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SOBOLEV ALGEBRAS THROUGH HEAT KERNEL ESTIMATES
FREDERIC BERNICOT, THIERRY COULHON, AND DOROTHEE FREY

ABSTRACT. On a doubling metric measure space (M, d, ) endowed with a “carré
du champ”, let £ be the associated Markov generator and Lg(M , L, 1) the corre-
sponding homogeneous Sobolev space of order 0 < a < 1in LP, 1 < p < 400, with
norm HEO‘/ 2 pr. We give sufficient conditions on the heat semigroup (e~*);sq

for the spaces L (M, £, 1) N L™ (M, 1) to be algebras for the pointwise product.
Two approaches are developed, one using paraproducts (relying on extrapola-
tion to prove their boundedness) and a second one through geometrical square
functionals (relying on sharp estimates involving oscillations). A chain rule and
a paralinearisation result are also given. In comparison with previous results
(29, 11]), the main improvements consist in the fact that we neither require
any Poincaré inequalities nor LP-boundedness of Riesz transforms, but only LP-
boundedness of the gradient of the semigroup. As a consequence, in the range
p € (1, 2], the Sobolev algebra property is shown under Gaussian upper estimates
of the heat kernel only.
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1. INTRODUCTION

It is well-known that in the Euclidean space R™ (endowed with its canonical
non-negative Laplace operator A), the Bessel-type Sobolev space

LP(R™) = {f € LP; A**f € LP},

is an algebra for the pointwise product for all 1 < p < 400 and a > 0 such that
ap > n. This result is due to Strichartz in [63], where the Sobolev norm was shown
to be equivalent to the LP-norm of a suitable quadratic functional.

Twenty years after Strichartz’s work, Kato and Ponce [50] gave a stronger result,
still in the Euclidean space. They proved that for all p € (1,400) and o > 0,
LP(R™) N L*°(R™) is an algebra for the pointwise product. Later on Gulisashvili
and Kon [45] considered the homogeneous Sobolev spaces L?.(R™) and proved the
even stronger result that under the same conditions, L? (R™)N L (R™) is an algebra
for the pointwise product. These results come with the associated Leibniz rules.

One way to obtain these properties and more general Leibniz rules in the Eu-
clidean setting is to use paraproducts (introduced by Bony in [20] and later used
by Coifman and Meyer [26], [55], see also [66]) and the boundedness of these bilinear
operators on L>(R™) x L? (R™). This powerful tool allows one to split the pointwise
product into two terms, the regularity of which can be easily computed from the
regularity of the two factors in the product. Moreover, paraproducts also yield a
paralinearisation formula, which allows one to linearise a nonlinearity in Sobolev
spaces.

The main motivation of the inequalities deriving from such Leibniz rules and
algebra properties comes from the study of nonlinear PDEs. In particular, to
obtain well-posedness results in Sobolev spaces for some semi-linear PDEs, one has
to understand how the nonlinearity acts on Sobolev spaces. This topic, the action
of a nonlinearity on Sobolev spaces (and more generally on Besov spaces), has given
rise to numerous works in the Euclidean setting where the authors attempt to obtain
the minimal regularity on a nonlinearity F' such that the following property holds

f € B = F(f) € B*?,

where B*P can be Sobolev or Besov spaces (see for example [59], [57] or [21]).

It is natural to look for an extension of these results beyond Euclidean geometry,
as was pioneered in [19]. In [29], Coulhon, Russ and Tardivel-Nachef extended the
Strichartz approach, in the case 0 < a < 1, to the case of Lie groups with polyno-
mial volume growth and Riemannian manifolds with non-negative Ricci curvature.
The proof works as soon as one has the volume doubling property as well as a
pointwise Gaussian upper bound for the gradient of the heat kernel. More recently,
on a doubling Riemannian manifold equipped with an operator satisfying suitable
heat kernel bounds, Badr, Bernicot and Russ [11] have shown similar results under
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Poincaré inequalities and boundedness of the Riesz transform, but without assum-
ing pointwise bounds on the gradient of the heat kernel (note that the latter imply
the boundedness of the Riesz transform, see [4]). See also [17] for further develop-
ments and [41], with a quite different approach, for the case of Besov spaces on Lie
groups with polynomial volume growth.

Our aim in the present work is to improve these results while working in the
general setting of a Dirichlet metric measure space. Our standing assumptions will
be the volume doubling property and a Gaussian upper estimate for the heat kernel.
We show in particular that the algebra property always holds for 1 < p < +o0
(which is reminiscent of the results in [28] and [4]) under L%-bounds on the gradient
of the heat semigroup for some ¢ € (p,+oc|, which is much weaker than what is
assumed in [29, [II] (mainly boundedness of Riesz transform and some Poincaré
inequalities). The precise results are stated in Theorems and below.

1.1. The Dirichlet form setting. Let M be a locally compact separable metris-
able space, equipped with a Borel measure p, finite on compact sets and strictly
positive on any non-empty open set. For {2 a measurable subset of M, we shall
denote 1 (2) by [€].

Let £ be a non-negative self-adjoint operator on L?(M, i) with dense domain
D C L*(M, u). Denote by & the associated quadratic form, that is

E(f.g) = /M fLgdn,

and by F its domain, which contains D. If £ is a Dirichlet form (see [40] for a
definition), it follows (see [40, Theorem 1.4.2]) that the space L>®(M, u) N F is an
algebra and

(1.1) VE(fg.f9) < NflevVE(G.9) + VE Pligllses VS, g€ LZ(M, )N F.

—tﬁ)

The operator £ generates a strongly continuous semigroup (e ")~ of self-
adjoint contractions on L*(M, u). In addition (e7'£);s¢ is submarkovian, that is
0<e™f<1if0<f <1 It follows that the semigroup (e~ );so is uniformly
bounded on LP(M, pu) for p € [1,4+00] and strongly continuous for p € [1,+00).
Also, (e7%);5 is bounded analytic on LP(M, ) for 1 < p < +oo (see [62]), which
means that (t£e~'%);~¢ is bounded on LP(M, 1) uniformly in ¢ > 0.

Let Co(M) denote the space of continuous functions on M which vanish at infinity.
For 1 < p < 400 and a > 0, define L2 (M, L, 1) as the completion of

{f € Co(M); L2 f € LP(M, )} .
for the norm |[[f|[, 0 = Hﬁa/szp. The space Lg(M,E,,u) may not be a Banach
space of functions, but LQ(M, L, p)NL>(M, i), equipped with the norm Hﬁa/szp—l—
| fll.., obviously is.

Definition 1.1. For a >0 and p € (1,4+00) we say that property A(c,p) holds if:

o the space L2 (M, L, 1) N L®(M, 1) is an algebra for the pointwise product;
e and the Leibniz rule inequality is valid:

1 gllpa S I lpallglios + 1 llcllgllpa, ¥ fog € LE(M, £, 1) 0 L(M, ).
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One could also consider local versions of A(a,p) as in [29] and [11]; we leave this
to the reader.

In the present paper we restrict ourselves to the range a € (0,1). We shall see
below that the case & = 1 is very much connected to the Riesz transform problem
(see [28], [4] and references therein).

Note that, as in the Riesz transform problem, the case p = 2 is trivial. Indeed,
(L) and the identity E(f, f) = Hﬁl/szz for f € D obviously imply A(1,2). Now,
since E(f,g9) = [,,(L*f) g dp is also a Dirichlet form for 0 < o < 1, it follows that
for the same reason A(a,2) holds for 0 < o < 1.

Assume from now on that the Dirichlet form £ is strongly local and regular (see
[40,, [46] for precise definitions). There exists an energy measure dI', that is a signed
measure depending in a bilinear way on f, g € F such that

(1.2) E(f.g) = /M ar(f. )

for all f,g € F. According to Beurling-Deny and Le Jan formula, the energy
measure encodes a kind of Leibniz rule, which is (see [40} Section 3.2])

(1.3) dU(fg,h) = fdU(g,h) + gdU(f.h), Vf.g.h € L*NF.
One can define a pseudo-distance d associated with £ by

(1.4)  d(x,y) =sup{f(x) — f(y); f € FNC(M) s.t. dU(f, f) < dpu}.

Throughout the whole paper, we assume that the pseudo-distance d separates
points, is finite everywhere, continuous and defines the initial topology of M, and
that (M, d) is complete (see [64] and [46], Section 2.2.3] for details).

When we are in the above situation, we shall say that (M, d, u, &) is a metric
measure (strongly local and regular) Dirichlet space. This is slightly abusive, in
the sense that in the above presentation d follows from &.

For all x € M and all » > 0, denote by B(x,r) the open ball for the metric d
with centre x and radius r, and by V(z,r) its measure |B(z,r)|. For a ball B of
radius r and a real A > 0, denote by AB the ball concentric with B and with radius
Ar. We shall sometimes denote by r(B) the radius of a ball B. We will use u < v
to say that there exists a constant C' (independent of the important parameters)
such that u < Cv, and u ~ v to say that u < v and v < u. Moreover, for Q C M a
subset of finite and non-vanishing measure and f € L;, (M, 1), f, fdp = ﬁ [ fdu
denotes the average of f on ).

We shall assume that (M, d, u1) satisfies the volume doubling property, that is

(VD) V(z,2r) S V(e,r), YaxeM, r>D0.
As a consequence, there exists v > 0 such that
(VD,) V(z,r) < (g)y\/(:ﬂ,s), Vr>s>0, veM,
which implies
Viz,r) < (M)va,s), Vr>s>0, x,y € M.
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Another easy consequence of (/D) is that balls with a non-empty intersection
and comparable radii have comparable measures. Finally, (VD)) implies that the
semigroup (e~%);o has the conservation property (see [43][64]), which means that

(1.5) e1=1, Vt>0.

Indeed, in a rather subtle way, the above assumptions exclude the case of a non-
empty boundary with Dirichlet boundary conditions, see the comments in [41], pp.
13-14).

We shall say that (M, d, u,E) is a doubling metric measure Dirichlet space if it
is a metric measure space endowed with a strongly local and regular Dirichlet form

and satisfying (/D).

1.2. Heat kernel and regularity estimates. As in [29] and [I1], a major role in
our assumptions will be played by heat kernel estimates.

The semigroup (e7'¢);~o may or may not have a kernel, that is for all t > 0 a
measurable function p; : M x M — R, such that

et f(z) = /M P, 9) f(y) duly), ae. w € M.

If it does, p; is called the heat kernel associated with £ (or rather with (M, d, i1, E)).
Then p;(z,y) is non-negative and symmetric in x, y, since e~*¢ is positivity preserv-
ing and self-adjoint for all £ > 0. One may naturally ask for upper estimates of p;
(see for instance the recent article [22] and the many relevant references therein).
A typical upper estimate is

pilay) < :
VV VOV (5. VD)

This estimate is called on-diagonal because if p; happens to be continuous then
(DUE) can be rewritten as
1

(1.6) pe(r, ) S W’

Under (VD)), (DUE) self-improves into a Gaussian upper estimate (see [44, The-
orem 1.1] for the Riemannian case, [30, Section 4.2] for a metric measure space
setting):

(UE) pt(l',y) S

(DUE)

, Vt>0,ae x,y€ M.

Vit>0 Voe M.

1 < d*(z,y)
V(z, V1) ct
To formulate some other assumptions, we will need a notion of pointwise length
of the gradient. The Dirichlet form £ admits a “carré du champ” (see for instance
[46] and the references therein) if for all f,g € F the energy measure dI'(f,g) is
absolutely continuous with respect to u. Then the density Y(f,g) € L*(M, u) of
dl'(f,g) is called the “carré du champ” and satisfies the following inequality

(1.7) (£, 9)|* < Y(f, /)Y (9, 9)-
In the sequel, when we assume that (M,d, u, ) admits a “carré du champ”, we

shall abusively denote [Y(f, f)]'/? by |V f|. This has the advantage to stick to the
more intuitive and classical Riemannian notation, but one should not forget that

), Vit>0,ae x,y€ M.
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one works in a much more general setting (see for instance [46] for examples), and
that one never uses differential calculus in the classical sense.

We will also use estimates on the gradient (or “carré du champ”) of the semigroup,
which were introduced in [4]: for p € [1, +o0], consider

(Gp) Stug ||\/%|V6_w|||p—>p < +00,
>

which is equivalent to the interpolation inequality

(1.8) IV AE S ULAl N Y feD

(see |31, Proposition 3.6]). Note that (G,) always holds for 1 < p < 2. For more
about (G,), we refer to [4], to the introduction of [14], and to the references therein.
This notion was introduced in [4] to understand the stronger notion of boundedness
of the Riesz transform |VL™'/2| (we refer the reader to [4] for more details about
these two notions and how they are related and to [16] for recent results in this
area). Given p € (1,400), one says the Riesz transform is bounded on LP(M, p) if

(Rp) VAl S 1E2fllp, Y f €D,

and that the reverse Riesz transform is bounded on LP(M, u) if
(RE,) 12 f 1l S WV £l ¥ f €D

If both estimates hold true, then

(Ep) IV Flllp = 1LY fllp, ¥ f €D.

It is then clear, using (L3) and (7)), that (£,) implies A(1,p). One of the main
objectives of this work is to prove A(a, p) for 0 < o < 1 without assuming (E,)) or

We can now formulate the L” version of the scale-invariant Poincaré inequalities,
which may or may not be true, depending on p € [1,+00). More precisely, for
p € [1,+00), one says that (P,) holds if

p 1/p 1/p
_ < p
(P (]{Bf ]{deu du) Nr<]i|Vf| du) . vfer

where B ranges over balls in M of radius r. Recall that (P,) is weaker and weaker
as p increases, that is (P,) implies (P,) for p < ¢ < +00. Also, under (VD)), (P) is
equivalent to the Gaussian lower bound matching (UEl), see [14] and the references
therein. For more about (F,), we refer to [47] and to the introduction of [14].

1.3. Main results. The original approach by Strichartz to the Sobolev algebra
property in [63], and later also used in [29, [I1], relies on the functional

) 1/2
teo dr
5. f(@) = < [ = rena] —) ,

which measures the regularity of the function f by averaging its oscillations at all
scales (see Section [l for more details). If one proves

E(a, p) 1Saflly = 1L fllp, ¥ feF,
then it is easy to see that A(«,p) follows.
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In the present paper, we shall rather rely on the paraproduct approach, using
a notion of paraproduct associated with the underlying operator £ and the corre-
sponding semigroup that was recently introduced in [I3], [37], [I5]. This requires
slightly weaker assumptions. On the other hand, Strichartz’s approach yields a
stronger chain rule (requiring less regularity on the nonlinearity). This is why we
shall also study property F(«,p) in Section Note also that E(«,p) may be
considered as a fractional version of (E,).

Let us now recall some tools that have been studied in [14] (and previously, see
references therein), namely an inhomogeneous L? version of the De Giorgi property,
as well as some Holder regularity estimates for the heat semigroup.

Definition 1.2 (L? De Giorgi property). For k € (0,1), we say that (DG, holds
if the following is satisfied: for allr < R, every pair of concentric balls B,, Bg with
respective radii v and R, and for every function f € D, one has

1/2 K 1/2
( |Vf|2du) 5(5) [(][ |Vf|2du) +R||£f||Lw<BR>]-
B, r Bgr

We sometimes omit the parameter k, and write (DGs) if (DGs,) is satisfied for
some K € (0,1).

