ,

k2

(
φ̇+

ȧ

a
ψ

)
= 4πG

(
ρ̄+ P̄

)
θ ,

φ̈+
ȧ

a

(
ψ̇ + 2φ̇

)
+

(
2
ä

a
− ȧ2

a2

)
ψ +

k2

3
(φ− ψ) =

4π

3
Ga2δT i

i ,

k (φ− ψ) = 12πGa2
(
ρ̄+ P̄

)
σ .

(1.108)

Now, defining

δ ≡ δρ

ρ̄
, (1.109)
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and considering the conservation of the energy momentum tensor, or the second Bianchi
identity in k-space we get:

δ̇ = −(1 + w)

(
θ +

ḣ

2

)
− 3

(
δP

δρ
− w

)
δ , (1.110a)

θ̇ = − ȧ
a

(1− 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ . (1.110b)

These are the relativistic generalization of the continuity and Euler equations, they are
valid for the total matter and velocity components of a single uncoupled fluid, thus they
need to be modified in order to take into account the effect of interactions, for example,
in case of baryons which interacts with photon fluid through Thomson scattering.

The proper description of the fluids in the early Universe, as we have seen in
Sec.(1.2.3), requires the use of the Boltzmann equation, Eq.(1.56). Working in the
phase-space we have to deal with the conformal time τ plus six variables: three positions
xi and the corresponding conjugate momenta Pj = a (δij + hij/2) pj (in Sync. gauge),
where pj is the proper momentum. In analogy to the real space, the phase-space
distribution f(xi, Pj , τ) gives us information about the microscopical properties of a
species in a differential volume dx1 dx2 dx3 dP1 dP2 dP3, i.e. the number of particles is:

dN = f(xi, Pj , τ)dx1 dx2 dx3 dP1 dP2 dP3 . (1.111)

It is important to notice that also in the perturbative theory xi and Pj remain canonical
variables [90] allowing the carrying out of the Hamilton’s equation [34], however for
this purpose it is convenient to change the coordinate system passing from

(
xi, Pj , τ

)
to
(
xi, q, nj , τ

)
with

qj ≡ apj = qnj , (1.112)

defined as comoving three momentum. Even if this is not a canonical transformation,
the coordinate change is still valid once the same transformation has been applied to
the Hamilton’s equation. In this case the phase-space distribution can be factorized
into two contributions, the unperturbed one f0 and a pure perturbative part Ψ:

f
(
xi, q, nj , τ

)
= f0(q)

[
1 + Ψ

(
xi, q, nj , τ

)]
, (1.113)

and the linearized energy momentum tensor becomes:

T 0
0 = −a−4

∫
q2 dq dΩ

√
q2 +m2a2 f0(q) (1 + Ψ) , (1.114a)

T 0
i = a−4

∫
q2 dq dΩ q ni f0(q)Ψ , (1.114b)

T ij = a−4

∫
q2 dq dΩ f0(q)

q2ninj√
q2 +m2a2

(1 + Ψ) . (1.114c)
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Moreover, also the Liouville operator can be expressed in a different way:

L̂ =
∂

∂τ
+
dxi

dτ

∂

∂xi
+
dq

dτ

∂

∂q
+
dnj
dτ

∂

∂nj
, (1.115)

leading to the phase-space Boltzmann equation:

Df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dnj
dτ

∂f

∂nj
=

(
∂f

∂τ

)
C

, (1.116)

where the left hand side is the collisional term. It is possible to simplify the Boltzmann
equation using the geodesics equation for deriving the time derivative of the momentum,

dq/dτ = −1

2
qḣijninj , (1.117)

and considering the time derivative of the direction dnj/dτ constant, at least at the
zero order. Thus in the Synchronous gauge the k-space Boltzmann equation can be
written as follows.

∂Ψ

∂τ
+ i

q

ε

(
~k · n̂

)
Ψ +

d ln f0

d ln q

[
η̇ − ḣ+ 6η̇

2

(
k̂ · n̂

)2
]

=
1

f0

(
∂f

∂τ

)
C

, (1.118)

where ε ≡
(
q2 + a2m2

)1/2 is the proper energy measured by a comoving observer. In
the Newtonian gauge, instead, the phase-space Boltzmann equation is,

∂Ψ

∂τ
+ i

q

ε

(
~k · n̂

)
Ψ +

d ln f0

d ln q

[
φ̇− i ε

q

(
~k · n̂

)
ψ

]
=

1

f0

(
∂f

∂τ

)
C

. (1.119)

It is possible to carry out a set of equations for every species: cold dark matter, neutrinos,
baryons and photons. We are going to present these equation in the Synchronous gauge
only remanding to [127] for further details.

Cold dark matter

Observations of CMB radiation, structure formation and galaxy dynamics seems to
point towards the existence of a cold, i.e. non relativistic, pressureless fluid which
interacts only via gravity. In the Synchronous gauge the evolution of CDM density
perturbation is governed by:

δ̇c = −1

2
ḣ , (Syn) (1.120)

while all higher moments vanish.
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Massless neutrinos

Massless neutrinos can be treated as a relativistic collisionless fluid (ρν = 3Pν = −T 0
0 =

T ii ), from Eqs.(1.114) it is possible to write the unperturbed energy density as:

ρ̄ν = 3P̄ν = a−4

∫
q2 dq dΩ q f0(q) Ψ . (1.121)

One of the advantages of considering neutrinos as massless is that it is possible to
evolve the distribution function integrating out the momentum q:

Fν

(
~k, n̂, τ

)
≡
∫
q2 dq q f0(q)Ψ∫
q2 dq q f0(q)

(1.122)

where Fν is the perturbation to the distribution function. Performing a Legendre
polinomial expansion Eq.(1.122) can be rewritten in the following way:

Fν ≡
∞∑
0

(−i)` (2 `+ 1) Fν` P`(k̂ · n̂) . (1.123)

In this framework the perturbations δν , θν and σν become,

δν =
1

4π

∫
dΩFν

(
~k, n̂, τ

)
= Fν0 , (1.124a)

θν =
3i

16π

∫
dΩ
(
~k · n̂

)
Fν

(
~k, n̂, τ

)
=

3

4
k Fν1 , (1.124b)

σν =
3

16π

∫
dΩ

[(
~k · n̂

)2
− 1

3

]
Fν

(
~k, n̂, τ

)
=

1

2
Fν2 . (1.124c)

and the Boltzmann equation takes the general form:

∂Fν
∂τ

+ ikµFν = −2

3
ḣ− 4

3

(
ḣ+ 6η̇

)
P2(µ) (Syn) , (1.125)

Carrying out the integration over µ of two or more Legendre polynomials we obtain
the ` moment is affected only by the previous `− 1 and the following `+ 1 moments,
this allows us to write,

δ̇ν = −4

3
θν −

2

3
ḣ , (1.126a)

θ̇ν = k2

(
1

4
δν − σν

)
(1.126b)

σ̇ν =
4

15
θν −

3

10
kFν3 +

2

15
ḣ+

4

5
η̇ , (1.126c)

Ḟν` =
k

2`+ 1

[
`Fν(`−1) − (`+ 1)Fν(`+1)

]
. (` ≥ 3) (1.126d)
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This infinite hierarchy can only be solved numerically, and thus needs to be truncated
at some point; a rough truncation imposing Fν` = 0 for l > lmax, in light of what was
previously said about ` dependence, generates a propagation of errors from the higher
multipoles towards the lowers. In order to avoid this behaviour a more sophisticated
method was provided in [127], this consists in extrapolating the behaviour of Fν(`max+1).
Looking at the last equation of Eq.(1.126) it is evident that the form of Fν` is similar to
a spherical Bessel function 1/k j` = 1/(2`+ 1) [`j`−1 − (`+ 1)j`+1], thus it is possible
to approximate the last moment of the hierarchy is such a way:

Fν(`max+1) '
2`max + 1

k τ
Fν(`max) − Fν(`max−1) . (1.127)

Massive neutrinos

Considering neutrinos as massless particles is a good approximation for the study of
their properties in the early Universe. However, it is well known, see Ch.(3), that they
have a mass and this, if large enough, may impact on the primordial inhomogeneities
and anisotropies, thus we need to describe also the massive case with an appropriate
Boltzmann formalism. Dealing with massive neutrinos prevents, by definition, the
approximation of massless particles (ε = q) and the possibility of simplify the form of
the Boltzmann equation by integrating out the comoving momentum. From Eq.(1.118),
expanding the perturbation directly inside the Boltzmann equation, it is possible to
write the following,

∂Ψ

∂τ
+ i

q

ε
kµΨ− d ln f0

d ln q

[
1

6
ḣ+

1

3

(
ḣ+ 6η̇

)
P2(µ)

]
= 0 . (1.128)

This, as done for the massless case, leads to a hierarchy of equations and to a similar
truncation method:

Ψ̇ν,0 = −qk
ε

Ψν,1 +
1

6
ḣ
d ln f0

d ln q
, (1.129a)

Ψ̇ν,1 =
qk

3ε
(Ψν,0 − 2Ψν,2) , (1.129b)

Ψ̇ν,2 =
qk

5ε
(2Ψν,1 − 3Ψν,3)−

(
1

15
ḣ+

2

5
η̇

)
d ln f0

d ln q
, (1.129c)

Ψ̇ν,` =
qk

(2`+ 1)ε

[
`Ψν,(`−1) − (`+ 1)Ψν,(`+1)

]
, (` ≥ 3) , (1.129d)

and the corresponding truncation,

Ψν(`max+1) '
(2`max + 1) ε

q k τ
Ψν(`max) −Ψν(`max−1) . (1.130)
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Notice that the q dependence requires the existence of a different hierarchy for every
comoving moment. This leads to a more complicated set of equation that have to be
integrated.

Photons

One of the advantages of the Boltzmann formalism is that the geometrical information
and the effects on the metric, and thus on the potential, are encoded exclusively in
the left-hand part of Eq.(1.118), e.g. every massless species share the same left-hand
part. Since photons are massless particles, they can be described exactly as we done
for massless neutrinos, however, as mediators of electromagnetic interactions, photons
are deeply involved, through the Thomson scattering, in the processes before hydrogen
recombination. This behaviour introduces two collisional terms in the right-hand side
of Eq.(1.118):(

∂Fγ
∂τ

)
C

= aneσT

[
−Fγ + Fγ0 + 4n̂ ·~ve −

1

2
(Fγ2 +Gγ0 +Gγ2)P2

]
, (1.131)

(
∂Gγ
∂τ

)
C

= aneσT

[
Gγ +

1

2
(Fγ2 +Gγ0 +Gγ2) (1− P2)

]
. (1.132)

The quantities Fγ and Gγ are respectively the total intensity perturbation and the
difference between the polarization states and σT is the Thomson scattering cross
section. In presence of multipoles of order greater then 2 in the scattering term, photons
can undergo a process of polarization during the interaction. Basically, considering an
unpolarized wave propagating along the direction ẑ and scattered by an electron to the
direction x̂, the resulting direction of the electric filed would be ŷ, with a depletion of the
x̂ component. From a more realistic point of view, incoming directions of photons, out
coming scattering angles are randomly distributed and thus the final polarization results
as an integration over all the possible directions. Carrying out the same multipole
expansion we have seen for massless neutrinos, the photon Boltzmann hierarchy, in
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Synchronous gauge, takes the following form:

δ̇γ =− 4

3
θγ −

2

3
ḣ , (1.133a)

θ̇γ =k2

(
1

4
δγ − σγ

)
+ ane σT (θb − θγ) (1.133b)

σ̇γ =
4

15
θγ −

3

10
kFγ3 +

2

15
ḣ+

4

5
η̇ − 9

10
ane σT σγ +

1

20
ane σT (Gγ0 +Gγ2) ,

(1.133c)

Ḟγ` =
k

2`+ 1

[
`Fγ(`−1) − (`+ 1)Fγ(`+1)

]
− ane σTFγ` . (` ≥ 3) (1.133d)

Ġγ` =
k

2`+ 1

[
`Gγ(`−1) − (`+ 1)Gγ(`+1)

]
+ ane σT

[
−Gγ` +

1

2
(Fγ2 +Gγ0 +Gγ2)

(
δ`0 +

δ`2
5

)]
.

(1.133e)

In this set of equations the subscript b is referred to the baryon part of the fluid
which takes part to the scattering processes and θb ≡ 3k

4 vb, as it is possible to see from
Eq.(1.124). The Thomson opacity has to be taken into account also in the truncation
of the hierarchy, i.e.

Ḟ`max = kF(`max−1) −
(`+ 1)

τ
F`max − ane σT F`max , (1.134a)

Ġ`max = kG(`max−1) −
(`+ 1)

τ
G`max − ane σT G`max . (1.134b)

Baryons

During the process described so far, at least after neutrino decoupling, baryons can be
considered as non relativistic. In analogy to what we have done for photons, whose
left-hand side part of the Boltzmann equation is identical to the neutrino one, the
left-hand side part of the Boltzmann equation for baryons has common elements with
the dark matter one (in this case the average velocity term that did not appear in the
dark matter case). The collisional part, instead, comes from interactions with photons,
and it is present only in the velocity perturbation equation:

δ̇b = −θb −
1

2
ḣ , (1.135a)

θ̇b = −Hθb + c2
sk

2δb +
4ρ̄γ
3ρ̄b

ane σT (θγ − θb) , (1.135b)

where c2
s is the squared sound speed of baryons and it is defined as:

c2
s ≡

Ṗb
ρ̇b
. (1.136)
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All the higher terms of the hierarchy are suppressed.

Tight coupling regime

The scattering rate among photons and baryons that appears in the Boltzmann hi-
erarchies of both species becomes larger when the scale factor is smaller, this means
that, at a certain point, the Thomson opacity will be so large that the collisional term
would dominate the dynamics. This is not only an interesting regime, but, also from a
numerical point of view, it requires an extra effort for having a stable set of equations.
When the scattering rate Γ = τ−1

c is much larger than the Hubble rate H = τ−1 the
number of multipole equations that are required for a complete description reduces to
` = 2 and can be obtained combining the velocity equations for the baryon, Eq.(1.135)
and photon, Eq.(1.133) fluid. Defining

R =
4ρ̄γ
3ρ̄b

(1.137)

one can write a joint formula:

θb − θγ =
τc

(1 +R)

[
−Hθb + c2

sk
2δb − k2

(
1

4
δγ − σγ

)
+ θ̇γ − θ̇b

]
. (1.138)

and the corresponding shear

σγ =
τc
9

(
8

3
θγ +

4

3
ḣ+ 8η̇ − 10σ̇γ − 3kFγ3

)
. (1.139)

All the higher moments in the photon distribution are smaller and thus we can neglect
in the Boltzmann hierarchy. Playing more with the equations presented so far (see [127]
for details) it is possible to write an equation for θ̇γ :

θ̇γ = −R−1
(
θ̇b +Hθb − c2

sk
2δb

)
+ k2

(
1

4
δγ − σγ

)
. (1.140)

1.5 Inflation

In order to complete the overview of the standard cosmological model we need a suitable
set of initial conditions, valid when the inhomogeneity size (wavelength λk) is larger
than the horizon distance τ . Moreover the picture described so far needs a mechanism
able to solves some problems that naturally rises. Inflation is a period of exponential
accelerated expansion where the scale factor evolves in the following way

a(t) ∼ eHt , (1.141)
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the accelerated expansion is due to spontaneous symmetry breaking of a scalar field
φ coupled with the primordial plasma. This mechanism solves three problems of the
Standard Cosmological model such as flatness, causality and monopole abundance,
moreover it provides an elegant explanation to the homogeneity and isotropy of the
Universe introducing a channel for the creation of primordial fluctuations. In 1980 D.
Kazanas [108] argued that an exponential regime could solve the observed homogeneity
and isotropy, a few month later Guth [92] in the famous paper “Inflationary Universe"
published the solution to the horizon and causality problem. However these first works
on Inflation do not provide a good description of the Universe, the first reliable model
was suggested by A.Linde [124] and Albrecht and Steinhardt [18] in 1983. The scientific
production of papers on Inflationary models is one of the most rich and variegate and
and we have no time to present everyone, in the next sections we will present the
simplest model.

1.5.1 Flatness and horizon problems

If we do not include Inflation inside the SCM a couple of problem arise:

1 The entire CMB sky is homogeneous and isotropic up to one part in 100000
although photons come from regions that were causally disconnected at the time
of emission.

2 Our Universe appears to be flat, Planck [10] measures the curvature parameter
Ωκ ∼ −0.005± 0.016

Let us start from the first problem, taking a light-like metric ds2 = −dt2 + a dx2 = 0,
the horizon distance or the distance travelled by a photon at the Last-Scattering time is

dγhor ∼
2

H(tLS)
∼ 0.4 Mpc , (1.142)

if we calculate the angle subtended by this horizon, Eq.(1.33), we obtain:

θhor =
dγhor

dA
∼ 1.6 deg . (1.143)

This is the angular size of a causally connected region on the Last-Scattering surface,
that is in contrast with the apparently homogeneous emission of the CMB sky. Inflation
provides a solution basically makingH−1 constant during the entire process of expansion,
in Fig.(1.6) we show how a perturbation mode, during cosmological inflation, grows
larger than the horizon and then comes back inside the horizon, which grows slower
during radiation domination.

The flatness problem or Dicke coincidence rises from the Friedmann equation,
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Figure 1.6: Scale factor in function of the wavelength, here we can see
the Hubble radius (solid line) and the horizon distance of
a perturbation mode (dashed line).

Eq.(1.26), which, considering a = a0 = 1, can be rewritten in the following way:

Ωtot−1 =
H2

0

H2(a)

Ωκ

a2
(1.144a)

=
κ

H2(a) a2
, (1.144b)

This is an object that looking back in time becomes smaller and smaller, in order to
quantify the magnitude we can compare the total densities parameters, in the radiation
epoch:

Ωtot − 1|t=tearly

Ωtot − 1|t=tlate

=

(
a0

aearly

)2

(1.145a)

=

(
T0

TPlanck

)2

(1.145b)

' 10−64 . (1.145c)

This is a fine-tuning problem of 64 orders of magnitude which is difficult to reconcile,
on the other hand Inflation provides a suitable solution by considering the exponential
evolution of the density parameter during the expansion phase which stretches the
initial curvature up to the present value.
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1.5.2 Basics of Inflation

The basic idea under Inflation is the Spontaneous Symmetry Breaking mechanism:
there is a certain energy scale above which a symmetry existed, i.e. an invariance of
the theory. In its simplest form, we introduce a scalar field φ called Inflaton, thus we
can write the action,

A =

∫
d4x
√
−gL (φ, ∂φ) (1.146a)

=

∫
d4x
√
−g
[

1

2
∂µφ∂µφ+ V (φ)

]
, (1.146b)

as usually in classic field theory, solving the Euler-Lagrange equation leads to the
equation of motion:

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0 . (1.147)

Notice that the second term of the left-hand side is a velocity term weighted by the
Hubble parameter, it behaves like a Hubble friction. During the period dominated by
the scalar field component we can rewrite the Friedmann equation as:

H =

√√√√8πG
(

1
2 φ̇+ V (φ)

)
3

, (1.148)

putting together the latter equation and Eq.(1.147) it is possible to write a useful
formula,

2HḢ =
8πG

3

(
φ̇φ̈+ V ′(φ)φ̇

)
= −8πGHφ̇2 , (1.149)

thus,
Ḣ = −4πGφ̇ . (1.150)

With Eqs.(1.150 and 1.148) and assuming that the fractional change between Ḣ and H
during the expansion time must be negligible, we get:

φ̈� |V (φ)| . (1.151)

Moreover this implies also that P = −ρ and, finally

H '
√

8πGV (φ)

3
. (1.152)

In the slow roll model it is also assumed that the ratio between φ̈ and φ̇ must be much
less than the unity,

φ̈� Hφ̇ , (1.153)
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in such a way it is possible to drop the inertial term in Eq.(1.147) and thus obtain that:

φ̇ = −V
′(φ)

3
. (1.154)

Putting together all these considerations it is possible to write the “flatness" conditions
for the potential in order to allow a slow roll motion of the inflaton field. Eqs.(1.151
and 1.153) lead, respectively, to

V ′(φ)

V (φ)
� H =

√
24πG , (1.155a)

V ′′(φ)

V (φ2)
� H2 = 24πG . (1.155b)

Depending on the potential shape, the latter equations (flatness conditions) can provide
conditions on the initial value of the scalar field or on the parameters of the potential
itself. In the slow roll model we suppose that the potential φ(t) underwent a shift in
a finite time from an initial value φ1 to a final one φ2 with 0 < V (φ2) < V (φ1). This
implies an increase in the scale factor of the metric by a factor:

a(t2)

a(t1)
= exp

[∫ t2

t1

Hdt

]
= exp

[∫ φ2

φ1

H

φ̇
dφ

]
. (1.156)

The decreasing of the inflaton filed translates into a exponential increase of the scale
factor. Eq.(1.156) corresponds to the number of e-folds of accelerated expansion.

Finally we will only address the reheating in a qualitative manner. During the
inflation the largest part of the energy density was contained into the Inflaton potential.
When Inflation ends the energy of the potential had been transformed in kinetic energy
and, thus, transferred to the particle of the Standard Model through a process called
reheating. The field φ oscillates in the bottom of the potential and its equation of
motion can be written as:

φ̈+ 3Hφ̇ = −m2φ , (1.157)

where m is the mass associated to the minimum of V (φ) = 1
2m

2φ2. In this condition
the amplitude of φ must be considered small. When the expansion rate becomes larger
than the oscillation period H−1 � m−1 the friction term can be neglected and the
oscillatory pattern becomes dominant,

ρ̇φ + 3Hρφ = −3HPφ = −3

2
H
(
m2φ2 − φ̇2

)
. (1.158)

In order to not leave an empty Universe the energy stored in the Inflation field must be
transferred to the Standard Model sector through a decay process. The equation that
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describe the decay of the Inflaton field into ordinary particles is the following,

ρ̇φ + 3Hρφ = −Γφρφ . (1.159)

At this point the particles created underwent scattering processes that will thermalize
the primordial plasma. The reheating temperature depends on the energy density ρrh

at the end of the reheating epoch.

1.5.3 Primordial scalar power spectrum

Finally, one of the main aspects of Inflation is that it naturally originates fluctuations;
considering the uncertainty principle, Eq.(1.34), every quantum-mechanical quantities
have some variance, that in the Inflaton case is,

δφ(~x, t) = φ(~x, t)− φ̄(t) , (1.160)

these local differences in time implies different inflation durations and consequently
different end times, thus quantum fluctuations in time translates into local classical
spatial fluctuations, see [30] for a full treatment. In the Fourier space the whole set
of perturbations can be factorized in single k-modes allowing to write a distribution
having zero mean and non-zero variance:

〈δφ(k) δ∗φ(k)〉 = (2π)3 Pφ(k)δ3
(
k − k′

)
, (1.161)

where Pφ(k) is the Power Spectrum of the scalar perturbations. Considering the
conservation of the energy momentum tensor (see [62]) in the Fourier space:

¨(δφ) + 2aḢ ˙(δφ) + k2δφ = 0 . (1.162)

it is possible to write the scale invariant power spectrum of the fluctuations as:

Pφ =
8π

9k3

H2

m2
Pl

, (1.163)

this means that, considering k3Pφ, all the perturbation have the same initial ampli-
tude independently from the k. This is the reason for which the primordial scalar
power spectrum is also called scale-invariant power spectrum. It means that all the
perturbations have the same amplitude after the horizon crossing. After the horizon
crossing, perturbations are super-horizon and, thus, their evolution is driven uniquely
by the quantum fluctuations that, due to the accelerated expansion, now are metric
perturbations.

Although the perturbations are originated by the Inflaton fields they end up as
a linear combination of φ and δφ more generally as a linear combination of ψ and
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perturbations to the energy-momentum tensor. It is convenient define a constant
quantity:

ζ ≡ − ikiδT
0
iH

k2(ρ+ P )
− ψ , (1.164)

that can connect the metric perturbation and the energy density. Fro sub-horizon
modes and for that modes that have just left the horizon the potential ψ is negligible
and the latter equation can be rewritten in the following way:

ζ = −aHδφ
φ̇0

, (1.165)

where φ̇0 is the conformal derivative of the primordial field. The latter equation, well
after the end of inflation, assumes the well known from,

ζ = −3aHΘ1

k
− ψ = −3

2
φ . (1.166)

In this way, the power spectrum of ψ is related to the horizon-crossing spectrum of δφ
in the following way:

Pψ(k) =
4

9

(
aH

φ̇0

)
Pφ(k)|aH=k , (1.167)

or in function of the constant primordial parameter ζ,

Pζ(k) =

(
aH

φ̇0

)2

Pφ(k) . (1.168)

The normalized version of this power spectrum has the following form:

∆2
ζ =

k3

2π2
Pζ(k) . (1.169)

As we have shown, there are several way to parametrize the power spectrum, however
one of the most used is in function of the initial scalar tilt parameter ns:

Pφ =
50π2

9k3

(
k

H0

)ns−1

δH

(
Ωm

D(a = 1)

)2

, (1.170)

with δH scalar amplitude at horizon crossing. A scale-free scalar spectrum will have
ns = 1, observations by Planck [10] measures ns ' 0.96. Thus, at the end, we can write
a useful equation that relates the primordial power spectrum, Eq.(1.169), with ns:

∆2
ζ(k) = As(k0)

(
k

k0

)ns−1

, (1.171)

where k0 is a reference scale (pivot).
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1.5.4 Tensor perturbations

Inflation provides also the generation of primordial tensor perturbations. There is no
need to have a complete treatment of this aspect inside this thesis, however, following
Ref. [62] we can give a flavour of its importance. Tensor perturbation modes h+ and
h× can be decomposed, as usually done for the quantum harmonic oscillator, in terms
of ladder operators. This harmonic behaviour leaves an imprint during the accelerated
expansion generated by the Inflaton field. Hence we can write, in analogy to what done
for the scalar sector, a tensor perturbation power spectrum:〈
h†(~k, τ)h(~k, τ)

〉
=

16πG

a2

∣∣∣v(~k, τ)
∣∣∣2 ( 2π)3δ3(~k− ~k′) ≡ (2π)3Ph(k)δ3(~k− ~k′) . (1.172)

The total tensor PS is the sum of the two polarization states and it is possible to write
the normalized power spectrum:

∆2
t (k) = At(k0)

(
k

k0

)nt
(1.173)

1.6 Observational cornerstones

Physics is an experimental science and, thus, great claims require great evidence. As a
branch of physics, cosmology can not stand out to provide evidence. There are several
observations that confirm and sustain the picture described so far, actually birth and
drafting of the cosmological model was done in synergy with observations.

1 The existence of an isotropic and homogeneous relic sea of photons, the CMB,
that permeates the Universe,

2 the observed abundance of light elements that is in extremely good agreement
with theoretical expectations,

3 the direct observation of the Universe expansion,

4 the formation of galaxies and large-scale structure.

CMB is the relic sea of photons that free-stream from the Last Scattering Surface
soon after the process called decoupling. These photons have been in thermal equilibrium
with the rest of the primordial fluid since the very beginning and bring information
about the conditions of the early Universe: their energy distribution and their statistical
properties are powerful tools for studying the properties, the composition. the geometry
of the primordial Universe. Moreover, since the CMB map observed by Planck [9] is
basically a picture of the first light emitted and the source of information farther in time
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and space, it represents the largest and more ancient observable to test fundamental
physics.

Another probe of the big bang model is the abundance of light elements, the
description of the BBN given in Sec.(1.3.4) is a toy model, that provides good predictions,
but can be widely refined e.g. [27,52,71,156]. Theoretical predictions are in really good
agreement with observations and can be summarized in Fig.(1.7), here mass fraction
of 4He and the abundances, relative to hydrogen, of deuterium, 3He and lithium
are expressed in function of the photon-to baryon ratio η. Observed data are shown
as grey bands, WMAP is the dark-gray vertical band and the light-grey horizontal
band represents other astrophysical data, while coloured lines correspond to theoretical
predictions. The expansion of the Universe is known since the early 1900s, Georges

Figure 1.7: Helium (4He) and deuterium (D) primordial abundances
(relative to hydrogen) in function of the baryon density
ωb ≡ Ωbh

2. Green lines are the theoretical expectations
from nuclear reactions rates on the neutron lifetime, the
horizontal gray bands show direct observations on primor-
dial element abundances, while the red band corresponds
to Planck bounds on ωb (the width corresponds to the
68% CL.)

Lemaitre in 1927 and Edwin Hubble in 1929 formulated the famous law, Eq.(1.10),
which as been proven e.g. [105,110] and it is still under investigation [10,152].
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Cosmic Microwave Background

radiation

In ogni secolo gli esseri umani hanno pensato di aver
capito definitivamente l’universo e, in ogni secolo, si è
capito che avevano sbagliato. Da ciò segue che l’unica
cosa certa che possiamo dire oggi sulle nostre attuali
conoscenze è che sono sbagliate.

Isaac Asimov, Grande come l’universo, 1988

The main observable used in this thesis to constrain neutrino properties is the
cosmic microwave background (CMB) radiation. It has been introduced in Sec.(1.6),
however in this chapter we will give a more complete description of its properties. The
existence of a relic photon background, homogeneous and isotropic up to one part in
105, is one of the most important scientific discoveries of the last century. It is the
evidence that we do not live in a steady endless universe, indeed, while it is hard to
obtain a CMB like source in a Steady State model, in a Big Bang universe it rises
naturally.

CMB was discovered in 1965 when two researchers of the Bell Industries, Arno
Penzias e Robert Woodrow Wilson, accidentally encountered an isotropic radiation in
the radio-microwave region of the electromagnetic spectrum [60]. They were working
with a Dicke radiometer built for satellite communication experiments. On 20 May 1964
they made the first measurement which clearly showed the presence of the microwave
background, the instrument have measured an excess of 4.2 K. The times were however
ripe, simultaneously a group in Princeton (30 km far from the Bell’s laboratory) was
looking for the same radiation, theorized a few years earlier (1946) by R.Alpher and
G.Gamov as a probe of the Hot Big Bang (HBB) model [19,78]. Penzias and Wilson
received the 1978 Nobel Prize in Physics. After this discovery, the CMB spectrum was



measured by the spacecraft COBE (COsmic Background Explorer) in 1989 [72, 73, 163].
The science mission was conducted by the three instruments: DIRBE, a multiwavelength
infrared detector used to map dust emission, FIRAS a spectrophotometer used to
measure the spectrum of the CMB and the DMR a microwave instrument that would
map anisotropies in the CMB. The scientific goals reached were: a full sky map of
the CMB radiation and a almost (up to 10−4) perfect measurement of the black body
spectrum,

Bν (ν, T ) =
2ν3

c2

(
ehν/T − 1

)−1
, (2.1)

the associated black-body temperature T = 2.72548± 0.00057 K and the presence of
small temperature fluctuations of the order of:

δT

T
∼ 10−5 . (2.2)

After COBE-DMR, the CMB anisotropies have been observed by many ground-based
and balloon-borne experiments, as well as by two other satellites, WMAP [102] and
Planck [9], launched in 2001 and 2009 respectively. The data obtained are much better

Frequency [GHz] Sensitivity
(

∆T
T

)
Angular resolution

COBE 31.5, 53, 90 ∼ 10−5 7◦

WMAP 23, 33, 41, 61, 94 ∼ few × 10−6 15′

Planck
30, 44, 70, 100,

143, 217, 353, 545, 853 ∼ 2× 10−6 5′

Table 2.1: Frequency channels, sensitivity and angular resolution of
COBE, WMAP and Planck satellites. The sensitivity and
angular resolution actually depend on the frequency band;
the values shown in the table are the reference values.

in terms of sensitivity and angular resolution (as we can see in Tab.(2.1)). Moreover,
WMAP and especially Planck have observed the sky with a wider frequency coverage,
allowing a better foreground cleaning. In Fig.(2.1) we show a comparison of the CMB as
seen by Penzias and Wilson antenna, COBE, WMAP and Planck. The first thing that
jumps to the eyes is that, increasing the sensitivity and resolution of the observations,
the universe does not appear homogeneous and isotropic. However since the temperature
fluctuations that fill the CMB sky are of order of one part in 105, the cosmological
principle is still valid. Before we go in details of anisotropies, let us see how the CMB
can originate from the inhomogeneities.
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Figure 2.1: CMB as seen in 1965 by Penzias and Wilson (if they were
able to observe the full sky realization), COBE, WMAP
and Planck, from left to right.