For more details and background, see [14]. We just point out that (DG3) is
implied by the Poincaré inequality (P).

Definition 1.3. Forp,q € [1,+0o0] and n € (0,1], we shall say that property
holds if for every 0 < r < /t, every pair of concentric balls B,, B with respective
radii v and \/t, and every function f € LP(M, ),

(1) )
q q r n _1/
du) s(%) B 1£1,

R
with the obvious modification for p = oo.

We shall say that 1D is satisfied if, for some (v;) exponentially decreasing
coefficients and for all 0 < r < /1, every ball B, of radius, and every function
f € L (M, ),

loc

n 1/p
(H,,) q-Oscg, (e f) < (%) ZW <]£fBﬁ Vi dM) .

>0

e—tﬁf . e—tﬁf d,u
B

Then the following holds.

Proposition 1.4. Let (M, d, i1, E) be a metric measure Dirichlet space with a “carré

du champ” satisfying (VD) and (DUE)). We have

o The lower Gaussian estimates for the heat kernel (LE) are equivalent to the
existence of some p € (1,+00) and some n > 0 such that (H] ) holds;

° (H;j’p) implies (Hg’oo) and (Fioo) for every X € [0,n);
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o Moreover, for every A € (0,1] the property
p el +oo] and will be called

- U n=f U

€[1,400] n<A N< pe[l,+00]

77<>\( HY ) is independent on

We refer to [14, Theorem 3.4] for the first part and to Appendix [A] for the last
two statements.
We can now state our main results.

Theorem 1.5. Let (M,d, i, E) be a doubling metric measure Dirichlet space with

a “carré du champ” satisfying (VD) and (DUE)). Then

(a) A(a,p) holds for every p € (1,2] and o € (0,1), and for every p € (2, +00)
and o € (0,1—1/(%—;7) ;
(b) Under (Gy,) for some py € (2,400), A(a,p) holds for every p € (1,po] and

€ (0,1), and for every p € (py, +00) and a € <07 1— v <pi0 _ %));

(c) Under (G,,) and (DGs,) for some 2 < py < +o0 and k € (0,1), A(a,p)
holds for every p € (1,po] and o € (0,1), and for every p > py and o €

)

p

(d) Under (H") for some n € (0,1], A(a,p) holds for every a € (0,n) and
€ (1, 4+00).

Since (Gy) always holds, (a) is nothing but (b) in the case py = 2. Statement (a)
is proven in Theorem [6.2] (for p < 2) and in Theorem [IT] (for p > 2), statement (b)
in Theorem [4.3] (for p < pg) and Theorem [T.2] (for p > py), statement (c) in Theorem
2, and statement (d) in Theorem Statement (d) had been announced in [29,
p.333].

Remark 1.6. An alternative method of proof for Theorem [LH (a) - (b) is the fol-

lowing: Instead of using extrapolation methods on Lebesgue spaces (see [18],[9],[12] )

as we do here, it is also possible to use extrapolation methods on tent spaces. This

amounts to considering the boundedness of singular integral operators of the form
+oo ds

T TP(M, ) T(Mo),  TF(t )= [ Ka(ts)F(s, )=
0

Y

with an operator-valued kernel K, (t, s) as defined in [B3]). We refer to [7] and [39)]
and the references therein for results of this kind. Combining this with the fact that,
under (DUE)), the Hardy spaces HZ.(M, j1) associated with L are equal to LP(M, p),
forp e (1,400) (cf. [8] for Riemannian manifolds; the proof extends to our setting,
see for instance [24] ), one obtains the desired results.

Example 1.7. Let n > 2. Consider M := R"§R" the connected sum of two copies
of R™, that is the manifold consisting of two copies of R™\ B(0, 1) with the Fuclidean
metric, glued smoothly along the unit spheres. Then it is known that (DUE)) is sat-
isfied and the Riesz transform is bounded on L for everyp € (1,n) (and unbounded
forp >mn), see [23]. It follows from Theorem [LAl that A(c, p) holds for p € (1,n)
with o € (0,1) and for p > n with o € (0, 7).
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Example 1.8. Let (M,d, ) be a doubling Riemannian manifold supporting the
Poincaré inequality (Py), and L = A its non-negative Laplace Beltrami operator.
It is well-known that (DUE) holds (see for instance [58]). Then one knows from [3]
that (P») yields (R,) hence (G,) for every p € (2,24 ¢) for some € > 0, and from
[14] that (P2) yields (DGy,,) for some k € (0,1). So we conclude that A(c, p) holds

forp € (1,2] with a € (0,1) and for p > 2 with o € <0, ]% —l—n), for some n > 0.

~ We now state our results concerning the characterization of the Sobolev space
LP in terms of a quadratic functional.

Theorem 1.9. Let (M,d, i1, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (VD,)). Then
(e) Under (DUEl) and (H"), E(a,p) holds for every p € (1,400) and a € (0,7);
(f) Under the combination (G, ), (Pp,) for some py > 2, E(a,p) holds for every
p € (2,p0) and a € (0,1).

Statement (e) is proven in Theorem 0.2 and statement (f) in Theorem

In statement (f), one does not need to assume explicitely (DUE]) but, according
to [14, Proposition 2.1], the combination (G,,)+(Pp,) for py > 2 does imply (DUE]).

Note that, similarly to the Riesz transform problem (see [28 [4]), the case 1 <
p < 2 is substantially easier in the above results than the case p > 2 .

Example 1.10. Let us mention that our results are not bound to self-adjoint set-
ting. Consider R™, equipped with its Euclidean structure, and a second order di-
vergence form operator L = —div(AV), where A € L*(R™; B(C")) and for some
A >0, R(A(x)) > M > 0 for a.e. x € R". Then L is a sectorial operator on
L*(M, ), and —L generates an analytic semigroup (e *F)iso on L2(M, p). It is
known (see [2]) that the semigroup (e7'F)iso and its gradient satisfy L* Davies-
Gaffney estimates. From the solution of the Kato square root problem [5], we
know that the Riesz transform VL™Y2 is bounded on L*(M,u). Let us assume
that (e %)~ has a (complex-valued) kernel p, which satisfies Gaussian estimates,
that is, |ps| satisfies ({UE]) (which is for example the case if A has real-valued co-
efficients, see [10]). Then there exists q. = q+(L) € (2,00| such that for every
p € (1,9+), (G,) and, equivalently, (R,) holds. See [2]. In dimension n =1, it is
known that q. = oco. Moreover, for every p € (1,+00), (RR,) holds. The kernel
pi satisfies a Hélder reqularity estimate (see [10]), so property (H") holds for some
n € (0,1].

We leave it to the reader to check that, even if the operator L is not self-adjoint,
our proofs still hold in this situation. We deduce that A(a,p) holds (as well as a
chain rule property) for every p € (1,q4] and a € (0,1), and for every p > q; and
a € (0,1) with0 < a <k + (1 —k) and kK = max(1 — o=m). Moreover if p < g
or a < n, then E(a,p) holds.

Section [I0 is devoted to the proof of a chain rule inequality (which enables one
to control the stability of Sobolev spaces via the composition by a nonlinearity).
In particular it is proved (see Corollary 0.5 and Theorem [T0.1]):

Theorem 1.11 (Chain rule). Let (M, d, i1, E) be a doubling metric measure Dirich-
let space with a “carré du champ”.
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o Under the assumptions of (e) and (f) in Theorem[L9, we have the optimal
chain rule: for Fa Lipschitz function with F'(0) =0, the map f — F(f) is
bounded in L and

EH iz S TE Nzl f 12

e Under the assumptions of Theorem[L3, for I a C? function with F(0) = 0,
the map f — F(f) is bounded in LP.

Similarly, a paralinearisation formula (also called Bony’s formula) is also obtained
in this setting and we refer the reader to Theorem [I0.3] for a precise statement.

2. PRELIMINARIES, DEFINITIONS AND TOOLBOX

In this section, (M,d, u,E) will be a doubling metric measure Dirichlet space
with a “carré du champ”.

2.1. Functional calculus. Since L is a self-adjoint operator on L?(M, 1), it admits
a bounded Borel functional calculus on L?(M, i). Under the additional assumption
of (VD,)) and (DUE]), it is known that £ can be extended to an unbounded operator
acting on LP(M, u), for p € (1,400), with a bounded H* functional calculus on
LP(M, p) as shown in [34, Theorem 3.1]. It also admits a bounded Hérmander-type
functional calculus on LP(M, 1), see [34] and [33, Theorem 3.1]. We refer to [53, [1]
and references in [I] for more details on functional calculus. In the sequel, we will
mostly make use of H* functional calculus rather than Hormander-type functional
calculus.

Moreover, gathering Theorem 3.1, Remark 1 p.451 and (1.8) from [33], one ob-
tains the following estimate on imaginary powers of the operator L (see also [60]).

Proposition 2.1. Under (VD,)) and (DUE]), for every p € (1,4+00) and s > v/2,
one has

1L S (14 1B)°,
for B e R.

2.2. Operator estimates. The building blocks of our analysis will be the following
operators derived from the semigroup (e7*%);s0.

Definition 2.2. Let N > 0, and set cy = 0+°O sNe™s d—;. Fort >0, define

(2.1) M= rL)Ne e
and
(2.2) PN = gy (tL),

with ¢y () = cy' f;oo sVemsds 2 > 0.

Remark 2.3. Let p € (1,00) and N > 0.

(i) As a consequence of the bounded functional calculus for L in LP(M, i), the
operators Pt(N) and QgN) are bounded in LP(M, ), uniformly in t > 0.
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(ii) Note that PV = e~ and QY = tLe™**. The two families of operators
(Pt(N))bo and (QEN))DO are related by

t0, PN = tLo (tL) = —Q™.

Since Pt(N)f — fast — 0" in LP(M, p) (see the proof of Proposition [2.11]
below), it follows that

t
d
(2.3) P = 19+ / oW &2
0
(i) One can write P~ = R™Me=t/2L  with
+o00 d
(2.4) RIEN) = CJ_VI/ (sL)Ve (s=t/2) &5
. s

By functional calculus, RgN) is again a bounded operator in LP(M, i), uni-
formly in t > 0.
(iv) If N is an integer, then Q™) = (—)NetNoNe ™ and PN = p(tL)e -,
p being a polynomial of degree N — 1 with p(0) = 1.
Definition 2.4. Let p,q € [1,00] with p < q, and let r > 0. A linear operator T
acting on LP(M, p) is said to have LP-L% off-diagonal bounds of order N > 0 at
scale r, if there exists C'y > 0 such that for every pair of balls By, By of radius r
and every f € LP(M, ) supported in By, we have

1/‘1 d2B B -N 1/17
(f o) "< on (14 ZEED (] ypan) ™

Let us recall that we may compose off-diagonal estimates:

Lemma 2.5. Let p,q,r € [1,00] with p < q < r. Let S (resp. T) be two linear
operators satisfying LP-L? (resp. L?-L") off-diagonal estimates of order Ny > %
(resp. Ny > %) at scale /s (resp. /t). If s =t, then T'S satisfies LP-L" off-
diagonal estimates of order N := min(Ny, No) > 0 at scale \/s =t. If p=q=1
with N > v (and s # t), then T'S satisfies LP-L" off-diagonal estimates of order

N — % at scale max(y/s, V).

Proof. If s = t, consider balls By, By of radius /s and (B?); a collection of balls of
radius /s which covers the whole space and satisfies a bounded overlap property.
Then we have for every f € LP supported on B

1/r 2 —Na 1/q
(BITSfITdu) <Z( 4 L B) )) <B\Sf|"du)
—No 2 i\ — V1 1/p

X (1) (1) (f )

-N 1/p
< (1 4 LB B) >) ( |f|pdu) ,
By

where we used that N > v/2 to sum over the covering as detailed in [38, Lemma
3.6].
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Let us now consider the case p = ¢ = r. Consider the case s > t (the other
one can be treated similarly). We are first going to check that T satisfies LP-LP
off-diagonal estimates at the largest scale y/s. Since Ny > %, by decomposing the
whole space with a bounded covering at scale /s, we deduce that T is LP-bounded.
So the on-diagonal case of the off-diagonal estimates for T directly hold. Then fix
two balls By, By of radius /s with d(By, By) > /s and f € LP supported on Bj.
Consider (B}); (resp. (B});) a bounded covering of B, (resp. B;) with balls of
radius v/¢. Then for every index j, we have

1/p —Ng
(B, BY)
rap| < 2 »d
(B%_|Tf| u) §j<1+ ) (ﬁf|f| u)

d*(By, B;)\ N1 s\ v/@p) L
< (14 82220 (—) rd
S ( +— ; . |flPdp )

where we used the doubling property. Then by summing over j, we get

1/p ‘ 1/p
( . ITf|pdu> < <|Bz|—1§jj|3§| (]i %_ ITf|pdu>>

d2(By, B)\ T f g\ vip) 1p
< (1482220 <_> P .
S ( +— ; Bl\fl u

Since d(By, By) > /5 > v/t and N, > v we have

1/p 2 B, B —No+v/2 1/p
(][ \Tf\pdu) 5(1+—d( 2 1)) ( \flpdu) ,
B2 S B1

which concludes the proof of the fact that 7" admits LP-L? off-diagonal estimates
at the larger scale y/s. Then we may repeat the first statement of the Lemma and
conclude that T'S admits LP-LP off-diagonal estimates at the scale /s. O

1/p

Lemma 2.6. Assume (DUE). Let N > 0. For every t > 0, QgN) is an integral
operator with kernel klfN) such that for allt >0, all 0 € [0,1] and a.e. v,y € M,

N 1 2z, y)\ "
$en] S v e ()

Consequently, for every p,q € [1,400] with p < q, QIEN) satisfies LP-LY off-diagonal
bounds of order N at scale \/t.

Let N > 2. For everyt > 0, Pt(N) s an integral operator with kernel /~ft(N) such that
for allt >0, all 0 € [0,1] and a.e. x,y € M,

T(N) ! AGTN
ky (9%?/)’ S V(x, V2OV (y, VI <1+ t )

Consequently, for every p,q € [1,400] with p < q, Pt(N) satisfies LP-L1 off-diagonal
bounds of order N at scale \/t.

(2.5)
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Remark 2.7. Let N > &. The operator R™) introduced in Remark is an

integral operator as well, with its kernel rgN) satisfying (2.8). Moreover, for all
p € [1,+o0], R,EN) has LP-LP off-diagonal bounds of order N.
Proof. Observe first that by (VD,)), one has for 6 € [0,1] and every z,y € M
1 2 (z,y) 1 c % (@,y)
2.6 —— e 7t < e 2t
20 Ve Vi

As we already said, if N is an integer, then QEN) = (=1)Ney'tNoNe £, By [65),
Corollary 2.7, its kernel admits Gaussian bounds and therefore in particular (2.5]).
In the general case, consider an integer K > N. Then

Q§ _ ]—V1tN£K£N K —m

_ “+00 _ _
LN-K = ¢ 0 sK—Ne 55% for some constant

+oo N
QIEN) — C// (Sﬁ) —(s+t)L (E) @
0 S S

Gaussian upper estimates for (t£)* e~ and (VD) then yield a bound of the form
@8) for ((t+ s)L)" e~GHDL at the scale max(y/s, V1), hence

1 [t K e [\ ds oo 2wy [\ ds
) ’ < / Z —z ¢ |2 - / 2 s | = —
t (x7y) ~ V(a’j’ \/Z)QV(y’ \/%)1_9 . <t> (& s s + ; (& s s

1 [ cd%cy) /t <S)K—N ds /+°° _cd (@) (t)N ds
S e 2 - — + ez s -] —.
V (2, VU)oV (y, V) -0 Y s )i s 5

) ! ~gfew Py
(%Msvm¢ww%ﬁWﬂF +G+ t ) r

which concludes the proof of (2.5 for k:ﬁN). Integrating over the bound in (2.5])
: . (N)
then gives the second claim for @),

and by the integral representation
¢ > 0, one may write

Thus

In order to obtain the assertions on Pt(N), we use Remark (iii), which yields

PN = e—t£/ARMN) o—tL/4 a1 5o for every z,y € M

)| £ [ a2 [RElyato 1) duce)

</ [pija(, 2)[” du(z ) </’Rt [pe/a(y, -) (2)‘2 du(Z))l/2
-1/2

(2, VO IR 202V (y, VI

where we used (IIZZEI) to estimate the L? norm of the heat semigroup. Consequently,
since R is bounded in L*(M, p1) uniformly in ¢ > 0, we obtain that

Y ()| SV VDTV VT
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For the diagonal part, when d(x,y) < v/f, we have by doubling V (z, v/t) ~ V (y, V/1)
and so the previous estimate implies the desired inequality.
For the off-diagonl part, when d(z,y) > v/t, we use the representation (2.3 and

integrate the previous estimate on klfN) (the kernel of QgN)) in time. This gives

~ t ds
kﬁN)(x,y)’ S/O M) (2, ) -~
t
<

< | v (1 dz(?w)w B

Ve (5) (M) e

) _
V(@ V1)V (y, V)1 ° t
where we have used (/D)) and N > v/2.

The second statement for Pt(N) follows by combining the previous estimate with
the global L” boundedness of Pt(N).

O

Proposition 2.8 (Davies-Gaffney estimates). Let N € N. There exists a constant
¢ > 0 such that for all Borel sets E, F' C M and everyt >0

d2(E,F)
¢ t

1P| 2y ey + IVHV P |2y oy S €077
_Cd2(E,F)
||Q§,N)HL2(E)—>L2(F) + H\/HVQEN)ML?(E)—)L?(F) Se ‘
If N > v/2 is not an integer, then for all balls By, By of radius /t

dz(Bl,Bg))_N‘

N N
VAT P ity + VAV ooy 5 1+ 25

Proof. The first estimate is classical for P\ = e=t£ (see for instance [65], except
for the term with the gradient, which was introduced in [4, Section 3.1 in the
Riemannian setting. For an adaptation to the present setting, see [14, Section 2]).
The generalisation to Pt(N) and QIEN) with arbitrary N € N* is a consequence of the
analyticity of (e7'%);s¢ in L?(M, i), and the particular form of R(N), see Remark
2.3l Now for the second estimate. Lemma yields that Pt(N) and QEN) satisfy
L% L? off-diagonal estimates of order N. Since vAVQW) = 2V\tve/ 25@8\;),
and VtVe t* satisfies L2-L? off-diagonal estimates of any order, we may compose
these off-diagonal estimates and Lemma implies the desired result for VQ,EN).

For VPt(N), we use the representation \/EVPt(N) = tVe MR,gN) of Remark [2.3],
together with Remark 2.7 O

Lemma 2.9 (Off-diagonal estimates). Assume (DUEl). Let N > 1 be an integer

and consider the operators P, Q™) as defined in @1) and 22). For every

t >0, every ball B of radius v and every p € [1,400|, we have
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o if r </t with B := LB the dilated ball,

1/p
PO 4 1o pd) < ’ m
(f e+ irean) s a0, (s

>0 2

o ifr> \/1_5,
) (™) v v
PP i flhd S 4 Pd ;
(f e i span) " < a0 (f, 1)

>0

e more generally, if 1 > \/t with po, p1 € [1,+00] satisfying p1 > po then

™) ™) 1/p1 r V(%—%) 1/po
P fp1+Q fpld) S(_) E(f fp()d) ,
(f, 101 10 ¢ S0 (f,, 1o

where v(£) are exponentially decreasing coefficients.
For N > 0 not an integer, p € [1,00], t > 0 and B a ball of radius \/t, we have

1/p
N — _v
108 flimiey $ 229 (f irean)
2B

>0

Proof. For the first part, we use (since B C B)

1/p
N N N N
(][ Y £ 4 |0 )f\”du> < B ey + 1@ Fllimca
B

<N Fll ooy + 18" o i)

and then the proof follows from the pointwise Gaussian estimates of the kernel for
both operators Pt(N) and QgN), see [65, Corollary 2.7]).

For the second part, the ball B may be covered by a collection of balls of radius
V/t, with a bounded overlap property. Then by using the L off-diagonal estimates
at the scale v/t for operators Pt(N) and QEN), we obtain the stated inequality by
summing over this covering. The third part can be proved by interpolating between
the second part and the L'-L> estimates (which corresponds to the case py = 1
and p; = 0o0) which comes from (DUE]) with doubling.

The last statement is a consequence of the kernel estimates for QgN) shown in
Lemma 2.6l O

2.3. Quadratic functionals. Combining Corollary 1 with Lemma 2 from [64]
yields the following statement, which does not even require (VD).
Proposition 2.10. For every p € (1,+00), consider a function f € LP(M, ) N'D
solution of Lf =0 on M. We have

o if [M| =400 then f=0;

o if [M| < 400 then f is constant.
In other words, if we denote N,(L) := {f € LPND, Lf =0}, then N,(L) = {0}
or N,(L£) ~ R and in particular, it does not depend on p and so will be sometimes
denoted N(L).

Note that, under (D), |M| < +oc if and only if M is bounded.
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Proposition 2.11 (Calderén reproducing formula). Let p € (1,4+00). Let N > 0,
and consider the operators P, Q) as defined in 1) and (Z2). Under (/D))

and (DUE), we have the decomposition LP(M, ) = R,(L) @& N,(L). Moreover, for
every f € LP(M, p),

(2.7) lim B f = in LP(M, p),
(28) tlg-noo Pt(N)f - PNP(L:)f m Lp(M7 /J“)a

and for every f € R,(L),

Foo dt
(2.9) f=[ @Yy in (M, p).
0

For every f € Ry(L), one has

2 e () g2 4
(2.10) I8 [ 1@t -

Proof. Under (VD)) and (DUE]), £ has a bounded H functional calculus in LP(M, 1)
according to [34, Theorem 3.1]. Since this in particular implies sectoriality of £
in LP(M, p), [32, Theorem 3.8] yields the decomposition of LP(M, 1) into nullspace

and range of £. Using this decomposition, and noting that Pt(N) f = [ for every
f € Ny(£) and all t > 0, the Convergence Lemma (see e.g. [I, Theorem D] or [52]
Lemma 9.13]) implies for every f € LP(M, 1)
f=1im P ¢ =1im PN f — tim P f 4 Py f
t—0 t—0 t—o0
“+oo

dt
=/ QgN)f7 +Pre) f,

where the limit is taken in LP(M, ). The last equivalence then follows from the
self-adjointness of Q\") and Fubini, as for f € Ry(£)

e dt e dt
| e =@ =

Definition 2.12. Forp € (1,+00), we define the set of test functions
SP =8P(M, L) :=D,(L)NR,(L)
={fel?f Jg,hel’ f=Lgandh=Lf},
and

S = UpE(l,-i—oo)Sp-

For every p € (1,+00) and a € (0,1), under (DUE]) the set (S? + N(L)) C L»
is dense into L, due to the previous Calderén reproducing formula (see also [52]
Theorem 15.8]). Indeed, for f € L2, Proposition 2.I1] yields that for N > 1 > «

= dt
o= [ QM P f
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is convergent to f in Lg and for every € > 0, we easily see that f. € SP + N(L).

We state some results on square functions that we will need in the following.

Proposition 2.13. Let N > 0, and consider the operators Pt(N), QIEN) as defined

in 1) and 22). Assume (DUE).

(i) Let p € (1,400), and let « > 0. The horizontal square functions, defined by

o= ([ e %)/ f e (M, ),

and

+oo 1/2
inalf) = ( /0 (o) P 5| %) . ferr(Mop),

are bounded on LP(M, ).
(ii) Let p € (1,2]. The vertical square functions, defined by

(2.11) Gnf = (/m VivPM ¢ 2 dt
0

t
and

~ +oo
(212) G = ( | vives
0

are bounded on LP(M, ).

(i1i) Assume in addition (Gp,) and (P,,) for some py € (2,400). Then Gy is
bounded on LP(M, ) for every p € (1, po].

(iv) Let p € (1,+00). The conical square function, defined by

anite) = ([ [os] %)/ fe ),

is bounded on LP(M, ). Here, I'(x) denotes the parabolic cone
D(x) == {(y.t) € M x (0, +00), d(z,y) < Vt}.

Proof. For the result on the horizontal square function gy, see [54] and references
therein. The result on gy, with N an integer also follows from [54]. For arbitrary
N >0, see e.g. [32, Theorem 6.6].

The result on vertical square functions in L?(M, 1) is a consequence of integration
by parts and (2I0). For p # 2, we refer to [I6, Theorem 3.6], where indeed
the combination (G,,) and (P,,) is shown to imply the boundedness of the Riesz
transform in L? for every p € (1,po] (which is stronger than the boundedness of
Gy).

For results on conical square functions of this kind, we refer to [8, Lemma 5.2,
Theorem 8.5] for the case p € (1,2]. In the present paper we only use the case
p € [2,400) which is easier and can be proven as in [0, Section 3.2], that is,
by using Lemma 4] below and interpolating with L2, where one can reduce the
problem to the horizontal one. O

1/2
) L fel(M.p,

2 dt
t

1/2
) L fel(Mp),

In fact, the Poincaré inequality (P,,) is not necessary in (iii) if one allows a loss
on the Lebesgue exponent.
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Proposition 2.14. Let N > 0, and consider the operators Pt(N), QgN) as defined

in 1) and 22). Assume (DUE)) and (G,,) for some py € (2,+00]. Then for
every p € (2,po) and every f € LP(M, u),

IGNFlly S UGN Fllp S N

Proof. By writing
+0o0

ds
FVr= | QM=+ Py,

t

(N) +oo t 1/2 dS
vevrs < [T(4) vava
t

Then Hardy’s inequality implies the pointwise inequality

aur < ([ viva 1)

which gives the first desired estimate.

Interpolating (G,,) with the L? Davies-Gaffney estimates stated in Proposition
2.8 yields, for p € (2,pg), that there exists constants such that for every ¢t > 0 and
every pair of balls By, B,y of radius v/,

one obtains

d2(B Bs)
Ve ™ || omr)osrrm S e T

By combining this with (DUE]), which self—lmproves in (IUEI) we deduce that

1, _ 4355y
1IVe ™ || L1(B1)—1o(8s) <\Bl teme—

In particular, from [51, Theorem 2.2] we deduce that the family (vtVe ™), is
Ry-bounded in LP, for every p € (2,pg). Since QW) = 2Ne_t£/2Q£jV2), and using the
L? boundedness of the horizontal square function gy, this yields

o0 2 dt\ 2 dt\
([ st 2)"] 2| [ e )
0
p
+o0 2 dt 1/2
< (N) ‘ at
~ (/(; ‘Qt/Q f t ) ;
S Al
which concludes the proof. O

We shall also need the following orthogonality lemma, for instance in the proof
of Lemma

Lemma 2.15. Let N > 0. Consider QgN) and Q, = (t[,)N/ze_%E so that QEN) =
Q?. Assume (DUE)). Then for every p € (1,+00) one has
S

o </ Qi F|? _)
p 0 ¢

QMVF —
ot
where Fy(z);= F(t,z), F : (0,400) x M — R being a measurable function such
that the RHS has a meaning and is finite.

)
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Proof. Let g € L” (M, ). Then, by Fubini, Cauchy-Schwarz and Holder,

oo dt e L~ dt

( ) ' = / (QiFy, Qig) +
0

+oo dt 1/2 +oo dt 1/2
(/ |QtEt|2 7) (/ |Qt9|2 7)
0 0
p
+00 ~ dt 1/2
s|([ @) | ol

p

IN

/

p

where in the last inequality we have used the fact that Q, = 2/ ZQ%/ ? and the

second assertion in Proposition 2.13] O

We will also need the Fefferman-Stein inequalities for the Hardy-Littlewood max-
imal operator (see [36] for the discrete version and [42, Proposition 4.5.11] for the
transfer method from discrete to continuous versions):

Proposition 2.16. Let 1 < p < +o00 and 1 < ¢ < min(p,2). Then the L?-Hardy-
Littlewood maximal function satisfies the following discrete L?-valued inequalities

1/2 1/2
(anmn?) < (Zw) ,

nez neL

for (fn)n € LP(M, (*(Z)), and the continuous version

+oo 1/2 Foo 1/2
H </ IMHFA‘I]V"@) </ \Ft\2@)
0 t 0 t
p p

for (Fy); € L? (M, L?[(0, +00); 2]).
2.4. Carleson duality. For every z € M, denote by I'(x) the parabolic cone of
aperture 1 with vertex z, i.e.

D(2) = {(y1) € M x (0,400) : d(y,x) < Vi}.

For every measurable function F' on M x (0,+oc) and an exponent p € (1,400),
the LP-Carleson function %,(F) is defined by

S

)

1/p

r(B) p/2
GF)(w) = su f(/ F (1) %) )| . wem

B>z

where the supremum is taken over all balls B in M that contain x. Let us point
out that the case p = 2 corresponds to the classical maximal function over Carleson
boxes. For every measurable function F' : M x (0,00) — C, we denote by N.(F)
its non-tangential maximal function, which is defined as
N.AF)(@) = sup |F(y.t)], @€l
(y,t)el(z)

We will need the following Carleson duality (see [27] for the original proof in the

Euclidean setting and p = 2).
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Theorem 2.17. Let (M,d, ) be a doubling metric measure space. Suppose p €
2, 4+00). For every e >0 (with e =0 if p=2), there exists a constant C > 0 such
that for all measurable functions F,G : M x (0,00) — C,

+oo p/2 1/p
(/M (/0 |F (2, 1) |G, 1) Cit) du(x)) < C N, 1 Gpae (D),

The original proof for p # 2 was developed in a Banach space valued setting in
[48, Section 8], see also [49]. We give a proof in the scalar-valued setting.

Proof. We first recall the existence of a dyadic system, see [25]: there exists a family
of points (2F)aerxy C M with the property

M = U (zF,2%)  (bounded overlap) Vk € Z.

acl(k)

For every x € M and k € Z, we define Ag(z) the set of indices a such that
r € B(xF 2%). Without loss of generality, assume that N,(F) < +oo almost
everywhere. Denote for £ € N and almost every x € M

Tk(z) == sup{t : sup sup sup  |F(y,s)| > 2"},
0:20<t1/2 yeB(ah 20) 220<s<22(0+1)
aEAZ(x)

and set

Je(2) = [7(2), Ty ().
Since for almost every x, 7(x) tends to 0 for k — —oo, and 7 () tends to +oo for
k — +o00, we deduce that
o0) = J Ju(x)

We therefore have for almost every z € M,

(/0+°°‘F(I,t)mG(x,t)P%)l (Z /W (2, )| G(x, t)|2dt>

<= )"
5 22(k+1) / | ( )‘2 ) )
(k:z_:oo Ji (@)

For fixed k € Z, define
Ap={rx e M; 2% <n(z) < 22(l+1)}.