2.1 Gravitational potential and inhomogeneities

In the previous chapter we provided a quite complete overview of the equations that
govern the evolution of cosmological perturbations . It is possible to numerically solve
these equations, but it is, also, extremely useful try to understand the physics through
analytical solution valid in certain specific regimes (see [62] for details). The basic
idea is the following: there are three main physical quantities that are bound in the
evolution of the Universe, the gravitational potential, the matter inhomogeneities and
the temperature anisotropies. Let us start looking at how gravitational instability and
the evolution of the potential drive the matter inhomogeneities. In this section we will
follow Ref. [62] in the description of the dark matter perturbations. Dark matter, by
definition, is not affected directly by radiation and, thus, its evolution is coupled only
with the metric perturbations. At early time, we will see, the potential is determined
by the radiation, but it is relatively simple since it depends, at most, on the radiation
monopole and dipole. While at “late" times matter dominates the evolution and the
expansion history and these potentials are independent by radiation. The starting point
of this discussion is the concept of gravitational instability: if there is an initial local
overdense region, dark matter will fall into the overdensity increasing the potential
and attracting more matter. This means that nearby an overdense region, mass is
attracted by gravity and repulsed by pressure, if the attractive potential is larger than
the pressure, then the overdensity will grew with time, otherwise it will bounce until it
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Figure 2.2: Linear potential evolution for three different modes.

reaches the balance. The physics of this phenomenon is the harmonic oscillator:

δ̈ + [Pressure−Gravity] δ = 0 . (2.3)

At this point, we can follow the evolution of a single overdensity that pass through all
the evolution steps: from being larger that the horizon size, i.e. super-horizon (kτ � 1),
to the moment in which its size become of the order of the horizon size horizon-crossing
(kτ ∼ 1), until the sub-horizon (kτ � 1) stage. The horizon (τ) depends on the
expansion history of the Universe and, thus, on the matter and energy content, while
the size of the overdensities (in the phase-space it is the mode k) in strictly related to
the initial conditions of the considered overdensity. Let us emphasize that following the
evolution of a single overdensity is identical to look at overdensities of different size at
the same moment, i.e. studying the evolution of one k mode is equivalent to take a
picture of all the k modes at a given time.

In order to follow the potential evolution is extremely important to take into account
that the horizon-crossing process which can happen before, during or after the matter-
radiation equality. This behaviour strictly depends on the initial size of the perturbation.
In Fig.(2.2) we show the linear evolution of the gravitational potential φ in function of
the scale factor: smaller the size of the mode (larger the k wave number) earlier the
potential decay. If the mode enter the horizon before the matter-radiation equality
its potential will enter in an oscillatory regime. Since it is not easy to measure the
potential, moreover we are able to infer it by the matter distribution only at relatively
late times, we can express φ depending on a primordial potential φ0, set during inflation,
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times a growing function and a transfer function:

φ
(
~k, a
)

=
9

10
φ0(~k)T (k)

D(a)

a
, (2.4)

where
D(a)

a
=

φ(a)

φ(alate−times)
, (2.5)

is the growth function and

T (~k) =
φ(k)

φLarge−scale(k)
, (2.6)

is the transfer function. The transfer function provides a description of perturbations
through the horizon-crossing process, while the growth function D(a) describes the
evolution of the matter perturbations at late times. It is possible to express the power
spectrum of the matter distribution, during the matter era, using the Poisson equation
Eq.(1.5), which can be rewritten in the following way:

φ =
4πGρma

2δc
k2

, (2.7)

this is the simplest expression to relate the matter overdensity to the gravitational
potential:

δc

(
~k, a
)

=
2k2a

3ΩmH2
0

φ(~k, a) =
3

5

k2

ΩmH2
0

φ0(~k, a)D(a)T (k) , (2.8)

where we used the background matter density

ρm =
Ωm

a3

(3/2)H2
0

(4πG)
. (2.9)

Finally we need a reduced set of equations in order. Starting from the full set
of Boltzmann equation presented in Sec.(1.4.1) we can reduce it to a simpler version
considering that, at early times, the photon disctribution can be characterized by the
lower moments Θ0 and Θ1

1. This leads to the following set of equations:

Θ̇r0 + kΘr1 = −φ , (2.10)

Θ̇r1 −
k

3
Θr0 = −k

3
φ , (2.11)

δ̇c + ikθc = −3φ̇ , (2.12)

θ̇c +Hθc = ikφ . (2.13)

In Eq.(2.13) the subscript r means that we are enclosing the contribution of neutrinos
in the relativistic perturbations. This approximation is acceptable until we are in a

1We have used the notation of [62].
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non tight-coupling photon regime, since photons and neutrinos have the same initial
conditions and impact on the gravitational potential. In addition, in absence of
quadrupole terms, we have used the relation ψ → φ. Moreover, we can rewrite the
time-time component of Eq.(1.108) in order to have a set of 5 equations:

k2φ+ 3H
(
φ̇+Hφ

)
= 4πGa2 [ρcδc + 4ρrΘr0] . (2.14)

At this point, in order to have have a better comprehension of the potential behaviour
we will report the analytical solution dividing the problem into two different regimes:
large and small scales with respect the horizon size.

2.1.1 Large scales

For the scales which are super-horizon for very long times (up until matter-domination
or decoupling) k/keq � 1. At this point, we can distinguish into two regimes, scales
that are super-horizon and scales which cross the horizon during the matter-dominated
era.

Super-horizon In the first case it is possible to assume kτ � 1 and thus we can
neglect k from the set of Eqs.(2.13 and 2.14), this leads to the following set:

Θ̇r0 = −φ̇ , (2.15)

δ̇c = −3φ̇ , (2.16)

3H
(
φ̇+Hφ

)
= 4πG [ρcδc + 4ρrΘr0] . (2.17)

Rewriting the time variable as
y =

a

aeq
, (2.18)

the analitical solution for the potential (see [62] for the detailed calculation) is:

φ =
φ0

10y3

[
16
√

1 + y + 9y3 + 2y2 − 8y − 16
]
. (2.19)

This potential goes to φ(0) at early times when y is small and at large y when the
universe is matter dominated φ→ 9/10φ(0).

Crossing-horizon While in the second case we can assume φ constant, because these
modes enter the horizon at very late times (well after recombination), when the universe
is matter dominated. The potential depends only by the matter content of the universe,
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thus we can neglect the radiation equations in Eq.(2.13 and 2.14),

δ̇c + ikθc = 0 , (2.20a)

θ̇c + aHθc = ikφ , (2.20b)

k2φ =
3

2
a2H2

[
δc +

3aHiθc
k

]
. (2.20c)

Moreover, as we said before, the initial conditions is that the potential is constant, thus
φ̇ = 0. These set of equations leads, after some algebra and some considerations about
the matter-dominated regime (see [62]).[

iθc
k

+
φ

3

](
9a2H2

2
+ k2

)
+

[
iθc
k

+
2φ

3Ha

]
d

dτ

9a2H2

2

= −
[
iaHθc
k

+
2φ

3

] (
9a2H2 + k2

)
.

(2.21)

Potential remains constant as long as the matter domains the dynamics, that is up to
a ' 1/10, when dark energy starts to dominate.

2.1.2 Small Scales

These are scales which cross the horizon before or during the matter-radiation equality
epoch k/keq � 1. Also in this case we can distinguish into scales that undergo the
horizon crossing and modes that are basically always sub-horizon.

Crossing-horizon The scales that cross the horizon during the radiation dominated
epoch fells the potential from presence of photons. Indeed, in this regime, the potential
is coupled with the radiation, hence we have to consider only the Θr0, Θr1 contributions
of Eq.(2.13). In analogy, the potential equation, Eq.(2.14), which can be rewritten in
the following way:

φ =
6a2H2

k2

[
Θr0 +

3aH

k
Θr1

]
, (2.22)

Using this latter equation in the first two Eq.(2.13) we can eliminate the contribution
of the monopole and rewrite the first two equations of Eq.(2.13):

− 3

kτ
Θ̇r1 + kΘr1

[
1 +

3

k2τ2

]
= −φ̇

[
1 +

k2τ2

6

]
− φk

2τ

3
. (2.23)

Θ̇r1 +
1

τ
θr1 = −k

3
φ

[
1− k2τ2

6

]
. (2.24)
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Figure 2.3: Dark matter perturbation evolution for two different
modes. Dashed lines correspond to approximate solution,
while solid lines represent the exact solutions.

It is possible to turn these two first-order equations into a second-order equation for φ.
Hence, the equation that governs the potential evolutions is the following:

φ̈+
4

τ
φ̇+

k2

3
φ = 0 , (2.25)

that is a spherical Bessel of order 1 whose solution is,

φ = 3φ(0)

[
sin
(
kτ
√

3
)
−
(
kτ
√

3
)

cos
(
kτ
√

3
)(

kτ
√

3
)3

]
. (2.26)

This means that as soon as the mode enters the horizon, the potential drops down and
then starts to oscillate.

Once we know the behaviour of the potential it is possible to find the associated
equation for the dark matter component. The matter perturbations are affected by the
potential, which we have seen is driven by radiation, the equation that describes its
behaviour has the following form,

δ̈c +
1

τ
δ̇c = −3φ̈+ k2φ− 3

τ
φ , (2.27)

where the right-hand part of the equation represents the source term for the dark
matter perturbations. In Fig.(2.3) we show the analytical and numerical solutions for
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the evolution of matter perturbation in the radiation dominated era. It is evident that
Eq.(2.27) has two solutions δ = 0 and δ = ln(a), which leads to a logarithmic growth of
the dark matter perturbations. In general it is possible to built a general solution using
the source term weighted by a Green’s function [62], however results are comparable to
the approximate solution and show that matter perturbations grow also in the radiation
dominated epoch, but the growth is smaller than in the matter-dominated era due to
the presence of the radiation pressure.

Sub-horizon Since we know from Eq.(2.27) that radiation pressure induces the decay
of gravitational potential. However it could happen that ρcδc becomes larger that ρrΘr,
even if the radiation dominates the energetic content of the Universe. This is exactly
what happened in the sub-horizon modes, in this case we can neglect the radiation
contribution ad rewrite our equation taking into account only the dark matter density
contribution:

δ′c +
ikv

aHy
= −3φ′ , (2.28)

θ′c
θc
y

=
ikφ

aHy
, (2.29)

k2φ =
3y

2(y + 1)
a2H2δc . (2.30)

where the time derivatives has been replaced by the derivative on y. In analogy to what
we have done in the crossing-horizon case, we can write a second order equation from
Eq.(2.30):

δ′′c −
ik(2 + 3y)θc

2aHy2(1 + y)
= −3φ′′ +

k2φ

a2H2y2
. (2.31)

Replacing the velocity in the latter using the first equation of (2.30) it is possible to
find the following second-order equation for the dark matter component:

δ′′c +
2 + 3y

2y(y + 1)
δ′c −

3

2y(y + 1)
δc = 0 , (2.32)

this is a quite important equation called "Meszaros equation" which governs the
evolution of sub-horizon dark matter perturbations. The solutions of this equation are
rather complicated and we will illustrate only the final result; the general solution is:

δc = C1D(y) + C2D2(y) , (2.33)

where the first and second contributions are,

D = y +
2

3
, (2.34)
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D2 = D ln

[√
1 + y + 1√
1 + y − 1

]
− 2
√

1 + y . (2.35)

At late times (y � 1) the solution scales like y while in the radiation dominated case
(y � 1) the solution in proportional to the ln y This is basically saying to us that, at
early times, the dominant energy of radiation drives the universe to expand so fast
that the matter has no time to follow it. The consequence is that δc is fixed to a
constant value. While at late times, when radiation becomes negligible, the dark matter
perturbations grow δc ∝ a. When matter perturbations enter the horizon having δ̇c > 0,
the dark matter perturbation is not frozen and continues to grow giving a total boost
factor of ln y.

2.2 CMB temperature anisotropies

Until now we have provided a description of the mathematical tools and of the physical
model that allows us to describe the formation of inhomogeneities in the primordial
universe. We have seen that, when hydrogen recombines, photons start to free stream in
a neutral Universe, carrying on the information imprinted in their energy and angular
distribution by years of thermalisation. On the average temperature of the CMB there
are temperature fluctuations defined in the following way:

δT

T
(θ, φ) =

T (θ, φ)− 〈T 〉
〈T 〉

. (2.36)

It has no meaning to study every fluctuation one by one, the most important informa-
tion is, by far, the statistical distribution of the anisotropies and the analysis of the
corresponding momenta and momenta direction. For most purposes, the anisotropies
are better studied in harmonic space, so we operate an angular decomposition,

δT

T
(θ, φ) =

∞∑
`=0

∑̀
m=−`

a`mY`m(θ, φ) , (2.37)

As we have seen in the previous chapter, the potential fluctuations as well as the
matter inhomogeneities, the temperature anisotropies and all the structure on large
scales originated from primordial quantum fluctuations. However, the theory is only
able to give predictions about the stochastic properties of the primordial perturba-
tions. Thus we are only interested in the statistical properties of the temperature
anisotropies. Inflation predicts that the initial perturbations are, to a high degree,
Gaussian distributed, and, if the evolution is linear, the Gaussianity is conserved in time.
As we have seen in chapter, Ch.(1), the perturbations evolution, that originates the
anisotropies before the recombination, follows a linear regime and thus the deviations
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from a Gaussian distribution is negligible. Under this assumption the a`ms follow
the Normal distribution with zero mean and non-zero variance. In this case, all the
statistical information about the anisotropy field is encoded in the two-point correlation
function:

C(θ) =

〈
δT

T
(n̂)

δT

T

(
n̂′
)〉

, (2.38)

where θ = n̂ · n̂′. This quantity, in the harmonic space, has the form:

C(θ) =
∞∑
`=0

2`+ 1

4π
C`P`(θ) , (2.39)

with P`(θ) Legendre polynomials. The C` coefficients related to the variance of the
a`m’s:

C` = 〈a`m a∗`m〉 =
1

2`+ 1

∑̀
m=−`

|a`m|2 ,

=
1

4π

∫
dΩdΩ′P`(n̂ · n̂′)

〈
δT

T
(n̂)

δT

T

(
n̂′
)〉

.

(2.40)

In order to calculate the latter quantity we have to figure out the dependences, basically
it requires the knowledge of two different things: initial conditions of perturbations
(Gaussian from inflation) and evolution of initial perturbations. The field Θ ≡ δT/T
can be rewritten in function of the primordial curvature perturbation ζ, this leads to
the following form:

C` =
2

π

∫ ∞
0

k2Pζ(k)

∣∣∣∣Θ`(k)

ζ(k)

∣∣∣∣2 dk (2.41)

which involve the curvature power spectrum Pζ(k), see Eq.(1.168). Each of the C`’s
measures the variance in fluctuations at an angular scale:

θ ∼ π

`
. (2.42)

The C`’s coefficients are thus the power spectrum of temperature fluctuations. The
angular power spectrum is usually plotted using the combination:

D` =
`(`+ 1)

2π
C` , (2.43)

which we show in Fig.(2.4). The unique shape of the angular power spectrum is the
main source of information and it is common procedure to divide the analysis in two
sectors: primary and secondary anisotropies.
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Figure 2.4: Temperature angular power spectrum of the CMB tem-
perature anisotropies measured by the Planck satellite.
In the upper panel the red line corresponds to the best fit
of theoretical model described in Ch.(1) and based on the
six basic parameter, while the blue points are the binned
D` extracted from Planck 2015 data. In the lower panel
we show the residuals. [10]

2.2.1 Temperature perturbation

Before to see in details the sources and fingerprints of primary and secondary anisotropies,
we need to derive analytical solutions for determined regimes. In Sec.(2.1) we have
shown that it is possible to find analytical solutions for the gravitational potential and
for the dark matter distribution in some limiting regimes. The aim of this section is
to present how the perturbations in the gravitational potential are coupled with the
temperature anisotropies. In order to do this we will refer to the temperature field as
its Fourier decomposition:

Θ(x) =

∫
d3k

(2π)3
eik ·xΘ(k) , (2.44)

thus, as we have done for the gravitational potential, we are moving to analyse the
problem from different points of view, first of all considering the free-streaming case.
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Free streaming

After hydrogen recombination, photons decouple from matter and start to free stream
in the Universe. When photons decoupled the Universe is dominated by the matter
component and the amount of energy density carried out by the relativistic species can
be considered negligible. In this case we can consider ψ = −φ, in the Eqs.(1.108) and
the Boltzmann equation takes the following form:

Θ̇ + (ikµ− τ̇c) Θ = e−ikµτ+τc d

dτ

(
Θeikµτ−τc

)
= S , (2.45)

S ≡ −φ̇− ikµψ − τ̇c
[
Θ0 + µvb +

1

2
P2(µ)(Θ2 + 1/4(Gγ0 +Gγ2))

]
. (2.46)

In the latter the quantity S is the source term for the temperature field anisotropy and
τc is the optical depth for the photon Compton scattering. We are going to neglect
in this section the contribution of the polarization fields Gγ0 and Gγ2. In order to
obtain the temperature field we integrate over the comoving time τ and approximate
the medium as optically thick τc � 1:

Θ (k, µ, τ0) = Θ(τi)e
ikµ(τi−τ0)−τci +

∫
S(k, µ, τ)eikµ(τ−τ0)−τc(τ)dτ , (2.47)

=

∫ τ0

0
dτ S(k, µ, τ)eikµ(τ−τ0)−τc(τ) , (2.48)

where in the second equivalence we have considered that any contribution to the integral
from τ < τi is completely negligible. In this case we use the usual formalism of the
Bessel function j` in order to describe the oscillatory behave of the wave propagation.
In this way it is easy to see that the temperature filed that we observe today is only the
propagation through an optically thick medium of the source term S. Notice that the
S term still depends on the angle µ, if there is no µ dependence it will be possible to
rewrite immediately the latter equation into the ` hierarchy which we were accustomed.
The solution proposed in Ref. [62] is to replace µ with the time derivative µ = 1

kτ
d
dτ ,

this leads to the following expression:

Θ` (k, τ0) = (−1)`
∫ τ0

0
S(k, τ)e−τc(τ)j` [k(τ − τ0)] dτ , (2.49)

where the source function S now is defined as:

S(k, τ) ≡ e−τc
[
−φ̇− τ̇c

(
Θ0 +

1

4
(Θ2 + 1/4(Gγ0 +Gγ2))

)]
+

d

dτ

[
e−τc

(
ψ − ivbτ̇c

k

)]
− 3

4k2

d2

dτ2

(
e−τc τ̇c(Θ2 + 1/4(Gγ0 +Gγ2))

)
.

(2.50)
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At this point a useful trick is to consider a visibility function,

g(τ) = −τc e−τc , (2.51)

The visibility function is, basically, the probability that a photon last scattered at
a given τ . It is peaked at recombination time and rapidly declines after that (see
Fig.(2.5)). We can rewrite Eq.(2.50) in the following way:

S ' g(τ) [Θ0(k, τ) + ψ(k, τ)] +
d

dτ

(
ivb(k, τ)g(τ)

k

)
− e−τc

[
ψ̇(k, τ)− φ̇(k, τ)

]
. (2.52)

Replacing it into Eq.(2.46) we obtain the formula that describes the evolution of the
temperature field up to today,

Θ`(k, τ0) =

∫ τ0

0
dτ g(τ) [Θ0(k, τ) + ψ(k, τ)]× j`[k(τ0 − τ)]

−
∫ τ0

0
g(τ)

ivb(k, τ)

k

d

dτ
× j`[k(τ0 − τ)]

+

∫ τ0

0
dτ e−τc

[
ψ̇(k, τ)− φ̇(k, τ)

]
× j`[k(τ0 − τ)] .

(2.53)

There are two types of term in the latter equation, the former are weighted by e−τc

and these contribute as long as τc ≤ 1, i.e. after the recombination. These are basically
contributions on the integrated path that photons cover from the last scattering surface
up to now. The last row of Eq.(2.53) it is called the Integrated Sachs Wolfe (ISW) effect
and it basically encodes the information about the gravitational potential that lays
between us and the last scattering surface. The second terms are the one weighted by
the visibility function g(τ). Since this is peaked at recombination time, see Fig.(2.5), we
can rewrite Eq.(2.53) considering the first two terms as calculated at the recombination:

Θ`(k, τ0) = [Θ0(k, τrec) + ψ(k, τrec)]× j`[k(τ0 − τrec)]

+ 3Θ1(k, τrec)

(
j(`−1)[k(τ0 − τrec)]−

(`+ 1)j`[k(τ0 − τrec)]

k(τ0 − τrec)

)
+

∫ τ0

0
dτ e−τc

[
ψ̇(k, τ)− φ̇(k, τ)

]
× j`[k(τ0 − τ)] .

(2.54)

The latter equation is the basis for the semianalytic calculation of the APS. In order to
do that we have to know temperature monopole and dipole and gravitational potential
at the recombination time, moreover it takes into account also the contributions of
time-dependent potentials inside the ISW terms. In addition, given a certain mode k
this contributes to the angular scales of the order ` ∼ kτ0, it is possible to see that
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Figure 2.5: Visibility function g, monopole term Θ0 + ψ and Bessel
function j` contributions in function of the scale factor
[62].

considering the form of the Bessel function in the high-` limit case:

lim
`→∞

j`(x) =
1

`

(x
`

)`−1/2
. (2.55)

That is, j`(x) is small when ` is large, leading to a zero value for the associated
temperature anisotropy. Finally it is evident from Eq.(2.54) that the contribution to
the anisotropy temperature today is not only a function of Θ0, but of Θ0 + φ, which
means that photons have to pass through potential wells in order to reach us, as we
will see in the next sections.

Large scales

Scales that are super-horizon at recombination are basically driven by the metric
where ψ = −φ. In this regime we have already found the right set of equations (see
Eq.(2.13) for details). The initial conditions are such that at recombination the photon
perturbations satisfy:

Θ0(k, τrec) = −φ(k, τrec) +
3

2
φ0 =

2

3
φ(k, τrec) . (2.56)
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Hence, the observed anisotropy results:

(Θ0 + ψ)(k, τrec) =
1

3
ψ(k, τrec) , (2.57)

since we can consider as approximation ψ ' −φ. The latter equations leads to a
relation between the anisotropy observed today and the dark matter density at the
recombination era:

(Θ0 + ψ)(k, τrec) = −1

6
δc(τrec) . (2.58)

This implies that potential wells contained hotter photons at the recombination, but
these photons have to move out of the potential well in order to reach us and this
translates into a lose of energy that is larger that the initial inhomogeneity. Moreover,
what we see at large scales as a temperature fluctuation of δTT ∼ 10−5 K corresponds to
a δρ

ρ ∼ 6× 10−5.
Generally speaking we can write the anisotropies power spectrum starting from the

Einstein and the Boltzmann equations, Eq.(1.108), that can be reduced to a simpler
version and give us the following equation:

Θ`(τ0) = − 3

10
φ(0)j`(kτ0) =

1

5
ζj`(kτ0) , (2.59)

where we remember that Θ0(k, τrec) = 3
5φ(0) and φ = 2

3ζ is constant. The latter
equation predicts a rescaling of the power at large scales of a factor of 5, which is clearly
visible comparing the plateau and the first peak amplitude in Fig.(2.4). This reflects
into the form of the C` definition that becomes:

C` =
4π

25

∫
P(k) |j`(kτ0)|2 d ln k . (2.60)

Using the definition of the primordial power spectrum, Eq.(1.171) the latter equation
becomes,

C` =
2π

`(`+ 1)

As
25

. (2.61)

This solution is valid only for the low frequency part of the spectrum, i.e. ` < 50, where
the potential is constant (k � aH).

Intermediate scales

In the central region of the spectrum we have to deal with perturbations that enter the
horizon, or are already sub-horizon, before the recombination. We are in a condition of
ionized plasma where all the electrons are unbound. The photon mean free path is much
smaller that the horizon size and Compton scattering keep photons and baryons tightly
coupled. When the medium is optically thick, the moments, inside the Boltzmann
hierarchy, of order higher than ` = 1 are exponentially suppressed by the collisional
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term. This allows us to consider the `-th moment as:

Θ` ∼
kτ

2τc
Θ(`−1) . (2.62)

Thus we can modify the Eq.(2.13) introducing the collisional term:

Θ̇0 + kθ1 = −φ̇ , (2.63)

Θ̇1 −
kΘ0

3
= −k

3
φ+ τ̇c

[
Θ1 +

iθb
3

]
. (2.64)

Replacing the baryon velocity term,

θb = −3iΘ1 +
R

τ̇c

[
θ̇b +Hθb + ikψ

]
, (2.65)

in Eq.(2.64) we get a second-order equation for the monopole that describes the
oscillations of the primordial fluid:

Θ̈0 +H
R

1 +R
Θ̇0 + k2c2

sΘ0 =
k

3
φ−H R

1 +R
φ̇− φ̈ , (2.66)

where R ≡ 4
3
ργ
ρb

is the baryon to photon ratio. The sound speed depend on the baryon
density. The latter equation describes how the primordial fluid oscillates driven by the
potential in both space and time with a period that depends on the sound speed:

cs =

√
1

3(1 +R)
. (2.67)

In this case the shape of the spectrum cannot be approximated as a Bessel function,
that is the solution cannot be considered a pure cosine function. We have to take into
account also the dipole term in the photon Boltzmann equation that is in opposite
phase with respect the monopole. The CMB APS can be written as a superposition of
sine and cosine functions in the following way:

C` = 4π

∫
P(k)

∣∣∣∣Θ0

ζ
(k)j`(h∆τ) +

Θ1

ζ
(k)j′`(h∆τ)

∣∣∣∣2 d ln k , (2.68)

where immediately appears that we have two out of phases contributions coming from
the monopole and dipole respectively. Looking more carefully to the latter equation it
is evident that there is also a cross correlated term that vanishes due to the phase shift
described so far.
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Small scales

Finally for the smaller scales, where small means comparable with the photon mean
free path:

λD ' λMFP × (N scattering)1/2 =
1√

ne σT H
, (2.69)

we can no longer neglect the quadrupole in the Boltzmann hierarchy. The reason is
that, at these scales the viscosity of the fluid plays a fundamental rule. We have to add
the quadrupole contribution to Eq.(2.64):

Θ̇0 + kθ1 = −φ̇ , (2.70)

Θ̇1 −
kΘ0

3
= −k

3
φ+ τ̇c

[
Θ1 +

iθb
3

]
, (2.71)

Θ̇2 −
2k

5
Θ1 =

9

10
τ̇cΘ2 . (2.72)

In addition we need also an equation for the baryon speed θb, we chose Eq.(2.65)
neglecting the potential since the dynamics is dominated by photons. In order to solve
this set of equations it is possible to write the baryon speed as:

θb ∝ ei
∫
ω dτ , (2.73)

where ω = kcs. After some algebra (see [62] for details) we end up with the following
equation, which is the zero-th order:

ω(1 +R)− k2

3
+
iω

τ̇c

(
ω2R2 +

8k2

27

)
= 0 . (2.74)

The damping correction, which is due to the second order approximation, can be written
as,

δω = − ik2

2(1 +R)τ̇c

(
c2
sR

2 +
8

27

)
. (2.75)

The final form of the monopole and dipole moments in the Boltzmann hierarchy are:

Θ` ∝ eik
∫
csdτe−(k/kD)2

, (2.76)

where kD is the wave number associated to the damping length of photons.

2.2.2 Primary anisotropies:

In this section we will present the fingerprints that the physics described so far has on the
CMB APS. We have presented how gravitational potential, dark matter inhomogeneities
and temperature fluctuation are bound and, thus in this Section we will provide a more
qualitative description. Summarizing what we have presented so far, we can distinguish
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three sources:

• The field perturbations ∆φ
φ are the initial perturbations, probably originated by

primordial quantum fluctuations stretched by inflationary process.

• The density perturbations ∆ρ
ρ are wells/hills of potentials where the photon-baryon

fluid falls/slips. In general the denser the fluid the higher the temperature.

• The velocity perturbations ∆v
v are photons that have a greater momentum and

smaller mean free path and the other way around.

Looking at the anisotropies power spectrum in Fig.(2.4) we start our considerations
from the low multipoles, (2 ≤ ` ≤ 50), after that we will move to the central region, from
` = 50 to ` = 1500, where the APS exhibits an oscillatory pattern with a major peak
at ` ∼ 220, finally we will focus on the series of smaller peaks that are characterized by
the Silk damping.

Super-horizon scales: In the first multipoles the APS is characterized by a long
plateau that goes from ` = 2 to ` ' 50, these scales are always super-horizon scales
and are independent on the physics of the fluid component, that is the oscillations
of the baryon-photon fluid are completely irrelevant. At these scales fluctuations
basically reflects the distribution of dark matter and thus the gravitational potential,
see Sec.(2.2.1) for details. The effect that photons undergo is called Sachs-Wolfe
effect from the names of Rainer Sachs and Arthur Wolfe that introduced it in 1967.
Having a dark matter density which presents spatial fluctuations generates a fluctuating
gravitational potential, which translates into a temperature fluctuation, Eq.(2.57):(

δT

T

)
S−W

=
1

3
δψ . (2.77)

There are two contribution to this result: photons that pass through large-scale
gravitational wells(hills) experience a gravitational redshift losing(increasing) their
energy. GR teaches that the gravitational echo is δν/ν = ψ, thus in order to maintain
the black-body spectrum unchanged the temperature fluctuations follows

δT/T = ψ . (2.78)

In addition there is a time effect, due to the fact that photons form denser regions were
scattered at earlier times, that induces a further δT/T , in particular:

δT

T
= −2

3

δt

t
= −2

3
ψ . (2.79)

Surprisingly, Eq.(2.77) shows that large-scales regions of higher density will appear as
colder in the CMB map and the other way around.
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The first peak Recalling some of the arguments presented in the previous sections,
the APS is the statistical point of view of the anisotropies on the last scattering
surface, at that epoch the universe was mainly composed by hydrogen, helium, photons,
neutrinos and dark matter. Baryons and photons have been tightly coupled until the
decoupling and they have experienced the behaviours described in Sec.(2.2.1) depending
on their size: inhomogeneities feel their own gravity and collapse if they enter the
horizon the radiation pressure dominates the equation and they star to oscillates.
Therefore, it is natural that the first peak have exact correspondence with the sound
horizon at the recombination time

dhor (zrec) '
2√
3H0

Ω
−1/2
m0 (1 + zrec)

− 3
2 , (2.80)

notice that the previous equations differs from the causality horizon of photons (Eq.1.142)
because this time we are considering the sound horizon, which means that we cannot
consider photons travelling at the speed of light, but sound waves travelling at cs =

1/
√

3c = 1/
√

3 We know that it is always possible to calculate the angular distance of
an object in the sky (see Sec.(1.1.3)), thus we can write an expression for the observed
angle,

θhor (zrec) '
1√
3

(
(1− Ωk0)

zrec

) 1
2

∼ 1◦ . (2.81)

We can say that the theoretical value of θhor (zrec) shown in Eq.(2.81) and perfectly
coincident with the value observed in the Planck APS, Fig.(2.4), is obtained postulating
a flat universe or, more accurately, that observed data are in excellent agreement with
the theoretical prediction of a flat universe. We show in Fig.(2.6) that positive value of
Ωκ moves the first peak of the APS towards higher multipoles and the other way around.
This is a very sensitive feature that allows the Planck collaboration to constrain the
curvature of the Universe with an astonishing precision level:

Ωκ = −0.004± 0.015 . (2.82)

Higher order peaks Fluctuations larger that the first peak are super horizon, while
fluctuations on smaller scales are sub-horizon, thus they follow the oscillatory behaviour
driven by gravity and pressure. The series of peaks and throughs that we observe in
the temperature power spectrum is the results of this oscillatory processes: modes that
were frozen by the recombination at the maximum of compression or rarefaction are
mapped into the peaks, while those that are exactly in phase with the background are
mapped into the throughs. Hence the first peak represents a mode that has completed
just one compression, the second peak, which has half the wavelength, has completed
one compression and one rarefaction and so on. In this framework we can consider
for the first time the contribution of the baryon masses. If we consider an inertial
mass contribution the effect on the oscillation is easily predictable: the peaks that
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Figure 2.6: Temperature anisotropies power spectrum for 5 different
values of the curvature density, here it is possible to appre-
ciate how much the position of the first peak is sensitive
to changes of Ωκ.

corresponds to compression (the odd ones) would be enhanced and the other way around
for the even peaks, see Fig.(2.7). This behaviour is known as baryon loading and it
is extremely useful for constraining of the amount of baryon matter (Ωb0). Another
important impact that the baryon loading has on the APS is that it decrease the
frequency of the oscillations, as one can expect increasing the inertia of the fluid, this
should translate into a shift of the peaks towards higher multipoles. Given the APS in
Fig.(2.4) the amount of baryons is well determined by Planck [10]:

Ωb0 = (4.884± 0.035)× 10−2 , Ωb0 h
2 = (2.226± 0.016)× 10−2 , (2.83)

where h = H0/100 is another way to write the Hubble constant and here it is set to
h = 0.675 Km/s/Mpc.

The damping tail As said before from ` > 1200/1500 the APS starts to be the
dominated by the damping effect, see Sec.(2.2.1) for details. In this region of the
spetrum we are dealing with scales that are very small and thus are well inside the
sound horizon; vhin this framework we have to consider inside the equations the
mean-free path of photons. In a few works, if we think the last scattering as a non
instantaneous process (i.e. we consider a last-scattering layer instead of a last-scattering
surface), all the temperature fluctuations on scales that are smaller than the thickness
of the layer (which depends on the mean-free path of photons) will be exponentially
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Figure 2.7: Temperature anisotropies power spectrum for 5 different
values of the baryon density, in this case the behaviour
described in Par.(2.2.2) is clearly visible, the baryon load-
ing effect moves the power from even to odd peaks. The
amount of baryon has been changed keeping constant
the matter density Ωm0 and the cosmological constant
contribution ΩΛ.

damped. The characteristic distance covered by a photon during a Hubble time is
described in Eq.(2.69), hence, increasing the baryon density (Ωb) translated into a more
tightly coupled photon-baryon at recombination, the mean free path of the photons
becomes shorter, and finally the damping tail shifts to smaller angular scales. Another
parameter that affects the damping process is the total matter density (Ωm): a different
amount of matter moves the recombination redshift back and forth in time changing
the dimension of the angular diameter distance. This reflects into more damping, at a
fixed multipole, increasing the total matter density.

2.2.3 Secondary anisotropies:

These anisotropies are not directly connected to the primary, their existence is due
to effects that happens well after the Last Scattering. We can summarize the most
important:

• The reionization optical depth: well after the decoupling, CMB photons encounter
again a distribution of free electrons, probably reionized by UV photons produced
by the first stars. Inside the standard cosmological model this effect is parametrized
as a reionization layer that reduces, see Fig.(2.8) the fluctuation amplitude on all
scales by a factor e−τrei , where τrei is the reionization optical depth. It is possible
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to infer the reionization redshift zrei once measured the optical depth, the latest
constraints obtained by Planck temperature and low-` polarization data [10] are:

τrei = 0.066± 0.016 , zrei = 8.8+1.7
−1.4 . (2.84)
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Figure 2.8: Temperature anisotropies power spectrum for 5 different
values of τrei, the larger the value of the reionization optical
depth, the greater the suppression over all the multipoles.

• The cosmic shear: weak gravitational lensing produced by potential distortions
due to non uniform distribution of mass (galaxies, cluster of galaxies) leads to
change in photon direction. This impacts mainly on small angular scales that are
slightly distorted. The propagation of a photon in the universe is deflected by
the mass distribution along its path,

• The integrated Sachs-Wolfe effect (ISW): during the journey from the last scatter-
ing surface to the detectors, photons travel in gravitational potentials that are not
constant in time (See Sec.(2.2.1) and in particular Eq.(2.53) for details). This is
an important effect for potentials on large scale: these potentials change over cos-
mological time-scales because the expansion of the universe impacts on the density
composition, for example when the Hubble expansion becomes exponential, under
the effect of the cosmological constant. The wells(peaks) decay over the time it
takes a photon to travel through them, thus, the blueshift(redshift) experienced
by photons falling(rising) the potential is not balanced by the redshift(blueshift)
as they come out.
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• The Sunyaev-Zeldovich (S-Z): CMB photons are scattered by high energy photons
in intracluster gas. This is a typical effect that happens in galaxy clusters, in
these formations most of baryons are in hot intracluster ionized gas and have
very high temperature ∼ 108 K. Electrons transfer energy to CMB photons
through inverse Compoton processes and simultaneously change their direction of
propagation. However, on average, the statistical information remains unchanged.
This effect impacts on the blackbody distribution, which results distorted in the
high frequency part, basically it move photons from the Rayleigh-Jeans part of
the CMB spectrum in the Wien region. It is possible to calculate the change of
intensity, which, of course, depends on the physical properties of the cluster,

∆IRJ
ν

IRJ
ν

= −2

∫
kT

me
σT ne dl , (2.85)

where
∫
dl is the path length of the cluster. The latter equation shows that the

change in intensity is independent on the redshift of the observed cluster, thus
the SZ effect assumes great importance also for the identification of high redshift
clusters.

2.3 CMB polarization anisotropies

Till now we have described only the temperature fluctuation of the CMB, moreover
Thomson scattering provides also a mild polarization of the radiation. Consider the
page as a Cartesian system with ±ŷ vertical direction and ±x̂ horizontal direction, then
consider the scattering of a photon propagating in the +x̂ direction to the observer (+ẑ),
which is perpendicular to the page. If the incoming photon is linearly polarized in the
(±ẑ) direction, then the electron will oscillate in the same direction no dipole radiation
is emitted toward the observer. Otherwise if the incident electric filed oscillates in the
±ŷ, the observer will sees a ±ŷ linearly polarized emission. In the most realistic case, if
the incident radiation is unpolarized, only the ±ŷ component of the electric field would
be scattered toward the observer. In the primordial universe, before the decoupling,
Thomson scattering acts exactly in this way, having an electric field of this type,

Ex = ax cos (ωt− ξx) , Ey = ay cos (ωy − ξy) , (2.86)

it is useful write down the Stokes parameters for intensity (I) and linear polarization
(Q and U):

I = a2
x + a2

y , Q = a2
x − a2

y , U = 2ax ay cos (ξx − ξy) , (2.87)
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and circular polarization (V ):

V = 2ax ay sin (ξx − ξy) . (2.88)

Thomson scattering does not produce circular polarization, while the Q component
correspond to the polarization in the x̂− ŷ direction and U rotated of 45 degrees. The
usually approach followed in CMB analysis is to consider two combinations for the
polarization components Q± iU , thus, if the temperature component is:

T (n̂) =

∞∑
`=0

∑̀
m=−`

a`mY`m (n̂) , (2.89)

as we have seen in Sec.(2.2), linear combination of Q and U can be expanded in analogy
with Eq.(2.37),

Q(n̂)− iU(n̂) =

∞∑
`=0

∑̀
m=−`

a2,`m 2Y`m(n̂) , (2.90a)

Q(n̂) + iU(n̂) =
∞∑
`=0

∑̀
m=−`

a−2,`m −2Y`m(n̂) . (2.90b)

In the latter set of equations a±2, `m are the expansion coefficients of the spin-2 ±2Y`m .
Using some properties of spin-2 harmonics coefficients, as done in [177], it is possible to
write the polarization field in the most common representation used in cosmology:

aE,`m = −
a2,`m + a−2,`m

2
, (2.91a)

aB,`m = i
a2,`m + a−2,`m

2
, (2.91b)

where E(n̂) and B(n̂) are the gradient and curl fields. The main characteristic of this
set T (n̂), E(n̂) and B(n̂) of fields is that they are invariant under rotations, moreover
they are also invariant under parity transformation. In analogy to what we have done
in Eq.(2.40) we can write down all the combination of T (n̂), E(n̂) and B(n̂) spectra:
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Figure 2.9: TE (upper figure) and EE (lower figure) angular power
spectra of the CMB temperature anisotropies measured
by the Planck satellite. In both the pictures red lines
correspond to the best fit of theoretical model described
in Ch.(1) and based on the six standard parameters, while
the blue points are the binned value of D` and C` with
the corresponding error bars. In the lower panels of each
figure there are the residuals. [51]
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CTT` =
1

2`+ 1

∑̀
m=−`

(a∗`m a`m) , (2.92a)

CEE` =
1

2`+ 1

∑̀
m=−`

(
a∗E,`m aE,`m

)
, (2.92b)

CBB` =
1

2`+ 1

∑̀
m=−`

(
a∗B,`m aB,`m

)
, (2.92c)

CTE` =
1

2`+ 1

∑̀
m=−`

(a∗`m aE,`m) , (2.92d)

CEB` = CTB` = 0 , (2.92e)

where the last equation above is valid only if there are no parity violation mechanisms. In
Fig.(2.9) we show the public TE and EE power spectra made by the Planck collaboration
[51], as noticed for the TT power spectrum in the previous section, the observed data
(blue dots) are in very good agreement with the theoretical prediction of the standard
cosmological model (red line).

2.3.1 E modes

One of the most important signature in the CMB polarization spectra comes from
the reionization era, free electrons are subject to large-scale CMB quadrupole, this,
in principle, originates a polarization signal at low multipoles in the TE, EE and BB
power spectrum. The signal amplitude goes like τrei and, thus, the power scales as τ2

rei.
This imprint is known as the reionization bump and such a feature in the spectrum
has no degeneracies with other parameters, this translates into a unique and powerful
tool for the study of the universe after the recombination. In Fig.(2.10) it is possible to
see the “bump" due to the different vales of τrei. Notice that, although at ` ≤ 50 the
EE power spectrum shows more power increasing the optical depth of reionization, at
smaller scale we find the same suppression seen in the TT spectrum, see Fig.(2.8). The
reason is quite simple to explain: the presence of an additional layer of free electrons
that scatters with CMB photons reduces the power in the APS because it is basically
an optically thick medium. However, at large scales, it increases the polarization effect
that we have described so far, giving more power to the polarized signal in particular
between ` = 2 and ` = 10.

2.3.2 B modes

In addition to scalar perturbations, another source of polarization can be identified in
gravitational wave emission. GWs distort the space-time in directions perpendicular to

− 79 −



CMB polarization anisotropies

2 10 50 200 1000 2000
10-3

10-2

0.1

1

10

Figure 2.10: EE power spectrum for 5 different value of τrei

their propagation, this effect aligns quadrupole to the plane perpendicular to the wave
vector leading to a loss in the axial symmetry that originates E and B polarization
modes. In order to produce primordial E and B modes these GWs have to be originated
in the primordial universe, Inflation is proposed as the source of both scalar, density
perturbations, and tensor gravity wave perturbations. Notice that there are no other
known mechanism able to produce a signal in the B modes, primordial GW’s are the
only channel. As said before, scalar perturbations correspond to quantum fluctuations
in the Inflaton field, while it is common belief that two independent polarization states
of the gravitational field may experience quantum fluctuations in the vacuum state,
originating tensor perturbation i.e GWs. The detection of B-modes on an angular scale
corresponding to 1 ◦ (the sound horizon at decoupling) would be a smoking gun for the
Inflation theory, however there is now no measure of this signal yet. To complicate the
picture B-modes can be generated also by gravitational lensing well after the decoupling
and the last-scattering of CMB photons. Gravitational lensing masks the primordial
source of B-mode with a foreground signal that cannot be removed using information
of the electromagnetic spectrum, however, it is possible to extract and remove the
lensing signal by studying the higher order spectra (three-point correlation function
or bispectrum) which are induced by the lensing [141]. Thus it is possible to separate
the contribution of B-modes due to lensing with respect to the contribution due to
primordial GWs. The effect of tensor perturbations is parametrized inside the standard
cosmological model as a tensor-to-scalar ratio r ≡ Pt/Ps|k that is the ratio between the
tensor and scalar power spectra measured at the same k. The values of this parameter
depends on the intensity of primordial tensor perturbations that is, of course, model
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dependent. In Fig.(2.11) we show the effect of increasing the tensor contribution from
r = 0 up to r = 0.12. Actually there is not a theoretical prediction for the r parameter,
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Figure 2.11: BB power spectrum for 5 different value of r. For r =
0 the contribution to the B-mode power spectrum is
due only to lensing effects, increasing the value of r we
appreciate an increase in power at large angular scales.

i.e. there are too many inflationary models that can originate a great variety of tensor-
to-scalar ratio values (basically values lower that r < 0.1 (fixed by Planck [10]) allow a
impressive number of models), this means that, in principle, it is always possible to
consider the observation not sensitive enough. However, as said before, the detection
of primordial B-modes is the only channel for studying fundamental physics in the
Inflation field, in analogy to what has been done for the astrophysical gravitational
waves detection in the last century.

2.4 Observing the CMB

All the theoretical spectra presented so far have been done considering a perfect sky
where the only observable source of CMB. Instead the data in Fig.(2.9 and 2.4) are
result of a cleaning process made by the Planck collaboration and well described in [6].
The real picture, however, is much more complicated and in this section we are going
to present very briefly the major sources of contaminations that a CMB study must
take into account.
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2.4.1 Cosmic variance and instrumental error

There is an unavoidable uncertainty called cosmic variance related to the fact that
we are observing only one CMB sky: as we observe large scales the number of points
that are correlated decreases (it is a pure geometrical effect), the smaller the number
of points available the greater the statistical uncertainty which we have to deal with.
Mathematically speaking, we have seen that in every multipole the quantity of infor-
mation is encoded in the amount of m ∈ [−`, `] i.e. (2` + 1) moments. Basically we
measure an observed variance Cobs

` in the sky and then compare the latter with the
expected value. This leads to an intrinsic uncertainty that has the following form:〈(

Cobs
` − C`
C`

)2
〉

=
1

(2`+ 1)2C2
`

∑̀
m=−`

`′∑
m′=−`′

〈a`ma∗`ma`′m′a∗`′m′〉 − 1 (2.93a)

=

√
2

2`+ 1
. (2.93b)

Eq.(2.93b) is valid considering a perfect observation of the entire sky, however, as
we will see in Sec.(2.4.2) there are a long series of foregrounds that cover the CMB
information in different areas of the celestial sphere, thus we are forced to mask part of
the sky. Masking the sky means losing information also at large scales and thus further
increasing the cosmic variance uncertainty, basically using a fraction of the sky fsky

increases the cosmic variance of a factor 1/fsky. In order to reduce this uncertainty,
in principle, one should be able to observe the CMB from different frames, but this is
clearly impossible, thus we have to deal with such an issue during the analysis rather
then in the interpretation of data.

During the analysis we have to deal also with instrumental uncertainties. The origin
of these errors have many different sources: the detector intrinsic precision, pointing
issues, calibrations, data analysis, noise removal and so on and do forth (see [11,12,167]
for some references). In order to summarize this information effectively, in Fig.(2.12) we
show the theoretical temperature power spectrum (red) and the corresponding cosmic
variance (green) obtained using the Planck fsky = 0.57, in addition we overplot the D`
extracted from the Planck 2015 data both for low-` and high-`. The latter contains the
cosmic variance information and the uncertainties related to the instrument. Looking
the green area, it is evident that the cosmic variance contributes at large scales and it
is sub-dominant for ` > 1000, while the instrumental errors dramatically increase for
the small-scale anisotropies.

2.4.2 Foregrounds

Since the CMB is, by definition, a background emission, other sources that are between
the last-scattering surface and us are called foregrounds. The presence of these astro-
physical sources, which is of great interest for other physics branches, represents an
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Figure 2.12: Theoretical temperature anisotropies power spectrum
(red line), corresponding cosmic variance (green region)
obtained using fsky = 0.57 and D` extracted from Planck
2015 data (grey dots). We chose to plot in logarithmic
scale both axes in order to compare the uncertainty due
to cosmic variance, that are dominant until ` ∼ 800 and
the error coming from instrumental uncertainties which,
on the other hand becomes relevant at high multipoles
` > 2000.

obstacle for a CMB study, in order to remove these emissions and clean the maps, it is
necessary to know what type of processes we are dealing with and how to parametrize
them.

Synchrotron: diffuse emission due to spiraling electrons in the galactic magnetic
fields. This radiation may be highly polarized, up to a 75%. The spectrum of synchrotron
emission is basically flat at frequencies ν ≤ 20GHz and then, for higher frequencies,
follows an exponential law with a negative index βs ∼ −3. We show the frequency
spectra used by the Planck collaboration in Fig.(2.14), the top-left panel corresponds
to synchrotron emission. Synchrotron radiation is present in both temperature and
polarization maps.

Free-free: bremsstrahlung emission coming from electron-ion collision, its spectrum
is close to a power law for frequencies greater than 1 GHz and presents a visible
break at lower frequencies. This happens because the medium becomes optically thick,
in addition the brightness temperature becomes equal to the electron temperature.
Free-free spectrum is similar to the synchrotron one at low frequencies, but can be

− 83 −



Observing the CMB

distinguished because its power-law index is flatter than the synchrotron one. We show
the free-free spectrum in the top-right panel of Fig.(2.14).

Spinning dust: dust grain having non-zero dipole moment that rotates and emits
in the microwave region of the e-m spectrum. The frequency spectrum shows a peak
between 25 and 30 GHz and then it follows a power law in analogy with the synchrotron
and free-free case. Spinning dust is shown in middle-left panel of Fig.(2.14).

CO lines: three of the nine frequency bands of the Planck experiment (100, 217,
353 GHz) strongly detected emission lines of carbon monoxide (CO). It is possible to
separate these lines from the other diffuse components and to describe parametrically
in terms of an amplitude a(p) inside the corresponding detector map.

Figure 2.13: Foreground maps delivered by the Planck collaboration,
for the top-left to the bottom-right we show CMB, syn-
chrotron, free-free, spinning dust, thermal dust, and four
CO amplitude maps. [6]

Thermal dust: this is the dominant component at frequencies ν > 100 GHz, the
characteristic spectrum is basically a modified black body with a free emissivity index
βd and a characteristic temperature Td. Thermal dust gives its contribution also in
polarization, because aspherical dust grains tend to distributes along the local magnetic
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field lines. This behaviour translates into a polarized emission in the microwave band
with the same thermal-dust spectrum. We show the spectrum in the lower-left panel of
Fig.(2.14).

Thermal SZ: in the right-bottom panel of Fig.(2.14) we show the spectrum of the
Sunyaev-Zeldovich effect. The deviation from the black body spectrum of photons
which undergo inverse compton scattering leaves an imprint increasing the brightness
on high frequencies.



Figure 2.14: Brightness temperatures in function of the frequency for
the main foregrounds: synchrotron, free-free, spinning
dust, CO, thermal dust and SZ. For every spectrum there
are shown several parameter combinations in order to
show the behaviours of the spectra. The black-dashed
line is representative of the CMB brightness temperature
corresponding to a T = 70µK, while the gray vertical
lines show the central value of the Planck frequency
bands. [6]



3
Neutrinos

This thesis focuses on the neutrino figure, this multifaceted particle plays different roles
in the cosmological history: it is neutral and weakly interacting, i.e. there is no way
to understand its properties by direct observations of the electromagnetic spectrum.
However neutrinos feel the gravitational interaction and contribute to Einstein equations
as additional relativistic degrees of freedom and took part to electroweak interactions
with the other components of the primordial fluid until their decoupling at T ∼ 1 MeV.
This translates in a indirect channel for the study of neutrinos, indeed, these behaviours
leave clear imprints on the temperature and polarization anisotropies of the cosmic
microwave background radiation. CMB measurements have become extremely precise,
Planck measures the CMB APS below the % level, hence, cosmology has become a
parallel and complementary tool, with respect to laboratory experiments, to constrain
fundamental properties of the neutrino background. In this chapter we are going to see
the main cosmological aspects of primordial neutrinos, however, in order to understand
their properties we need a very brief introduction of the theoretical framework within
which they are described: the standard model of particles.

3.1 State of the art

Neutrinos are one of the most studied particles in physics both from the theoretical
and experimental point of view; the reason of this interest resides in the amount of
reactions that see them participating and in the fact that they represent one of the
most interesting channels for extending of the actually known model of particle physics.
The history of this particle starts in 1930 when Wolfgang Pauli, in order to explain
the observation made by Chadwick (1914) and Ellis (1927) of the continuous energy
distribution of the electron in the β-spectrum, wrote to his friend Walter Baade: I have
done a terrible thing today, something which no theoretical physicist should ever do. I
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have suggested something that can never be verified experimentally. One year later Pauli
proposed, in an open letter to a physics conference at Tubingen on 4 December 1930,
the existence of a neutral weakly interacting particle called neutron. However, after
the discovery of the “real" neutron by Chadwick in 1932, E. Fermi and Pauli renamed
this particle neutrino. In 1934 Fermi proposed the theory of weak interactions [69] in
analogy with quantum electrodynamics; however, theoretical particle physics was a
relative new sector, P. Dirac introduced his equation only few years before in 1928 [61],
and the understanding of the picture that now we call standard model of particle
physics was incomplete. Change of one unit of the nuclear spin that often happens
in β-decays, that represent a CP violation, induced G.Gamow to extend the theory
introducing new axial-vector currents, parity was a fundamental symmetry at that
time and its violation was impossible. The universality of the weak interaction was
postulated by B. Pontecorvo after the observation of the muon decay (1947) [147] and
simultaneously began to circulate the notion of neutrino “families". The succession of
discoveries was really impressive: in 1956 Reines and Cowan had the first detection in
a reactor-neutrino experiment, the same year the validity of parity conservation was
questioned thanks to observations of the K meson decay [118]. This opened the way to
a new theory called vector-axial theory (V − A). Formulated in 1958 by R.P. Feynman
and M.Gell-Mann [70] it provides a description using massless neutrinos as proposed
by L. Landau [116] and A. Salam [155]; left-handed and right-handed neutrinos rise
spontaneously from the theory. The concept of lepton numbers introduced in 1953 was
briefly replaced by the strongest lepton-family number (processes like µ → e + γ do
not take place). In 1967 the weak interaction theory became part of a more complete
picture, the Gloshow-Weinberg-Salam Model or Standard Model [89]. Based on a
solid mathematical framework such as the group theory it is based on a SU(2)⊗ U(1)

gauge model. It predicts with success the existence of vector bosons W± and Z0,
provides an explanation for the existence of a massless boson γ and incorporates the
Higgs mechanism (1964) [100] that allows the original massless gauge bosons to acquire
longitudinal degrees of freedom (mass) through the interaction with a scalar field. The
successes of the SM are astonishing and confirm the extreme power of prediction of the
theory; the number of generations was fixed at three in 1989 by the measurements by
LEP experiments at CERN of the width of the Z0 boson [2, 16,57].

There are no clear deviations from the SM except for the neutrino oscillations
experiments. The concept of oscillation was proposed by Pontecorvo in 1957 [148]
in analogy with the K0 ↔ K̄0 observed by Gell-Mann in 1955 [83], in this first case
the oscillation was introduced between ν ↔ ν̄ considering Majorana neutrinos, but
few years later a more realistic case of νe ↔ νµ oscillation became dominant in the
community. In 1975 the theory of oscillation was finally publicated in [37].

In recent years an ever-increasing effort has been put into the study and obser-
vation of these particles: KamLAND [67], Kamiokande [166], GALLEX/GNO [94],
GERDA [14], SAGE [4], Super-Kamiokande [75], SNO SNO+ [114], MiniBooNE [168],
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IceCube [165], Juno [20], OPERA [5] are only some of the main experiments that
have investigated, and are investigating, neutrino properties. Observations of solar and
atmospheric neutrinos provided evidence of the oscillation framework of three-neutrino
mixing, i.e. three flavours are the unitary linear combination of three massive eigen-
states. As this work is writing, the mass differences (∆m2

21, ∆m2
31, ∆m2

32) and the
mixing angles (θ12, θ13, θ23) have been measured; the unknown quantities left are the
mass hierarchy (the sign of ∆m2

31), the CP phase δ [133] and the absolute scale of the
masses. As said before, another open question is the nature of neutrinos, if they are
Dirac or Majorana particles, the smoking gun experiment to shed light on this is the
neutrinoless double beta decay (0νββ) [50, 58] which can take place only inside the
Majorana picture, violating the lepton number conservation, see the black box theorem
in Ref. [161].

3.2 The Standard Model

Before showing details about neutrino physics we need to briefly describe the picture
where they live, that is the standard model of particles. The SM is the result of the
theories developed in the previous decades and centuries: classical mechanics [90, 169],
quantum mechanics and quantum field theory [45,131,146,154], group theory [26,86], are
the pillars of modern physics. It is based on the notion of gauge theory which describes
the fundamental interactions through a relativistic quantum field theory, based on the
gauge symmetry principle for the group SU(3)C ⊗SU(2)L⊗U(1)Y , where C, L and Y
denote colour, left-handed chirality and weak hypercharge. The part associated to the
strong sector SU(3)C is a exact symmetry and it remains unbroken at any energy level,
the part associated to electroweak interactions, i.e. SU(2)L⊗U(1)Y , through the Higgs
mechanism, undergoes to a spontaneous symmetry breaking SU(2)L⊗U(1)Y → U(1)Q
and the relative formation of the massive bosons W± and Z0. Using this elegant
picture we know of the existence of fundamental particles which are divided into quarks
and leptons; and the respective anti-particles, see Tab.(3.1). The defining property of
quarks is that they carry color charge, and thus, interact via the strong interaction,
as we know, there are three colors and the associated anti-colors. Moreover quarks
carry electric charge and weak isospin, hence they interact with other fermions both
electromagnetically and via weak interaction.

Since the main topic of this thesis are neutrinos, let us concentrate on the electroweak
part of the theory, the SU(2)L group is called weak isospin I and the subscript L
means that the natural components are the ones with left-handed chirality. The weak
isospin is the charge associated to a non-abelian group which implies that for every
representation of the group the generators are fixed, in particular Iα = σα/2 that are the
Pauli matrices. The symmetry group U(1)Y is called hypercharge, isospin and to each
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1st generation 2nd generation 3rd generation

quarks: u (up) c (charm) t (top)

d (down) s (strange) b (bottom)

leptons: νe (electron ν) νµ (muon ν) ντ (tau ν)

e (electron) µ (muon) τ (tau)

Table 3.1: In this table we show the three generations of fermions:
quarks and leptons. These 12 particles are the fundamental
building blocks of the standard model of particles. The
SM does not provide any explanation for the number of
generations, it is just an experimental evidence.

generator corresponds a boson field, i.e. for the 3 component isospin the vector gauge
field Aµα and for the hypercharge one vector gauge field Bµ. The covariant derivative
that is needed by the theory is defined as:

Dµ ≡ ∂µ + igAµ · I + ig′BµY

2
(3.1)

where the underline means we are considering vectors and g and g′ are the couplings of
the bosons fields. The best and most economical way to summarize this knowledge is
to write down the Lagrangian of the EW theory:

L =iL̄L /DLL + iQ̄L /DQL +
∑

f=e,u,d

if̄R /DfR

− 1

4
AµνA

µν − 1

4
BµνB

µν

+ (Dµφ)† (Dµφ)− µ2φ†φ− λ
(
φ†φ
)2

− ye
(
L̄LφeR + ēRφ

†LL

)
− yd

(
Q̄LφdR + d̄Rφ

†QL

)
− yu

(
Q̄Lφ̃uR + ūRφ̃

†QL

)
,

(3.2)

where the first line contains the left-handed chiral components of the fermion fields
grouped into weak isospin doublets:

LL ≡
(
νeL
eL

)
, QL ≡

(
uL
dL

)
, (3.3)

their covariant derivatives in the Dirac formalism (/D = γµDµ) and the symbol † means
the hermitian adjoint. The second line contains the kinetic terms and the self-couplings
of the gauge bosons, the third row is the Higgs field (φ) Lagrangian and the last
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two lines contain the Higgs-fermion Yukawa couplings (yx), responsible of the mass
generation in the fermion sector (for further details see [45, 49, 131, 146]. In the SM
neutrino fields have only left-handed components, since right-handed neutrinos have
never been observed, this is a consequence of the first two-component theory of neutrinos
developed by Landau and Salam i.e. right-handed fields are singlets under weak isospin
group, i.e. they have isospin I = I3 = 0. It is possible to expand the terms in the
first line of Eq.(3.2) obtaining the interaction Lagrangian that describes the coupling
between fermions and gauge bosons, following the steps in [88], the interacting part
can be divided into two contributions the first due to charged currents and the second
generated by neutral currents:

LCCint = −g
2

[
ν̄el
(
/A1 − i /A2

)
eL + ēL

(
/A1 + i /A2

)
νeL
]
, (3.4)

LNCint = −1

2

[
ν̄eL

(
g /A3 − g′ /B

)
νeL − ēL

(
g /A3 − g′ /B

)
eL − 2g′ēR /BeR

]
, (3.5)

In the charged current we can define a field that corresponds to the charged boson W±

in such a way:

Wµ =
Aµ1 − iA

µ
2√

2
, (3.6)

that leads to a Lagrangian density:

LCCint = − g

2
√

2
jµW,LWµ + h.c. , (3.7)

where
jµW,L = ν̄Lγ

µ(1− γ5)e , (3.8)

is the leptonic charged current. Carrying out a similar calculation for the neutral
current we obtain:

LNCint = LZI + LγI (3.9a)

= − g

2 cos θW
jµZ,LZµ − ej

µ
γ,LAµ , (3.9b)

where Aµ and Zµ are the electromagnetic and the neutral vector boson fields expressed
as linear combination of the Aµ3 and Bµ fields rotated with the Weinberg angle θW :

Aµ = sin θWA
µ
3 + cos θWB

µ (3.10a)

Zµ = cos θWA
µ
3 − sin θWB

µ . (3.10b)

In this case jµγ,L and jµZ,L are the electromagnetic current and the neutral charged
current respectively. The Noether currents that we have written in Eqs.(3.8 and 3.9)
are conserved quantities that describes the trilinear couplings in the Feynman diagrams.
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3.2.1 Mass generation mechanism

In the SM there is a mechanism responsible for the generation of the masses of fermions
and bosons: the Higgs mechanim. Let us start introducing the Higgs doublet:

φ(x) =

(
φ+(x)

φ0(x)

)
. (3.11)

We define the third line of Eq.(3.2) and impose:

v ≡
√
−µ

2

λ
, (3.12)

where the squared mass-like coefficient µ2 is assumed to be negative to realize the
spontaneous symmetry breaking SU(2)L ⊗ U(1)Y → U(1)Q and λ is the coefficient of
the quadratic self-coupling; this leads to a potential of the form:

V (φ) = λ

(
φ†φ− v2

2

)
, (3.13)

the minimum of this potential is the vacuum or the lowest energy state, all the quantized
excitations of the fields corresponds to particle states. While charged fields and those
which have non-zero spin must have a zero value in the vacuum, neutral scalar fields have
non-zero value in vacuum called vacuum expectation value (VEV). In particular, for the
Higgs field, the φ0 is the source of this VEV. In the so called unitary gauge [26,88,131]
it is possible to write the Higgs doublet making clear the physical states:

φ(x) =
1√
2

(
0

v +H(x)

)
, (3.14)

Expanding the Higgs part in the Eq.(3.2) with Eq.(3.14) the mass terms of the bosons
appear:

LHiggs =
1

2
(∂H)2 − λv2H2 − λvH3 − λH4 +

g2v2

4
W †µW

µ

+
g2v2

8 cos2 θW
ZµZ

µ +
g2v

2
W †µW

µH +
g2v

4 cos2 θW
ZµZ

µH

+
g2

4
W †µW

µH2 +
g2

8 cos2 θW
ZµZ

µH2 .

(3.15)

Reading the Lagrangian in Eq.(3.15), the first term is the kinetic term for the Higgs
boson, then the Higgs mass term appears (mH =

√
2λv2), third and fourth terms are

trilinear and quadrilinear self-coupling of the Higgs field. The W± and Z0 masses are
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described in the fifth and sixth terms in particular:

mW =
gv

2
, mZ =

gv

2 cos θW
, (3.16)

the last four terms in the Higgs Lagrangian are the trilinear and quadrilinear couplings
between vector bosons and the Higgs field.

Fermions acquire mass as a result of the Higgs mechanism through the presence of the
Yukawa couplings (fourth and fifth row of Eq.(3.2)). As done before, in the unitary gauge,
the Higgs-lepton Yukawa Lagrangian can be written in a more convenient form, however
the Yukawa coupling, that are complex 3× 3 matrix, are not diagonal, we need to diag-
onalize 1 changing the lepton basis to the new |`L , `R〉 = |(eL, µL, τL)T , (eR, µR, τR)T 〉
(for further details see [88]), after this procedure the Lagrangian takes the form:

LH,L = −
(
v +H√

2

)
¯̀
LY

``R + h.c. , (3.17)

= −
∑

α=e,µ,τ

y`αv√
2

¯̀
α`α −

∑
α=e,µ,τ

y`α√
2

¯̀
α`αH , (3.18)

where the part with the Yukawa matrix elements (y`α) and the Higgs VEV represents
the mass term for the lepton:

mα =
y`αv√

2
, with α = e, µ, τ . (3.19)

Here `α = `αL + `αR and α corresponds to the family lepton indices. Every lepton has
a Yukawa coupling proportional to its mass, which is a free parameter of the model, i.e.
there is a need to perform a measurement, at least one time, of the mass in order to
provide a value of the y`α.