Then M = U;:foo A;, and

|G(x,t)|2%)l/ Z/Al </0 )|2dt) " dp(z)

By definition of A, it is clear that if z € A; then for a € Aj(x), B(z},2") is
also included into A;, which means that A; can be covered by a union of balls

22(l+1) 1/p

(L.
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(B(x!,,2")acv for a subset U C I(1), with a finite overlap. We thus have

L ) s L (]

SIG@NL Y 1B
aclU

S GG [Al

92(1+1) 92(1+1)

p/2
G, )P %) duz)

As a consequence, we deduce that

H (.60 %)/ AN (Z A)l/p

S [1%(G)
S [1%(G)

Using the assumption p > 2, we conclude that

(/0+oo |F (2, t)?|G(z, 1)[? %)1/2 |

+oo

1/2
A < > 2w e M, N(F) > zk}|1/p)

k=—00

{z e M : 7y(x) < 4o0}|/P
{z e M : N,(F)(x) > 2~}|'/7.

e

I

S (@)l [N (F) | o2,

where LP?(M, 1) is the classical Lorentz space. Now since there is a small interval
(p — e,p + ¢) in which we can apply this previous inequality: indeed for every

g€ (p—e,p+e)

loc

124Gl < 16p4=(G)]]

we then conclude by real interpolation. O

||oo oo’

3. PARAPRODUCTS

We define paraproducts associated with the operator £. Some versions of such
paraproducts have already been introduced and studied in [13], 37, (17, [15]. We are
going to use here a slightly different version that is more adapted to our purpose.

From now on, let D be a large enough integer (D > 4(1 + v) for example should
be sufficient for this section, where v is as in (VD,]); the choice of D may depend
on other parameters as well in the following, but this is of no real importance), and

denote P, = Pt(D) and QQ; = QgD) from Definition 22l For g € L*°(M, ), define the

paraproduct HgD) on S by
+0o0o

(3.1) WO == [ @f e fes

For every p € (1,+00) and f € 8P, the integral is absolutely convergent in LP(M, u):
for f € Dy(L) NR,(L), we have Q,f = 2PQ, Y Q\)) f which yields

1 I N
1Quf 1 S NQAF Il S (& + ™) fllpporroio-
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Combining this estimate with the uniform boundedness of (P;)s~¢ in L>°(M, 1) gives
the absolute convergence.

Lemma 3.1 (Product decomposition). Let p € (1,400) and o € (0,1). For every
f,9€(SP+ N(L))NL>®(M, ), we have the product decomposition

(3.2) fg=Ms(f) +1Lt(g) + Py (f)Pwnigy(9)  in LP(M, ).
Note also that y(f) = y(f — Pneey(f))-
Proof. By writing
fr9-Rf-Fg=(f-Hkf)-9+Ef (9— hy)
it follows from (Z7) and (2.8)) that in the LP sense
f-g:lim B Py,
w/f Pyvwyg= lim Pf-Pg.

By definition of P, and @, and using the fact that t9, P, = —(@);, we then have

f-g9= 11_1% (P.f - Pig) — tE+moo (Pf - P.g) +Pnieyf - Pneyg

+oo
__ / O (Pf - Pg) dt + Puiorf - Priong
0

=1L, (f) +11;(9) + Pneyf - Pnicyg
]

Corollary 3.2. From the nature of N(L) (see Proposition 210]), the function
Pne)(f)-Pney(g) (is equal to O oris a constant function) always belongs to N(L).

So if the bilinear map (f, g) — ly(f) is bounded from (Sp, || ||z2) X L™ to L?, then

by Definition 212 and density, 11, admits a continuous extension on Lg and the
previous product decomposition yields A(a, p).

Let @ € (0,1) and g € L®(M,pu) be fixed. The boundedness of II, in LP,
is equivalent to the LP-boundedness of the operator L£%/2I1,(£~*/2.). Using the
definition of the paraproduct, Definition B and the reproducing formula, one
may write

too oo ds dt
crmet = [ [ Kagenin 23,

where the operator-valued kernel K, 4(s, t) is given by

(3-3) Kayg(s,)(.) = QuL*(QL™?(.) - Prg),

and P, and @, are defined in Section
We split the paraproduct into the two terms II, = Hl + Hz, with

(f) = /+OO(I P)[Quf - Pig) — «

/W/ Q.1Q.f ﬁﬂ,
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and
+00
H?;(f) = /0 P [Q:if - Py %

ds dt

“+oo “+oo
:/0 t Qs [Qif - Prg] 1

An important fact for our study is that under (DUE]) the second term II? is
bounded on every Sobolev space L? (M, £, j1) with o € (0,1) and p € (1, 4+00).

Proposition 3.3. Let (M,d,i1,E) be a doubling metric measure Dirichlet space
satisfying (DUE)). Let o € (0,1), p € (1,+00) and g € L>(M, ). Then II? is
bounded on LP.(M, L, 1) with

5Nz < 1Nz llglloo-

Proof. The L?-boundedness of I2 is equivalent to the LP-boundedness of £3/2I12(L~/2.).
Let f € LP(M,p) and h € LP (M, j1). Then

—+00
}<£a/21—[§(£—a/2f)7 h)} _ <£a/2/0 P, [Qtﬁ_a/zf . Ptg} %, h>‘

e a/2 —a/2 dt
:/ (E Pt[@tﬁ f'Ptg]7h>7
0

e dt
~ | [ et rg aoren G
0

= /0 h /M(tﬁ)_o‘/?Qtf(x) - Pg(x) - (tﬁ)aﬂpth(:lj) d,u(:):)%

< [lgllo '/0 OO/M(tE)‘a/QQtf(x) - (tL)*/*P,h(x) d,u(:c)% ,

where we have used the uniform boundedness of P, on L*(M, ). Now, by Fubini

and Cauchy-Schwarz,
(LI (L2 ), )|

<lalle [ [ 1007 Qup@) - 00 Pie)| § )

<tabe [ ([T 100 rasmr ) ([ ieerrrawr ) me
= cllelgo-3 (1), 3.5 ().

for some ¢ > 0, where gp_o and gp o are the horizontal square functions from
Proposition .13l Proposition 213 yields that both gp_a and gp ¢ are bounded on
LP(M, ) for every p € (1,+00).

By Holder’s inequality, we then conclude that
(LI (L=2 ), 1) | S Mg llool £ 1l 1Rl
which by duality gives the LP-boundedness of £*/?I12(£~*/2.). O
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So from now on, to study the Lg-boundedness of the paraproduct II,, we only
have to focus on the first part of the paraproduct and prove the LP-boundedness of

oo, [ ([ Ksn®)

That means that we may restrict our attention to the study of the operator-valued
kernel K, (s,t) in the range s < t, which requires extra assumptions in order to get
suitable bounds.

4. BOUNDEDNESS OF THE PARAPRODUCTS FOR 2 < p < py UNDER (G,)

Let us introduce an L?-valued version of (R,), which we will denote by (R,): for
every measurable function (F});~o with values in L2(M, u),

+o0 dt 1/2 +o0 dt 1/2
(/ REP 7) (/ P 7)
0 0

where R := |[VL£~1/2| is the Riesz transform. By applying (R,) to F; = vtLP™

for f € L?>(M,p), one sees that, for any p € (1,4+00), (R,) implies the Lp
boundedness of the vertical square function Gy for any N > 0. In turn, the
L? boundedness of Gy implies (G,), for 2 < g < p (see [2] step 7 of Theorem 6.1]).
On the other hand, applying (R,) to F; = f1j 9(t), for f € Co(M) yields (R,). In
the Riemannian context, where L is given by the Laplace-Beltrami operator and V
is the Riemannian gradient, R derives from the linear operator VL£~/2. Therefore
for any p € (1, +00), (R,) implies back (R,) by a general and well-known argument,
see for instance [42, Thm 4.5.11].

However, in our Dirichlet form setting, the Riesz transform is defined as a sub-
linear operator (since we only have a notion of length of the gradient), so it is not
clear that (R,) implies (R,) in this generality.

We first remark that the LP-boundedness of the Riesz transform for p € (1,2]
(obtained in [28]) can be extended to a vector-valued setting:

S

Proposition 4.1. Let (M,d, n,E) be a doubling metric measure Dirichlet space
with a “carré du champ” satisfying (DUEl). Then (R,) holds for every p € (1,2].

Proof. We refer the reader to [28] for the proof in the scalar case, showing (R,)
for every p € (1,2] by using a Calder6n-Zygmund decomposition. By repeat-
ing this proof with a vector-valued Calderén-Zygmund decomposition (see [56]),
it then yields that the Riesz transform R := |V£~'/?| is an operator bounded on
LP(M, L*[(0,4+00); %]) (which is (R,)) for every p € (1,2). O

Tt
Let us then observe that (R,) can be dualised.
Lemma 4.2. Let (M,d, 1, E) be a doubling metric measure Dirichlet space with a

“carré du champ” satisfying (DUE). Let p € (1,4+00). Assume that (R,) holds.
Then the following L*-valued (RR,) inequality, which we denote by (RR,), is valid:
for every F': M x (0,+00) — R such that Fy = F(.,t) € D fort >0,

+o0 1/2 +00 1/2
‘ ([ Terrcor) | s | (T wreord)
0 t 0 t

<

~Y

p’ p’
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In particular, (RR,) holds for every q € (2, 400).

Proof. For every G : M x (0,+00) — R, we have, denoting G(.,t) by Gy,

+00 +oo
/ <£1/2Ft7 Gt> % = / <£F’t> 5_1/2Gt> %
0 0

+eo dt
- A <VF;§, V£_1/2Gt> 7

+o00 dt 1/2 +o00 dt 1/2
</ (/ |VFt|2—) (/ |R<Gt>\2—) du
M 0 t 0 t
+o0 1/2 +00 1/2
([ wred) H ([ merd)
0 t 0 t
p

<

~Y

/

p

+o00 dt 1/2 400 dt 1/2
(/ VEP 7) (/ G 7)
0 ) 0
p p
dt

Taking the supremum over all functions G € LP(M, p; L*((0,+00), %)) with norm
1 yields the result. The last assertion follows as a combination of the above with
Proposition A1l O

By (R,), we get

“+oo
JARCE RS
0

Our main result of this section is the following:

Theorem 4.3. Let (M,d, u,E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE). Let o € (0,1).
(i) There exists Dy := Do(v) such that for D > Dy, the paraproduct (g, f) +
0, (f) is bounded from L>®(M,p) x LA(M, L, n) to L2(M, L, i), that is

(4.1) Mg ()20 S N1 2/l gl oo-

Moreover, A(a,2) holds.

(ii) Assume in addition (G,,) for some py € (2,+00], and let p € [2,py). Then
there exists Do := Do(v,p) such that for D > Dy, the paraproduct (g, f) —
II,(f) is bounded from L>(M, pu) x LP(M, L, p) to LE(M, L, j1), that is

(4.2) Ly ()llpa S 1 llp.allglloo:
Moreover, A(a,p) holds.

A(a,2) and A(a,p) follow directly from the product decomposition ([B.2]) and
(@1) and (£2)), respectively. See Corollary A(a,2) was already known as
emphasised in the introduction. However, the more precise estimate ([A1]) will be
used in Sections [0, B, and
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Proof of Theorem 3l By Proposition 211 and Lemma 2T5] (for F} independent of
t) we can write

+oo dt

[Py, =e|| | QL My (f)

0 P
+oo - dt 1/2
([ iaemminr)
0 t
where Q; is as in Lemma

Then by the definition of the paraproduct

<

~

Foo ds

+oo |
Hﬁa/zﬂg(f)Hpﬁ (/ ‘tha/z Qsf - Psg_
0 0

1/2
@ /
t

1/2
@ /

t
P

For I;, we use that, thanks to (DUE)), Q;(t£)*/? is bounded by the Hardy-
Littlewood maximal function which satisfies a Fefferman-Stein inequality (see Propo-

sition [2.10)), therefore
1/2
? dt
t

I (/Om't_“/Z/Othf-Psg%
< </w( [ pa %) %)

Since by Hardy’s inequality we have the pointwise inequality

/+OO (t—a/2/ ‘Q f |§) @ v < (/+OO( —oc/2|Q f p ‘)2 ds)
0 Sg t ~Y 0 g )

we deduce that
too 2 ds
I< (/ (s2|Quf - Pugl) )
0

([ 1@user ey pge )
0

1/2
@/
t

p

S Il +[27

where
+oo

Qm”/@f P ds]

and

+oo | +o0o
I:= (/ 'th/z Q.f P sgﬁ
0 t

1/2

p
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Since P is uniformly bounded on L*,

+00 ds 1/2
ns ([T eseremen i ) ol
0
+00 1/2
(D-3%) pa ds
([T e )
0 S
p
and by the second assertion in Proposition 2.13]
LS 1L Fllpll 9l oo-
As for I, write
ds

~ 1—a +oo
(L) / £PQu.f Pg) &

+oo dt
L= / =

The Fefferman-Stein inequality for Q;(t£)~ 5 and Hardy’s inequality again yield

+o0 400 1/2
I, < l1-a £1/2 . P _) haad
.S < [ (e @ ra )
400 d 1/2
|t ot )

Then by Lemma .2l and p € (2,+00), (RR,) holds so for F; = s 2 (Q.f - Pyg),

one obtains
+oo ds 1/2
</ Sl_a|V(st'Psg)|2 ?)
0

FIV(Quf - P

p

p

I, <

~Y

Lz(ds »

This splits into two terms I5; and I, 9, according to whether the gradient acts on
Qs or P,. For the first term, using the uniform boundedness of P,g on L*> and,
in the last step, the boundedness of GP+*3%) on LP stated in Proposition 213 (ii)
and Proposition [2.14] one obtains

B = |[1219QusL) L2 1 1P s

= [[[s2v @ ez g

Lz(ds

< ) s12vQP=%) por

2(ds)
s

~ l-ay ., «a
_ |G o )p||g||oo < 1Ll
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As for Iy, using the Carleson duality stated in Theorem 217, we have for every
e>0 (withe =0if p=2)

too ds
(/ 81 Ol|625.f|2|vpsg|2 _)
0 S

We apply Lemma B4 below (choosing ¢ = p + ¢ < py) to show that the last
expression can be bounded by a constant times HEO‘/ 2 pr llgll- Finally, we have
shown that

1/2

H -

~ ds 1/2
QU WAV R )
p

SN 2QuN, [ G(s"2V Pg) |

o211, ()], S 1L F [lllg] oo

It remains to show the following.

Lemma 4.4. Let (M,d, n,E) be a doubling metric measure Dirichlet space with a
“carré du champ” satisfying (DUE)). Let o € (0,1).

(a) Let p € (1,+00). Then
INA(L)"2Qu )l S £l
for all f € LP(M, ).
(b) Let q € [2,400). If ¢ > 2, assume in addition (G,,) for some py > q. Then
15 (VsIVPsgl)llo S 19l
for all g € L (M, ).