3.2.2 Effective low-energy theory

As we have seen in Ch.(1) standard cosmology is able to provide a description of the
universe up to high temperatures (T ≥ 100 GeV), however the processes involving
neutrinos start to be interesting at relatively low temperatures T . 10 MeV i.e. tem-
peratures much lower that the mass scale of the vector bosons W± and Z0. In this
regime it is useful to approximate the standard interacting picture in using a low energy
Lagrangian both for charged and neutral currents. In this approximation the gauge
boson propagators in the momentum space can be rewritten in a simpler form:

GWµν(p)→ i
g

m2
W

, GZµν(p)→ i
g

m2
Z

, (3.20)

1A general complex matrix A′ can be diagonalized through a unitary transformation V †LA
′VR = A,

where VL and VR are unitary matrices.
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and the effective Lagrangian take the following form:

Leff =LCCeff + LNCeff (3.21)

− GF√
2
j†µ(W )j

µ
(W ) −

GF√
2
jµ(Z)jµ(Z) . (3.22)

where GF is the universal weak interaction constant or Fermi constant that can be
written as:

GF =

√
2

8

g2

m2
W

=

√
2

8

g2

cos2 θWm2
Z

. (3.23)

Basically the mass of the mediator bosons is large enough to collapse the two vertices
of the 2 ↔ 2 process into a unique four-point interaction as it is possible to see in
Fig.(3.1).

Figure 3.1: Contraction of theW± (top panel) and Z0 (bottom panel)
in the effective low-energy theory of weak interactions.

3.2.3 Dirac mass and mixing

As said in the previous sections, neutrinos are well described inside the SM, moreover
the understanding of the weak interactions is one of the cornerstones of the model.
Nevertheless they represents the first hint of non-standard physics. Basically there are
two ways to consider massive neutrinos in the SM: the first is to treat them as Dirac
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particles, as we have done for leptons, the second is to adopt the Majorana formalism.
The nature and the origin of their tiny masses is still unknown and thus it is one of the
most interesting and studied features, in this section we will briefly present the most
important properties of both theories.

It is clear from Eqs.(3.2 and 3.18) that inside the standard picture, in order to
generate a mass term in the lepton sector, we need the presence of both left and
right-handed components of the corresponding field. This is the reason why neutrinos,
in the SM, naturally have to be massless particles; however, the existence of oscillations
among flavour eigenstates is unmistakable proof of the existence of massive eigenstates.
Thus, if we want to explain this situation inside the SM, we have to modify the theory
introducing a right-handed component in the neutrino sector. The neutrino term in
the Lagrangian is similar to the lepton one, Eq.(3.18), here we show the diagonalized
form, parallel to what was done for the lepton case, in the new basis |nL, nR〉, with the
Yukawa Y ν :

LH,ν = −
(
v +H√

2

)
n̄LY

νnR + h.c. (3.24)

= −
3∑

k=1

yνkv√
2
ν̄kνk −

3∑
k=1

yνk√
2
ν̄kνkH , (3.25)

where the νk = νkL + νkR and k is the number of massive eigenstates. The basis
|nL, nR〉 is a new representation of the arrays containind the left-handed and right-
handed components of the neutrino fields. In particular nL = V ν†

L ν ′L ≡ (ν1L, ν2L, ν3L)T

and nR = V ν†
R ν ′R ≡ (ν1R, ν2R, ν3R)T .

Once again the mass term is given by the part with the VEV and the Yukawa:

mκ =
yνkv√

2
, (3.26)

Notice that the neutrino mass term is proportional to the same Higgs VEV used in the
lepton case, thus, in order to explain the tiny mass suggested by laboratory experiments
and cosmological observation, we need to consider very small values for the eigenvalues
of the Higgs-neutrino Yukawa matrix yνk . Define an unitary matrix in the following
way:

UD = V `†
L V

ν
L , (3.27)

it is possible to write down the charged current in both the flavour ναL and mass νkL
eigenstates:

jµW,L = 2ν̄αLγ
µ`αL , (3.28)

jµW,L = 2ν̄kLγ
µU †kβ`

β
L . (3.29)

The U matrix is the Pontecorvo-Maki-Nakagawa-Sakata matrix and it is the neutrino
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analogous of the mixing matrix in the lepton sector [88]. The family lepton number
is not conserved, instead of the total lepton number which is a global symmetry, it
is clear looking at the neutrino part of the Lagrangian, Eq.(3.25) where there are no
transformations on the right-handed part that leave the Lagrangian unchanged. The
mixing matrix UD is defined as follows:

UD =


c12c13 s12s13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (3.30)

where sij = sin θij , cij = cos θij with 0 < θij < π/2 and δ is the phase related to the
CP violation (a non zero value of δ leads to CP violation). The mixing angles can be
defined, in the inverse way, via the elements of the neutrino mixing matrix:

s2
12 =

|Ue2|2

1− |Ue3|2
, c2

12 =
|Ue1|2

1− |Ue3|2
, (3.31)

s2
13 = |Ue3|2 , c2

13 = 1− s2
13 , (3.32)

s2
23 =

|Uµ3|2

1− |Ue3|2
, c2

23 =
|Uτ3|2

1− |Ue3|2
. (3.33)

3.2.4 Majorana mass and mixing

In the formulation of the SM a massless fermion can be described, in a very simple way,
by a single chiral field, i.e. the Dirac equation allows two simple results:

(iγµ∂µ −m)ψ = 0 , (3.34)

where ψ is a spinor chiral field, in case of massless fermions we obtain the Weyl
equations:

iγµ∂µψL = 0 , (3.35)

iγµ∂µψR = 0 . (3.36)

The possibility of describing a particle using the Weyl spinors ψL and ψR requires parity
violation and it was not considered until its discovery in 1958. Massless neutrinos are
the best candidates to be left-handed Weyl spinors, but the discovery of oscillation
among flavours complicates the picture. Ettore Majorana in 1937 proposed a different
approach, basically considering a dependence between the left and right-handed Weyl
spinors, unsing this trick it is possible to rewrite the Eq.(3.36) for massive particles in
such a way:

− iγµ∂µψ̄R = mψ̄L , (3.37)
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and the charge conjugated related equation:

iγµ∂µψL = mCψ̄TL , (3.38)

where C is the charge conjugation operator. This implies equality of particle and
antiparticle or ψ = ψC . This behaviour is permitted only in the case of neutral particles,
carrying out the same calculation for charged states brings to the cancellation of the
Noether currents and, thus, destroys the theory.

A proper mass term in the Majorana picture needs a left-handed type term that
can replace the right-handed νR, the right choice is the charge conjugated field of νL:

νCL = Cν̄TL , (3.39)

hence, the Majorana Lagrangian density has the form:

LM =
1

2

[
ν̄Li/∂νL −mν̄CL νL

]
+ h.c. , (3.40)

where the kinetic part is as in the Dirac case, while the mass term has a different form.
In the Dirac case the family lepton number is violated by the Lagrangian properties,
but the total lepton number is conserved; in the Majorana case, instead, the mass
term would produce processes where ∆L = ±2. Inside the Majorana framework is
not possible to generate a mass with a Higgs triplet, as done for the charged leptons,
however, using two Higgs doublets, one can build an interacting Lagrangian [173]:

L =
g

M
(
LTLσ2φ

)
C†
(
φTσ2LL

)
+ h.c. , (3.41)

where σi are the Pauli matrices. Since this term is not renormalizable, adding it in
the SM translates into a revaluation of the entire model as a low-energy effective field
theory, as the β decay is for the electroweak theory. At high energy T >M physical
particle are real, while at low energy T <M they contribute only as virtual mediators,
such as W± in the beta decay at the MeV scale. From Eq.(3.43), spontaneous symmetry
breaking implies a mass term:

LMmass =
1

2

(
gv2

M

)
νTLC†νL + h.c. , (3.42)

the Higgs VEV provides a usual Dirac mass scale (mD), while theM can justify the
tiny neutrino mass:

mν '
m2
D

M
. (3.43)

This one family toy model becomes relatively more complicated in a 3 neutrinos mixing,
differently from the Dirac case (see [88] for an extended treatment), the UM matrix
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shows 3 phases that cannot be absorbed as in the Dirac case, hence we get:

UM = UD ×DM , (3.44)

where UD is defined in Eq.(3.30) and

DM = diag
(

1, eiλ2 , eiλ3

)
, (3.45)

where λ2 and λ3 are the Majorana phases. Discerning between the two pictures is quite
hard: in case of massless neutrinos, Dirac and Majorana pictures are indistinguishable,
even if they are massive the kinematical effect of the mass and the oscillation pattern
are the same in both pictures. The visible effects could be visible in lepton number
violation experiments such as 0νββ, see Sec.(3.3.2).

3.2.5 Dirac-Majorana neutrinos

We have given a brief description of massive neutrinos in the SM both in the Dirac
an Majorana case, however it is possible to have a Dirac-Majorana mixed model: in
addition to 3 left-handed neutrinos there are Ns sterile right handed neutrinos fields
that do not participate to weak interactions. This description, considered the most
natural way to explain the tiny mass of neutrinos was presented in 1977 by Minkowsky
and later (1979) by Yanagida [176], Gell-Mann [84] and by Schechter and Valle [159]; it
provides an smart mass generation mechanism called Seesaw mechanism. There are
three types of seesaw models:

Type I seesaw The first type requires the introduction of right-handed singlets νsR
(here s-subscript is the number of sterile flavour eigenstates) in order to write the Dirac
mass Lagrangian density in the following form:

LDmass = −ν̄sRMD
sαν

α
L + h.c. , (3.46)

where MD
sα is a Ns× 3 complex matrix. In this picture we can also consider a Majorana

mass term in the Lagrangian density, this is a pure right-hand side term:

LRmass =
1

2
νsTR C†MR ∗

ss′ ν
s′
R + h.c. , (3.47)

with MR
ss′ is a Ns ×Ns complex matrix. If both the terms are present the D+M mass

matrix is:

MD+M ≡

 0 MDT

MD MR

 , (3.48)
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this matrix can be diagonalized using a procedure similar to Eq.(3.15) , in order to
provide a diagonal matrix having the following form:

M ′D+M =

M ′light 0

0 M ′heavy

 , (3.49)

where M ′light ∼ −MDT
(
1/MR

)
MD and M ′heavy ∼ MR. Passing through another

diagonalization via the unitary matrices V ν
L and V ν

R it is possible to write the light and
heavy neutrino masses in a more simple way:

mlight ∼
(
mD
)2

mR
, mheavy ∼ mR . (3.50)

There are two other type of seesaw mechanism: type II generates neutrino masses via
exchange of SU(2)L-triplet scalar [130,139,159,174] and type III uses a SU(2)L-triplet
fermions [74, 128,129].

3.2.6 Flavour oscillations in vacuum

Due to the small mass differences, see Tab.(3.2), and to the fact that they are produced
in charged currents interactions, basically neutrino mass and flavour eigenstates are
not coincident, neutrinos undergo a quantum mechanical phenomenon called flavour
oscillations. The theory of neutrino oscillations in the plane-wave approximation was
developed in 1976 by Eliezer and Swift [68] on the original idea of B. Pontecorvo, it is
based on the statement that a flavour state can be written as a linear combination:

|να〉 =
∑
k

U∗αk|νk〉 . (3.51)

The lepton charged current Eq.(3.8) generates a superposition of mass eigenstates if
the measurements of the momenta and energies are not accurate enough, the mixing is
described by the matrix U∗αk. Massive neutrinos states are eigenvalues of the free-particle
Hamiltonian,

H|νk〉 = Ek|νk〉 , (3.52)

and the time evolution of the plane wave is given by the Schroedinger equation,

i
d

dt
|νk (t)〉 = H|νk (t)〉 , (3.53)

which implies:
|νk (t)〉 = e−iEkt|νk〉 . (3.54)

− 99 −



The Standard Model

Eqs.(3.51 and 3.54) lead to a pure flavour equation having the following form:

|να (t)〉 =
∑

β=e,µ,τ

(∑
k

U∗αke
−iEktUβk

)
|νβ〉 , (3.55)

and, thus, the probability of having a να → νβ oscillation is the squared average of the
transition amplitude:

Pνα→νβ (t) = |〈νβ|να (t)〉|2 =
∑
kj

U∗αkUβkUαjU
∗
βje
−i(Ek−Ej)t . (3.56)

Since the difference between the energies of the k and j states can be written in function
of the squared mass difference,

Ek − Ej = E +
m2
k

2E
− E −

m2
j

2E
(3.57)

'
∆m2

kj

2E
, (3.58)

it is clear that the probability of oscillations, Eq.(3.56), depends only on the mixing
angles and the mass differences and time, however since the time is not measured in a
oscillation experiment, we can approximate it with the distance L between the source
and the detector (in the ultrarelativistic case neutrinos propagate with the speed of
light), leading to:

Pνα→νβ (E,L) =
∑
kj

U∗αkUβkUαjU
∗
βje
−i

∆m2
kj

2|~p| L . (3.59)

Notice that the combination of mixing matrices does not change neither in the Dirac
nor in the Majorana model, since the phases are destroyed within the quadratic form.
Finally, Eq.(3.59) has the same form also in the antineutrino case with the related
operation on the complex matrices U due to charge conjugation transformation.

3.2.7 Flavour oscillations in matter

Since the propagation and the distance travelled of are crucial in the oscillation process,
the existence of a medium in which neutrinos propagate may change the situation.
Let us consider the charged current, Eq.(3.22), it is possible to derive the related
Hamiltonian:

HCCeff =
GF√

2
[ν̄eγ

µ (1− γ5) νe] [ēγµ (1− γ5) e] , (3.60)

if we, now, consider a gas of electrons and all their properties: density, energy density
and energy distribution (ne, ρe, f(Ee)), it is possible to find an effective potential
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associated to the charged current (see [88, 119] for details),

VCC =
√

2GFne . (3.61)

It is possible to perform the same procedure with the neutral current part of the
Lagrangian, Eq.(3.22), considering a generic fermion f and the vectorial and axial
fermion couplings gfV , g

f
A:

HCCeff =
GF√

2
[ν̄αγ

µ (1− γ5) να]
∑
f

[
f̄γµ

(
gfV − g

f
Aγ5

)
f
]
, (3.62)

obtaining a neutral-current potential:

VNC = −GF√
2
nn , (3.63)

where nn is the number density of neutrons. Putting together the contribution of VCC
for electron neutrinos and of VNC for the other kind of neutrinos the potential for a
generic α eigenstate is:

Vα = VCC δeα + VNC =
√

2GF

(
neδeα −

1

2
nn

)
, (3.64)

Hence, the Schroedinger equation becomes:

i
d

dt
|να (t)〉 = (H0 +H1) |να (t)〉 , (3.65)

where H1 is the perturbation due to the potential Vα, while H0 is the unperturbed
Hamiltonian. In analogy with Eq.(3.56) we can write the Schroedinger equation for the
amplitude of the να → νβ oscillation:

i
d

dx
〈νβ|να (x)〉 =

∑
η

(∑
k

Uβk
∆m2

k1

2E
U∗ηk + δβeδηeVCC

)
〈νη|να (x)〉 , (3.66)

with η is a subscript dummy index running on the flavour eigenstates and x is the
distance parameter that approximates time t in analogy to what done for the oscillations
in vacuum. The latter equation shows that neutrino oscillations in matter depends on
the differences of the squared neutrino masses and on the mixing angles as the vacuum
oscillations. Moreover, Eq.(3.66) can be rewritten in a matrix form,

i
d

dx
Ψα = HFΨα , (3.67)
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where HF = 1/2E
(
UM2U † + A

)
is the Hamiltonian matrix in the flavour basis and

Ψα is the wave function matrix, M is the mass matrix and A is the charged current
contribution:

Ψα =


ψαe

ψαµ

ψατ

 , M2 =


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

 A =


2EVCC 0 0

0 0 0

0 0 0

 (3.68)

The same observation done in the previous section on the differences between
Majorana and Dirac pictures are valid for flavour oscillations in matter, i.e. there is no
way to discern between the two natures just looking at oscillation observations.

The MSW effect

We will see some details of neutrino flavour oscillations in matter: lest us consider a
two component model νe - νµ and the corresponding mass eigenstates ν1 - ν2. This case
is identical to the νe - ντ and it can describe accurately also the case of active-sterile
neutrino oscillation simply replacing VCC with VCC + VNC . The flavour Hamiltonian
reduces to a 2× 2 matrix:

HF =
1

4E

−∆m2 cos 2θ + 2EVCC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − 2EVCC

 . (3.69)

The flavour mixing follows the rule:

|νe〉 = cos θ|ν1〉+ sin θ|ν2〉 (3.70)

|νµ〉 = − sin θ|ν1〉+ cos θ|ν2〉 . (3.71)

As a standard procedure, it is possible to diagonalize via an orthonormal transformation
O (θM ); at the end of the day the mixing angle in matter results:

tan 2θM = tan 2θ

[
1− 2EVCC

∆m2 cos 2θ

]−1

. (3.72)

The Schroedinger equation, Eq.(3.67) with the Hamiltonian shown in Eq.(3.69) describe
a resonance for:

∆m2 cos 2θ = 2EVCC , (3.73)

and considering the expression for the charged current potential in Eq.(3.61) we get:

nrese =
∆m2 cos 2θ

2
√

2GFE
. (3.74)
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This resonance is called Mikheev-Smirnov-Wolfenstein (MSW) effect [134,175] and it
becomes relevant when the free electron density overcomes certain values, such as in
stars (it describes the conversion mechanism that solve the solar neutrino problem),
supernovae or primordial universe. In matter the value of VCC is positive, thus neutrino
flavour oscillations can encounter a resonance only for values of θM < π/4, the largest
transition happens when θM = π/4, that is different from the behaviour of oscillations
in vacuum. In conditions of constant density of the matter medium dθM/dx = 0 the
transition probability, Eq.(3.56) can be written is the following way:

Pνe→νµ (L) = sin2 2θM sin2

(
∆m2

ML

4E

)
, (3.75)

with the oscillation length in matter,

Losc
M =

4πE

∆m2
M

(3.76)

3.3 Neutrino experiments

The search of neutrino properties is one of the most florid research field in physics.
Before moving to the cosmological aspects, let us present very briefly the current
situation for the oscillation and mass parameters.

3.3.1 Oscillation experiments

The main channel for neutrinos oscillations measurements is the observation of a
neutrino flux coming from a known source. In case of presence of flavours which are not
originated by the source we will notice an appearence, the other way around, in case
of depletion of neutrinos of a particular flavour we will talk of disappearance. As we
have shown in the previous sections, the fundamental parameter for the observation of
flavour oscillation are the distance that neutrinos cover from the source to the detector
and the neutrino energy, assuming a monocromatic neutrino energy distribution (see
Eqs.(3.59 and 3.75) for details). Oscillations experiments use three main sources of
neutrinos and antineutrinos: nuclear reactors where processes like the β-deacy of
uranium and thorium generate a neutrino flux peaked at the MeV, solar/atmospheric
neutrinos and high energy neutrinos produced in accelerator experiments. In order
to classify these experiments the usual parameter used is ∆m2L/(2E), in particular
distances of the order of ∼ 10 m are called Short Base Line (SBL), moving to distances
of ∼ 1 km translates into Long Base Line (LBL) experiments and finally Very Long
Base Line (VLBL) where the detector is placed at distances ∼ 102 km. In recent years
an increasing number of experiments have explored in details the oscillation “parameter
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Parameter Hierarchy best-fit 3σ

∆m2
21

[
10−5 eV2

]
/ 7.56± 0.19 7.05÷ 8.14

|∆m2|
[
10−3 eV2

] NH 2.55± 0.04 2.43÷ 2.67

IH 2.49± 0.04 2.37÷ 2.61

sin2 θ12 / 0.321+0.018
−0.016 0.273÷ 0.379

sin2 θ23

NH 0.430+0.02
−0.018 0.384÷ 0.635

IH 0.596+0.017
−0.018 0.388÷ 0.638

sin2 θ13

NH 0.02155+0.0090
−0.0075 0.0189÷ 0.0239

IH 0.02140+0.0082
−0.0085 0.0189÷ 0.0239

δ/π
NH 1.40+0.31

−0.20 0.00÷ 2.00

IH 1.44+0.26
−0.23 0.00÷ 0.17 & 0.79÷ 2.00

Table 3.2: In this table we show the best-fit and the 3σ allowed
values for the 3-neutrino oscillation model. ∆m2 =
m2

3 − (m2
2 + m2

1)/2 can be positive or negative depend-
ing on the hierarchy considered. Normal hierarchy (NH)
means that m1 < m2 < m3, while inverted hierarchy (IH)
corresponds to m3 < m1 < m2. For the CP phase δ the
99% CL values are disfavoured, thus we report the 2σ
region. [56]

space", LSND experiment [48, 126] reports evidence of ν̄µ → ν̄e oscillation, the same
effect has been searched by the MiniBooNE experiment [15,149]. SAGE and GALLEX
look at radioactive sources suggesting for a νe disappearance: the famous “Gallium
anomaly". The SNO experiment [38] performed in Canada detects solar neutrinos
through charged and neutral currant channels νe+d→ e−+p+p and νx+d→ νx+p+n

and neutrino electron elastic scattering νx + e→ νx + e respectively. The KamLAND
reactor neutrino experiment [66], located in Kamioka mine in Japan observed the
process ν̄e + p → e+ + n, while Super-Kamikande [76] observes neutrino oscillations
looking at the muons and electron produced via neutrino-nucleus scattering. The results
of the many observations of neutrino oscillations have produced the knowledge reported
in Tab.(3.2) which contains the most recent values for the oscillations parameters both
for normal and inverted hierarchy.

Oscillation in the sterile sector The population of experiments that aim to observe
the neutrino flavour oscillations is extremely variegated and this is not the right place
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for a detailed overview, thus let us focus on a topic useful for the purpose of this thesis.
On the most interesting hint of new physics coming from these experiments is the
existence of sterile neutrino eigenstates able to explain the appearance and disappearance
evidences. As well presented in [112] νe and ν̄e ( νµ and ν̄µ) disappearance as νµ → νe

Figure 3.2: Allowed regions of oscillation parameter for the SBL sug-
gested 3 + 1 model, in order of appearance: νe (ν̄e) disap-
pearance, νµ (ν̄µ) disappearance and νµ → νe (ν̄µ → ν̄e)
appearance (See [112] for details).

(ν̄µ → ν̄e) appearance can be solved extending the standard neutrino model, which
counts 3 neutrino eigenstates, to some 3 + 1 or 3 + 2 model. Let us consider the SBL
case, introducing a fourth sterile eigenstate it is possible to write the survival probability
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for the channels described in the previous lines in this way:

P SBL
ee = 1− 4 |Ue4|2

(
1− |Ue4|2

)
sin2 ∆m2

41L

4E
, (3.77)

P SBL
µµ = 1− 4 |Uµ4|2

(
1− |Uµ4|2

)
sin2 ∆m2

41L

4E
, (3.78)

P SBL
νe→νµ = 4 |Ue4Uµ4|2 sin2 ∆m2

41L

4E
. (3.79)

Every channel has its own mixing angle that can be measured:

sin2 2θee = 4 |Ue4|2
(

1− |Ue4|2
)

(3.80)

sin2 2θµµ = 4 |Uµ4|2
(

1− |Uµ4|2
)

(3.81)

sin2 2θµe = 4 |Ue4Uµ4|2 sin2 . (3.82)

In Fig.(3.2) we show the fit obtained in Ref. [112] for the electron end muon neutrino
disappearance and appearance. In the same work the authors performed also a dedicated
analysis for the 3+2 model, however they do not find considerable differences between the
two models. They conclude that, net of some tension in the datasets used, appearance
and disappearance rises at the level of 10−4 compatible with an additional sterile
eigenstate at the ∆m2

41 ∼ eV 2 scale.

Figure 3.3: Allowed regions in the oscillation parameter space
sin2 2θee, sin2 2θµµ, sin2 2θeµ and ∆m2

41. The best fit,
is obtained for a 3 + 1 model.

A similar analysis has been performed in [80] where the authors have found similar
results, see Fig.(3.3). In this framework one can set that the preferred values for an
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additional sterile eigenstate are ∆m2
41 ∼ 1eV2 and sin2 2θαβ = 0.1÷ 0.001.

3.3.2 Neutrino mass experiments

Neutrino masses can be measured by direct or indirect methods, the former are experi-
ments that aim to measure the masses of neutrino eigenstates through observations
of the single-β decay. Indeed the energy spectrum of β decay electrons provides a
model independent channel for the absolute electron neutrino mass. It basically is an
extremely precise measurement of the electron energy spectrum, see Fig.(3.4), which
takes into account the neutrino mass. Spectral distortions near the endpoint energy of
the emitted electron spectrum will be hint of non-zero neutrino mass. The β emitter
chosen for this purpose, must have the lower possible Q-value, thus, the most used is
the tritium 3H. The observable in this type of measurements is the effective mass of
the electron neutrino:

m2
e =

∑
i

|Uei|2m2
i , (3.83)

where the subscript i runs over the flavour eigenstates. The last experiments have been
performed by Mainz and Troitsk groups report the most stringent values for the electron
neutrino mass of mνe ≤ 2.1 eV (Troitsk) [125] and mνe ≤ 2.1 eV (Mainz) [113]. The
Karlsruhe Tritium Neutrino experiment (KATRIN) starts to take data in 2017 in order
to achieve the impressive sensitivity od me < 0.2 eV.

Regarding the indirect measurements, the neutrinoless double beta decay (0νββ) is
the favourite channels for laboratory experiments. The 0νββ decay,

(Z,A)→ (Z − 2, A) + 2e− , (3.84)

violates lepton number, thus, it is an extension of the standard electroweak theory
presented in Sec:(3.2). This existence of this process requires that neutrinos are Majorna
particles. 0νββ decay is sensitive to the Majorana mass [159],

m2
ee =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣
2

, (3.85)

which, is dependent on the Majorana phases, Eq.(3.45)2. Fig.(3.5) shows a schematic
representation of the spectrum distortion due to the possible presence of 0νββ decay.
Searches of 0νββ spreads over a large variety of different techniques that make use of
several isotopes. We report the results of Cuoricino (130Te)mee < [0.2, 0.7], eV [25], IGEX
(100Mo) mee < [0.33, 1.35] eV [1]. The future for this kind of laboratory experiments is
the sensitivity improvements. It requires progress in background reduction as well as
increase the target masses. For example, the GERmanium Detector Array (GERDA) [40]

2Notice that in some references the Majorana mass mee can be written as mββ
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Figure 3.4: Simulated electron spectrum in case of massless neutrinos
(blue solid line) and in presence of mνe = 200 meV. The
red dashed curves correspond to the contributions of the
three mass states, using the values of mass oscillations in
Tab.(3.2). [140]

Figure 3.5: Schematic picture of the spectral distortion in emitted
electron energy spectrum in case of 0νββ decay.

in Phase2 and Phase3 and the Cryogenic Underground Observatory for Rare Events
(CUORE) [91] started to take data in 2017. The attended sensitivity is in the meV

range, mee < [90, 200] meV (GERDA) and mee < [30] meV (CUORE). In order to have
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a complete overview of the variety of experiments and a detailed review of the results
see Ref. [58].

3.4 Neutrino Cosmology

In the following sections we are going to focus on the implications that neutrinos have
on the cosmological evolution. As we have seen in Ch.(1) and in particular in Sec.(1.3),
neutrinos impact considerably on the universe evolution: they decoupled form the
primordial plasma once Γν < H and this impacts on the light elements abundances
due to BBN processes. Including three active neutrino families (as in the standard
model of particles) the matter-radiation balance changes leading (we will show it) to
contributions on the CMB APS. Let us summarize very briefly the main quantities
for standard neutrinos in Tab.(3.3). The main parameters that can be added to the

Cross section σw ∼ G2
FT

2

Decoupling temperature Tν(zdec) ∼ 0.8 MeV

Equilibrium distribution f(p, t) =
(
ep/Tν + 1

)−1

Temperature Tν =
(

4
11

)1/3
Tγ

Present density parameter Ων =
∑
mν

93.14 eV

Relativistic Non relativistic

Number density nν = 3
4π2 g ζ(3)T 3

ν nν = g
(
mνTν

2π

) 3
2 e−

m
Tν

Energy density ρν =
[

7
8

(
4
11

) 4
3 Neff

]
ργ ρν = mν nν

Table 3.3: Main properties for standard cosmological neutrinos.

standard cosmological model in order to study neutrino properties are the sum of the
masses

∑
mν and the effective number of neutrino families Neff .3 We can distinguish

into two cases, the massless and the massive case in which we take into account also
the sum of the neutrino masses.

3Notice that Neff is defined as the effective number of extra relativistic species i.e. relativistic
particles that are not photons, however considering the standard particle zoology, the only candidates
are neutrinos. This is no longer valid in case of extended pictures that introduces other massless or
very light particles to the primordial fluid e.g. axions.)
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3.4.1 Massless neutrinos effects

We presented the Boltzmann hierarchy and the whole theory in Sec.(1.4.1), in this
case the fluid equations, Eq.(1.126) affect the universe evolution changing directly
the Einstein equations through just one parameter Neff . Neff = 3.046 corresponds
to the standard model prediction, while increasing it adding some extra contribution
∆Neff translates into deviations from the standard case, such as the introduction of
non-standard massless or light components as well as the presence of non-zero chemical
potential or low-reheating scenarios which can also lead to negative ∆Neff . In order
to study the different effect of including a neutrino contribution we add the effective
number of neutrino families to the base six-parameter model i.e. the parameter space
will be (Ωbh

2, Ωch
2, τrei, ln(1010As), ns, 100θMC, Neff). We have investigated the

effect of cosmological parameters on the power spectra in Ch.(2), however, in that
case, we showed a naive approach to the problem. Let us consider Neff = 3.046, this
value increases the radiation energy density and, consequently, it has an impact on the
redshift of matter-radiation equality:

1 + zeq =
Ωm

Ωγ

(
1 + 7

8

(
4
11

) 4
3 Neff

) =
ωc + ωb

ωγ

(
1 + 7

8

(
4
11

) 4
3 Neff

) , (3.86)

where ωi ≡ Ωih
2. This has a great impact on evolution of the universe and on

the cosmological observables: if we increase the number of neutrino families, we are
increasing the relativistic content and, thus, we are decreasing the photon mean free
path, Eq.(2.69). A smaller λMFP, in principle, would lead to less damping in the
APS, however, at the same time, a larger relativistic energy density moves the last
scattering surface away from the observer. This basically changes the ratio between
the diffusion scale and the angular-diameter distance to the last scattering surface and,
simultaneously, the ratio between the sound horizon and the angular-diameter distance
to the last scattering surface. In practice, we have less damping in the APS tail, but all
the peaks are shifted to higher multipoles. We can summarize the effects of massless
neutrinos on the APS in the following way:

Background level:

1) Increase of Neff leads to longer radiation dominated epoch, this leads to more
early-integrated ISW and boost of the spectrum due to potential decay.

2) Adding energy density implies a greater Hubble expansion rate, this reduces the
sound horizon (which is proportional to H−1). Changing H means also a different
diffusion length (see Eq.(2.69) for details). As said before the effect is to move
the `damping relative to the first peak position enhancing the Silk damping effect.

Perturbation level:
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3) For free-streaming neutrinos we expect metric fluctuations smaller for wavelengths
inside the free-streaming scale, which for relativistic neutrinos is equal to the
Hubble radius, due to the fact that neutrinos do not cluster on those scales. In
the radiation dominated epoch this is a large effect since neutrino account for a
large part of the total density, this leads to a reduction of the metric fluctuations
on that scales and it reduces the boosting of temperature fluctuations in the
scales that enter the sound horizon before the recombination. The net effect is a
reduction of the power of a factor

(
4Rν
15

)−1 [104], where Rν = ρ̄ν/ (ρ̄γ + ρ̄ν).

4) Visosity produce an effect on the phase of the APS producing a shift in the
positions of the peaks [29].

Increasing the effective neutrino number enhance the density by a factor:

α ≡ (1 + 0.2271Neff) , (3.87)

this leads to the effects described previously. We can compensate the increased amount
of relativistic content by increasing the matter density of an equal amount.

Ω′mh
2 = Ωmh

2 × α . (3.88)

Notice that Ωbh
2 and should be kept constant in order to not effect the APS with

additional baryon loading. The reduced Hubble parameter, assuming a flat Universe, is
h =

√
ωm/(1− ΩΛ), thus, it is affected by a

√
α factor,

h′ = h×
√
α . (3.89)

In Fig.(3.6) we show the temperature APS for two different values of Neff , the purple
line represents the standard case with Neff = 3.046 in all the figures. Starting from
the top left panel, we show the APS for Neff = 5 in red, in orange the same APS
corrected taking into account the additional amount of matter in order to preserve
zeq, Eq.(3.88). In the bottom left panel we correct also the impact of the “additional"
massless neutrinos on the Hubble parameter H0, Eq.(3.89), finally in blue we show the
APS corrected for the drop of the scalar amplitude As, Eq.(3.90). The residuals between
the two cases presented in Fig.(3.6) is due to effects that comes from the perturbations.
Since gravitational potentials at a given scale quickly decay once that mode crosses
the horizon, the behaviour of the Boltzmann hierarchy is extremely important. In
particular, since neutrinos show a viscosity term in the fluid hierarchy, it contributes
damping the scales that are smaller than the neutrino free-streaming length. Mapping
the effect on the APS the presence of a massless neutrino fluid gives a contribution
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Figure 3.6: Temperature anisotropies power spectrum `3(`+ 1)C`/2π
for two different values of Neff . Purple solid line corre-
spond, in every panel, to the Neff = 3.046 case, while the
other coloured line represents the case with Neff = 5. In
each figure starting from the top-left to the bottom-right
we add a correction in order to put in evidence the effects
of the neutrino fluid on the statistical properties of the
temperature anisotropies. In the top-let we are using the
same six-base parameters varying only Neff , in the top-
right we consider the correction on the matter density.
Moving to the bottom panel, in the left figure we correct
for the Hubble parameter and in the last plot we rescale
the amplitude

reducing the height of the peaks [104]:

∆C`
C`

=

(
1 +

4

15
Rν

)−2

=

(
1 +

4

15
×
(

0.2271Neff

1 + 0.2271Neff

))−2

, (3.90)

This is an analytical approximation of the real effect due to the presence of neutrino
viscosity. Moreover the presence of a neutrino fluid, which propagates at the speed
of light) tends to pull the photon fluid (which is limited to the sound speed cs due to
coupling with baryons). This impacts on the position of the peaks in the APS shifting
the phase oscillation of a quantity,

∆`peak = −dhor(τLS)

dA(τLS)

(
0.1912Rν +O(R2

ν)
)
. (3.91)
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Constraints from cosmology

Constraints (1σ CL) on the effective number of neutrino families can be found in
Ref. [10] where adding Neff to the six-parameter ΛCDM model space the following
values are found:

Neff = 3.13± 0.32 Planck15TT , (3.92)

Neff = 3.15± 0.23 Planck15TT + BAO , (3.93)

Neff = 2.99± 0.20 Planck15TP , (3.94)

Neff = 3.04± 0.18 Planck15TP + BAO , (3.95)

which are all in excellent agreement with the standard value. See Sec.(A) for the
detail on the datasets. Note the significantly tighter constraint on Neff using the high-`
polarization dataset. In this case a value of ∆Neff ∼ 1 is excluded at 4σ .

3.4.2 Effects of massive neutrinos

Cosmological observations do not provide evidence of neutrino masses, and are therefore
consistent with massless neutrinos, however, oscillations arose the picture of massive
neutrinos which can be encoded inside the SCM using the sum of the three masses:∑

mν = m1 +m2 +m3 , (3.96)

In case of massive neutrinos we have to deal, at least, with two parameters in order to
describe the behaviour of the fluid: Neff and Ωνh

2 (the total density of neutrinos today).
As we have shown in Sec.(1.4.1), it is not possible to reduce the massive picture like we
have done for the massless case, i.e. we have to consider the momentum dependence.
The simplest approach is to consider 3 standard neutrinos having degenerate mass
eigenstates and the same Fermi-Dirac distribution, which is a prediction of the model.
In analogy to what we have done for the massless case, we divide the effects into
background and perturbation effects.

Background: Knowing the cosmological bounds on the sum of neutrino masses
(
∑
mν < 0.22 eV 95% CL [Planck15TT + lowP + BAO + HST] [10]) we can assume∑
mν < 1 eV. For these values neutrino behave as relativistic particle well after the

zeq, this implies that the considerations made in the previous section in order to keep
unchanged the matter radiation equality are still valid. Notice that also a lower value
can be inferred from the knowledge of the existence of neutrino oscillations and, thus,
difference of squared masses. In the hypothesis of direct hierarchy we can assume that∑
mν > 0.06 eV. As we have done in the massless case we can divide the impact of the

mass into background and perturbation effects. Starting from the background effects,
the existence of massive neutrinos introduce a new density parameter ων that has to be
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taken into account inside the Friedman equation:

H2(t) = H0

[
(Ωc + Ωb)(1 + z)3 + Ωγ(1 + z)4 + ΩΛ +

ρν
ρc

]
. (3.97)

Neutrinos behave like radiation until they are relativistic (z > znr), while contributes
to the cold dark matter content when the temperature of the plasma falls down with
respect to their mass (z < znr). Using the temperature relation in Tab.(3.3) it is
possible to express the redshitf at which neutrinos become non relativistic in function
of their mass:

1 + znr ' 1900
(mν

eV

)
. (3.98)

Let us consider two models: a reference model with three massless neutrino eigen-
states (which in terms of the energy density counts Neff = 3.046) and a massive model
where we include the

∑
mν as additional parameter for the same amount of neutrinos.

In the limit of
∑
mν → 0 and assuming a flat geometry, the two models reproduce the

same Universe. Eq.(3.98) suggests important considerations: for z � znr the former
and the latter models are comparable, since the energy density in the neutrino sector
is the same, see Tab.(3.3), and the changes in ΩΛh

2 due to the presence of a Ωνh
2

components are negligible at these redshift values. The picture becomes different for
z ≤ znr, where the model with a higher value of the mass presents also a larger Hubble
expansion and, thus, evolve more rapidly.

At this point the effect of neutrino masses can be seen from different point of views,
because dealing with two parameters leads to a complicate scenario where are present
several degenerations among the cosmological parameters. For example, taking ωb + ωc
constant on one hand ensures that the equality redshift does not change even in presence
of massive neutrinos, on the other hand the angle subtended by the sound horizon at
recombination θs becomes smaller with the increase of

∑
mν . This effect is basically

due to the fact that increasing
∑
mν the last scattering surface is receding from us.

Instead of keeping constant ωc + ωb one can decide to fix h or Ωλ. This changes the
expansion history: when neutrinos becomes non relativistic the expansion rate H is
kept constant by the changes in the matter density indeed, while at higher redshift,
when neutrino are ultrarelativistic and the universe is matter dominated, the matter
content results larger with respect the massless reference model, changing H(t). Finally,
continuing to go back in time, when the Universe was in the radiation dominated regime,
the two models describe again the same expansion history. Hence, modifying ωc + ωb
we are changing the expansion history in the range znr < z < zeq, this increases the
angular diameter distance to the last scattering at recombination shifting the peaks
towards higher angular scales. Obviously, changing the matter content means also to
have an impact on zeq, equality happens at higher redshift with the increasing of

∑
mν .

In order to change the matter density, it is possible to act on both ωc and ωb, the
effect of changing one instead of the other is identical from the point of view of the
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Figure 3.7: Temperature anisotropies power spectrum for the standard
ΛCDM model with Neff = 3.046 massless neutrinos (black
line) and for the massive neutrino model. We show the
power spectrum for three different values of the sum of
neutrino masses

∑
mν = 0.3, 0.6 and 0.9 eV. In the lower

panel of the figure we show the normalized ratio between
the massive spectra and the standard massless using the
same colour.

background evolution, however, as we have said in Sec.(2.2.2) baryons are coupled with
photons and even a small changes in its abundance leads to a change in the baryon
loading effect. Moreover baryon abundance is well constrained by BBN and observation
of light elements. In Fig.(3.7) we show the effect of the mass on the CMB temperature
APS. We compare three different mass cases with the correspondent massless model. In
every case the effective number of neutrino families has been set at the standard value
Neff = 3.046. In order to produce the realization for the massive model we have kept
constant the matter density ωc + ωb. In the lower panel it is evident the oscillatory
pattern in the middle and high-` region of the spectrum due to the shift of the peaks
described above.
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Perturbations: The presence of massive neutrino affect also the evolution of pertur-
bations, since the neutrino fluid evolution is described by its own Boltzmann hierarchy,
see Sec.(1.4.1). The peculiar effect is related to the characteristic free-stream scale
of neutrinos: if neutrinos has a mass, when the transition between the relativistic
and nonrelativisctic regime happens, the neutrino clustering will be exponentially
suppressed. The effect depends on the

∑
mν parameter and, thus, on the age at which

the transition takes place. In particular if neutrinos become nonrelativistic during the
matter dominated era we can write the free-streaming scale as:

kfs = 0.018Ω1/2
m

( m

1 eV

)
hMpc−1 . (3.99)

On the other hand, scales larger than the free-streaming scales behaves like ordinary
cold dark matter. At the end of the story, increasing the value of the neutrino mass
leads to a suppression of the small-scales matter fluctuations.

In addition to this peculiar effect, the neutrino mass term basically changes the
gravitational potential, which, in turn, impacts on the photon perturbations leading to
modifications on the CMB APS. In particular photon perturbations are sensitive to
time-variation of the potential, i.e. the effect is visible in the ISW contribution of the
APS. However at the low-` multipoles where the ISW effect is larger, we are limited by
the cosmic variance.

Constraints from cosmology

Masses well below 1 eV have no time to change the shape of the CMB power spectra,
since they became non-relativistic after recombination. As we said, the effect on the
background cosmology can be compensated by changing h or ωc + ωb. However there
is sensitivity of the CMB anisotropies to neutrino masses if these are not completely
nonrelativistic at the last scattering surface, basically on the ISW effect. In addition
to this, several astrophysical observation of “late" effects, such as lensing or baryon
acoustic oscillations are suitable source of information. The most recent cosmological
constraints (95% CL), expressed in eV, coming from Planck 2015 analysis [10] are:∑

mν < 0.72 Planck15TT , (3.100)∑
mν < 0.21 Planck15TT + BAO , (3.101)∑
mν < 0.68 Planck15TT + lensing , (3.102)∑
mν < 0.49 Planck15TP , (3.103)∑
mν < 0.17 Planck15TP + BAO , (3.104)∑
mν < 0.59 Planck15TP + lensing . (3.105)
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In order to put in evidence the relation between the neutrino mass and the Hubble
constant we show in Fig.(3.8) the two-dimensional Bayesian posterior. There is an
evident correlation between the two parameters that leads to a reduction of the Hubble
constant value with the increase of the sum of the neutrino masses. In addition the
figure report also the value of σ8 which is the matter fluctuation amplitude at 8h−1Mpc.

Figure 3.8: Posteriors in the
∑
mν-H0 plane obtained using

Planck15TT data (solid black contours) and Planck15TP
(filled blue contours) [10]. The colour scale refers to the pa-
rameter σ8. The gray bands corresponds to the astrophys-
ical measurements of H0 from Ref. [65] (H0 = 70.6± 3.3).

3.4.3 Massive sterile neutrinos

Cosmological data, in particular CMB data, can provide constraints on both the number
of neutrino families and the neutrino masses also in case of non standard pictures. Here
we are going to consider, as we have shown in Sec.(3.3), the possible existence of light
sterile neutrino eigenstates suggested by SBL anomalies. The behaviour that we have
described for the active massive neutrinos can be applied also in the case of sterile
neutrinos, since from a cosmological point of view they behave like radiation when the
temperature of the fluid is larger than the mass, while they contribute to the cold dark
matter sector when they become nonrelativistic. As explained in Ref. [10], the effective
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mass of the sterile neutrino is defined as:

meff
ν,ster =

(
93.14Ων,sterh

2
)

eV , (3.106)

Aiming to constrain the case of ne massive sterile neutrino we can write its mass
following two distributions. For thermally distributed sterile neutrinos:

meff
ν,ster =

(
Ts
Tν

)3

mther
ster = (∆Neff)3/4mther

ster , (3.107)

or in the Dodelson-Widrow (DW) case:

meff
ν,ster = χsm

DW
ster = ∆Neffm

DW
ster . (3.108)

In Fig.(3.9) we show the results found by the Planck collaboration for the sterile neutrino

Figure 3.9: Two-dimensional posterior probability for the parameters
mν,ster and Neff in the sterile neutrino model obtained
using Planck15TT. Gray dashed lines corresponds to the
physical mass of the sterile neutrino in the thermal dis-
tribution, while the dotted line represent the DW case.
Finally the gray region in the lower part of the plot is
excluded by the prior used in the analysis. It represents
the part of the parameter space in which neutrinos act as
cold dark matter [10].

case. Although Planck is perfectly consistent with no massive sterile neutrinos, the
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data allow a significant region of the mν,ster-Neff parameter space. Moreover including
a sterile eigenstates leads to a smaller value of σ8 with respect to the value obtained in
the base ΛCMD model. Using a single massive sterile neutrino the constraints are:

Neff < 3.7 , (3.109)

meff
ν,ster < 0.38 eV , (3.110)

at 95% CL.
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4
(Pseudo)scalar interacting

neutrinos

Based on [PoS NOW2016 (2017) 084 SISSA
(2017-01-26)] and mainly on [JCAP 1507 (2015)
no.07, 014]

In the previous section we have shown that cosmological observations are a powerful
probe of neutrino physics. In the picture described so far, all the expectations are
extremely well supported by available cosmological data. In the standard cosmological
model (remember that Neff is fixed to 3.046), the only free parameters in the neutrino
sector of the model are the masses of the three eigenstates, both the absolute scale and
the hierarchy of the masses remain unknown. Thanks to the simplicity of this model and
to the goodness of data, we are allowed to keep an open mind and test more complicated
scenarios for the neutrino sector. In this chapter, we will consider the possibility that
neutrinos have interactions beyond the standard model of particle physics, for simplicity
we shall call “hidden” or “secret” interactions, and study the constraining power of
cosmological observations with respect to such a scenario. We will refer to secret
interactions dividing them into two types: scalar or pseudo-scalar (Majoron-like in
alternative) and Fermi-like. Argument of this chapter is the (pseudo)scalar interaction
that behaves as described in 1.63 turning on again interactions in the neutrino sector
at late time with respect to standard neutrino decoupling. As we have seen in Chapter
1, in a cosmological environment it is not possible to provide and unique formalism
for massless and massive neutrinos, since in the latter case we have to deal with the
momentum integration. However before presenting the work and the constraints we
will describe how we treated the interactions.
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4.1 (Pseudo)scalar formalism

Let us start form the (pseudo)scalar case. We consider neutrinos interacting with a
light boson φ through simple scalar hij and pseudoscalar gij couplings, as described by
the following Lagrangian [42,85,160,161]:

Lpsc = hij ν̄iνjφ+ gij ν̄iγ5νjφ+ h.c. , (4.1)

where the i and j indices run over the the neutrino eigenstates and γ5 is the gamma
matrix responsible of the parity violation of the pseudoscalar part of the Lagrangian.
A pseudoscalar quantity behaves exactly like a scalar one except for the changes in
sign under parity transformation, in practice it has different rotation rules. This kind
of interaction allows for the binary processes, i.e. neutrino annihilation to bosons
(ν + ν̄ ↔ φ+ φ ), neutrino-φ scattering (ν + φ↔ ν + φ), neutrino-neutrino scattering
mediated by a scalar boson exchange (ν + ν ↔ ν + ν) and neutrino decay (ν → ν + φ).
In Fig.(4.1) we show the correspondent allowed Feynman diagrams. In general the cross
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ν

ν

ν

φ

ν

ν
φ

ν

ν

ν

φ

φ

ν

ν

ν
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ν
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Figure 4.1: Feynman diagrams for the processes allowed by the La-
grangian, Eq.(4.1). In this representation time coordinate
is set from left to right. In order of appearance ν-ν scatter-
ing (s and t channels), ν-φ scattering and νν̄ annihilation
to φ’s.

section for processes of this type is

σbin ∼ g4/s (4.2)

where g is the largest value of the Yukawa coupling or the dimensionless coupling
constant and

√
s ∼ T 2

ν is the center of mass energy. In case of ultra-relativistic particle
it can be approximated as we show in Eq.(1.63). In thermal equilibrium this cross-section
leads to the following scattering rate:

Γbin =
〈
σbinv

〉
neq ∝ g4Tν . (4.3)

In analogy to what we described in Ch.(1), considering reaction in thermal equilibrium
regime, the fundamental quantity to be kept under control is the ratio between the
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scattering rate and the Hubble expansion rate in radiation (Hr) or matter (Hm)
dominated epochs:

Γbin

Hr
∼ g4

Tν
,

Γbin

Hm
∼ g4

T
1/2
ν

(4.4)

In Fig.(4.2) we show the exact picture for neutrino-neutrino interaction in presence

103 104 105 106 107 108 109 1010

10-5

10-4

10-3

10-2

10-1

1

10

Figure 4.2: Behaviour of (pseudo)scalar interaction in the early uni-
verse, we show the ratio between the scattering rate and
the Hubble rate in function of the redshift. The gray
region is representative of the collisional regime, orange,
cyan and blue lines correspond to three different value
of Yukawa couplings, purple dashed line is a pure wweak
Fermi-like interaction and dashed red line represents a
pure (pseudo)scalar interaction with g = 1× 10−7.

of a (pseudo)scalar contribution. We decide to plot the Γ/H ratio in function of the
redshift z taking into account both the standard weak (dashed purple line) and the
“new" (pseudo)scalar (dashed red line) interactions. The joint behaviour has been
shown for three different value of the dimensionless coupling constant g. Notice that
the interacting regime is dominant for value of Γ/H > 1, that is, in the gray upper
region, this is perfectly consistent with the standard picture where weak interactions
decoupled at z ∼ 1010, however, the presence of a hidden interaction mediated by a
(pseudo)scalar boson increases with time the scattering rate among neutrinos leading
to a late recoupling. The exact recouping redshift depends on the magnitude of the
interaction, i.e. increasing the value of g we let us do the recoupling first. Collisional
processes induced by the new interaction would affect the evolution of perturbations in
the cosmological neutrino fluid in order to describe what we expect let us define the
recoupling redshift of neutrinos zνrec to be the redshift when the Γbin(zνrec) = H(zνrec).
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At z ≤ zνrec, the neutrino free-streaming length quickly drops below the Hubble
length due to scatterings. Thus the neutrino contribution to the cosmic shear becomes
negligible. If we consider that recoupling happens close enough to recombination the
latter effect should be observable in the CMB anisotropy spectrum. Recoupling implies
also a massive production of φ’s through neutrino annihilation (last Feynman diagram
in Fig.(4.1). The annihilation processes may start when neutrinos are relativistic, this
translates into a thermalization of the ν − φ fluid through scatterings in this case the
total energy stored in relativistic species does not change, so Neff remains constant (at
least until chemical equilibrium is mantained). On the other hand, once the temperature
fluid falls below the neutrino mass, the annihilation processes allow the production of φ,
but they can no longer ensure the inverse process, leading to a depletion of the neutrino
abundance. The energy stored in the neutrino rest mass would end up increasing
Neff [24,95]. As long as we consider massless neutrinos the annihilation process does not
change the behaviour of the neutrino fluid since we are dealing with a unique fluid in
perfect thermal equilibrium. Moreover considering only diagonal terms in the scattering
matrix allow us to neglect also possible decays.The parametrization presented here has
some advantages: it allows us to consider a large variety of models. There is a no single
theoretical model which provides for the existence of a massless mediator boson, one of
the most suitable is represented by Majoron models where the interaction is mediated
by the Nambu-Goldstone boson of a hitherto unknown broken U(1) symmetry.

4.1.1 State of the art

Non-standard neutrino interactions of these types have already been considered in a
cosmological context in [31], where they argue the possibility that neutrino decay could
be induced by new interaction leading to a neutrinoless Universe. There are limits
on neutrino-neutrino scattering induced by non-standard Majoron-like interactions in
Refs. [28, 32] and more recently in Refs. [53, 87, 115]. Allowing scattering processes
inside the cosmological framework is not an easy task, in the literature, the neutrino
fluid has been modelled in several ways:

· Roughly changing from collisionless to perfectly tightly coupled (or viceversa in
the case of Fermi-like interactions) at a given transition redshift, that represents
the parameter actually constrained by the data.

· Deriving limits on phenomenological quantities parameterizing the effective sound
speed and viscosity of the neutrino fluid [22,59,87,162,172].

· Solving the entire Boltzmann equation in the collisional case [142,143].

The first and second approaches, however, as noted by a few authors [53, 142], are
not accurate in the detailed description of the interaction. In particular, the first case
loses information about the change among tightly coupled, collisional and collisionless
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regimes. All the investigations on the subject presented so far assume that the neutrinos
remain in tightly coupled regime until the characteristic scale enters the horizon; this
treatment fails in all the scenarios where the scattering rate Γ is comparable with the
Hubble expansion rate H. While the second approach is accurate in the description of
the free steaming case, but does not provide an accurate representation of the collisional
regime. It is a phenomenological model inherited from dark matter scenarios where two
parameters c2

eff (the effective sound speed) and c2
vis (the viscosity parameter) modulate

the acoustic oscillations inside the Boltzmann equation,

δ̇ν = −4

3
θν −

2

3
ḣ+H(1− 3c2

eff)

(
δν + 4Hθν

θν
k2

)
, (4.5a)

θ̇ν = k2

(
1

4
δν − σν

)
− k2

4
(1− 3c2

eff)

(
δν + 4Hθν

θν
k2

)
, (4.5b)

2σ̇ν =
8

15
θν −

3

5
kFν3 +

4

15
ḣ+

8

15
η̇ − (1− 3c2

vis)

(
8

15
θν +

4

15
ḣ+

8

15
η̇

)
. (4.5c)

Setting c2
eff and c2

vis = 1/3 corresponds to consider the standard free-streaming case,
while c2

vis = 0 should be representative of the tight-coupling regime. Conversely, even
starting from a value of σ̇ν 6= 0 (pseudoscalar or scalar case), that in principle would
lead to a initial quadrupole moment, the presence of a zero viscosity coefficient does
not drive to zero ` ≥ 2 moments. The picture is even more incorrect if we start with a
Fermi-like interaction which reveal a early tight-coupling regime.

The third approach introduces the collisions inside the Boltznamm equation. Scat-
terings are described by a complex integral at zero and first order:(

∂f

∂τ

)(0)

ij↔kl
=

gjgkgl
2|q|(2π)5

∫
d3~q ′

2|~q ′|

∫
d3~l ′

2|~l ′|

∫
d3~l

2|~l|
δ4
D(q + l − q′ − l′)

× |Mij↔kl|2
(
f0
k (|~q ′|, τ)f0

l (|~l ′|, τ)− f0
i (|~q|, τ)f0

j (|~l|, τ)
)
.

(4.6)

The zero order represents the background components of the scattering term, while the
first order takes into account the perturbed components,(

∂f

∂τ

)(1)

ij↔kl
=

gjgkgl
2|q|(2π)5

∫
d3~q ′

2|~q ′|

∫
d3~l ′

2|~l ′|

∫
d3~l

2|~l|
δ4
D(q + l − q′ − l′)

× |Mij↔kl|2
(
f0
k (|~q ′|, τ)Fl(~k,~l

′, τ) + f0
l (|~l ′|, τ)Fk(~k, ~q

′, τ)

−f0
i (|~q|, τ)Fj(~k,~l, τ) + f0

j (|~l|, τ)Fi(~k, ~q, τ)
)
,

(4.7)

where q, l, q′ and l′ are the momenta of ingoing and outgoing particles, Fα with
(α = i, j, k, l) is the simplified distribution function presented in Eq.(1.122) and f0

α is
the unperturbed Fermi-Dirac distribution function, in every collisional term quantum
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statistical effects have been neglected. The full integration of this formalism has
been treated in [143] where the authors presented a very detailed calculation of every
component.

Neutrino scalar and pseudoscalar couplings are constrained by laboratory searches
for neutrinoless double beta decay (0νββ), and by supernovae observations. For example,
in addition to the simplest 0νββ decay mode, whose existence only requires the neutrino
to be a Majorana particle [159], modes in which one or two additional φ bosons are
emitted:

(A,Z)→ (A,Z + 2) + 2e− + φ , (4.8)

(A,Z)→ (A, z + 2) + 2e− + 2φ , (4.9)

are possible if neutrinos possess (pseudo)scalar couplings. 0νββ experiments yield
constraints on the effective φ-neutrino coupling constant 〈gee〉 < (0.8 − 1.6) × 10−5,
depending on the theoretical model [17, 79]. The quantity gee is the e− e entry of the
coupling matrix in the weak base, related to the couplings gij in the mass basis through
the elements of the neutrino mixing matrix. Neutrino decays ν → ν ′ + φ can also
be important in the high-density supernova environment [43,106,170]. In the case of
Majoron models, limits on Majoron-neutrino couplings from observations of SN 1987A
were derived in Ref. [106]. It has been shown there that φ emission would shorten too
much the observed neutrino signal from SN 1987A if 3× 10−7 . g . 2× 10−5 (here
g denotes the largest element of the coupling matrix gαβ in the weak base), thereby
excluding this region. Moreover, the observed ν̄e flux from SN1987A can also be used
to further constraint g11 . 10−4. These limits, together with those from 0νββ decay
experiments available at that time, were combined and translated into the mass basis
in Ref. [170].

4.1.2 Our method

Instead, in this work, we provide a different parametrization in which we derive limits on
the strength of neutrino non-standard interactions by directly modifying the Boltzmann
equation in order to account for neutrino collisions, without assuming a sudden transition
between the two limiting regimes (free-streaming and tight coupling). In this way it is
possible to follow the behaviour of the different moments of the Boltzmann hierarchy in
order to better understand the physics of the processes involved. Although this approach
is less accurate with respect the complete solution of the Boltzmann collisional term
(seen in the previous section), it results to be much less numerically demanding. We will
introduce the scattering term using the so called Relaxation Time Approximation which,
on one hand, guarantees an ideal description of the interaction both at fluid equation
and power spectra level (see Ref. [143] for details) and, on the other hand, thanks to
the numerical advantages, allows us to perform an extended study to massless, massive

− 125 −



Massless neutrinos

and sterile neutrino. The Relaxation time approximation, or BGK approximation, was
introduced in 1954 by Bhatnagar, Gross and Krook (as often happens, in the same
period, independently, Welander (1954) introduced a similar operator) and provides that
the collisional operator at the right-hand side of the Boltzmann equation is replaced by:(

∂f

∂τ

)
C

∼ 1

τcol
(f0 − f) , (4.10)

where τcol is the relaxation factor and 1/τcol ≡ Γ is the collision frequency. Replacing it
in Eq.(1.118) and in particular:

1

f0

(
∂f

∂τ

)
C

=
1

f0
(Γ(f0 − f)) , (4.11a)

= − 1

f0
(Γf0Ψ) , . (4.11b)

The latter equation is valid in every case: massless or massive neutrinos, (pseudo)scalar
or Fermi-like interaction.

4.2 Massless neutrinos

We will start from the massless neutrino case looking at the (pseudo)scalar interaction.
Eq.(4.12) in the case of massless neutrinos can be simplified as we did in Sec.(1.122):

1

f0

(
∂f

∂τ

)
C

= − 1

f0
(Γf0Ψ) , , (4.12a)

= −Γ

∫
dqq2qf0Ψ∫
dqq2qf0

, (4.12b)

= −ΓFν . (4.12c)

In this formalism we can replace Γ with every scattering rate we want to study. The
Boltzmann hierarchy described in Eqs.(1.126) can be rewritten in the following way:

δ̇ν = −4

3
θν −

2

3
ḣ , (4.13a)

θ̇ν = k2

(
1

4
δν − σν

)
(4.13b)

σ̇ν =
4

15
θν −

3

10
kFν3 +

2

15
ḣ+

4

5
η̇ − aΓσν , (4.13c)

Ḟν` =
k

2`+ 1

[
`Fν(`−1) − (`+ 1)Fν(`+1)

]
− aΓFν` . (` ≥ 3) (4.13d)
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Of course using the relaxation time approximation we are not obeying the basic
conservation laws; if we see the equations Eq.(1.118), the collision term seems to be
present in every moment, however, it is natural that ` = 0 and ` = 1 must obey to
number density conservation and to momentum conservation respectively. The point
is that we cannot think that physical processes, such as the binary scattering that we
are considering, can change the number density of a species nor the total momentum
distribution. The 2 ↔ 2 collisions lead a suppression of the quadrupole (` = 2), i.e.
the anisotropic stress σν , and of all the highest moments of the distribution function,
and to a corresponding enhancement of the monopole and dipole (` = 0, 1), i.e. the
density and velocity perturbations δν and θν . This changes propagate to the photon
distribution, and thus to the CMB spectrum, through the gravitational potentials. We
decided to parametrize the interaction using an effective coupling constant geff , this
choice guarantees the inclusion of many models attributable to a (pseudo)scalar like
interaction. Thus we rewrite the scattering rate in the following phenomenological way:

Γbin = 0.183× g4
effTν , (4.14)

where we have taken into account that nν = (3/2)×
(
ζ(3)/π2

)
× T 3

ν for each neutrino
family. This definition of the effective coupling constant encloses such details as the
precise Yukawa structure of the theory, the effect of thermal averaging, etc. Given a
definite form of the Lagrangian, Eq.(4.1), this can be remapped, to a good approximation,
to a collision rate of the form Eq.(4.14), for the purposes of its effect on the evolution
of cosmological neutrino perturbations. Seen in another way, the quantity that we
are actually constraining is the (temperature-independent in the high-energy limit)
combination 〈σbinv〉T 2

ν . In the following, we will not distinguish between scalar and
pseudoscalar interactions, and generically speak of scalar-mediated interactions; however,
we recall that interactions mediated by a very light (or massless) boson could give rise
to long-range forces that are not screened in the strictly scalar case.

4.2.1 Perturbation evolution and APS

As said before the interaction suppress the shear and consequently we have an en-
hancement of the density perturbation, in Fig.(4.3) we show the evolution of the fluid
perturbation comparing the standard model (ΛCDM) with the interacting massless
model (ΛCDM +geff) for three different wave numbers (k = 0.5, 0.05, 0.005 Mpc−1)
and two different interaction strengths. The value of the coupling constant used are
geff = 1.8×10−7 (blue line), which corresponds to a recoupling redshift of zrec ∼ 1.2×103

and geff = 2.8 × 10−7 (red line) that leads to a neutrino recoupling redshift of
zrec ∼ 1.2 × 104. We take the following benchmark for the cosmological parame-
ters [Ωbh

2 = 0.0226, Ωch
2 = 0.12, h = 0.68, τrei = 0.09, ns = 0.96, As = 2.1 × 10−9,

Neff = 3.046].
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The top panel refers to a wave number that enters the horizon at z ∼ 5× 104, thus
well before the recoupling redshif of both the considered cases, the result is that, initially,
shear and density are not affected by the interaction, as one should expect. Later, when
the scattering rate starts to be non-negligible inside the Boltzmann equation, σν loses
power, however the perturbation is already deeply inside the oscillatory regime and,
thus, it does not impact much on δν . The middle panel shows a mode (k = 0.05 Mpc−1)
that enter the horizon at z ∼ 3× 103; here is evident that the blue line, corresponding
to geff = 1.8×10−7 (zrec ∼ 1.2×103), is almost unchanged with respect to the standard
case. While the red line, that refers to geff = 2.8 × 10−7 (zrec ∼ 1.2 × 104), shows
suppression in the shear component and, consequently, an increase in the oscillatory
pattern of density perturbations.

Finally, the lower panels of Fig.(4.3) show perturbation evolution for the largest
scale, k = 5 × 10−3 Mpc−1, entering the horizon well after the time of hydrogen
recombination at z ' 50. For both the values of the coupling constant, when the mode
enters the horizon neutrinos are already completely recoupled, and shear oscillations
are overdamped.