Pmof ( ) According to Lemma 2.6, the kernel k, of the operator (s£)~*/2Q, =
QS ~2) gatisfies estimates of the form (2.35) of order D — . Thus, for z € M,

N((s£)~*2Qsf)(x) = sup \(Sﬁ)‘a/zQ fW)]

(y,s)el(x

sup /vf v, ) 1)) dul2)

(ys )el'(x

1 p-g
S Z vorve (omme) L NUCETS

- +00 9Jv s D— p
~ ss)lgr)( )Z V(y,27y/s) <(2j_1\/§)2) /B(y72j\/§) )] dpz)

1
S sup su / 2) du(z) S Mf(x),
I v eR TV B £ (2)] du(z) f(z)

where S; (B) = 2/B\2/"'B if j > 1 and Sy(B) = B. Here we have used (VD,) and
D — § > %. The assertion in (a) follows from the boundedness of the uncentred

Hardy-Littlewood maximal operator M on LP(M, ).

(N
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(b) Fix a ball B C M. We have to estimate

2(B) ) ds q/2
Alg) = ﬂ(/o VsV Pog(x)| %) dp(x)

To this aim, we split

1/q

9=9glis+ > _ glsm).
j=3
First using the L?-boundedness of the square function Gp4(1-q)/2 stated in Propo-
sition 2.14] we have

Aatis) < (f Coraayalotin))rin) "

SB[ Gora-aya(glas) ],

SIBIY gl oy S 19l -

On the other hand, interpolating (G,,) with the Davies-Gaffney estimates from
Proposition 2.8 yields L? off-diagonal estimates, therefore for j > 3 and every
integer N > 1

1/q j 2\ N
sVP1g,pg(x x < % BI™ gl agei )
(f VevPtsmal ) < (1+ E25) i)

N
by S .
Sy (o) il

for s < r?(B). Hence, choosing N > v/4, for q > 2

e </0T2(B) (]{9 VsV Pg,m)g(x)| d#(x))2/q CZS>1/2

2 IN 1/2
< g—(@N=2)j / w 5 ds gl
& o \rm) ) Wl

S22 gl -

Gathering the above estimates, uniformly with respect to any ball B, we have
2 1/q

2(B) L ds qa/
B 0

which yields the claim. O

5. OFF-DIAGONAL ESTIMATES ON THE KERNEL OF PARAPRODUCTS
We recall that K, , denotes the operator-valued kernel of the paraproduct, and
that this kernel depends on a parameter D, see ([B.I) and (3.3)).

In order to derive off-diagonal estimates on the kernel K, ,, we are going to
assume LP2-[P? off-diagonal estimates on the gradient of the semigroup for some
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p2 € (2,400): for every pair of balls By, By of radius v/t and every f € LP2(M, )
with supp f C B,

1/p2 2(5y.By) 1/p2
(5.1) ( [ \iveep du) < (meftop ( [\ du) |
1 2

Note that this estimate can be obtained by interpolating between (G,) for p > po
and the Davies-Gaffney estimate from Proposition 2.8

Theorem 5.1. Let (M,d, i1, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE)). Let 1 < p; <2 < py < +00o, a € (0,1) and
g € L>*(M,pn). Assume (B1). Then for s < t, the kernel K, , satisfies the following
LPr-LP2 off-diagonal estimates: given N > &, there exists Dy = Do(N,v) > 0 such
that for every integer D > Dy we have

1/p2 l-a d2(B:. B -N 1/p1
Kaglstilan) 5 (3) 7 (1+ 22D (L pan) ol
B t t Bs

for all balls By, By of radius \/t.

One can obtain a more precise result if one assumes in addition a De Giorgi
property.

Theorem 5.2. Let (M,d, i1, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE)). Let 1 < p; <2< py < +00, a € (0,1) and
g € L>®(M,u). Assume (51) and that (DGs,) holds for some r € (0,1). Then for
s <'t, the kernel Kag satisfies the following LP'-L>° off-diagonal estimates: given
K € (k,1) and N > ¥, there exists Dy = Do(N,v,pa, k) > 0 such that for every
integer D > Dy we hcwe

!

S\ 1) ® d2(By, Bo)\ Vi
Kaato =y 5 (3) (5) 7 (14 SEE0) (L wpran) ol
S t Bo

for all balls B, and By of radius v/t.

The rest of this section is devoted to the proof of Theorems 5.1l and 5.2 We will
need two lemmas.

The first one is a localised version of the fact that, for p > 2, (RR,) holds under

(DUE) (see [28]).

Lemma 5.3. Let (M,d, i, E) be a doubling metric measure Dirichlet space with a

“carré du champ” satisfying (DUE). Fiz p € [2,400) and N > Y. Then, for

all v > 0, every ball B, of radius r, every bounded covering (B:); of M by balls of
radius r, and f € F,

1/p i\ —(N=4) 1/2
(]{9 IVZQféV)flpdu) <Z(1+ BT’B>) <][Z_|Vf|2du) .

Proof. Let g € L” (M, 1) be supported on B,. By duality, we have
(VEQE f.9) = (£,LL71Q1 g).
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By (2)) and (L), it follows that
62 |[WEe e < [1vsve ol da

< ZIHVfHIL%m IV L% gl 2

Write Vﬁ_l/foéV) = rVe_T25/2(r2£)N“ ~7L/2 By interpolating (G,) for 1 < ¢ <
p/, which holds since p’ < 2, with L? Davies-Gaffney estimates from Proposition
28 we know that rVe ""£/2 satisfies LP'-L? off-diagonal estimates of exponential
order. Now

_1
(T2£)N__ —7«2[:/2 2N—%Q£J2\;22)7

hence by Lemma [2.6] this operator satisfies L”-LP" off-diagonal estimates of order

N — 3. By Lemma [2ZF and using N > “:L one obtains
1/2 d(B.. B\ 2 , 1/p/
53 (f verra®apan) g (14 42D T ()
B, r B,
The claim now follows from (/D)) and (5.2)). O

Proof of Theorems 5.1l and 5.2l Let us start with Theorem [B£.2] which is slightly
more difficult. First note that it suffices to prove the desired estimate for a ball
B of radius +/s, since if By is of radius v/t then for every ball B; of radius /s
contained in Bj, we have

(1 . dQ(B;,B2)) N <1 . d?(Bi,Bg) |

So cor}sider By a ball of radius /s and Bs a ball of radius V't. By choosing @s such
that Q2 = Q,, it follows that

Kaog(s,t)h = QKo y(s,1)Qih
where Ko, = Q.LY*(Q,L7/%(.) - Pg) is of the exact same nature as K, , (with
the intrinsic constant D being replaced by D/2). Since Q, (resp. Q) satisfies
LP2 — [ (vesp. LP-LP?) off-diagonal estimates at scale /s (resp. /) at order

D/2; by the composition of off-diagonal estimates (see Lemma [2.1]), the expected
result will follow from the following LP2-LP? off-diagonal estimates:

_ 1/p2
(f, 1ol 00
By

(5.4 ()7 (’f) (1 . @)N (][ G du) " ol

for all balls B; and B, of respective radii y/s and v/t and every function h supported
on Bg.

So it remains us to check (5.4]). Fix such balls B;, By and function h supported
on By. By definition

S

Roglstih = (2) 7 (40) QL)% (Qut£) 21 Pr).
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Therefore, with Lemma (for p=py > 2and N = D= % — I_TO‘ > ”TH), one
has

_ 1/p2
( | Ky g(s,t)h|P du)
By
(5.5)

e -\ (D=5 1/2
2 d2 B 7BZ 2 —Q
QTR (10R) T (f o nora)

where (B;); is a bounded covering of the whole space with balls of radius /s. Then
by distributing the gradi~ent, two terms appear. First using the property (DGa,),
it follows for every ball B; that

(]{9 VAV (Q4(tL) /2 1) |? du) 1/2

() ; (f | VI (Qi(t0) 1) d T (2) ;

where B, = %BZ is the dilated ball of radius v/t. Then by writing \/EVQt(tE)_O‘/ 2 =

4(D‘°‘)/2\/fVe_%QEﬁ/z_a/z), since VIVe 1% satisfies L2-L? off-diagonal estimates

at scale v/t at any order and Qiﬁ/ 270/2) satisfies LP1-L2 off-diagonal estimates at

scale v/t at order (D — )/2, we deduce by Lemma that VtVQ,(tL£)~*/? also
satisfies LP1-L? off-diagonal estimates at scale v/t at order (D — «)/2. Moreover
Q.(tL)'~/2 satisfies LP'-L> off-diagonal estimates at the scale /7 of order D/2 +
1—a/2> D — «a/2. So we obtain

QultL)= /|| 5’

i

1/2 5 2 5 —(D—a)/2 1/p1
~ t) 2 d*(Bs, B;
( : |ﬂvc2t<t£>—a/2h\2du) < (;) <1+¥) (B | du) .

B;

Similarly, one has

!

1/2 s i AN —D 1p
£\ 2 d2(By. B;
( : IﬂVPtglzdu) 5(—) <1+7( = )) ( Fig du)
B S t Bo

/

" 5
< () 9l
S

So coming back to (5.5, we obtain that for a large enough parameter D, it follows

B 1/p2
(f, 1ot 01 )
B1

<) (1) (o)

d2 B ’Bi —(D-a)/2 1/p1
(14 SEED) (L ) ol
B>
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Since B; is the dilated ball of radius v/¢ from B,-, we then deduce that

2 D 2 23
<1+ d (BQ,B,)) N (1+ d (BQ,BZ)>
t t
and so since s <t

(1 . d2(Bi,Bg)) < (1 . dQ(Btg,BZ-)) <1 . dQ(B;,BZ-)> |

Hence as soon as D is large enough so that

C :=C(D) = min{D — vl

(D —a)/2} = (v+1) >0,

we have

B 1/p2
(f 1ot 00
By

!

w _ ~ —(v+1)
s\ 2 ()2 d*(By, Bs)\ © d*(By, B;)
<= — 2 \Nmo e AT T
<)) () (2 (e
1/p1
<(f 1 an)
B>

S\ () E d*(By, By)\~© Ve
< (= — 1 Z\m e P1
<G8 (0 TEE) () el

where we used that (B;) is a bounded covering at scale /s (which is also the radius
of B;) to bound the sum over the covering. Since C'= C'(D) can be taken as large
as we want according to a large parameter D, we deduce the statement (5.4]), which
as we already have seen, concludes the proof of Theorem (.21

For Theorem 5.1l the situation is simpler because we already have the exponent
py on the left hand side, and balls and operators can be considered at scale v/t.
Indeed, by summing the estimates of Lemma [5.3] along a covering of balls of radius
V5, we get for s < t and By, B, balls of radius v/t

1/p d2(B:. B _(N_L;l) 1/p
(f WEawspan) s (1 S0 (f 1vsrau)
B1
2v+1

2B, B\ (V-2 1/p
5<1+7d( ; 2)) <][ \Vf\pdu) .
B>

We then conclude as previously, using the Leibniz rule on the gradient. The result
then follows by composing LP? off-diagonal estimates at the scale v/t, see Lemma
2.5 O

B>

6. THE CASE 1 <p < 2

This section is devoted to the study of A(a,p) with 1 < p < 2. Our main result
is the following.
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Theorem 6.1. Let (M,d, i, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE). Then property A(a,p) holds for every p €
(1,2) and every a € (0,1).

According to the product decomposition formula (3.2)) and Corollary 3.2, Theo-
rem is a consequence of the following.

Theorem 6.2. Let (M,d, i1, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE)). Let p € (1,2) and « € (0,1). There exists
Dy = Dy(v) > 0 such that for every integer D > Dy, the paraproduct (g, f) —
) (f) defined in () is bounded from L=(M, p) x L2 (M, L, p) to LP.(M, L, ).
We have

2,0 S 1l 9l

p,a Y

and Ao, p) holds.

Let o € (0,1) and g € L>®(M, p), let s,t > 0. Recall the operator K, 4(s,t)
defined in (B3) by

Kag(s,t) == Q,L*(QL™*(.) - Pg),

so that
teo d Foo e dt d
ety = [ ey = [ Kog(s 1) f 292
0 S 0 0 t s
and
+o0 d +oo t d dt
£a/2H£1](£—a/2f) — / Q5£Q/2H;(£_a/2f)§ = / / ng(s’t)f ?87
0 0 0

We refer the reader to Section [3 for the definition of H;, which is the remaining
part of the paraproduct that we have to study (see Proposition B.3]).

In the sequel, we describe how the off-diagonal estimates of the kernel K,  as
obtained in Section [B] can be used to obtain boundedness of the paraproducts by
means of an extrapolation method.

We recall the extrapolation tool for p € (1,2).

Proposition 6.3. Let T be a bounded linear operator on L*(M, i). Assume that T
satisfies the following off-diagonal estimates: there exist integers N > & and N > &
such that for every t > 0 and every pair of balls By, By of radius r = v/t

S (1+M)_N.

r

(6.1) |

LQ(Bl)%LQ(Bz)
Then for every p € (1,2), T is bounded on LP(M, ).

Remark 6.4. The same proof yields that T is bounded on the weighted space LP(w)
for every weight w € A, N RH 2y,

Proof of Proposition[6.3. We refer the reader to [12], Theorem 5.11] and to [12], The-
orem 6.4] (for the weighted part) for a proof of this result. The second assumption

of [I2, Theorem 5.11] is satisfied as a consequence of the kernel estimates for Pt(N)
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established in Lemmal[2:6l Notice however that instead of (6.1]), the first assumption
of [12, Theorem 5.11] reads as

(1 22280)

L2(B1)—L2(Bs) ™ r

(6.2) HT([ - Pt““)}

for the choice Bg = I — Pt(N). Following Step 2 of [13, Corollary 3.6], it is known
that under the assumption that 7" is bounded on L*(M, p), (6.]) implies (6.2), thus
(67)) is sufficient to conclude. Equivalently, the desired result can be obtained as a
combination of [38, Proposition 3.25, Lemma 4.12 and Corollary 4.14]. O

Proposition 6.5. Let (M,d,;1,E) be a doubling metric measure Dirichlet space
with a “carré du champ” satisfying (DUE). Let o € (0,1). Assume (B.1)) for
some py € [2,400). Then there exists Dy = Dy(v) such that for every D > Dy and
every g € L>®(M, 1), the paraproduct HgD)’l = H}] satisfies the following off-diagonal
estimates: for every r > 0 and every pair of balls By, By of radius r,

(6.3) ‘ < (1 + M)_V.

LP2(B1)—LP2(By) r
Remark 6.6. Up to considering a larger parameter D, we may have off-diagonal
estimates at any order. We chose the order v for convenience. Such a proposition
also holds for the second part Hf] of the paraproduct and is indeed easier (as shown
by Proposition [3.3, this second part is far more easy to handle with than the first

part).
Proof. Let a € (0,1) and g € L>°(M, p1). Consider the operator
T := LOPIL (L),

Let us fix balls By, By of radius 7, a function f € L*(M, u) supported in By, and
consider an integer N > 2v + 1.
We have

a —a (N)
o)

+oo t
Q)= [ [ era e e ) r] ST

By the definition (3.3) of the kernel K, ,4,
Kag(s,t) = QuLY*(QL™(.) - Pyg),

we get

10 = [ Kassn@r TS
" 0<s<t ’ " s t
If 2 < t, then write
r2\ N
Q" = Q" = (?) Qe

so that
2

N
r N
Kag(s, t)QiéV)f =cC <7) Kogy(s, t)@i%)e_r%ﬂ

with Ko g(s,t) = QsLY(QinL™%(.) - Pg).
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Let s < t. Abbreviate € := 1‘7‘3‘ > 0. Notice that Theorem [5.1] equally applies
to K, Thus, for large enough integers D and N, K, 4(s,t) satisfies LP2-LP2 off-

diagonal estimates in v/t of order N with extra factor (%)€ On the other hand,

Lemma yields LP2-LP? off-diagonal estimates in /¢ for both Q%) and e "% of
arbitrary order. Choose N > v. By Lemma [Z5], we can combine these off-diagonal

estimates and obtain

o2\ NV
(N) < r 2% (N) —r2L

[Kastsc 1], 5 (5) | Bastsni@fe 2]

AR &(B1, Bs)\ Y
<(Z) (2 oL ) , .
S(5) G (=52 il alole

By integrating in s € (0,¢) and in ¢ > r2, one obtains for N > N

/+oo /t @@ < (1 N dz(Bl,Bg)
72 0

-N
2B s 1 2 ) £ 102 () 19l -
If otherwise 72 > t, then write

D
t -
Q.Q%) = Q"qQlY) = <_) QN L,

r2

LP2 (Bl)

Ko gls.0)1Q ]

Y

so that N
t -
Koo)' = ¢ (L) Ruls.r2)0 e

2
We therefore apply in this case Theorem 51l to K, ,(s,72). Using the same argu-

ments as above and taking into account r? > t, we obtain for large enough integers
D and N,

D —N
t S\¢ d2(31 BQ)
< (L) () (14 8202 . .
Lr2(By) <7’2) (7’2) < * 72 11l 2(B2)||g||

Integrating in s € (0,¢) and then in ¢t < r? yields

/7”2 /t ds dt (1+d2(Bl,Bg)
0 0

-N
S ) oLl
Summarising the above, we have obtained

r2(B) s t 7~
d*(By, B))\
N 1, 22
(6.4) M@Mnmmmsﬁ+—7y— 1 llzo22) 9l

| a5, 01021

K5, )[QR1]]

where D, N, N are large enough integers depending on v and p,. This ends the
proof of ([6.3)). O

Proof of Theorem 62l The boundedness of (g, f) +— I1,(f) from L>(M, ) x L2.(M, L, 1)
to L2(M, L, 1) is equivalent to the boundedness of (g, f) + LY?T[,L~*/?f from

Lo (M, ) x LP(M, ) to LP(M, ). We have already seen in Proposition B3] that it
only remains to study the operator

T = Lo1PTIL(L ),
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and prove its boundedness in LP for p < 2.

This is done by the extrapolation argument from Proposition [6.3t indeed by
Theorem B3 we already know that 7" is L?-bounded and Proposition with L2
Davies-Gaffney estimates yields that (€3] holds for po = 2. We may also apply
Proposition to T" and obtain its LP-boundedness for p € (1, 2]. O

7. BOUNDEDNESS OF THE PARAPRODUCTS FOR p > py UNDER (G,,) VIA
EXTRAPOLATION

The main results of this section are the two following ones.

Theorem 7.1. Let (M,d, u,E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE). Let o € (0,1) and let p € (2,+00) with

l—a>wv(; - %) Then there exists Dy = Do(v,p) > 0 such that for every integer

D > Dy, the paraproduct defined in ([B3.1)) is bounded from L>(M, 1) X LP(M, L, 1)
to L2(M, L, ). We have

Mg (e S N 1o l191oc
and A(a, p) holds.

Theorem 7.2. Let (M,d, u,E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE) and (Gp,) for some py € (2,+00]. Let
a € (0,1) and let p € [po, +00) with 1 —a > 1/(pi0 — %) Then there ezists Dy =
Dy(v,p) > 0 such that for every integer D > Dy, the paraproduct defined in (B.1])
is bounded from L>(M,p) x L2(M, L, 1) to LP.(M, L, ). We have

Mg ()0 S 1l 191
and A(a, p) holds.

Using either L? Davies-Gaffney estimates (which correspond to (5.11) for py = 2)
in combination with Theorem 3] or the fact that (G),) implies (B.1)) for every
P2 € [2,p0) in combination with Theorem A.3] the two previous theorems will be a
direct consequence of the following one.

Theorem 7.3. Let (M,d, i, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE)). Assume ([B.1) for some py € [2,400) and
let p > py with 1 —a > v(+ — L), There exists Dy = Dy(v,p) > 0 such that

p2 P
for every integer D > Dy, if the paraproduct defined in ([B.1]) is bounded from
Leo(M, p) x L (M, L, 1) to L (M, L, 1) for all 3 € (0,1) then it is bounded from

L®(M, i) x L2(M, L, ) to L2(M, L, ). We have

Mg (e S N 1o l191oc
and A(a, p) holds.

We are going to prove the previous theorem as an application of the following
extrapolation result ([4], [9, Theorem 3.13]).

Proposition 7.4. Let T be a linear operator and S a sublinear operator. Let
Do € [2,400), and assume that T is bounded on LP*(M, u). Assume that T satisfies
the following off-diagonal estimates: There exists an integer N > 1, an exponent
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v

P € (pa, +00) and an exponent N > 5 such that for every pair of balls By, By of
radius r = v/t > 0, we have

d(By, Ba)\ ™"
(N) < ——L 2
(7.1) HTQt LP2(B1)—LP2(Bs) (1 " " )
and

1/p 1/p2
o ()< (g

If, for some p € (pa,p), S is bounded on LP(M, ), then T is bounded on LP(M, ).

Remark 7.5. e The assumptions in [4], [0, Theorem 3.13] are stated in terms
of LP? off-diagonal estimates for T (I — Pt(N)) instead of ([TI)). As explained
in the proof of Proposition[6.3], the LP* boundedness of T' allows us to deduce
from (L)) such LP?-off-diagonal estimates for T'(I — Pt(N)).

e Forp € (p2,p) as above, T is also bounded on the weighted space LP(w) for
every weight w € A% N RH(g),.

As we have already seen in Proposition B3], in order to prove Theorem we
only have to study the LP- boundedness of the operator

. pra/277l —a/2
T = LTI (L),
with
I, (f) = (I = F) [Py - Quf] —
0
We recall that the kernel K, , is defined as

Kag(s:t) = QLY (QL™(.) - Pg),

/+OO/ dS@
t.

As a direct application of Lemma 215 we have the following reduction.
Lemma 7.6. Define the quadratic functional

U) = (/m [ Rseni@n g d—) ,

where Qs = (Q4)'/? and K (s,t) := Q. LY*(Q,L~/*(.) - Pg), so that

Ka,g(sa t) = QsKa,g(Sa t)@t

Then for p € (2,+00), the boundedness of U on LP(M, i) implies the boundedness
of T on LP(M, ), and we have

1T lp—p S MU llp—sp-

We are now going to prove Theorem [[.3] based on the extrapolation method in
Lebesgue spaces of Proposition [7.4

hence
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Proof of Theorem[[3. According to Lemma [T.6, we only have to prove the bound-

edness of the square functional
1/2
+°° ~ dt|” ds
[ Fals0l@en 5 ;) ,

U(f) = ( [

which will be done by applying Proposition [7.4l

By Proposition [6.5], we already know that ((ZI]) holds for H; and the same proof
allows us to prove also (IZ.I]) for the square function U (which is even easier). It
remains to check (7.2).

Fix a ball B of radius r and some integer N > D satisfying N > v+ 1. If D is
large enough, then we may also consider
Kag(s,t) = QL QiL™(.) - Pig),

where Q, = (Q,)V2. (We may choose D € 4N for convenience). Notice that

then both IA((W and Q, satisfy the same off-diagonal estimates as K,, and Qj,
respectively. By definition, we have

Koy = Q.K

If s <t <72 then

26\ "
(7.3) Q.PY) = (tL)Pe e Py = (—) Q.2 RYe -,
2

72

where R%V)e‘% — pW

7‘2

as defined in Remark 2.3 and R%V) satisfies the same
off-diagonal estimates as PT(ZN ), Consequently,

KO‘H(S t>[QtP(N f] (%) Qs ag(s T2/2)[Q72 RT»Q €_t£f].

Then, from Lemma we kow that @s satisfies LP?-LP off-diagonal estimates

vl 1

( )
at scale r with an extra factor (é) *72 """ Moreover, Theorem [5.1] yields that

IA(a7g(s,r2 /2) also satisfies LP2-LP2 off-diagonal estimates at scale r with a factor
1« ~
( %) 2 . Lemma implies LP?-LP? off-diagonal estimates at scale r for @z, Rg)
2

and e~ . All of these off-diagonal estimates are of an order which can be chosen
as large as we want, up to choosing D sufficiently large. By composing all these
estimates according to Lemma [2.5] it follows for a large enough D,

V) s115 1/p ¢ D 3 1*7&_%(%_%) ' 1/p2
(f st 0i@r2apan) < () (3) (1iof 2017)) ol

First applying Minkowski’s inequality and then integrating over s < ¢t < r? gives
forl—oz>1/(pi2—%)

p/2 e
ds 1/p2
L) a] = (wg M)

2

A

2

/ B[0P @




40 FREDERIC BERNICOT, THIERRY COULHON, AND DOROTHEE FREY

If r* < s < t, then similarly as above, Lemma 29 and Theorem BTl yield for 5 > po
and for large enough D (with N an exponent eventualy varying from a line to the
next one)

t %(é_%) N -~ ~ (N) 1/172
7 g (e

j=0
S 17711_% L_%) (N 1/2
p P —
<) IS (f @nsea) ol
L >0 2B
C(VFEED [ (1 o)
< (%) v (G ) | gl
t _ZZO 2!B

where B = gB is the dilated ball, and we used L? off diagonal estimates for PT(QN )
in the last step.
By Minkowski’s inequality, integrating over s € (0,¢), and Hélder’s inequality,

we get for 1 —a > (.- — 1)

p
/+Oo

1/2

ds

[ (f st wwfm%z—
hpﬂ%jmf|@ﬁwm)]mm

>0

1/2

< (1uf MGwar0)) Tl
1/p2

< (1ut MGwa(10)) gl

where Gy is the conical square function associated to Q;, see Proposition 213l

If s <r? <t then by Lemma 2.9, for p > p,

i X \p
( ; |Kag(s,0)[Q: PS5 fIP d,u)

5(—)5723NN@¥ Bl 0GP )

7>0
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By repeating the same argument as before, we obtain

/+OO
0

1p 2 1/2
too Prdt| ds
[ (f Eastsvi@rapan) ) <

S

1/p2
< (it MGxa(1@) ol

assoon as 1 —a > v(+ — 1.
P2 p
Gathering the above estimates, we obtain that the square function U satisfies for
1

]3>p2with1—oz>y(pi2—5)

1/p2

1/p 1/p2
(f e nras) " <l (ing Miowa0P )+l (ngaas)

where Gy/p is the conical square version. Since the conical square function is
bounded on every LP-space (see Proposition 2.13), we may then extrapolate by
using Proposition [[.4l We deduce that U is bounded on LP for every p € (p2,D)-

This holds for every p > ps and o € (0,1) such that 1 —a > 1/( o ﬁ) so we
conclude that U is bounded on L for every p > p, such that 1 —a > V(iz — —)
which then implies the Lg—boundedness of the paraproduct II,. O

8. BOUNDEDNESS OF THE PARAPRODUCTS FOR p > py UNDER (G,,) AND
(DG3) VIA EXTRAPOLATION

In this section, we prove stronger results under the additional assumption of
a De Giorgi property. The proofs are, as in the previous section, based on LP
extrapolation techniques.

Theorem 8.1. Let (M,d, u,E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUEl). Let 2 < py < +oo and assume (G,,) with
(DGy,y) for some k € (0,1). Then the paraproduct defined in ([B.1) is bounded from
L(M, 1) x L2(M, L, p) to L2(M, L, 1) for every oo € (0,1 — k) and p € (2,400).
We have

L ()0 S 110 9]l

Therefore A(a, p) holds.
As a consequence, we obtain our main result of this section.

Theorem 8.2. Let (M,d, u,E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUEl). Let 2 < py < +oo and assume (Gp,)
with (DGa,y) for some v € (0,1) (and also k < =, else the result is implied by
Theorem [7.9). Then for p € (1,400) the paraproduct defined in (3.1]) is bounded
from L>(M, ) x LE(M, L, 1) to LE(M, L, 1) for every o € (0,7,) with

1a prgp()
T 1—&( —%), if p > po.
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We have

Mg () S W e 19l
Therefore A(a, p) holds.

We postpone the proof of Theorem [B.I] to the end of this section, and we now
prove Theorem as a consequence.

Proof of Theorem 8.2l The case p < pg has already been studied in Theorem [4.3]
so we only focus on the case p € [pg, +0). Fix g € L. For z a complex number
with R(z) € (0,1), define

T% .= L7PT,(L733).

Theorem 3] shows that T is LP-bounded for every a € (0,1) and every p €
(2,p0). Then by combining with imaginary powers of £, which are LP-bounded
(see Proposition Z.1I), we deduce that for every a € (0,1) and g € R, T is
LP-bounded and

sup(1 + [B) 7| T, S Cas
BeR

for some constant C? and any s > v.

Moreover, Theorem [B.1] shows that T is LP-bounded for every a € (0,1 — k)
and every p € (2,+00). Then by using Proposition 2.1] we deduce that, for every
a € (0,1 —k)and B € R, T*" is LP-bounded and

sup(1 + |B]) (|17 < Ca,
BeR

for some constant C} and any s > v.
We then conclude the proof by applying Stein’s complex interpolation method
([61, Theorem 1]) to the family (7°%).. O

Proof of Theorem Bl By interpolating assumption (G,,) with L?-L? Davies-Gaffney
estimates, (B.I]) holds for every py = p; € (2,pg). We reproduce the same reasoning
as done for Theorem [7.3] relying on the extrapolation result Proposition [7.4l

So as previously, according to Lemma[Z.6, we only have to prove the boundedness

of the quadratic functional
+°° ~ ds
[ Fas0n ] ;) ,

U(f) = ( [

which will be done by applying Proposition [7.4l

Fix a ball B of radius r, and consider U [Pr(éV ) f] for some large enough integer
N > Dj2.

If s <t <r? then as in (7.3)

and consequently
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Hence, combining what was done for Theorem [7.3] and Theorem [(.2] gives

D 1—a—r«' 1/2
- ~ t S .
Faalo QP Mem S () (5) (g mdsP) ol
By integrating over s < ¢t < r2, one obtains
2 2 2 1/2 1/2
L . - dt| ds . /
L1 swikas0@rn %) 2] s (M@)ol
0 s B S zeB

If r? < ¢, then Theorem (with " € (k,1)) similarly yields

1—a—k'

Lok i 1/2
sup [ Koy (s, 0l A1 £ (7) 7 |02 (ff |@tf|2du) 9/l

£>0

where B\ﬂ = %B is the dilated ball and M a large enough integer. By integrating
for s <t and using Cauchy-Schwarz inequality, we get as soon as 1 —a — k' > 0

+o0o 2 dS 1/2
(/ ‘)
o0 5 dud 1/2
< [Z?‘“” ([ 1ase®®) ] ol

>0

+oo g —7‘2[, dt
sup |Ka (s, t)[e™" ~ f]] 7
s B

1/2
< (1 MG ol

where Gn/2(f) is the conical square function associated with Q.f, see Proposition

213

Conclusion: by combining the previous estimates we obtain that the square function
U satisfies
1/2

1/2
0L lamer % Nl 06 MIGw(NPI))  Hlgle (10 MATA)

as soon as 1 —a > k (in which case there exists ©’ < k with 1 —a — £’ > 0).