When we compare perturbation evolution for the three selected cases the behaviour
of the interaction becomes clear: density perturbations mirrors the shear: when the
dissipation normally associated to neutrino free-streaming is absent, undamped acoustic
oscillations set on in the fluid, so that density perturbations are actually boosted by
increasing geff . In the previous chapter we focused on the importance that the parameter
in the neutrino sector have on the APS. Thus, in order to understand if cosmology is
sensitive to the introduction of scalar secret interactions, we produced a realization of
the temperature and temperature-polarization power spectra using the same value of
the coupling constant chosen for Fig.(4.3) and adding a further value geff = 3.8× 10−7

in order to test the consequences of an extremely interacting scenario. Looking at
Fig.(4.4) the effect of the interaction results into an increase in the power on a large
samples of `s and a light shift of peaks towards higher multipoles. These behaviours
are caused by the magnified density fluctuations due to the absence of neutrino free
streaming. The scattering term makes neutrinos collisional again and, thus, implies
the rises of a tight coupled regime where neutrinos can exchange momentum. This,
in principle, affects the behaviour of modes that are inside the horizon (or that are
becoming sub-horizon). Super-horizon modes remains unchanged while small angular
scales are still affected by the Silk damping. In the middle panel of Fig.(4.4) we notice
that the TT power spectrum is mostly sensitive in multipoles between ` ∼ 200 and
` ∼ 1500. Large scales 2 < ` < 50 should not be affected since they are always
super-horizon and, as said before, the physics of linear perturbations is negligible in
such regime. For small scales ` > 1500 the picture is a bit more complicated, we have
shown in Fig.(4.3) that in order to evaluate the impact of the interaction we have
to identify the wave number that enters the horizon in correspondence to a specific
recoupling redshift. For example, considering the values of the interaction strength used
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Figure 4.3: Evolution of a massless neutrino eigenstate perturbation,
in particular density δν (left column) and shear σν (right
column). We show three different modes: first row corre-
sponds to k = 0.5 Mpc−1, second line is k = 0.05 Mpc−1

and final one is representative of k = 0.005 Mpc−1. In
black we show the standard evolution in the ΛCDM model,
while the blue and red lines show the perturbation evo-
lution for the interacting (pseudo)scalar model (ΛCDM
+geff) with geff = 1.8× 10−7 and geff = 2.8× 10−7 respec-
tively.

in Figs.(4.4, 4.8) and reported in Tab.(4.1), we can examine case by case: in Fig.(4.5)
we show an alternative way to see the behaviour of the interaction. The top panel show
the evolution of interaction scattering rate (dotted coloured lines) and Hubble rate
(black solid line) for the considered value of geff ; the vertical blue, red and green lines
represents the corresponding recoupling redshift. Moreover, in the lower panel we plot
the wave number that enters the horizon in correspondence of the redshift values found
above. For each value of k we can associate a defined mutipole ` in the APS. Through
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Figure 4.4: Theoretical temperature angular power spectrum for
ΛCDM+geff model (top panel). We produce three realiza-
tion for an equal number of values of the coupling constant:
1.8 × 10−7 (blue line), 2.8 × 10−7 (red line), 3.8 × 10−7

(green line) and compare the results with the ΛCDM APS
(black line), finally in gray we show Planck 2015 binned
data. In the middle panel we plot the residuals of the
two interacting models with respect to the ΛCDM one,
while in the bottom panel we show the relative residuals
weighed by the ΛCDM C`s.

this procedure we can map in the APS the impact of the interaction on the perturbation
evolution. Once we have a recoupling wave number krec and the correspondent `rec

associated to a value of the secret interaction coupling constant, all k < krec which are
relatively “large" scales imply a time of horizon crossing thc(k) > trec. Vice versa for
k > krec, considered “small scales", we have thc(k) < trec. We know from Fig.(4.3) that
the effect of the interaction is smaller if the wave number is already inside the horizon
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Interaction strength Recoupling redshift Wave number multipole

geff = 1.8× 10−7 zrec ∼ 1.2× 103 krec ∼ 0.029 Mpc−1 `rec ∼ 420

geff = 2.8× 10−7 zrec ∼ 1.2× 104 krec ∼ 0.153 Mpc−1 `rec ∼ 2150

geff = 3.8× 10−7 zrec ∼ 4.5× 104 krec ∼ 0.495 Mpc−1 `rec ∼ 7000

Table 4.1: In this table we summarize the main characteristic of the
interaction: the left column presents different value of inter-
action, to every value we associate the recoupling redshift
(second column) and the wave number which is entering
the horizon at that redshift. The parameters used for
deriving these value is [Ωbh

2 = 0.0222, Ωch
2 = 0.119,

H0 = 67.43 km/s/Mpc].

at the neutrino-neutrino recoupling. This implies that on the high multipoles the effect
is smaller; moving towards larger scales, the effect of scatterings induced by the secret
interaction becomes larger at least as long as the CMB is sensitive to the interaction,
i.e. modes that enter the horizon well after the photon decoupling are screened by SW
and ISW effects.

In order to have a better comprehension of the physics involved in these processes we
decided to analyse the different components that contribute to the APS. The anisotropy
field that we observe is can be decomposed into different parts depending on different
variables (see [62] for details):

Θ`(k) =

∫ τ0

0
dτ g(τ) [Θ0(k, τ) + ψ(k, τ)] j`[k(τ0 − τ)]∫ τ0

0
dτ g(τ)

ivb(k, τ)

k

d

dτ
j`[k(τ0 − τ)]

+

∫ τ0

0
dτ e−τc

[
ψ̇(k, τ)− φ̇(k, τ)

]
× j`[k(τ0 − τ)] .

(4.15)

The first two integrals are important when g(τ) that is the visibility function is not
zero, i.e. during the photon decoupling, in particular the first takes into account the
contribution of the potential ψ(k, τ) while the second maps the effect of the baryon
velocity vb. The last integral is the contribution along the entire line of sight of the
Sachs-Wolfe effect, that is the Integrated Sachs-Wolfe effect. Of course the derivatives
of the gravitational potential are important when the universe was radiation dominated
and contribute to the early-ISW effect, instead for z < 30 the integral is named late-ISW.
The contribution of the shear σν enters also in this part of the integral modifying the
evolution of the gravitational potential [127]

k2(φ− ψ) = 12πGa2
∑
i

(
ρ̄i + P̄i

)
σi , (4.16)
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Figure 4.5: In the upper panel we show the scattering rate Γbin and
Hubble rate H(t) evolution in functiono of the redshift.
We show three different value of the interaction strength
geff = 1.8×10−7 (blue dashed line), 2.8×10−7 (red dashed
line), 3.8× 10−7 (green dashed line). We put in evidence
the corresponding recoupling redshifts with vertical lines
having the same colour legend. In the lower panel we
present the evolution of the horizon wave number in func-
tion of the redshift. The vertical lines have the same
purpose explained in the top panel, the horizontal ones,
insted, point out the wave number and the correspon-
dent multipole ` in the APS associated to the recoupling
redshifts.

which is greater when mean neutrino density ρ̄ν and average neutrino pressure P̄ν are
large. The low multipole in the APS contain information on the large scales and thus
the contribution of the ISW effect is supposed to be the most important. We can
separate the contribution in two: early and late-ISW, the first comes from time-varying
potentials soon after the recombination when the matter contributions is dominant,
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while the latter is due to late time potentials when dark energy becomes important.
In Fig. we show the ISW for z < 30 (late-ISW) and z > 30 (early-ISW) where it is
evident that there is an effect, due to secret interactions, in both the components, but
the major contribution is hidden in the early-ISW. The reason is that, as shown in
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Figure 4.6: Effect of the secret pseudo-scalar interaction on the Early
(top panel) and late (bottom panel) ISW. We provide
three different cases of the interaction strength (coloured
lines) compared with the standard ΛCDM model (black
line).

Eq.(4.16) the effect of the interaction on the anisotropic stress is more important when
the mean density and pressure of the neutrino fluid is large.

We are also interested in understanding the impact of the secret interaction on the
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lensing potential. We know that neutrinos play a role in the large-scale formations:
the presence of an extra free-streaming fluid drops the number of structures having
dimension smaller than the free-streaming wavelength and this leaves a trace also in
the lensing potential measured by Planck. In Fig.(4.7) we can see the proper effect of
this type of interaction, also in this case: the middle values of the lensing potential
power spectrum are enhanced between ` = 10 and ` = 1000. Moreover, we notice
that increasing the magnitude of the interaction the position of the peak moves, as if
scatterings were not just raising the potential, but they were also moving it on larger
scales. The latter effect generates also the apparent reduction in power of the lensing
spectrum for the case geff = 3.8 × 10−7 represented by the green line. Thus, what
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Figure 4.7: Lensing potential for three different values of the secret
interaction strength: blue line corresponds to geff = 1.8×
10−7, red line corresponds to geff = 2.8× 10−7, and green
line represents geff = 3.8 × 10−7. In black we show the
standard cosmological best-fit model.

we expect is a greater lensing effect directly on the temperature anisotropies power
spectrum.

We want to underline that, even if this is the preliminary part of the study and we
can not extract any quantitative information from Fig.(4.4), looking at the residuals for
the interacting cases, the strongest one, i.e. geff = 3.8× 10−7, is far farther than the
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data compared to geff = 1.8× 10−7. This point towards a predilection of data for a low
value of the interaction, in particular we expect that constraints on geff obtained by a
MonteCarlo Markov-Chain study will suggest to bounds compatible with a zero value.
In Fig.(4.8) we show the same power spectra presented in Fig.(4.4) but figured with a
different ` dependence. It is common practice, in order to put in evidence the impact of
the interaction, to change the APS from C` `(`+ 1)/2π to C` `3(`+ 1)/2π, this on one
hand allows us to see all the peaks more clearly, but on the other hand can deceive the
reader. It is evident that adding a factor `2 moves power in the APS towards higher
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Figure 4.8: Same theoretical temperature angular power spectrum for
ΛCDM + geff model shown in Fig.(4.4). In this picture we
change the representation of the APS that now has the
following form C` `

3(`+ 1)/2π.

multipoles, e.g. considering ` = 100 and `1 = 1000 in the latter representation we
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are overestimating the APS in `1 of a factor 100. Hence, in order to be sure that the
information in both the representation is the same, we present in the bottom panel
of both Fig.(4.4) and Fig.(4.8) the relative residuals, which, by definition, are exactly
the same. In order to have a complete overview of the effects of the (pseudo)scalar
interaction we performed the same study also on the temperature and polarization
anisotropy power spectrum (TE APS). In Fig.(4.9) we show the results using the same
formalism of the temperature only analysis. Also in this case we see a greater effect
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Figure 4.9: Theoretical temperature and polarization power spec-
trum for the ΛCDM + geff model with three different
values. Blue, red and green solid lines correspond to
geff = (1.8, 2.8, 3.8)× 10−7 respectivelly. The black solid
line is the theoretical TE APS for the standard ΛCDM
model and grey dots show Planck 2015 data and uncer-
tainties. In the lower panel we plot the residuals between
the interacting cases and the standard one.

in the middle part of the spectrum that is in agreement with what we infer from the
perturbation evolution analysis. Moreover polarization data seem to suggest the same
predilection for small values of the interaction coupling constant.
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4.3 Constraints from Planck 2013 data

We are now ready to present the constraints that CMB and other astrophysical data
provide on the non-standard coupling constant geff . In the following, we will quote 68%

CL uncertainties, unless we are dealing with upper limits, in which case we quote 95%

credible intervals. The results shown in the following are summarized in Tabs. 4.4 and
4.6. In this section we show the results obtained using the 2013 Planck data release
(Planck13TT), then, in the next section, we will present a similar analysis carried out
using the latest 2015 Planck data (Planck15TT, Planck15TP). The 2013 Planck dataset
comprehends also the WMAP low-` polarization, see Sec.(1.1) for details.

Let us start by considering the simplest extension of the standard cosmological
model, labelled “ΛCDM+geff" such as the parameter space now is

[
Ωbh

2 , Ωch
2, 100θMC ,

τrei, ns, ln(1010As), g4
eff

]
. We decided to explore the parameter space constraining

directly g4
eff

1 in order to have a linear scan. We obtain g4
eff < 4.64 × 10−27 which

corresponds to geff < 2.61 × 10−7 and a neutrino-neutrino recoupling at zrec < 8800.
Every time we report the recoupling redshift we calculate it fixing the other parameters
to the best estimates. Adding the ACT and SPT datasets, labelled highL, shifts the
distribution to larger values of the coupling constant, yielding g4

eff < 5.25× 10−27 or
geff < 2.7× 10−7 and zrec < 104. We have also constrained the number of relativistic
species in conjunction with geff . In the framework of this “ΛCDM + geff +Neff" model,
we find a 95% credible interval g4

eff < 4.10× 10−27 corresponding to geff < 2.53× 10−7

form Planck13TT. This valued provides a zrec < 7400. Adding the contribution of the
very high multipoles of ACT and SPT (Planck13TT+highL), also in this case, weakens
the constraints on the coupling constant, yielding g4

eff < 5.1× 10−27 (geff < 2.67× 10−7)
and a recoupling redshift of zrec < 9800 at 95% CL. The constraint on the effective
number of neutrino families is Neff = 3.44+0.37

−0.41 (Planck13TT) and Neff = 3.27+0.33
−0.38

(Planck13TT+highL), very much consistent with the corresponding values found by the
Planck collaboration in the Neff extension of the ΛCDM model for the same datasets [10].
Interestingly enough, there is a weak (at ∼ 1σ the level) preference for non-zero values
of the secret coupling constant at 68% CL when we consider the very high ` data
coming from ACT and SPT. For the ΛCDM +geff model we find g4

eff = 2.42+0.92
−1.97×10−27

(geff ∼ 2.22× 10−7). The 68% lower limit in the latter case corresponds to zrec ∼ 3500.
Instead, in the ΛCDM + geff + Neff case the constraint is g4

eff = 2.47+0.82
−1.27 × 10−27

(geff ∼ 1.95× 10−7) that translates into zrec ∼ 2000.
We performed an additional extension in the parameter space considering the

tensor to scalar ratio as a free parameter of the model “ΛCDM + geff + r". In this
case we use the 2013 Planck dataset and the joint analysis made by BICEP2/Keck
& Planck (Planck13TT+BKP). In this case we find the same 1σ preference for a non
zero value of the coupling constant using both the base Planck13TT data set and the

1geff appears to the fourth power inside the scattering rate Γbin. See Sec.(4.2) for detail on the
interaction parametrization.
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Figure 4.10: One dimensional posterior probability for the interaction
strength g4

eff , in blue we report the constraints obtained
using Planck13TT data, red curves in the first row refers
to Planck13TT+highL while in the bottom panel is repre-
sentative of Planck13TT+BKP. From left to right in order
of appearance we have ΛCDM+geff , ΛCDM+geff +Neff

and ΛCDM + geff + r. The shaded areas show the 2σ
constraints for the interaction strength.

one extended with BICEP2/Keck & Planck, respectively g4
eff = 2.23+0.84

−1.83 × 10−27 and
g4

eff = 2.17+0.81
−1.79 × 10−27. We report also the more conservative 95% CL bounds that

are g4
eff < 4.92 × 10−27 (geff < 2.65 × 10−7) for Planck13TT and g4

eff < 4.75 × 10−27

(geff < 2.61× 10−7) for Planck13TT+BKP. For what concerns the tensor to scalar ratio
we find r < 0.14 and r < 0.10 for Planck13TT and Planck13TT+BKP respectively. Both
values are consistent with that found by Planck collaboration [10].

In Fig.(4.10) we present the one-dimensional posterior distributions for the in-
teraction strength parameter, the plots in the first row corresponds to ΛCDM +

geff and ΛCDM + geff + Neff models, blue and red lines represents Planck13TT and
Planck13TT+highL dataset. While the bottom panel shows the posterior of the
ΛCDM + geff + r model for Planck13TT and Planck13TT+BKP (blue and red lines
respectively). In Fig.(4.11) we show the most significant correlations between geff and
other parameters, namely Ωch

2, 100θMC , 109As e
−2τrei and Neff . The correlations with
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Figure 4.11: 68% and 95% confidence regions for selected parameter
pairs involving geff in the ΛCDM+geff (empty contours)
and ΛCDM +geff +Neff (filled contours), for Planck13TT
(blue) and Planck13TT+highL (red).

the angle 100θMC subtended by the sound horizon at recombination and with the ampli-
tude 109As e

−2τrei are particularly evident. We argue that the pattern leading to these
correlations is the following: the overall amplitude of the spectrum increases for larger
values of the coupling constant, while the position of peaks and dips remains unchanged.
This can be directly compensated by a lower value of 109As e

−2τrei . Alternatively,
increasing Ωch

2 (or decreasing Neff if the model allows), lowers the height of the first
few peaks but shifts their position to lower multipoles; increasing 100θMC moves the
peaks back to their original position. In Tab.(4.2) we show the constraints of the 6
basic parameters of the standard cosmological model plus the additional parameters
added in this study for the ΛCDM + geff and ΛCDM + geff +Neff models. The results
of the ΛCDM + geff + r, instead, are showed in Tab.(4.3).

The constrains on non-standard neutrino interactions mediated by a (pseudo)scalar
massless boson presented in this section, have been obtained using observations of
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ΛCDM + geff ΛCDM + geff +Neff

Planck13TT Planck13TT Planck13TT Planck13TT

Parameter +highL +highL

Ωbh
2 0.02214± 0.00029 0.02219± 0.00028 0.02244± 0.00041 0.02237± 0.00038

Ωch
2 0.1217± 0.0029 0.1221± 0.0029 0.1265+0.0055

−0.0059 0.1246± 0.0050

100 θMC 1.04195+0.00073
−0.00083 1.04210+0.00075

−0.00087 1.04143+0.00084
−0.00101 1.04179+0.00087

−0.00101

τrei 0.091+0.013
−0.014 0.093± 0.013 0.095+0.014

−0.016 0.096+0.013
−0.016

ns 0.9641+0.0073
−0.0074 0.9627± 0.0073 0.979± 0.016 0.972± 0.015

log[1010As] 3.079± 0.025 3.080+0.023
−0.024 3.100+0.034

−0.036 3.094+0.030
−0.033

1027 g4
eff [95% CL] < 4.65 < 5.25 < 4.10 < 5.10

1027 g4
eff [68% CL] / 2.42+0.92

−1.97 / 2.47+0.82
−1.27

Neff 3.046 3.046 3.45+0.39
−0.43 3.27± 0.34

H0 [km/sec/Mpc] 67.4± 1.2 67.4± 1.2 70.5+3.1
−3.5 69.2+2.7

−3.0

107 geff [95% CL] < 2.61 < 2.7 < 2.53 < 2.67

zrec [95% CL] < 8800 < 104 < 7400 < 9800

107 geff [68% CL] / 2.22 / 2.3

zrec [68% CL] / 3500 / 2000

Table 4.2: Constraints on cosmological parameters for the ΛCDM+geff

and ΛCDM + geff + Neff models from the analysis of the
Planck13TT and Planck13TT+highL datasets. We quote
68% C.L., except for upper bounds, which are 95% C.L.

CMB temperature and polarization anisotropies from Planck, WMAP, ACT, SPT and
BICEP2/KECK. We have found that, both in a minimal extension of the standard
cosmological model (λCDM + geff)and in more complicated scenarios allowing for the
presence of extra relativistic degrees of freedom or of primordial tensor perturbations,
the strength of non-standard interactions is, quite stable with respect to the models
and datasets considered, constrained at 95% C.L to geff < 2.6× 10−7. This, in the most
conservative case, corresponds to a recoupling redshift zrec . 9000 and shows that the
possibility of neutrino recoupling happening before recombination is allowed by the
data. Moreover, we confirm the preference, also reported in Ref. [23] for non-zero values
of the coupling constant, we report a ∼ 1σ preference for values of geff in the range
2.1÷ 2.3× 10−7 corresponding to zrec ∼ 2000÷ 3500. In most cases, we find geff 6= 0

at 68% CL; this tendency is more pronounced when small-scale CMB observations
(ACT-SPT), which are sensitive to details of the photon damping regime, are considered,
but is alleviated in presence of extra relativistic degrees of freedom if one allows for
them. On the other hand, considering a non-vanishing amplitude of tensor modes,
still leads to a preference for non-zero coupling at the same level, even for the base
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ΛCDM + geff + r

Planck13TT Planck13TT

+BKP

Ωbh
2 0.02220± 0.00029 0.02216± 0.00029

Ωch
2 0.1213± 0.0029 0.1218+0.0028

−0.0031

100 θ 1.04211+0.00074
−0.00083 1.04205+0.00075

−0.00084

τrei 0.091+0.013
−0.015 0.091± 0.014

ns 0.9668± 0.0079 0.9658± 0.076

log[1010As] 3.076± 0.026 3.077± 0.026

1027 g4
eff [95% CL] < 4.92 < 4.75

1027 g4
eff [68% CL] 2.23+0.84

−1.83 2.17+0.81
−1.79

r < 0.14 < 0.10

H0 [km/sec/Mpc] 67.7± 1.2 67.4± 1.2

107 geff [95% CL] < 2.65 < 2.61

zrec [95% CL] < 9400 < 9000

107 geff [68% CL] 2.17 2.15

zrec [68% CL] 3500 3300

r0.002 < 0.13 < 0.09

Table 4.3: Constraints on cosmological parameters for the ΛCDM +
geff + r model from the analysis of the Planck13TT and
Planck13TT+BKP datasets. We quote 68% C.L., except for
upper bounds, which are 95% C.L.

Planck13TT dataset.

4.4 Constraints from Planck 2015 data

We decided to develop an updated version of the analysis on massless neutrinos using
the latest available Planck data: the 2015 release (see Sec.(1.1) for some details). The
theoretical framework is the same used for the 2013 analysis, Sec.(4.1), and also the
parametrization is unchanged. In this section we are going to use the Planck15TT,
Planck15TP likelihoods with the addiction of some astrophysical data, such as Baryon
Acoustic Oscillations BAO, Supernovae SN and measurements of H0 from the Hubble
Space Telescope HST (see Sec.(1.1) for details). In analogy to what we have done in
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the previous analysis we start from the simplest extension of the standard cosmological
model ΛCDM + geff . In Tab.(4.4) we present the constraints for the main parameters.
In particular we obtain g4

eff < 2.9× 10−27 (geff < 2.33× 10−7) using only 2015 Planck
temperature data (Planck15TT), g4

eff < 2.78 × 10−27 (geff < 2.33 × 10−7) adding the
additional astrophysical data (Planck15TT+ext) and a more stringent value adding the
lensing reconstructed by the Planck team Planck15TT+lensing , i.e. g4

eff < 2.35× 10−27

(geff < 2.20× 10−7). The recoupling redshift are respectively zrec < 5050, 4750, 3800.
There is a noticeable improvement with respect to the limit obtained using 2013 Planck

ΛCDM + geff

Parameter Planck15TT Planck15TT Planck15TT

+ ext + lensing

Ωbh
2 0.02232± 0.00024 0.02237± 0.00021 0.02232± 0.00023

Ωch
2 0.1207± 0.0023 0.1200± 0.0013 0.1190± 0.0020

100θMC 1.04134± 0.00055 1.04142+0.00050
−0.00055 1.04143+0.00051

−0.00056

τrei 0.079± 0.020 0.082± 0.018 0.062± 0.016

ns 0.9701± 0.0066 0.9717± 0.0054 0.9719± 0.0063

ln(1010As) 3.083± 0.037 3.088± 0.035 3.047± 0.030

1027 g4
eff [95% CL] < 2.9 < 2.78 < 2.35

107 geff [95% CL] < 2.33 < 2.3 < 2.20

zrec [95% CL] < 5050 < 4750 < 3800

H0 [km/sec/Mpc] 67.71+0.97
−1.1 68.05± 0.56 68.35± 0.93

σ8 0.845± 0.015 0.845± 0.015 0.825± 0.009

Table 4.4: Bayesian credible intervals for the main parameters of
the ΛCDM + geff model obtained using Planck15TT data
(first column), Planck15TT+ext (second column) and
Planck15TT+lensing (third column).

data, in particular considering that we are comparing the same model using only the
temperature data, moreover the results is quite stable also considering the ext dataset.
We want to underline that the results improves even further if we decide to introduce
the lensing reconstruction which, of course, add information on the small scales. In this
analysis we include also σ8 which is the normalization of the matter power spectrum
on scales of 8h−1 Mpc, for this parameter we find a value σ8 = 0.845 ± 0.015 plenty
compatible with the one obtained by the Planck collaboration and still in tension
with the astrophysical data e.g. KiDS-450 measures σ8 = 0.745 ± 0.039 [101]. The
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“improvement" in the constraints becomes more visible considering the Planck likelihood
which includes temperature and polarization data (Planck15TP), results are summarized
in Tab.(4.5). In this case we obtain a very stable value for the secret interaction
strength: g4

eff < 1.69× 10−27, corresponding to geff < 2.03× 10−7 and zrec < 2500 for
Planck15TP and g4

eff < 1.64× 10−27 corresponding to geff < 2× 10−7 and zrec < 2300

for Planck15TP+ext (+lensing). In addition, we report also a predilection for non zero
value of the coupling constant, as happened also adding the highL dataset in the 2013
analysis. In particular the best-fit for g4

eff is fixed to 0.82+0.2
−0.6×10−27, which corresponds

to geff = 1.7+0.45
−1.4 × 10−7 and to a recoupling redshift of zrec = 800, regardless the data

used. The latter result suggests a neutrino-neutrino recoupling happening after the

ΛCDM + geff

Parameter Planck15TP Planck15TP Planck15TP

+ ext + lensing

Ωbh
2 0.02230± 0.00016 0.02230± 0.00014 0.02230± 0.00016

Ωch
2 0.1194± 0.0015 0.1194± 0.0010 0.1188± 0.0014

100θMC 1.04127± 0.00041 1.04127+0.00037
−0.00038 1.04137+0.00039

−0.00042

τrei 0.082± 0.018 0.083± 0.017 0.064± 0.014

ns 0.9704± 0.0057 0.9705± 0.0047 0.9714± 0.0054

ln(1010As) 3.091± 0.034 3.091+0.033
−0.032 3.052± 0.025

1027 g4
eff [95% CL] < 1.69 < 1.64 < 1.64

1027 g4
eff [68% CL] 0.82+0.2

−0.6 0.82+0.18
−0.58 0.82+0.18

−0.54

107 geff [95% CL] < 2.03 < 2.01 < 2.01

107 geff [68% CL] 1.7+0.45
−1.4 1.7+0.45

−1.4 1.7+0.45
−1.3

zrec [95% CL] < 2500 < 2300 < 2300

zrec [68% CL] 800 800 800

H0 [km/sec/Mpc] 68.12± 0.69 68.13± 0.48 68.38± 0.67

σ8 0.844± 0.013 0.845± 0.014 0.8262± 0.0090

Table 4.5: Bayesian credible intervals for the main parameters of the
ΛCDM + geff model obtained using Planck15TP data.

photon decoupling, this is the perfect situation in which our method show its power:
modifying and evolving directly the Boltzmann equation, instead of roughly switch on
and off the tight coupling regime, ensures that even the smallest effects are taken into
account. Looking at Figs.(4.2 and 4.3) we know that the (pseudo)scalar interaction

− 143 −



Constraints from Planck 2015 data

scattering rate grows slowly with time, this leads to a contribution of the scattering
term also in modes that are not completely inside the horizon. Let us spend a couple
of words on the robustness of the constraints obtained adding other astrophysical data
ext and lensing to the standard Planck 2015. Both the 95% and the 68% Bayesian
CLs are equal and this means that the most of the information useful to constrain the
secret interaction strength is contained in CMB observations, in particular inside the
additional contribution given by the polarization data introduced in the 2015 Planck
release. In Fig.(4.12) we show the one-dimensional posteriors of the secret dimensionless
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Figure 4.12: One dimensional posterior probability for the inter-
action strength g4

eff in the ΛCDM + geff model, blue
curves always corresponds to Planck15TT and red ones
to Planck15TP. In the top left panel we use only 2015
Planck data, the top right picture is representative of
Planck15TT+ext and the bottom panel shows posteriors
for the Planck15TT+lensing dataset. The shaded areas
show the 2σ constraints for the interaction strength
(blue lines) and 1σ Bayesian CL (red lines).

coupling constant geff . In all the plots we presents the Bayesian posterior for the same
model ΛCDM + geff with all the used datasets (Planck15TT and Planck15TP) in the
first figure from the left, we add the ext data in the second figure and lensing in the
last one. In this case we present the 1σ level of confidence for the results obtained
with temperature and polarization data. Looking at Tab.(4.5) we notice an interesting

− 144 −



(PSEUDO)SCALAR INTERACTING NEUTRINOS

shift of some parameters (H0, ns, σ8) in presence of the secret interaction. Fig.(4.13)
shows the one dimensional posterior and the associated correlations for H0, ns and σ8

parameters between the standard case ΛCDM and our model ΛCDM + geff . We report
a light (0.4 − 0.5σ) shift towards larger values for all the considered parameters. It
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Figure 4.13: One-dimensional and two-dimensional posteriors for
ΛCDM (blue) and ΛCDM + geff (red) models obtained
using Planck15TP dataset. We show the credible intervals
for the following parameters: 1027geff , ns , H0 and σ8.
Shaded areas corresponds to 68%, 95% and 99% CL.

is known that there are tensions between Planck constraints and other astrophysical
bounds on H0 and σ8 [101,152], whose origin is still unknown. The constraints obtained
in this analysis, on one hand, goes in the direction of alleviate the H0 tension, but, on
the other, increase the discrepancies for σ8.

As done in the 2013 analysis, we further extend the parameter space adding one
by one the effective number of neutrino families Neff and the tensor to scalar ratio r.
Results are summarized in Tab.(4.6). Extending the parameter space including Neff we
obtain a constraint on the secret coupling constant g4

eff < 3.1× 10−27 corresponding
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to geff < 2.35 × 10−7 and zrec < 5300 using the Planck15TT dataset. We found the
associated value of Neff = 3.09+0.31

−0.33 which is consistent with the constraint obtained by
the Planck collaboration [9]. Using the Planck15TP likelihood the constraints becomes:
g4

eff < 1.7 × 10−27 which corresponds to geff < 2.0 × 10−7 and zrec < 2400, while the
bound on Neff = 3.09+0.31

−0.33 does not change. Passing to the ΛCDM + geff + r model we
get very similar constraints: using Planck15TT data we report a value for the interaction
strength of g4

eff < 2.95 × 10−27 corresponding to geff < 2.33 × 10−7 and zrec < 5000.
Also in this case the tensor to scalar ration is comparable to the value provided by
Planck [9]. Let us highlight that every time we use Planck15TP data we recover exactly
the same constraints for the coupling constant, regardless the model used, moreover,
the value found is always fixed to g4

eff < 1.7× 10−27 at 95% CL with a best-fit value od
g4

eff ' 2× 10−7. The extremely stable constraints for geff found in this analysis suggests

ΛCDM + geff +Neff ΛCDM + geff + r

Parameter Planck15TT Planck15TP Planck15TT Planck15TP

Ωbh
2 0.02236+0.00036

−0.00040 0.02234± 0.00026 0.02233± 0.00023 0.02230± 0.00016

Ωch
2 0.1212± 0.0040 0.1200± 0.0032 0.1206± 0.0023 0.1193± 0.0015

100θMC 1.04132+0.00062
−0.00069 1.04125± 0.00049 1.04140+0.00054

−0.00059 1.04132± 0.00042

τrei 0.081+0.021
−0.024 0.084± 0.019 0.078± 0.019 0.081± 0.018

ns 0.972± 0.016 0.972± 0.011 0.972± 0.007 0.972± 0.006

ln(1010As) 3.088+0.047
−0.051 3.095+0.039

−0.040 3.080± 0.037 3.088± 0.034

1027 g4
eff [95% CL] < 3.1 < 1.7 < 2.95 < 1.7

1027 g4
eff [68% CL] / 0.82+0.2

−0.6 / 0.82+0.2
−0.6

Neff 3.09+0.31
−0.33 3.09± 0.21 / /

r / / < 0.13 < 0.12

H0 [km/sec/Mpc] 68.1+2.7
−3.0 68.5± 1.8 67.80± 0.98 68.20± 0.69

107 geff [95% CL] < 2.35 < 2.0 2.33 < 2.0

zrec [95% CL] < 5300 < 2400 < 5000 < 2400

107 geff [68% CL] / 1.7+0.4
−1.4 / 1.7+0.4

−1.4

zrec [68% CL] / 800 800

σ8 0.848+0.021
−0.024 0.847± 0.019 0.844± 0.015 0.843± 0.014

Table 4.6: Constraints on cosmological parameters for the ΛCDM +
geff +Neff and ΛCDM + geff + r models from the analysis
of the Planck15TT and Planck15TP datasets. We quote 68%
C.L., except for upper bounds, which are 95% C.L.

that Planck 2015 polarization data are, at the moment, the main source of information
for a cosmological study regarding secret neutrino interactions.

− 146 −



A simple way to evaluate how the model under investigation fits the data is to
perform a χ2 test in order to evaluate the goodness of fit. We present the best-fit values
of the χ2 distributions comparing the value our model ΛCDM + geff with the standard
cosmological model ΛCDM. In Tab.(4.7) lists the separate values of χ2 divided in
independent contributions: χ2

plik is the value associated to high-` likelihood contribution,
while χ2

lowTEB and χ2
prior refer to the low-` temperature and polarization and to the priors

imposed to the parameters. The secret interacting model under investigation has to be
considered nested, that is the ΛCDM can be thought as a special case of ΛCDM + geff ,
roughly speaking, if we set the interaction coupling constant to zero, we recover the
standard cosmological results. Interestingly enough, using the Planck15TP we notice

Planck15TP Planck15TT

ΛCDM ΛCDM + geff ΛCDM ΛCDM + geff

χ2
plik 2435.7 2431.6 766.4 765.7

χ2
lowTEB 10496.6 10496.6 10496 10496.6

χ2
prior 12.3 11.8 2.7 1.9

χ2
CMB 12932.3 12929.1 11262.4 11261.3

− log(Like) 12944.7 12941.4 11265.1 11264.3

∆χ2
min -3.3 -0.8

− ln(mean Like) 12953.1 12950.5 11275.9 11275.7

∆χ2 -2.6 -0.2

Table 4.7: Mean values of the χ2 distributions for the ΛCDM and the
ΛCDM +geff models for the Planck15TP dataset (left table)
and Planck15TT dataset (right table).

and improvement in the goodness of fit of ∆χ2 = −2.6 and ∆χ2
min = −3.3. Putting

together this information and the non-zero preference of geff states that (pseudo)scalar
interacting neutrinos not only are not rejected by cosmological data, but they provide
a better fit.