We can then apply the extrapolation result Proposition [Z.4l Since Gn/o(f) is
bounded on L? according to Proposition 2.13] we obtain that U is bounded and
therefore T on LP(M, ) for every p € (2,400). All these computations require
1 — k > «, which is the main condition. 0

9. THE CASE p > 2 VIA OSCILLATION

Definition 9.1. Let a > 0 and p € [1,00). For f € LL (M, ), « >0 and x € M,
we consider the quadratic functional

“+o0 2 d 1/2
S2f() = ( [ | 0scaantr)] 77“) ,
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where for a ball B, p-Oscp denotes the LP-oscillation defined by

p 1/p
p-Oscp(f) = <]{B f—]ifdu du) :

We are going to prove the two following results.

Theorem 9.2. Let (M,d, i, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (DUE)). Assume (H") for some n € (0,1]. Let
a € (0,n) andp € (1,400). Then the paraproduct defined in [B.1)) is bounded from
L®(M, 1) x L2(M, L, ) to L2(M, L, ). We have

Mg ()0 S Mo 191l -

It follows that A(a,p) holds. Moreover the space LP.(M, L, 1) is characterized by
Sa-functionals: for 1 < p <min(2,p) and o € (0,7n) we have

1 Wiz, = 1Sl
In particular, E(c,p) holds.

Theorem 9.3. Let (M,d, u,E) be a doubling metric measure Dirichlet space with
a “carré du champ”. Assume the combination (Gp,) with (P,,) for some py €
(2,400). Then the space Lg(]\/[, L, ) is characterized by S?-functionals: for p < 2
closed enough to 2, every p € (2,p9) and o € (0,1) we have

1 Wiz, 2= IS -
In particular, E(a,p) holds.

Remark 9.4. Under (G,,), in the considered range p € (2,po) and « € (0,1), it is
already known that the paraproducts are bounded in the Sobolev space and so A(«, p)

holds (see Theorem[{.3).

Let us observe that for two test functions f, g, every ball B and every exponent
p > 1, one has

p-Oscp(fg) < p-Oscp(f)lglle + [ fllocp- Oscr(g),

and for every Lipschitz function F
p-Oscp(F(f)) S |F||uipp- Oscs(f).

Consequently, as soon as the Sobolev norm Lg is characterized by a quadratic
functional S? for some p € [1,400|, property A(a,p) is also satisfied and the
following sharp chain rule.

Corollary 9.5. Under the assumptions of TheoremsQ.2 or@.3], for p and o in their
respective ranges, and every Lipschitz function F, the map f — F(f) is bounded
in LP(M, L, 1) and

EH iz S TE Nzl f 12z

We will see in Proposition @10 that such a characterisation of Sobolev norms
(through quadratic functional) cannot hold in a systematic way, since some of them
require the Poincaré inequality (P).
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Here the sharpness refers to the fact that we only require a Lipschitz control of
the nonlinearity F. We refer the reader to Section [I0l for a chain rule under weaker
assumptions on the ambient space (M, d, i, E) but more regular nonlinearities F'.

We are going to simultaneously prove Theorems and in the two following
sections: in Section the statements concerning paraproducts and in Section
the statements concerning the functionals S?. Theorem is the combination of
Propositions and [0.8], whereas Theorem follows from Proposition 0.9

9.1. Boundedness of paraproducts via oscillation. We first recall that ac-
cording to Lemma [7.6], to prove the boundedness of the paraproduct it is enough
to prove the LP-boundedness of the square function

U(f) = < [

where Q, 1= (Q,)"/? and K(s,t) := Q.L**>(Q,L~*/*(.) - P,g), so that
Ka,g(sa t) = st(oe,g(sa t)@t

Proposition 9.6. Let (M,d, u,E) be a doubling metric measure Dirichlet space
with a “carré du champ” satisfying (I;ZEEI) Assume (H") for some n € (0,1].
Then for every a < XA <, the kernel K, 4, satisfies for s <t the pointwise estimate

+oo B
| Restsvi@n

A—«a

)T M) (o) Vao € M.

S

Ko g(s, )[R (z0) < Ilgllo (;

Proof. Let o € M. We have

K 0 a0) = (2) " Quls)2( Qa1 Pg) (o).

Consider B s the ball of centre zy and radius /s. Then by linearity
|Qu(5£)*2(Qu(tL) " - Pig)(wo)]

Q.(sL)/? [(Qt(w)—a/% —

S

(20)

Qt(tﬁ)_a/zh d,u) - P,g

B

Qu(tL)~*hdp
Bys

_|_

Y

|Qs(s£)**[Pog] (o)

which gives us two terms [ and I1.
The second term is the easiest, since Q (sL)*/2 P, = (3)PT/2esL(tL)PT/2 P, so
due to the L>®-boundedness of e=*4(tL£)P+*/2P,, we deduce that

S D+a/2 o
s (3) QL) hdu ]l
t B,
S D+a/2
< (=
S(3) T MilEo)llglle,

where we used Lemma 2.9 (item 1) in the last step.
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For the first term I, we use the LP0-L> off-diagonal estimates for Qs (Lemma
2.0) and we get
(9.1)

IS gl Y oD+l |9l g |7

>0

QL) h —  Qu(tL)h

Bys

L0(2¢B /5)
Since (H") self-improves into (F/\ ) for A € (a,n) (see item 2 of Proposition [[4]),
one has with @Q,(t£)~%/? = 2P _’EQtD /2 that for every integer k € {0, .., ¢}

. s\ M2 .
oe-Oncanp @0 0) 52 (5) Moy (f @i an)
JZ x0,27

22
<2 (2) 7 sup o] dpu
t . .~
320 \J2iB 4

<2 (2) Y MR (o)

where we have used Lemma [2.6] to estimate pointwise the kernel of Q
Since

(D—a/2)
t/2 :

Qu(tL)~?h — Qu(tL)~?h

B

LPo(2'B, /z)

<y

k=

[e=]

Qu(tL)/h - ][ Qu(tL)~/h
2B

LPo (2B z)
¢
|2€B \1/”000 Oscng (Qt(tﬁ) O‘/Qh),

e
Il
o

it follows that
2/2
< 2M26B, 5|V (;) MR ().
Lro(2¢B /5)

Qu(tL)~?h — Q.(tL)~2h
By

Finally, since D > v+1 (so D+ «a/2 > 1> ))

12 () ol <Z2 “M/W*) MIh) (o)

>0

< ()" gl M) o).

Hence

A—a

Reagls,)(0)(@0) S (3) © lgllooM b (xo).
0

We can now conclude the proof of the statements about paraproducts in Theorem
9.21
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Proof of Theorem 0.2 We use Proposition [9.6] so that we have the following point-
wise bound of the square function U (as soon as a < \):

oo pFee gy 252 - dt
U(f) £ ol ( [ G mans
0 s
Slol ([ M@ F)
0
By using the Fefferman-Stein inequality (see Proposition[2.16]) and the LP-boundedness
of the horizontal square functionals (see Proposition 2.13), we deduce that U is
LP-bounded, which implies (see Lemma [.0]) the L?-boundedness of the paraprod-
uct. U

9.2. Characterisation of Sobolev norms via S,. The following statement can
be found in [29, Section 2.1.1] and [I1}, Section 5.2]. The proof works in our setting.

Proposition 9.7. Assume (DUL). Suppose p,p € (1,+00), a > 0, and let f €
Lige(M, ). If S5(f) € LP(M, ), then f € LE(M, L, p) and

1Al 2z < 1SECH -

The proof of the reverse inequality in [I1] Section 2.1.2] uses pointwise gradient
estimates. We are now going to observe that the weaker assumption (H") is in fact
sufficient, as noted already in [29, p.333]. Without loss of generality, we assume
N(L) = {0} in the following.

Proposition 9.8. Assume (H") for some n € (0,1]. Fiza € (0,n). Then for every
€ (1, 400) with p < min(2, p) and every f € LE(M, L, ), we have

1112z > 1SECH) -
Proof. Due to Proposition 0.7, it only remains to prove that

1SECHI S 1Nl ig-
We first decompose the identity with the semigroup as

+0o0o 8 . _ +o0o » dt
fe=- / O eyt = / ye e &

2n+1
-3 [ e
n=—oo 2n
and define the piece at scale 2" as

2n+1

e dt
Fom [ oS

n

Then fix x € M and a scale r > 0. We have

2n+1

dt
p- OSCB(LT)(fn) < / P- OSCB(m,r) [(tﬁ)e_tﬁf] 7
2

n
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Using (H™), which implies (F;\ ,) for some A € (v, 7) (see item 2 of Proposition [L.4)
we know that if r < v/f then

- Oscaanl(t00e 11 5 () Ml ]G0

So if < 2%, then we deduce by the Cauchy-Schwarz inequality that

27L+1

1/2
M, [0y 3 7)) %) .

(92) pP- OSCB(x,r)(.fn) 5 (7“2_%))\ (

27l
Moreover, if 272 < r, we use

p- Oscpem[(tL)e ™ f] S M,[(tL)e " f](x)
which yields

- 1/2
(93) p- OSCB(z,T’)(fﬂ) S (/2n ‘MP[(tﬁ)e_tﬁf](x)}z %) ‘

Then it follows that

+o00 2 r
serer = [ [ Osenan (0] &

r

2
too 1 dr
S / [Z _ap' OSCB(x,r)(fn)] -
0 T T

neL

Using ([0.2) and (9.3]), one has
2
2n+1

oo 1/2 .
sk s [ [Zl</ M [L)e ()] %) ]d

oan<p2

+oo 1 N > a\"] ar
Lo Y I T I
+/0 ; = (r27%) </2 ‘Mp[(tﬁ)e fl(@) t) —.
Using Schur’s lemma (or see [29, p. 300]), for a < A,
P 2 —no 2 —tL 2 dt
Sif) S ) 2 (M, [(tL)e™ Sl ()] —
nez 2"
27L+1 9 dt
s [ o]
nez "

which implies
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Then by Proposition 2I6] it follows that for every p > p (since 2 > p)

el < ([ Imenye e 22)
al IILP ~S5 0 P € tl+a

+00 1/2
—tL
’S (/0 ‘(tﬁ f‘ t1+a) P

S L £l

~

O

The same proof holds when replacing the oscillation by a Poincaré inequality:

Proposition 9.9. Assume (G,,) with the Poincaré inequality (P,,) for some py €
(2,+00). Let v € (0,1), p€ (1,2) and p € [2,p0). Then for every f € LE(M, L, 1),
we have

112z, 2= [1SECHp-

Proof. First, using the combination (G),) and (P,,) as detailed in the proof of [16],
Theorem 3.4] With [16, Remark 3.5], we know that we have the following inequality:
for every p € (1,2), every ball B, of radius r > 0 and h = (tL)e ¢ f,

l/po l/p
<][ |h — ][ h dp|P° d,u) <r <][ |Vh|pdu) + 7’ ||‘Ch||L°°(4BT)
'r T 2By

Writing £h = tL2e7 £ f = e 2ftL2e 35 with LP-L™® off-diagonal estimates of

e_%ﬁ, we deduce that

LR wa,y S inf M,[(EL)%e 3 f)(x).

We then repeat the exact same proof as for Proposition 0.8, with the following
estimate on the oscillation,

- Oscon [(t£)e~ 2 ] € (%) M, VIV (L)) <a:>+(%) M, [(H0)%e 5 f] ).

Hence, we have a pointwise estimate

([ et ol ot )

The proof is then completed by taking the LP-norm of both sides of the previous
inequality and using Proposition as well as the LP-boundedness of the vertical
square function (which is a consequence of the combination (G,,) with (B,,), see
Proposition (iii)) and of the horizontal square function.

Proposition 9.10. Assume (VD). Let p,p € (1,+00) with p < p, v < p, and let
a € (2,1). Assume that for every f € LE (M, L, i), we have

11z = ISECH) -
Then (H;;%) holds, and also (Py).
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Proof. Let r < +/t, and let B,,B /i be two concentric balls of respective radii r, V.
For every x and s > 0, denote the ball By(x) = B(x,s). Then for h = e * f, we
have for s € [r, 2r]

(9.4) p-Oscp,(z)(h) S p-Oscp, @) (h).
So

2dS
S

2r 1/2
pOseno) 517 ([ [ Osemo]* ) £ re2(h)(0)

Consequently,

f

Vi Vi

1/p 1/p
ﬁO%&@ﬂmWWWO Sr“Qé wam&mwmuﬂ

1/p
St ( |56 (h)(2)[? du(@)

b,
S 0Byl ISER) -

So using the assumption and the analyticity of the semigroup on LP, we get

f

1/p
ﬂ-OSCBTm)(e‘“f)”du(x)) SO Byl TPIL e A

T @ _
5(79 B lIf

Vi

which yields in particular (since B, C B ;)

1/p r a—%
(f roscnwerran) s (L) 1Bl I,

Since for x € B,., the two balls B,(x) and B, have equivalent measures, we deduce
by doubling that

Vi

for every r < v/t, which is (H;f ,”). Then Proposition [4 yields (P). O

a—y
WOM&@%ﬂS( ) B £l

10. CHAIN RULE AND PARALINEARISATION

This section is devoted to the proof of a chain rule in our abstract setting. That
is, we show stability of Sobolev spaces with regard to the composition of functions
with a regular map. We follow the same approach as in [26], which relies on
paraproducts. In the sequel, we establish a paralinearisation result. This is a
deeper and more general result than the chain rule, but requires more regularity on
the nonlinearity.
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Theorem 10.1 (Chain rule). Let (M, d, i1, E) be a doubling metric measure Dirich-
let space with a “carré du champ” satisfying (DUE)). Let F € C*(R) be a nonlin-
earity with F'(0) = 0. Let a € (0,1) and p € (1,40o0]. For a function f €
L®(M, ) N L2 (M, L, 1), we have

F(f) € L*(M, ) 0 L5 (M, L, p)

in the following situations:
i) if p<2andae(0,1);
i) if 2 < p <po, @ € (0,1) and under (G,,) for some py > 2;
iii) if 2 < q, 0 < a <1—k and under (G,) with (DGa).
More precisely, we have the following estimate: for every L > 0 there exists a
constant C' := C(F, L) such that for every f € L>(M, u)NL2 (M, L, i) with || f]|c <
L, there holds

IF(Hliz < Cliflli-

Remark 10.2. In Section[9 and in [29], [11], under certain extra assumptions (in
particular a Poincaré inequality), Sobolev norms are shown to be equivalent to the
LP-norm of some quadratic functional. Then the chain rule is a direct consequence,
and holds for every Lipschitz map F'.

Under the weaker assumptions of Theorem 101l we do not expect to have such
a characterisation in general (see also Proposition [9.10), and the paraproduct ap-
proach requires more reqularity on F in order to obtain the chain rule.