5
Fermi-like interacting neutrinos

Based on [J.Phys.Conf.Ser. 841 (2017) no.1, 012002]
and mainly on [JCAP 1707 (2017) no.07, 038]

In this chapter we are going to introduce a second type of interaction which we had
to deal with. The Fermi-like interaction follows what we presented in Sec.(3.2.2), it
basically extend the standard weak interaction regime, only in the neutrino sector, in
function of the magnitude of the secret coupling constant. The existence of a vector
mediator with a mass mX < mW±(mZ0) allows stronger interactions and this will leave
imprints on the anisotropies power spectrum.

5.1 Fermi-like formalism

Fermi-like interaction behaves exactly in the opposite way; we have already presented the
physics in Sec.(3.2.2) and roughly the behaviour in Sec.(1.3.2) (in particular Eq.(1.67)),
however the case of weak interaction can be generalized assuming the existence of a
different mediator MX having different mass and different couplings gX or Gbin

X . The
Lagrangian describing this type of interaction has the following form:

LF−L = gX ν̄sγµ
1

2
(1− γ5)νsX

µ . (5.1)

As we did in the (pseudo)scalar case, we can derive the scattering-to-Hubble rate ratio
in matter and radiation dominated epochs: the cross section for such a binary process
is:

σbin
X =

(
Gbin
X

)2
T 2
ν , (5.2)



Fermi-like formalism

where

Gbin
X =

√
2

8

g2
X

M2
X

. (5.3)

Hence, it is easy to write the scattering rate as:

Γbin
X =

〈
σbin
X v

〉
neq ∝

(
Gbin
X

)2
T 5
ν , (5.4)

and the ratio with respect the Hubble expansion,

Γbin
X

Hr
∼
(
Gbin
X

)2
T 3
ν ,

Γbin
X

Hm
∼
(
Gbin
X

)2
(Tν)

7
2 . (5.5)

In Fig.(5.2) we show the evolution of the Γ/H ratio for four different values of the
couplings Gbin

X , the demeanour for the generalized interactions is comparable with
standard weak interaction behaviour, what change is, basically, the strength of the
cross section. This translates into a late decoupling in the neutrino sector, i.e. the
secret interaction remains in equilibrium for longer time. Moreover, a larger value of
the coupling constant implies an extremely tight coupling regime in the early universe.
The latter aspect, in particular during the evolution of Boltzmann perturbation, must
be treated with care. Considering such an interaction in the neutrino sector requires
taking into account constraints coming from laboratory experiments [36]. If strong
Fermi-like neutrino interactions exist, four-neutrino decays

Z0 → νν̄νν̄ , (5.6)

have to contribute to the width of the Z0 boson. In Fig.(5.1) we can see the two

Figure 5.1: Feynman diagrams allowed by the presence of non-
standard interaction in the neutrino sector.

possible configurations of Z boson decay into a neutrino-antineutrino pair, one of the
products, in turn, can give rise to a “secret" process possible only if non-standard Fermi-
like interactions have been introduced in the picture. This allows strong constraints
for the interaction coupling constant Gbin

X : using the Large Electron-Positron collider
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(LEP) data on the invisible decay width Γinv = 3Γ(Z0 → ν`ν̄`)
SM + ∆Γinv where

∆Γinv = Γ(Z0 → νν̄νν̄) in [36] authors found an upper limit for the interaction strength
that can be roughly translated into Gbin

X . few × 102GF (we are not taking into
account numerical coefficients). Every cosmological study that pretends to be credible
must hold the comparison with laboratory experiments especially if we think that
any limit obtained, for example, using CMB data or BBN abundances is not a direct
measurement of the physical properties of relic neutrinos. In Fig.(5.2) we show the
limit coming from LEP measurements: the green area represents the excluded region,
i.e. every value of the coupling Gbin

X obtained from cosmological data which lies in that
region is excluded a priori.

103 104 105 106 107 108 109 101010-3

10-2

10-1

1

10

Figure 5.2: Behaviour of Fermi-like interaction in the early universe,
we show the ratio between the scattering rate and the
Hubble rate in function of the redshift. Red, orange, cyan
and blue lines correspond to four different values of GX
couplings, while purple dashed line is always the weak
interaction (GF ). The gray shaded zone corresponds to the
region where Γ/H > 1, while the green region represents
the part excluded by constraints coming from laboratory
experiments [36].

5.2 Massive sterile neutrinos

In light to laboratories observations and constraints [36] we decided to investigate a
scenario that should not be completely ruled out. Considering non standard Fermi-like
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interaction in the massless neutrino sector has been studied in some works [23,53, 115]
where the authors found upper limits for the interaction strength GX several orders
of magnitude above the limits coming from LEP. Hence we decided to investigate this
type of interaction inside the sterile neutrino sector. In recent years there has been
a renewed interest towards light sterile neutrinos, suggested by different anomalies
observed in short-baseline (SBL) neutrino experiments (see [3, 80, 81, 112] for recent
reviews).

The existence of an extra neutrino eigenstate is hinted in short-baseline neutrino
experiments [3, 81], in particular laboratory data suggest a sterile neutrino mass of
the order of 1 eV and active-sterile mixing angle θas ' 0.1. The production of this
new state in the primordial universe would lead to an increase in the extra-relativistic
energy content ∆Neff ' 1 in tension with the actual bounds coming from the Planck
experiment and with other cosmological bounds [93, 97, 136]. In order to avoid this
behaviour several mechanisms have been proposed in the literature, e.g. scenarios with
large primordial neutrino asymmetries [136,157].

An alternative approach introduces a Fermi-like non-standard interaction between
active and sterile eigenstates mediated by a massive gauge boson X, with MX �MW

[39,54,96]. The strength of the non-standard secret interaction GX drives the collisional
rate and as long as the universe expands the matter potential generated by the secret
coupling declines leading to a resonance in the sterile neutrino sector. This translates
into a sterile production due to the combination of the resonant Mikheyev-Smirnov-
Wolfenstein effect (see Sec.(3.2.7) and non-resonant Dodelson-Widrow production [164].
Considering a coupling constant gX ≤ 10−2 and for masses of the mediator larger
or of the order of 10 eV, the sterile production would have a considerable effect on
the light elements production during the Big Bang Nucleosynthesis (BBN). Assuming
smaller values of the mediator mass, sterile neutrinos would still be produced at
T � 0.1 MeV [158]. Mirizzi et al. in [136] have shown that in a certain region of the
parameter space (gX -MX) where the mass of the mediator is smaller enough to allow
the sterile production after the neutrino decoupling, the process of flavour equilibration
is fast and produces a sizeable νs abundance. In addition this mechanism reduces the
effective number of neutrinos to Neff ' 2.7 at matter radiation equality (see Sec.(5.2.1)
for further details) [136,158].

The existence of a possible window for this secret interaction which allows the
presence of a sterile eigenstate without adding a tension in the extra-relativistic energy
content is tempting. Aim of this paper is to investigate a secret Fermi-like interaction
considering a scenario with 3 active massive neutrinos, having

∑
imνi = 0.06 eV and

one light mνs ∼ 1 eV sterile neutrino.
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5.2.1 Sterile neutrino production in the primordial Universe

The existence of a fourth sterile neutrino eigenstate requires the extension of the
standard 3 neutrino families scenario to a 3 + 1 active-sterile neutrino mixing scenario.
Describing the neutrino system in terms of 4 × 4 density matrices ρ = ρ(p), the
active-sterile flavour evolution is ruled by the kinetic equations [63]

i
dρ

dt
= [Ω, ρ] + C[ρ] , (5.7)

see [137] for a detailed treatment. The first term on the right-hand side of Eq.(5.7)
describes the flavour oscillations Hamiltonian, given by

Ω =
M2

2p
+
√

2GF

[
−8p

3

(
E`
M2

W

+
Eν
M2

Z

)]
+
√

2GX

[
− 8pEs

3M2
X

]
, (5.8)

where M2 = U†M2U is the neutrino mass matrix in flavour basis, with U the active-sterile
vacuum mixing matrix (see Ch.(3) for details). The terms proportional to the Fermi
constant GF in Eq.(5.8) are the standard matter effects in active neutrino oscillations,
while the term proportional to GX represents the new matter secret potential. Inter
alia, E` is related to the energy density of e− and e+, while Eν corresponds to the ν-ν
interaction term proportional to a primordial neutrino asymmetry (that it is assumed
to be negligible). Finally Es is the energy density associated with νs. The last term is
the collisional integral given by the sum of the standard (∝ G2

F ) and the secret one
(∝ G2

X).
As said before, the strong collisional effects produce a damping of the resonant

transitions and would bring the system towards the flavour equilibrium among the
different neutrino species with a production rate given by [107,135]

Γt ' 〈P (να → νs)〉collΓX , (5.9)

where 〈P (να → νs)〉coll is the average probability of conversions among an active να
and a sterile neutrino νs in a scattering time scale (ΓX)−1, where the scattering rate is
given by a slightly different version of the Eq.(5.4) weighed by the sterile and active
neutrino abundance ns and na:

ΓX ' G2
XT

5
ν

p

〈p〉
ns
na

. (5.10)

In the latter equation 〈p〉 ' 3.15Tν is is the average-momentum for a thermal Fermi-
Dirac distribution.

It is possible to constrain the secret interaction using different cosmological observ-
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ables. In [158] the authors perform a study on deuterium primordial abundances 2H/H

for a coupling constant gX & 10−2 and masses of the mediator MX & 10 MeV, thus
excluding a large part of the parameter space. Alteration in the production of light
elements during BBN is due to a larger value of Neff and to the spectral distortion of
electron neutrinos when active-sterile oscillations occur close to the neutrino decoupling.
Taking smaller values of the mediator mass the sterile production is suppressed before
the neutrino decoupling and this choice leaves unchanged the BBN dynamics, but at
temperatures less than 1 MeV sterile neutrinos are still in a collisional regime, due
to their secret self-interactions. Neglecting the contribution of the resonance and
considering only a pure collisional production, the average probability of conversion
takes the form:

〈P (νa → νs)〉 '
1

2
sin2 θas . (5.11)

In this framework even a small population of sterile neutrinos can generate a large
scattering rate at relatively low temperatures for sufficiently large values of the coupling
constant GX . In particular if GX > 108GF . The decoupling of the non-standard
interaction would take place at redshift z ∼ 5× 104. This implies the following energy
density equilibration, going from an initial energy density to a final one [135]:

ρinν = 3 · 7
8

(
4

11

) 4
3

ργ → ρfinν = 4

(
3

4

) 4
3

· 7
8

(
4

11

) 4
3

ργ . (5.12)

The consequence of this behaviour is a reduction in the energy density of the neutrino
sector which translates into a slightly lower value for the effective number of neutrino
families with respect to the standard value:

Neff = 4 ·
(

3

4

) 4
3

= 2.7 . (5.13)

The latter basically means that neutrinos encounter a fast flavour equilibration between
the three active and the sterile species, leading from an initial abundance

(ne, nµ, nτ , ns)initial = (1, 1, 1, 0) , (5.14)

to a final one:
(ne, nµ, nτ , ns)final =

(
3

4
,
3

4
,
3

4
,
3

4

)
, (5.15)

for all the parameters associated with eV sterile neutrino anomalies. Soon after νs
are produced via oscillation, active and sterile neutrinos have a shared grey-body
distribution, namely a Fermi-Dirac function weighted by a factor 3/4 for each species.
However, in the presence of strong secret interactions, these grey-body distributions
will fastly evolve towards a Fermi-Dirac equilibrium function. The constant number
density (or entropy) constraint implies that the temperature of this final spectrum is
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reduced by a factor (3/4)1/3 with respect to the initial active neutrino temperature
Tν = (4/11)1/3Tγ . As a consequence of this effect, the total energy density stored
in active and sterile neutrinos is reduced and the value of the effective number of
neutrino species decreases down to Neff ∼ 2.7 for relativistic neutrinos. A further slight
reduction would occur at the matter radiation equality, i.e. for Tγ ∼ 0.7 eV since eV
sterile neutrinos would not be fully relativistic.

Secret interactions also affect the evolution of perturbations in the sterile neutrino
fluid. In fact, if sterile states scatter via secret interactions, the free streaming regime is
delayed until the scattering rate becomes smaller than the Hubble parameter. It means
that if GX is large enough so that this condition holds at the non relativistic transition,
sterile neutrinos would never have a free streaming phase, but always diffuse [135]. One
can obtain the smaller value of GX for which this occurs comparing the scattering rate
with the Hubble rate H at a temperature 3.15Tν ∼ 〈p〉 ∼ ms

G2
XT

5
ν ∼ H(Tγ) . (5.16)

Writing the Hubble rate for Tγ ∼ eV and using that Tν = (4/11)1/3(3/4)1/3Tγ one
obtains:

GX ∼ 1010GF , (5.17)

which corresponds to MX ∼ 10−1 MeV for gX ' 10−1.

5.2.2 Sterile massive interacting neutrinos

As we have done for the (pseudo)scalar massless case, we act directly introducing a
scattering term in the right-hand side of on the Boltzmann equation, however, in this
work we have to deal with massive neutrinos and thus it requires a modification of the
massive version Eq.(1.128):

∂Ψi

∂τ
+ i

q(~k · n̂)

ε
Ψi +

d ln f0

d ln q

[
η̇ − ḣ+ 6η̇

2

(
k̂ · n̂

)2
]

= −ΓijΨj , (5.18)

where the indices i and j label neutrino mass eigenstates, and summation over repeated
indices should be understood. Considering massive neutrinos introduces several issues
to take into account, first of all we have to derive the interacting hierarchy, From a
computational point of view it is necessary to pass trough a series of approximations.
Basically when the CAMB Boltzmann code follows the massive neutrino fluid evolution
it evolves three set of equation: one for the massless regime, one for the massive regime
and a final set of perturbations (let us call them quasi-massive regime) that would be
added to the massless regime in order to recover gradually the massive one. The purpose
of studying a secret interaction in the neutrino fluid requires the proper addition of the
scattering term in every step of the approximation.
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Massless and quasi-massless approximations

Let us start considering the complete derivation of the whole set of equations for the
massless and quasi-massive regimes, the basic elements are:

ν ′` =
kv

(2`+ 1)

[
`ν(`−1) − (`+ 1)ν(`+1)

]
+

8

15
kσδ`2 −

4

3
kZδ`0

− aΓν` (1− δ`0) (1− δ`1) ,

(5.19)

ν` =J` + εv∆J` , (5.20)

where, mirroring the notation of Ref. [121], ν` = −4Fν`/
(
d lnF
d ln q

)
, while the metric (its

derivatives) are hidden inside Z = ḣ
2k and σ = ḣ+6η̇

k . Finally J` and ∆J` are the massless
unperturbed part of the neutrino fluid term and the correspondent perturbation. The
perturbed part of the neutrino distribution function is weighted by the term εv = m2

2q2

that appears also in the time dependent velocity v = q/ε ∼ 1−a2εv. Thus by definition
a perturbed approximation is valid when the εv < 1. Thus replacing Eq.(5.20) inside
Eq.(5.19) we get:

J ′` + εv∆J
′
` =

k
(
1− a2εv

)
(2`+ 1)

[
`
(
J(`−1) + εv∆J(`−1)

)
− (`+ 1)

(
J(`+1) + εv∆J(`+1)

) ]
+

8

15
kσδ`2 −

4

3
kZδ`0 − aΓ (J` + εv∆J`) (1− δ`0) (1− δ`1) .

(5.21)

The zero-th order, of the latter equation can be written in the following way:

J ′` =
k

2`+ 1

[
`J(`−1) − (`+ 1) J(`+1)

]
+

8

15
kσδ`2 −

4

3
kZδ`0 − aΓJ` δ̃`0δ̃`1 , (5.22)

where δ̃`i = (1− δ`i). Expanding in the harmonic space the latter equation leads to the
interacting hierarchy:

J ′0 = −kJ1 −
4

3
kZ , (5.23a)

J ′1 =
k

3
(J0 − 2J2) , (5.23b)

J ′2 =
k

5
(2J1 − 3J3)− 8

15
kσ − aΓJ2 , (5.23c)

J ′` =
k

(2`+ 1)

[
`J(`−1) − (`+ 1)J(`+1)

]
− aΓJ` (` ≥ 3) . (5.23d)
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Which is exactly what we have presented in Eq.(4.13), i.e. the massless case. Instead
the first-order perturbative part of Eq.(5.19) can be written as:

εv∆J
′
` =

k

2`+ 1

[
`εv∆J(`−1) − (`+ 1) εv∆J(`+1)

]
− ka2εv

2`+ 1

[
`J(`−1) − (`+ 1) J(`+1)

]
− aΓεv∆J` δ̃`0δ̃`1 ,

(5.24)

Once again, performing an expansion in the harmonic space we can find an infinite
hierarchy,

∆J ′0 = −k∆J1 + ka2J1 , (5.25a)

∆J ′1 =
k

3
(∆J0 − 2∆J2)− ka2

3
(J0 − 2J2) , (5.25b)

∆J ′` =
k

2`+ 1

(
`∆J(`−1) − (`+ 1)∆J(`+1)

)
− ka2

2`+ 1

(
`J(`−1) − (`+ 1)J(`+1)

)
− aΓ∆J` (l ≥ 2).

(5.25c)

In order to truncate the series we need to derive the correspondent approximation, thus,
one again, we start from the general form,

J ′` + ∆J ′` =k
(
1− a2εv

) (
J(`max−1) + εv∆J(`max−1)

)
− (`max + 1)

1

τ
(J`max − εv∆J`max)− aΓ (J`max + εv∆J`max) ,

(5.26)

where the zero-th order, which again represent the pure massless part, is:

J ′`max
= kJ(`max−1) − (`max + 1)

1

τ
J`max − aΓJ`max , (5.27)

and at the perturbation level, we get:

∆J ′`max
= k∆J(`max−1) + (`max + 1)

1

τ
∆J`max − ka2J(`max−1) − aΓJ`max . (5.28)

Tight coupling regime Dealing with a Fermi-like interaction and ignoring, a priori,
the magnitude of the coupling requires the developing of a tight coupling approximation
valid in the Γ� H regime. Allowing large values of GX in the scattering part of the
Boltzmann hierarchy will change dramatically the derivative of the shear (it would
be also negative) and thus will introduce discontinuities in the shear, velocity and
density. This is a big issue in the numerical solution of Boltzmann equations. We act
on the massless, massive and quasi-massive approximation, basically setting to zero the
derivative of the shear σ̇ν (J ′2) for the massless case, Ψ̇2 for massive neutrinos and ∆J ′2
for the quasi-massive hierarchy. In this way we obtain an expression for the shear, in
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every case, that takes into account the presence of the secret interaction:

J2 = −Γ−1

[
2

5
kJ1 +

8

15
kσ

]
, (5.29)

∆J2 = −Γ−1 2

5
∆J1 . (5.30)

Massive approximation

It is possible to make the same calculation also for the massive Boltzmann equation,
starting from Eq.(5.18) rewriting the latter as infinite hierarchy of multipoles:

Ψ̇i,0 = −qk
ε

Ψi,1 +
1

6
ḣ
d ln f0

d ln q
, (5.31a)

Ψ̇i,1 =
qk

3ε
(Ψi,0 − 2Ψi,2) , (5.31b)

Ψ̇i,2 =
qk

5ε
(2Ψi,1 − 3Ψi,3)−

(
1

15
ḣ+

2

5
η̇

)
d ln f0

d ln q
− ΓijΨj,2 , (5.31c)

Ψ̇i,` =
qk

(2`+ 1)ε

[
`Ψi,(`−1) − (`+ 1)Ψi,(`+1)

]
− ΓijΨj,` (` ≥ 3) , (5.31d)

The associated tight coupling approximation can be written in the following way:

Ψ2 = −Γ−1

[
2

5
kvΨ1

]
. (5.32)

5.2.3 Effects on the cosmological perturbations

As said before, Boltzmann codes like camb [120] evolve the perturbations in the distribu-
tion functions of the mass eigenstates. In order to obtain the scattering rates between
mass eigenstates, those should be projected from the flavour basis through the mixing
matrix. We shall assume that the sterile state is the superposition of the 1 and 4 mass
eigenstates through the vacuum mixing angle θs as

νs ' sin θsν1 + cos θsν4 , (5.33)

so that we are in the situation in which the mass eigenstates ν1 and ν4 interact with
relative rates sin2 θs and cos2 θs, while ν2 and ν3 are essentially free-streaming [44], and
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the scattering rate term becomes:

Γij =



sin2 θs 0 0 sin θs cos θs

0 0 0 0

0 0 0 0

sin θs cos θs 0 0 cos2 θs


(3/2)(ζ(3)/π2) aG2

X T
5
ν . (5.34)

where we considered the mass basis in order to evolve the perturbations inside the
public code camb, basically considering the sterile state as a superposition of neutrino
mass eigenstates ν1 and ν4. The latter equation will be the scattering ration we will
use inside the hierarchy equations presented in the previous section. Looking at the
Eq.(5.34) it is evident that the interaction will act on the first and fourth massive
eigenstates while ν2 and ν3 remains unchanged, in particular we expect to see the
greater contribution on the sterile eigenstate, which is weighted with a cos2 θs while the
first eigenstate is affected by the interaction by a smaller sin θs cos θs factor. In Fig.(5.3)
it is possible to appreciate the effects of the interaction on the density perturbations
δν = δρν/ρν (the first order of Boltzmann hierarchy) for different perturbation wave
numbers. Out of the horizon the physics is unchanged and the evolution is dominated
by the metric perturbation. As the mode enters the horizon it starts to oscillate and
from this moment on the dynamic is influenced by micro-physics, thus the larger the
magnitude of the interaction the larger the effects on the oscillations of the density
perturbations. Considering the interacting cases, the blue dashed line refers to the
mode k = 0.5 Mpc−1 which crosses the horizon at approximately z ∼ few × 105, the
mode k = 0.05 Mpc−1 (red dashed line) enters the horizon at a redshift an order of
magnitude lower, this translates into a greater effect. The impact of the interaction is
larger, as we have predicted, on the ν4 and ν1 density perturbations, however we notice
that, even if the ν2 and ν3, in principle, should not be affected by the interaction, the
associated density perturbations are slightly affected by the metric. Looking at the the
middle-right panel, the k = 0.5 Mpc−1 mode for the interacting case, it is possible to
appreciate a small increase in the amplitude of the oscillations where the effect of the
interaction is supposed to be stronger.

Let us move to the CMB APS, the net effect of the interaction is that, at scales that
are within the horizon during the interacting regime, density and pressure perturbations
are enhanced with respect to the non-interacting case. This enhancement propagates to
the photon fluid, and thus to CMB anisotropies, through the metric perturbations, as it
can be clearly seen in Fig.(5.4), where we plot the temperature angular power spectrum
(APS) (multiplied by an additional factor of `2) for three models with an interacting
sterile neutrino with ms = 1 eV and different values of the coupling strength GX . In
all cases we take Neff = 2.7, consistently with the expectation of flavour equilibration.
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Figure 5.3: Density perturbations as function of the universe scale
factor a(t) for 3 light massive active neutrinos with∑
mν = 0.06 eV and 1 massive sterile with ms = 1 eV

models. We performed the analysis for two different
wave numbers, left column k = 0.05 Mpc−1, right col-
umn k = 0.5 Mpc−1, in case of no interaction (black solid
line) and in case of interaction mediated by a coupling
constant GX = 105 GF (coloured dashed line)

The prediction for the case with GX ∼ 108GF ' 103 GeV−2 is practically identical to
that of a ΛCDM extension with one non-interacting sterile neutrino and Neff = 2.7.
This means that there is a range of values around GX ∼ 108GF in which we still have a
copious production of sterile neutrinos and flavour equilibration, but no direct effects of
the interaction are visible on the APS (still, the effective number of relativistic degrees
of freedom is Neff = 2.7). Larger values of GX change the spectrum by increasing the
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Figure 5.4: CMB temperature anisotropies power spectrum. In the
upper panel, we show spectra for three different values
of the coupling constant GX = 2 ×

{
108, 109, 1010

}
GF

(red solid, dashed, dotted lines, respectively). The non-
interacting case is undistinguishable from the GX = 2×
108 GF case. The APS is obtained assuming 3 active
neutrinos having

∑
mi = 0.06 eV and a sterile neutrino

species with ms = 1 eV. In the lower panel, we show
residuals with respect to the non-interacting case. The
error bars represent the uncertainties of the Planck 2015
data.

power below a critical scale, related to the size of the horizon at the time at which
neutrinos enter the free-streaming regime. For the parameter values used in the plot,
we have that the comoving scale that enters the horizon at this time is k ' 0.01 Mpc−1

(k ' 0.03 Mpc−1), mapped to ` ' 130 (` ' 400) for GX = 109GF (GX = 1010GF ).

5.3 Cosmological analysis

In this section we discuss our analysis of available cosmological data to constrain the
coupling of the secret interaction. We first describe the method and data used, and
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then we present our results.

5.3.1 Method and data

We use the Boltzmann code camb, modified as described in the previous section, to follow
the evolution of cosmological perturbations and compute the CMB anisotropy power
spectra for given values of the cosmological parameters, including the secret coupling
GX and the mass ms ≡ m4 of the (mostly) sterile neutrino. In order to derive Bayesian
credible intervals for the parameters, we use the Markov Chain Monte Carlo (MCMC)
engine CosmoMC [122] (interfaced with the modified camb). Our parameter space consists
of the six parameters of the ΛCDM model, augmented by the parameters describing
the sterile neutrino sector. As we show in the previous section, the neutrino sector is
described by the secret coupling GX and the sterile neutrino mass ms. As explained
in the previous section, we fix Neff = 2.7, consistently with the assumption that all
neutrino states (both active and sterile) have a common temperature Tν = (3/11)1/3Tγ .
This amounts to the assumption that GX & 108GF . We also fix the active-sterile
mixing angle to θs = 0.1 and the sum of the masses of the (mostly) active neutrinos to
0.06 eV, equally shared among three mass eigenstates, see Sec.(5.2). We further assume
flat spatial geometry and adiabatic initial conditions.

In our analysis, we always take flat, wide (in the sense that they are much larger
than the expected posterior widths) priors for the six ΛCDM parameters. We also
consider priors on GX and ms in order to model limiting cases of the scenario under
consideration, to include additional pieces of experimental information, or simply to
explore different regions of the parameter space. We start by performing a set of
exploratory MCMC runs in which we assume a flat prior distributions in log10 [GX ]

and ms. The advantage of a logarithmic prior in GX is that it allows to explore several
orders of magnitude in the parameter with equal probability per decade and thus to
assess when the effect of secret interactions on the CMB APS becomes “large”, at least
in comparison with the experimental sensitivity. However, a logarithmic prior gives
more weight to small values of the parameter with respect to a flat prior, resulting
in tighter bounds on the parameter itself. Moreover, it is an improper prior, since it
does not integrate to a finite value if GX ≥ 0, and in order to give meaningful credible
intervals an arbitrary, non-zero, lower bound on GX has to be assumed. For these
reasons, we only use the results from this analysis to estimate the sensitivity of the
data to GX and to gauge the initial step of the subsequent MCMC runs, that always
use a flat prior on GX .

The full model, in which the ΛCDM parameters as well as GX and ms are varied,
is dubbed SΛCDM (standing for “ΛCDM with secret interactions”). In this case, and
unless otherwise stated, we take flat and wide priors also on GX and ms. Note that, as
explained above, we always have Neff = 2.7. A limiting scenario is obtained by fixing
GX to a very small value in our modified camb while keeping Neff = 2.7, in order to
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reproduce the case in which GX is large enough for the flavour equilibration to happen,
while still being small enough not to affect the evolution of cosmological perturbations.
As we have mentioned, this approximately corresponds to GX ∼ 108GF . Since, as
noted in the previous section, this case is practically indistinguishable, as long as the
evolution of cosmological perturbations in concerned, from a ΛCDM scenario with
Neff = 2.7 and GX = 0, we shall refer to this model as “SΛCDM_GX0”. Finally, we also
consider prior on ms to model information from short baseline experiments. We refer to
Ref. [81] in which the allowed 3σ (i.e., 99.73% CL) range for the squared mass difference
∆m2

41 = m2
4 −m2

1 that explains the SBL anomalies is 0.87 eV2 ≤ ∆m2
41 ≤ 2.04 eV2.

Not knowing the full shape of the probability density distribution for ms, we decided
to model it considering two “extreme” cases: in the first (“narrow ms prior”) we impose
a gaussian prior ms = 1.27± 0.03 eV (the width of the prior is chosen to match the 1σ
confidence interval for ∆m2

41 [81], assuming m4 � m1), while in the second (“broad
ms prior”) we impose a flat prior 0.93 eV ≤ ms ≤ 1.43 eV, corresponding to the 3σ

interval reported above. Finally, we will often compare our results to those obtained in
the framework of the standard ΛCDM model; for these, we refer to the values reported
in the Planck 2015 parameters paper [10], and in this case it should be understood that
Neff = 3.046 [55,132]. A list of the abbreviations used for the models considered in this
paper, including a short description, can be found in Tab.(5.1).

Our data consists of the baseline Planck 2015 dataset (dubbed Planck15TT), see
Appendix.(A) for detail on the datasets. We also consider geometrical information
coming from baryon acoustic oscillations; in particular we make use of the BAO results.
The extended dataset combining the Planck 2015 data with the BAO information will
be denoted Planck15TT + BAO). Once again we refer to Appendix.(A) for details on
the used datasets.

Description

ΛCDM Standard six-parameter ΛCDM, Neff = 3.046.

SΛCDM_GX0 Sterile neutrino extension, Neff = 2.7, ms free, “small” GX (∼ 108GF ).

SΛCDM Sterile neutrino extension, Neff = 2.7, ms and GX free.

SΛCDM_Narrow Sterile neutrino extension, Neff = 2.7, GX free, ms = 1.27± 0.03 eV (gaussian prior).

SΛCDM_Broad Sterile neutrino extension, Neff = 2.7, GX free, 0.93 eV ≤ ms ≤ 1.43 eV (flat prior).

Table 5.1: Description of the models considered in this work.
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5.4 Constraints from Planck 2105 data

We are now ready to present our results, summarized in Tabs.(5.2 and 5.3), where we
show the Bayesian credible intervals for the parameters, for the various models and
dataset combinations under consideration. As seen above, the presence of an interacting
sterile neutrino impacts the cosmological observables in three ways:

• smaller Neff due to flavour equilibration;

• larger density of (possibly) free-streaming species;

• reduced shear in the neutrino component of the cosmological fluid.

We start by considering the limit of small GX (∼ 108GF ), in which the third effect
listed above is negligible, in order to disentangle the first two effects. Comparing the
columns for ΛCDM and SΛCDM_GX0, we note that there are considerable shifts in
some parameters, in particular H0 and ns. The direction of the shifts is consistent with
what we would expect given the well-known degeneracies of these parameters with both
Neff and the total density in light species. Looking at the χ2 values for the best-fit
models, reported in Tab.(5.4), we find that SΛCDM_GX0 performs worse in terms of
goodness-of-fit, with a ∆χ2 = 7.7 with respect to ΛCDM. This is due to the low value
of Neff imposed by the flavour equilibration, while Planck data prefer a value closer
to the standard expectation Neff = 3.046. We also note that the mass of the sterile
is constrained to be ms < 0.82 eV at 95% CL, thus being in strong tension with the
values suggested by the SBL anomalies.

Parameter ΛCDM SΛCDM_GX0 SΛCDM SΛCDM_Broad SΛCDM_Narrow

Ωbh
2 0.02222± 0.00023 0.02177± 0.00024 0.02172± 0.00025 0.02167± 0.00025 0.02166+0.00024

−0.00024

Ωch
2 0.1197± 0.0021 0.1167± 0.0022 0.1171± 0.0023 0.1165± 0.0022 0.1160± 0.0021

100θMC 1.04085± 0.00047 1.04103± 0.00050 1.04323+0.00091
−0.00073 1.04319± 0.00074 1.04307+0.0010

−0.00077

τ 0.078± 0.019 0.070± 0.018 0.065± 0.018 0.067± 0.018 0.066± 0.018

ns 0.9655± 0.0061 0.9448± 0.0070 0.9284± 0.0088 0.9191+0.0076
−0.0078 0.9161+0.0081

−0.0072

ln(1010As) 3.089± 0.036 3.063± 0.035 3.023± 0.038 3.027± 0.037 3.028± 0.036

GX/GF – 108 < 2.8× 1010 < 2.9× 1010 < 4.0× 1010

ms – < 0.82 < 0.82 [0.93, 1.30] 1.27± 0.028

H0 67.31± 0.95 62.2+2.0
−1.7 62.6+1.8

−1.8 59.56± 0.88 58.91+0.82
−0.79

Table 5.2: Parameter constraints for the models under consideration,
from the Planck15TT dataset. We either quote constraints
in the form “mean ± 68% uncertainty”, or as 95% credible
intervals (when not indicated, the lower limit should be
understood to be zero). Units of ms and H0 are eV and
km s−1 Mpc−1, respectively.

The impact of secret interactions can be assessed by varying the coupling strength as
a free parameter of the model. To this purpose we compare SΛCDM_GX0 to SΛCDM,
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shown in columns 2 and 3 of Tab.(5.2). There are several points worth noticing: first of
all, the constraints on the mass of the fourth eigenstate do not change with respect to the
case of small GX , thus remaining in tension with the preferred SBL solution. Secondly,
secret interactions stronger than GX = 2.8× 1010GF are disfavoured, precluding the
possibility of the collisional regime lasting after z ∼ few × 103. Thus the scenario in
the sterile neutrino starts to free stream only after recombination, is disfavoured. This
is consistent with the fact that the bound on ms that we get is of the same order of
magnitude as the ones obtained by the Planck collaboration in a minimal extension
of the ΛCDM model. In that analysis, the effective mass meff

s ≡ 94.1Ωνh
2 is used to

parametrize the contribution of the sterile neutrino to the cosmological energy density.
It is straightforward to see that, in our model, meff

s = (3/4)ms, so that in terms of
the effective parameter the 95% upper bound for SΛCDM reads meff

s < 0.61 eV. This
should be compared with the result from the Planck collaboration for the same dataset,
meff
s < 0.88 eV at 95% CL. The two values cannot be directly compared, since the

Parameter SΛCDM

Ωbh
2 0.02197± 0.00021

Ωch
2 0.1144+0.0016

−0.0015

100θMC 1.04332+0.00090
−0.00063

τ 0.074± 0.018

ns 0.9392± 0.0063

ln(1010As) 3.038± 0.036

GX/GF < 1.97× 1010

ms < 0.29

H0 65.26± 0.68

Table 5.3: Parameter constraints for the models under consideration,
from the PlanckTT+lowP+BAO dataset. We either quote
constraints in the form “mean ± 68% uncertainty”, or as
95% credible intervals (when not indicated, the lower limit
should be understood to be zero). Units of ms and H0 are
eV and km s−1 Mpc−1, respectively.

Planck analysis considers Neff as a free parameter, with a prior Neff ≥ 3.046, while
in our analysis it is fixed to Neff = 2.7. However, the tighter limit we find for meff

s

is consistent with the lower value of Neff , given the direct correlation between the
two parameters. In any case, the best-fit χ2 for SΛCDM is still worse than ΛCDM

(∆χ2 = 3.9) but yet better than SΛCDM_GX0. When we also include information
from BAO, we get tighter limits on GX and, especially, ms, with 95% upper bounds of
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1.97 × 1010GF and 0.29 eV, respectively (see Tab.(5.3) for details). In Fig.(5.5), we
show the joint constraints and the marginalized one-dimensional posterior distributions
for GX and ms. For comparison, in the two-dimensional plot, we also indicate with a
red star a model with GX = 1.5× 1010GF and ms = 1 eV, representative of the strong
self-interacting scenario of Refs. [44, 54], that was argued to reconcile cosmological
measurements and sterile neutrino interpretation of SBL anomalies (note that the other
scenario considered in Ref. [44], with weak self-interactions, is not mapped by our
analysis). In particular, a value GX ∼ 1010GF roughly corresponds to the white band
in the upper left part of Fig. 4 of Ref. [44] (at least down to the point where the 4-point
approximation is valid, namely MX ∼ 10−2 MeV and gX ∼ 10−3) and the red star in
that figure corresponds to a model with GX = 1.5× 1010GF . We stress that, even if
from this figure the scenario considered in Refs. [44, 54] seems to be excluded at the
∼ 3σ level for our most conservative choice of the dataset, i.e. Planck15TT, and even
more strongly for Planck15TT + BAO, the actual statistical significance of the exclusion
is somehow larger in both cases. A proper assessment should take into account that
models with sterile secret interactions with GX > 108GF have Neff = 2.7, a value that
is itself mildly disfavoured with respect to the ΛCDM prediction of Neff = 3.046. In the
following paragraph, we will better quantify this statement, for the PlanckTT+lowP
dataset, by comparing χ2 values between the best-fit models for ΛCDM and SΛCDM.

In order to better assess the (dis)agreement between Planck CMB observations and
the SBL anomalies, also in the presence of secret interactions, we look at the fourth and
fifth columns of Tab.(5.2), where we show the results for the cases in which we impose
priors on ms that mimic the preferred SBL solution. For the SΛCDM_Broad model,
column 4 of Tab.(5.2), we obtain almost the same constraint on the strength of the
secret interaction we have obtained for the SΛCDM scenario, in spite of the larger value
of ms imposed by the prior. We notice however that the posterior distribution for ms is
peaked in the lower edge of the prior, ms = 0.93 eV. In the SΛCDM_Narrow analysis,
on the other hand, the larger a priori value of the sterile neutrino mass, ms ' 1.27

eV, yields a looser constraint GX < 4 × 1010GF . For these two models, we see that
the best-fit χ2 (computed on the Planck15TT dataset) is much worse than ΛCDM:
∆χ2 = 11.1 and 12.5 for the “broad” and “narrow” priors, respectively. We argue that

Parameter ΛCDM SΛCDM_GX0 SΛCDM SΛCDM_Broad SΛCDM_Narrow

χ2
min 11265.1 11272.8 11269.0 11275.2 11277.6

Table 5.4: Best-fit χ2 values for the models under consideration, for
the Planck15TT dataset.

the inclusion of BAO information would make the tension even stronger, given the
preference of that dataset for small values of the sterile neutrino mass. Finally, we
notice how all models with non-standard interactions show a preference for values of H0
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Figure 5.5: Two-dimensional (bottom right) and corresponding one-
dimensional posteriors for the effective strength of the
interaction GX =

√
2g2
X/8M

2
X in units of the Fermi con-

stant (top) and the sterile neutrino mass ms (bottom left).
Blue constraints are obtained using Planck15TT data, while
the red ones come from Planck15TT + BAO, both for the
SΛCDM scenario (that assumes GX ≥ 108GF and thus
Neff = 2.7). The filled regions in the contour plot, from
darker to lighter, show the 68, 95 and 99% credible in-
tervals. The shaded regions in the one-dimensional plots
correspond to the 95% credible interval. The grey and
green horizontal regions are representative of the 68% and
99.73% priors on ms suggested by SBL anomalies. The
red star at GX = 1.5×1010GF and ms = 1 eV is represen-
tative of the strongly self-interacting scenario described
in Refs. [44, 54].

even smaller than the one obtained in the framework of ΛCDM see corresponding row
of Tab.(5.2), further increasing the tension between CMB and direct estimates of the
Hubble constant [152]; this is not captured by the χ2 figures reported above, that are
computed on CMB data only. The increased tension is due in part to the low value of
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Neff , and, in the models with the SBL priors, by the large value of ms; both effects, as
per known degeneracies, push towards a smaller H0. Finally, we summarize our findings

Figure 5.6: Two-dimensional allowed parameter space for the dimen-
sionless coupling constant gX and the mediator mass MX .
The light and dark blue areas show the region excluded
by this study. The light blue region corresponds to val-
ues of the interaction strength GX > 2.9 × 1010 GeV−2,
thus larger than the 95% upper limit on this parameter
from Planck. In the dark blue region 108 GeV−2 < GX <
2.9 × 1010 GeV−2, but is still disfavoured as it does not
allow to circumvent the neutrino mass bound. The re-
gions where the approximations used in our study become
to break down are colored in gray: the light gray band
on top indicates the non-perturbative regime (gX & 0.1)
while the dark gray triangle on the bottom-left is where
the interaction cannot be described as four-point. The
red star is representative of the strongly self-interacting
scenario described in Refs. [44,54].

in Fig.(5.6), where we show the parameter space excluded by our analysis in terms of the
dimensionless coupling constant gX and the mediator mass MX . The excluded region
coincides with the whole region in which our assumptions hold and the approximations
used are valid. The light and dark blue areas show the region excluded by our work.
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In particular, the light blue region corresponds to values of the interaction strength
GX > 2.9× 1010 GeV−2, thus larger than the 95% upper limit on this parameter from
Planck. In the dark blue region the range 108 GeV−2 < GX < 2.9× 1010 GeV−2 is still
disfavoured by the neutrino mass bound. The red star is representative of the strong self-
interacting scenario described in Refs. [44, 54]. The regions where the approximations
used in our study become to break down are colored in gray. The horizontal band
in light gray band on top indicates the non-perturbative regime (gX & 0.1) while the
dark gray triangle on the bottom-left is where the interaction cannot be described as
four-point interaction. This is obtained when the temperature at which νs are produced
(approximated with Eq.(12) of [158]) is comparable or larger than the mediator mass
MX .
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Conclusions and Outlook

In this thesis we have studied the impact of neutrino properties, in particular of non-
standard interactions on the cosmological observables. We have provided constraints
on these non- standard interactions using cosmological data and in particular the CMB
data coming form the Planck experiment.

We start providing a description of the standard cosmological model in Ch.(1),
with a particular attention for the physics that describe the evolution of cosmological
perturbations. In Ch.(2) we focus our attention on the main cosmological observable:
the cosmic microwave background radiation. We gave a detailed description of the
processes that lead to the anisotropies formation and we explain the physics encoded
inside the anisotropies power spectra. Before to present the original part of the work,
in Ch.(3) we move our attention on the neutrino sector. A detailed description of it
properties has been provided both from particle and cosmological point of view.

Chapters 4 and 5 are reserved for the original work of this thesis. In the former we
consider the possibility that neutrinos posses secret scalar or pseudoscalar interactions
mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken
global U (1) symmetry, as in, e.g., Majoron models. In such scenarios, neutrinos still
decouple at T ∼ 1 MeV, but become tightly coupled again (“recouple”) at later stages of
the cosmological evolution. The magnitude of the interaction is parametrized through
the effective coupling constant geff . We add the collisional term, corresponding to
an interaction rate of Γ = 0.183 × g4

effTν , proper of the (pseudo)scalar interaction,
directly inside the Boltzmann equation. In order to do this we use the relaxation time
approximation which provides a simpler expression for the scattering term avoiding
the whole integration procedure. This method guarantees to follow the neutrino
perturbation evolution in all the fundamental steps, leading to the understanding of
the mechanism involved during the recoupling process. In Fig.(4.3) we show how the
presence of (pseudo)scalar interaction among active massless neutrinos modifies the
shear σν basically decreasing the amplitude of the oscillations, this translates into
larger density perturbations and pressure leading to more power in the anisotropies
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power spectrum, see Fig.(4.4). To derive constraints on geff we consider both a minimal
extension of the standard ΛCDM model (we refer to it as ΛCMD + geff model), and
more complicated scenarios with extra relativistic degrees of freedom ΛCMD+geff +Neff

or non-vanishing tensor amplitude ΛCMD + geff + r. More over we perform the analysis
using the Planck 2013 (Planck13TT) and 2015 (Planck15TT) datasets. Starting form
the analysis conducted using the Planck 2013 dataset, for a wide range of dataset
and model combinations, we find a typical constraint of g4

eff < 4.5 ÷ 5.2 × 10−27

(geff < 2.6÷ 2.7× 10−7), this corresponds to a largest redshift of neutrino recoupling of
zrec ∼ 8800÷ 104 larger than the value zrec < 1887 found in Ref. [23]. This shows that
the possibility of secret interaction among neutrinos, leading to a recoupling happening
before recombination, is allowed by the data. On the other hand, adding to the standard
Planck13TT data the observations coming form ACT and SPT ground telescopes (we
label this joint analysis with Planck13TT + highL), we confirm the preference, also
reported in Ref. [23], for non-zero values of the coupling constant. We find best-fit
values of g4

eff = 2.2÷ 3× 10−27 (geff < 2.2÷ 2.3× 10−7) corresponding to zrec in the
range 2000÷ 3500. In most cases, we find geff 6= 0 at 68% CL; this tendency, as said
before, is more pronounced when small-scale CMB observations, which are sensitive to
details of the photon damping regime, are considered, but is alleviated in presence of
extra relativistic degrees of freedom if one allows for them. On the other hand, if we
consider a non-vanishing amplitude of tensor modes r, we find a preference for non-zero
value of the coupling constant also using the baseline Planck dataset. We report a 68%
CL constraints for the interaction strength of geff = 2.17× 10−7, corresponding to a
recoupling redshitft of zeff = 3500, this results seems to be very stable also adding the
joins analysis of Planck and Bicep collaborations (BKP).

We performed a similar analysis using the Planck 2015 temperature (Planck15TT)
and temperature-polarization (Planck15TP) likelihoods. This time we considered also
other astrophysical data, such as, Supernovae (SN), BAO and measurements of H0 from
the Hubble space telescope HST, all these datasets are labelled as ext. For the standard
analysis, based on the base Planck temperature dataset, we find results comparable with
what we obtained with the Planck13TT. Instead the picture changes when we use the
polarization data, we find much tighter constraints at the 95 % CL and stronger hints of
a non-zero preferred value for geff . With all the dataset considered and considering also
the lensing of the CMB reconstructed by Planck (lensing) we obtain a very stable result:
g4

eff < 1.7 × 10−27 (geff < 2 × 10−7) at 95 % CL, which corresponds to a recoupling
redshift of zrec < 2500. However geff = 0 lies outside the 68 % confidence region, with
the probability distribution peaking in geff = 0.82 × 10−27 or geff = 1.7 × 10−7. The
recoupling redshift in this case is zrec = 800. The result is extremely solid also if we
extend the model under consideration. For example, adding as a free parameter the
effective number of neutrino families Neff or the tensor to scalar ration r, we obtain
very similar constraints. Interestingly enough we analyse the goodness of fit, with a
χ2 test, for the ΛCDM + geff model comparing it with the standard ΛCMD one. We
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obtain an improvement of ∆χ2 = −3.3 for one additional parameter. In this analysis
we report also a mild shift (at 0.5σ level) of some cosmological parameters that are
correlated with the interaction strength. In particular ns and H0 move to larger values
in correspondence of a larger value of geff .

The exact relationship between our parameter geff and the elements of the Yukawa
matrix gij depends on the details of the underlying particle physics model. As an
example, we have considered the class of models in which neutrinos acquire mass through
violation of ungauged lepton number. In this case the neutrino mass eigenstates couple
diagonally, to lowest order approximation, to the Nambu-Goldstone boson of the broken
global symmetry, the Majoron. Neutrino masses are proportional to the diagonal
couplings: mi ∝ gii. Neglecting the small off-diagonal couplings, gij = δijgi , and
further assuming that the diagonal ones are of the same order of magnitude, gi ∼ g, We
can translate our limits on geff to limits on g. Considering the latest results obtained
using Planck15TP data, we are at the margins of the region excluded by the observation
of the SN1987A [106], i.e. 3× 10−7 < g < 2× 10−5.

We then move to the Fermi-like interactions conducting a detailed study on the
feasibility of cosmological models with sterile neutrinos, in addition to the three active
states of the standard model of particle physics, with new, secret self-interactions
mediated by a massive vector boson and confined in the sterile sector. This model
has been proposed in order to alleviate the tension between the preferred solution of
the SBL neutrino anomalies and cosmological observations, that disfavour a fourth
fully thermalized neutrino species. Notably the effect of the new interactions would
be to effectively dilute the density of both the active and sterile states (leading to an
effective number of relativistic species Neff = 2.7, more compatible with the Planck
data than Neff = 4). However, the mass of the sterile neutrino required to explain
the SBL anomalies still appears to be too large with respect to the corresponding
cosmological bounds. It was not clear a priori if and to what extent such bounds could
be evaded thanks to the secret interactions that, if very strong, could significantly delay
the onset of sterile neutrino free streaming. Secret interactions also leave an imprint on
the CMB spectra, by extending the collisional regime for the neutrino fluid. Using this
effect, we have constrained the effective “Fermi constant” GX of the new interaction
to be smaller than 2.8× 1010GF at 95% CL from the Planck 2015 temperature and
large-scale polarization data. This limit is improved to 2.0× 1010GF at 95% CL when
information from BAO are included. These results disfavour the range, corresponding
to GX & 1010GF , in which the onset of sterile neutrino free streaming is delayed until
after recombination, and cosmological mass bounds could be possibly evaded. In fact,
our self-consistent analysis yields, at 95% CL, ms < 0.82 eV and ms < 0.29 eV from
the Planck 2015 data alone and in combination with BAO, respectively, smaller than
the value required to explain SBL anomalies, allowing to conclude that the tension
between the SBL oscillation experiments and CMB observations still holds even in
extended models with secret sterile neutrino interactions. Even disregarding BAO data,
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secret interactions with GX & 108GF are disfavoured with respect to standard ΛCDM,
by CMB data, due to their prediction of a low Neff . Moreover, CMB estimates of the
Hubble constant H0 in the secret interactions framework are smaller than their ΛCDM

counterparts, thus increasing the tension with astrophysical measurements of the same
quantity. Summarizing, our analysis has excluded the possibility of a single sterile
neutrino with ∼ 1 eV mass and ∼ 0.1 mixing (as preferred by the SBL anomalies) with
active neutrinos, having strong, four-fermion pointlike self-interactions. This is because
it is not possible to hide the cosmological effects of such a large neutrino mass by means
of a reduced free-streaming, without at the same time injecting too much extra power
in the CMB angular power spectra. As it can be seen by comparing our Fig.(5.6) with
Fig. 4 of Ref. [54], where the quantities reported on the vertical axes of the two figures
are related by αs = g2

X/4π, the present analysis excludes the thin white band in the
upper left part of Fig. 4 of Ref. [54] (dubbed there “strong self-interactions” region).
That region was regarded as being of particular interest as it could help explain the
problems that arise at small scales in cold dark matter models of structure formation.
We have not considered the case of two or more species of sterile neutrinos, although
we argue that, in the case of complete thermalisation, they would be even more in
tension with observations due to i) an even lower value of Neff , and ii) a larger density
of interacting species, presumably resulting in a stronger bound on GX .
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A
Tools and data

1.1 Tools and data

In this section we will describe the tools and data used. We are going to describe
very briefly codes and data addressing the reader’s curiosity towards the articles of the
respective collaborations which are, of course, much more complete and exhaustive.

Numerical codes used in this work are CosmoMC [122] and CAMB [103,122], the first
is the MCMC while the second is a Boltzmann solver. The Code for Anisotropies in the
Microwave Background (CAMB) is a Boltzmann code, written in FORTRAN90, which
works with the linear perturbation theory, explained into the previous chapters, and
solve the perturbation equations in order to compute the matter and power spectra. The
code allows to change the parameters of the model, starting from the six parameters of
the simple ΛCDM model described in Ch. 1, [Ωbh

2, Ωch
2, τ , As, ns and θ]. However it

is also possible to consider extended models, such as adding neutrino masses, increasing
the number of neutrino families, changing of the equation of state parameter, changing
the geometry of the universe (close, open, flat) and so on. The Cosmological Monte
Carlo (CosmoMC) is a Markov Chain Monte Carlo engine which use the Metropolis-
Hastings algorithm to explore the cosmological parameter space and derive posteriors for
the parameters of the model. It is completely integrated with CAMB: once it generates
some values in the parameter space it passes these numbers to the Boltzmann solver
which produces the power spectra; these theoretical spectra are then compared with
the data to obtain their likelihood. One of the most useful characteristic of CosmoMC
is the simplicity in the selection of the likelihood, we can choose from different public
datasets easily available.

As far as the data are concerned, here there is a list of data and likelihoods used for
the aim of this thesis.

• WMAP the Wilkinson Microwave Anisotropy Probe was a NASA Explorer mission
that launched June 2001 to make fundamental measurements of cosmology [33,102]
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• Planck13TT Planck 2013 data [8]

• Planck15TT and Planck15TP data [13]

• BKP BICEP2/Keck are a series of cosmic microwave background experiments.
They aim to measure the polarization of the CMB, in 2015 they produced a joint
analysis with the Planck collaboration. [7]

• highL



• ACT the Atacama Cosmology Telescope has measured the angular
power spectra of microwave fluctuations to arcminute scales at
frequencies of 148 and 218 GHz [64]

• SPT the South Pole Telescope is a 10 meter diameter telescope
operating at the NSF South Pole research station. The telescope is
designed for conducting large-area millimeter and sub-millimeter
wave surveys of faint, low contrast emission, as required to map
primary and secondary anisotropies in the cosmic microwave
background. [150]

• ext



• HST Hubble space telescope.

• SN

• BAO data coming from the 6dF Galaxy Survey [35], from the
BOSS DR11 LOWZ and CMASS samples and from the Main
Galaxy Sample of the Sloan Digital Sky Survey [21].

Since cosmic microwave background radiation is the most important source of
information used in this thesis, we mainly work with the Planck (2013 and 2015)
dataset, in particular:

Planck 2013 release [46]

• Planck13TT for the temperature only data. The spectrum covers the wide range of
multipoles ` = 2÷2479. Over the multipole range ` = 2÷49, the power spectrum
is derived from the “Commander" component-separation algorithm applied to the
combination of Planck temperature data between 30 and 353 GHz over 91%of the
sky. For multipoles greater than ` = 50, instead, the spectrum is derived from
the CAMspec [8] likelihood by optimally combining the spectra in the frequency
range 100÷ 217 GHz, and correcting them for unresolved foregrounds.

The likelihood code (and the data that comes with it) used to compute the likeli-
hood of a model that predicts the CMB power spectra, lensing power spectrum,
together with some foreground and some instrumental parameters. The data files
are built primarily from the Planck mission results, but include also some results
from the WMAP-9 data release. The data files are written in a specific format
that can only be read by the code. The code consists in a c/f90 library, along with
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some optional tools in python. The code is used to read the data files, and given
model power spectra and nuisance parameters it computes the log likelihood of
that model. The CMB full likelihood has been divided into four parts to allow
using selectively different ranges of multipoles. It also reflects the fact that the
mathematical approximations used for those different parts are very different, as
is the underlying data [8]. In detail:

– low-` temperature only likelihood (commander) covering ` = 2÷ 49.

– low-` temperature and polarization likelihood (lowlike) form ` = 2 to ` = 32

the polarization used comes form WMAP9.

– high-` temperature (CAMspec) that covers ` = 50÷ 2479.

In 2013, together with Planck data, was released also the very high-` ACT-SPT
likelihood that covers the multipoles 1500 to 10000 for temperature. Finally the
lensing likelihood covers the multipoles 40 to 400 using the result of the lensing
reconstruction [8].

Planck 2015 release [47]

• Planck15TT The Planck best-fit CMB temperature power spectrum (shown in
2.4) covers the wide range of multipoles ` = 2÷ 2508. Over the multipole range
` = 2÷ 29, the power spectrum is derived from the “Commander" component-
separation algorithm applied to the combination of Planck 2015 temperature data
between 30 and 857 GHz, the 9−year WMAP sky maps, and the 408−MHz [98]
survey, including 93% of the sky [6]. For multipoles equal or greater than ` = 30,
instead, the spectrum is derived from the “Plik" likelihood [13] by optimally
combining the spectra in the frequency range 100÷ 217 GHz, and correcting them
for unresolved foregrounds using the best-fit foreground solution from a PlanckTT
ΛCDM run.

• Planck15TP The Planck best-fit CMB polarization and temperature-polarization
cross-correlation power spectra, shown in the figure 2.9, cover the multipole range
` = 2 ÷ 1996. The data points relative to the multipole range ` = 2 ÷ 29 are
estimated from foreground-cleaned Planck 70 GHz Q and U Stokes parameter maps
using 46% of the sky, the same maps that are used in the “lowP" likelihood [13].

The 2015 baseline likelihood release consists of a code package and a single data
package. Four extended data packages are also available enabling exploration of
alternatives to the baseline results. The code compiles to a library allowing for the
computation of log likelihoods for a given data set. Each data package contains multiple
data sets. A data set permits the computation of a single likelihood among:

• the high−` temperature and polarization CMB (jointly or separately),
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• the low−` temperature and polarization CMB (jointly or separately),

• the CMB lensing reconstruction.

Differences between Planck 2013 and 2015 datasets. It is quite important to
underline the differences that lie between 2013 and 2015 Planck releases, as described
in details in Ref. [51]. Here we want to put in evidence that the greatest contributions
comes from the development of the polarization likelihood and the correspondent power
spectra. For example, as the authors of Ref. [77] proved, polarization data can be an
extremely good source of information, they show that, for a cosmic variance limited
experiment, polarization (EE) data can constrain parameters better than temperature
only data up to a factor 2.8 considering a multipole range of ` = 30÷ 2500. In order
to give the flavour of the improvement we show in Fig.A.1 the 2015 temperature map
obtained with the Commander routine (top panel), where the gray line represents the
mask applied which covers the 7% of the sky. In the middle panel it is possible to see
the differences between the 2015 and 2013 temperature maps where the masked region
is the 2013 mask. Finally in the bottom panel we report the 2013 (gray) and 2015
(black) masks. Of course it is not possible to do the same exercise with the polarization
maps since they are not available in the 2013 release.
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Figure A.1: Top panel: Commander CMB temperature map derived
from the Planck 2015, 9−year WMAP and 408 MHz
Haslam er al. observations [13]. The gray boundary
indicates the 2015 temperature mask that covers the 7%
of the sky. In the middle panel we show the difference be-
tween the 2015 and 2013 temperature maps. The masked
region indicates the 2013 likelihood mask, removing 13%
of the sky. The bottom panel shows a comparison of the
2013 (gray) and 2015 (black) temperature masks. [51]
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Bayesian inference

Cosmologists which study CMB anisotropies use the Bayesian inference [171] instead of
the frequentist statistics; the main difference between these two frameworks lies in the
definition of probability:

• Bayesian: probability is a measure of the confidence of belief about a proposition.

• Frequency: probability is the number of times the event occurs over the total
number of trials, in the limit of an infinite series of equiprobable repetitions.

This second definition of probability is unsatisfactory in many cases, first of all the
definition is circular, i.e. it assumes that the of having an event is based on the evidence
of the outcomes which is the hypothesis of the probability, secondly, it has no meaning
in case of singular cases or unrepeatable situations and finally the probability is exact,
by definitions, only in case of an infinite sequence of repetitions.
The intrinsic limitations in cosmology make this type of probability hard to be used.

The Bayesian definition, instead, opens to us a greater possibility of action, it
is immediately clear that the circular problem that afflicts the frequency probability
vanishes, another great advantage is that there is no difference between statistical and
systematic uncertainty and finally we have no problems with a limited data set, i.e. we
do not need an infinite sequence of repetitions.
The Bayesian statistics is based on Bayes’ theorem, which is the natural consequence
of the definition of probability given previously, and gives us the rules by which the
probability should be manipulated. So let us consider a set of data D and the hypothesis
made on these data H, assuming that we have true informations I, Bayes theorem says:

p(H|D, I) =
p(D|H, I) p(H|I)

p(D|I)
. (B.1)

On the left we have the so called posterior probability of the hypothesis, while in



the right-hand side,at the numerator we have the sampling distribution of data,
p(D|H, I), assuming the hypothesis true and the (p(H|I)) is the prior probability for
the hypothesis, which represents the knowledge before to see the data. At the denomi-
nator there is the marginal Likelihood, often called "Bayesian evidence" (p(D|I))

which is the crucial term for the model comparison. The posterior probability is the
relevant part of the theorem and it represents our current state of belief about the
hypothesis after we have considered the information hidden in the data, from this point
of view we can consider the Bayesian statistics a running statistics which change with
the changing of data and priors.
As we can see here there is no temporal sequence in the Bayesian definition but only a
logical consequence going from priors to posteriors.
All these statements allow us to define in a better way the concepts of sampling distribu-
tion, prior, sampling distribution, posteriors, marginal Likelihood and their importance
in the definition of Bayes’ theorem.

I Priors: the guiding principle of Bayesian probability theory is that there are no
inference without assumptions or, using the right terms, there is no posteriors
without priors. Thus prior must reflect the assumption and the state of the
knowledge about the problem before the collection of the data. There is a vast
literature about priors, here we can distinguish three different situations: priors
which reflects the state of indifference with respect the symmetries of the problem,
reference priors which consist in the idea of using the expectations about the
experiment as priors and flat priors, which are usually the standard choice,
where priors are taken to be constant within the minimum and the maximum
value of the parameters. Considering this last choice, we have to take a look at
the linearity of the flat prior, that is if we are considering a flat prior over the
hypothesis H this does not correspond to a flat prior over a non linear function
of the parameter G. The two priors are related by

p(G) = p(H
∣∣∣∣dHdG

∣∣∣∣ , (B.2)

(in a multi-dimensional case the derivative is replaced by the Jacobian). So for a
non-linear dependence G(H) the derivative represent how much the flat prior on
H knows about G.

II Sampling distribution of the data shows us how the truth of the hypothesis
changes with the acquisition of the data. Usually the name that is used for this
parameter is Likelihood, and we can use the more convenient notation:

L(H) = (p(H|I)) . (B.3)
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Figure B.1: Simple example of two diferent priors (figure a) which,
after the application of the Likelihhod L(H), (figure b)
infer posteriors (figure c). Finally the same posteriors
after 100 data point are indistinguible

Notice that the Likelihood is not a probability distribution on the parameters,
but a value that helps the convergence of priors into posteriors. Let us see how
priors and Likelihood are related with a simple example: take two scientists who
have different priors and, for simplicity, assume that all the distribution that
they consider are Gaussian. If the Likelihood is enough good, priors will converge
to a common posterior, usually we consider a good Likelihood the one which
carries more informations than the prior itself. All the possible criticism that
should be raised to this method of inference, especially those regarding priors,
vanish when the Likelihood is good; as we can see in Fig.B.1 the final posterior is
completely independent from the selected priors, and different priors can converge
into common posteriors.

III Bayesian evidence or marginal Likelihood: the evaluation of a model in the light of
the data is based on this parameter which, essentially, represent the normalization
of the Bayes theorem (or the normalization integral). Considering a model M
the marginal Likelihood takes the form:

p(D|M) =

∫
p(D|H,M)p(H|M)dH, (B.4)

thus it is the average of the Likelihood under the prior for a specific model M .
Using the Bayes theorem over this definition comes out that:

p(M |D) ∝ p(M)p(D|M). (B.5)

Now is easy understand why the Bayesian evidence is so crucial for model com-
parison, if we consider two different models M0 and M1, the relation between
these samples will be:

p(M0|D)

p(M1|D)
=
p(D|M0)

p(D|M1)

p(M0)

p(M1)
. (B.6)
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Here we can define the Bayes factor B01 = p(D|M0)
p(D|M1) which represent the decrease

or the increase of the support in favour of one of the two models.

There are several types of Bayesian evidences which are useful in different sector of
statistical analysis, but, here, we have the necessity of study the possible cosmological
applications.
One of the most important aspects consist of constraining the cosmological parameters,
we can classify them into four categories:

• Parameters describing the background evolution such as matter or energy densities,
expansion rate, redshift and curvature.

• Parameters describing the initial conditions for the fluctuations such as adia-
batic conditions or isocurvature. In the most general case, the initial condition
can be represented into a correlation matrix containing six degrees of freedom
each one representing the excitation amplitude of scalar, vectorial and tensorial
perturbations.

• Nuisance parameters such as bias factor in galaxies, weak lensing and so on.

• Parameters describing new physics such as new possible interactions, massive
neutrinos, the behaviour of time-variable structure ’constants’, time dependence
of the properties of Dark matter and Dark energy...

The general problem of Bayesian parameter inference consists on the estimation of the
posterior through the construction of the Likelihood function from the measurement;
this usually reflects the way the date has been obtained. If we have a set of parameters
describing any aspect of a model and a set priors, it is not so trivial to obtain posteriors.
Applying the standard Bayes’ theorem in the case of a set of physical interesting
parameters H′ and a set of nuisance parameters G, the joint posterior for θ is:

p(θ|D,M) = L(θ)
p(θ|M)

p(D|M)
. (B.7)

In some cases, we can approximate the real result integrating on the nuisance:

p(H′|D,M) ∝
∫
L(H′,G)p(H′,G|M)dG, (B.8)
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