Proof. Consider first a more regular function f € (S? + N(£)) N L2 N L*®. Fix a
large enough integer D, and consider the approximation operators F;, (); and the
paraproduct IT associated with this parameter as defined in ([B31]). We represent the
nonlinearity as

F(f) =l F(Pf) = lim F(R.f)+ F(Pxio)(f)).

where the limit is taken in LP(M, ). This is a consequence of Proposition 211 and
the fact that F' is Lipschitz, since then

1F(f) = F(Pll, S If = Peflly =0, ¢t =07,

and similarly

IE(Priey(f) = F(Pf)llp S IIPney(f) = Befllp =0, & = Foc.

From this decomposition, we deduce

P == [ SFED i+ ()

“+oo

--/ Qtf-F’(Ptf)%+F(PN(£)(f))-

According to Proposition 210, Pz (f) is equal to 0 or to a constant (depending
if the ambient space is bounded or not), therefore

F(Pnoy(f)) € N(L).
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Consequently, in order to estimate F'(f) in the homogeneous Sobolev space, we
only have to control the first term

_ too , dt
(10.1) F(f) = Quf - F (Ptf)T'
0
The representation ([I0.I]) does not exactly match the definition of a paraproduct.
However, in the study of paraproducts in the previous sections, we only used the
following three properties of the term H(t,z) = P,g(x):

(a) Uniform boundedness sup,.q [|H(t, ) |loo S [|9]]oo;
(b) L2-L? (vesp. LP-LP) gradient estimates of VH(t,-) at the scale v/ in case i)
and iii)(resp. ii));
(c) L*-L? (resp. LP-LP) global estimate for the square function ||V H (¢, ')HLz(%)
in situation i) and iii) (resp. ii)).
We refer the reader to Theorem (whose proof relies on Theorem [5.1]) for case
i), to Theorem [T.2] for case ii) and to Theorem B.] (whose proof relies on Theorem
B£.2) for case iii).

By (IO, following the same proof as for the paraproduct, we will have shown
that F(f) € L?, (and so F(f) € L?) as soon as we will have checked that the quan-
tity H(t,x) := F'(P,f(x)) satisfies properties (a), (b) and (¢). Since f € L>®(M, p),
P, f is uniformly bounded, and since F’ is continuous, also F’(P,f(x)) is uniformly
bounded, hence property (a). Due to the chain rule,

VH(t,z) = F"(P.f(z))VE,

and since also F”(P;f(x)) is uniformly bounded, we deduce that VH (¢, -) satisfies
the same Davies-Gaffney estimates as VP, f, hence property (b) is checked. A
similar reasoning holds also for property (c).
In this way, repeating the same proof as for the paraproduct gives that F'(f) € Lg.
Consequently, we get that for every f € (SP+N(£))NLENL*>, one has F(f) € L?,
and

(10.2) IEUD iz < ol inazs);

where ¢ is some non-decreasing function. We already know that (S? + N(L£)) N
LP 0 L™ is dense in LP, N L. This allows us to extend the map f — F(f) on the
whole Banach space L? N L*: indeed for (f,), a Cauchy sequence, we easily check
that F(f,) (and so (F(f,)),) still is a Cauchy sequence in L2 N L™ | since

+00 +oo

FU-FUn) = [ QU bl PR G5 [ Qi PRSP (PG
and the two previous quantities can be bounded by the same reasoning as previously.
Using that F” is continuous and so is uniformly continuous on a bounded interval
containing all the values of the sequence (f,,(x)),, we let the reader check that the
quantity F'(P.f,) — F'(P.fn) still satisfies properties (a), (b) and (¢), involving a
control in terms of || fn — finlljpze-

In this way, f — F'(f) can be extended on the whole Banach space L{; N L> and
(I0.2) remains valid on the whole space. O
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Theorem 10.3 (Paralinearisation). Let (M,d, u, &) be a doubling metric measure
Dirichlet space with a “carré du champ” satisfying (DUE)). Assume uniform volume
growth (also called a local Ahlfors reqularity): there exist constants cy,co such that
for every x € M and every radius r € (0, 1], one has

B
(10.3) ¢ < Hf—r)' < e
Let F € C*(R) be a nonlinearity with F(0) = 0, and let a € (0,1), p € (1, +00)
with ap > v. Let f € L>®(M, )N LE(M, L, ). Then there exists Dy := Dy(v, p)
such that for D > Dy, we have the paralinearisation
F(f) = r)(f) € (M, p) OV LE(M, £, ) O Ly (M, L, p)

in the following situations:

i) ifp<2 (andv <2), a€(0,1), 0 <p<min{l —a,a — 2}

i) ifp>r,0<a<l=2 0<p<min{l —%—a,a—"~1} and under (G,).

Remark 10.4. We let the reader check the following (easy) extension (also valid
for Theorem [I0.1]): consider a regular function F' : M x R — R such that both
F(x,-) and V. F(x,-) satisfy the assumptions of Theorem [I0.3. Then the result
still holds with the following paralinearisation formula:

T — F(LL’, f(LL’)) — H@F(z,f(x))(f)(x) eL>*n LZ N LZ_,_p.
Proof. Using (I0.1]), one may write

F(f)=Upp(f) +R
with the remainder

Ri= [ Qe - PP Y PR ()

0

As previously, the second term is bounded and belongs to any Sobolev space (since it
is equal to a constant). So we only have to focus on the first part and as previously,
we are going to check that the quantity H (¢, z) := F'(P.f(z))— P [F'(f)](x) satisfies
more “regular” properties than (a), (b) and (c¢). Using the mean value theorem,
one obtains

[H(t,2)| < [F'(Pif(z)) — F'(f(2)| + | F'(f(z)) — PLE"(f)](2)]
< F ool (1 = P)[f1(2)| + [(1 = PYIF' ()] ()]
Then for the function h = f or h = F'(f) belonging to L{; (due to the previous
Theorem applied to F”), we have

t ds
I(1 = PYhll < / 1l
0 S
! « —a ds
< ( [ sy /2@s||p%o—) 1l

S

t
d
( / sa/%—”/zp—s) s
0 S

<27 %A,

AN
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as soon as o > %. So with implicit constants depending on f, we deduce that
IH(t, ) [loo S 272,

instead of (a), which is better for small ¢ < 1.
Similarly, we have

VH(t,-) = F'(Rf)VEf = VR[F'(f)]
= (F'(BLVPS = FI([)VPS) + (F'(f)VEf = VRF(f)]).

As previously, the first term satisfies properties (b) and (c) with the extra coefficient

t27%. The second term is more difficult: we aim to take advantage of the fact that
fLF'(f) € LN LE C L, with any exponent 0 < s < o — £ (see Lemma [0.5).
Let us write

11y(¢1, ¢2) := (F"(f)VPp1 — VPi[¢3])

e For the diagonal part, we use the global L?-boundedness, shown in Lemma
10.6] below,

VIV PL ||y S 197,
Therefore, we have for every ball B of radius v/
Bl L (L f, 1 F ()2 S 2L Flloo + 1£°72F'(f)]|o)
ST (U Ny + 1 ()l zz)-

e For the off-diagonal part, we use Lemma [I0.7 below to obtain L2-L? off-
diagonal estimates: for every ball B, B; of radius v/t with v/t < d(B, B)

[I(L™ 205, L2 f, L7505, L12F () | 123)
= |[F"(H)V(P, = 1)L (U5, L2 f) + V(P = DL 2[5, L2 F (f)][l12(m)

s—1

d(B, B>\ M [ . o2
o7 (14 DEBE) T (1 iy + 16 D)

where M can be chosen arbitrarily large.

This proves that H(t, -) satisfies (b) with an extra factor /2. By the same reasoning
we obtain that H(t,-) satisfies (¢) with an extra factor ¢*/2, which yields the L? — L?
global estimate for the square function ||t=*/2V H (t, I 20,17, in situations i) and
ii).

So finally, for ¢ < 1 (which corresponds to the situation where the previous in-
equalities are improvements), we obtain that the quantity H (¢, -) satisfies Properties
(a), (b) and (c) with an extra factor +*/2, with s < a — >

Then coming back to the proof of boundedness of the paraproduct, this gain
allows to prove that the remainder term

ReL®niEnIt,,,

as soon as s > 0 and « + s in the range allowed by the proof (a+ s < 1 in case i)
and a +s <1— % in case ii)). O
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Lemma 10.5 (Sobolev embedding). Let (M,d, i1, E) be a doubling metric measure
Dirichlet space with a “carré du champ” satisfying (DUE) and the uniform volume
growth (I03)). Then for a > 0, p > 1 with ap > v, we have

L(M,p) N LE(M, L, 1) € LT (M, L, ),

for any exponent 0 < s < o — %.

Proof. Let f € L>*N Lg. Then
. ! dt .
L2f = / L3(tL)e Ef - + Lre Ef.
0

For the second term, using the L>-boundedness of £LZe~% f (due to the decay of its
kernel, see Lemma [20]) we have

1277 Flloe S 11flloor
For the second term, we use that

1£3(tL)e™ flloo S ILTZ €™ Ilpocll F1l 2

ST fllzp

where we used the pointwise estimate of the kernel of (££)'* 2" ¢~** (due to Lemma

2.6) with the uniform control of the volume (I0.3)). We then conclude by integrating
this estimate. O

Lemma 10.6. Let € € (0,1). Under (Gp) for p > 2 we have
IVEVLTZ2 Ry S /2.
Proof. We decompose

. oo ds
VIVL IP, = ViVe L P,

1—z°
0 s 2
Then we use that for s <¢, by (G,) we have

||\/¥V6_8£Pt”p—>p = ||\/¥vpt€_8£”p—>p < H\/EVPth—mHe_SEHp—w NES
For s > t, (G,) yields

1/2
. . |
VI ly < VAT Ll 5 (5)

We conclude the proof by integrating these inequalities. O
Lemma 10.7. Let e € (0,1). Under (Gp) for p > 2, we have for all balls By, By of
radius v/t with d(By, By) > \/t

d2(B, 32))"”

HﬂVﬁ_%(Pt — [)||Lp(31)_>[,p(32) < t3 (1 + ;
where M can be chosen arbitrarily large (depending on P;).

Proof. For € = 1, this corresponds to off-diagonal estimates for the Riesz transform,
see [4, Lemma 3.1]. The exact same proof still holds for € € (0, 1]. O
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APPENDIX A. ABOUT THE p-INDEPENDENCE OF (H] )

In this appendix, we study in more detail the p-independence of the property
(H},) for p € [1,+o00] and 5 € (0, 1] and prove the two last statements of Proposi-
tion [L.4

All of this appendix is valid in a more general setting than the one presented in the
introduction. It is enough to consider a metric measure space (M, d, u) satisfying
(VD), endowed with a semigroup (e™*F);~¢ acting on LP(M,u), 1 < p < +oo. For
1 < p < +o00, let us write the LP-oscillation for u € Lj (M, pu) and a ball B a ball
by

1/p
p-Oscs(f) = (][ -4 fdulpdu)

oo- Oscp(f) :=esssup | f —][ fdul.
B B

Recall that we denote by M the Hardy-Littlewood maximal operator, and by M,
the operator defined by M, (f) := [M(|f[P)]V?, f € Li.(M,pu), p € [1,+00). We
set Moo(f) := [flloes f € L(M, ).

if p < 400, and

In [35], gradient estimates for the heat semigroup are studied in the Riemannian
setting, but the proofs rely only on the finite propagation speed property, therefore
extend to the setting of a metric measure space with a “carré du champ”. More
precisely, it is proved that, under (VD) and (UE]), the condition

_1
(A1) sup sup |B(z, Vi)' "9 ||VH{Vpi(x, )|y < +o0
t>0 xeM
is independent of g € [1, +00] and is in particular equivalent to Gaussian pointwise
estimates for the gradient of the heat kernel. Since for g = p/

sup. VAVl = VAT e

this property can be thought of, at least in the polynomial volume growth situation
V(z,7) =~ 1", as follows: the quantity [|vt|Ve **|||,,0 does not depend on the
exponent p € [1, +00].

Even if the full version of this result in [35] is really non-trivial, it appears that
a localised counterpart is indeed very easy: more precisely, the property

(A2) sup VAV 't f(@)] S My(f)(a)

is p-independent. This fact directly follows by writing Ve ™ = (Ve_%L) e~ 2L with

a semigroup ezl satisfying all LP-L9 off-diagonal estimates (since the heat kernel
satisfies pointwise Gaussian estimates), so that for every p,q € [1, +o00] with p < g,
we have
My(e™ ™)) S My(f)(@).

The estimate for p > ¢ follows from Hélder’s inequality. In other words, the localised
property ([A.2)) is much easier to prove than the full “global” version (A.T]).

The inequality (H]!,) is the Holder counterpart of the L? - L> Lipschitz regular-
ity property of the semigroup (A.Il). Following the previous observation (and the
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results of [35], which can be extended to the situation of Holder regularity instead of
gradient estimates), it is natural to study the p-independence of (H,] ) and to do so,
we recall the localised versions of (H)! ) (already introduced in the introduction).

Definition A.1. Let (M,d,u, L) as above satisfying (VD) and ([ULE). Let p,q €
[1,4+00] and n € (0,1]. We shall say that 1) is satisfied, if for all 0 < r < /1,
every ball B, of radius, and every function f € LV (M, ),

loc

() o-Osen, (1) 5 () inf M)

Note that (on,oo) = (HZL )

With the help of this definition, we can prove the following “almost” p-independence
of (H] ).

Theorem A.2. Let (M,d,p, L) be as above and satisfying (VD) and (UE). Let
n € (0,1]. The property (H' ) is independent of p € [1,4+00]. The property “(H;p)
for every A < n” is independent of p € [1,+00].

p,p

The above theorem will be a direct consequence of self-improvement properties
of (H),) and (HZ,p), which read as follows.

Proposition A.3. Let (M,d, u, L) be as above and satisfying (VD) and (UE). Let
p,q € [1,400] and n € (0,1]. Then
(i) (Eg,p) = (H) ) = (H,,);
(i) (H,,) = (H},);
(iii) For every A € [0,n), (H?,) — (H,

P,P) :

Remark A.4. As a consequence of Proposition [A.3, the property: “there ewists
n >0 such that (H]! ) holds” is independent of p € [1,+00].

Remark A.5. All results of Appendiz[Al remain true in the context of sub-Gaussian
estimates.

Proof of Proposition[4.3. Let us start with (i). First, we follow [I4, Proposition
3.1] (which relies on a Meyers argument to improve oscillations estimates), and the
same proof allows us to improve (FZJ,) into (Fzm). Then, if ¢ > p, we obtain from
Jensen’s inequality

inf M, (f)(2) < inf M,(f)(2),

2€B s 2€B
therefore
(szoo) — (FZOO) = (szq).
Now let us focus on the case ¢ < p. Consider t > 0 and set s = % Let B, be a
ball of radius r < v/t and B s = %Br the dilated ball of radius v/¢. If r < Vs, we

apply (F;OO) to e~*L f, which yields

(A.3) esssup e " f(z) — e > f(y)| S (L) inf M,(e " f)(2).

z,yE By S ZGB\/E
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Using (UE]) together with ¢t = 2s, we then obtain

r

1
esssup e F f(z) — e tF < <—) inf M z),
sssup e f(o) = )| 5 () it MU
which is (sz). The case /s < r </t is a direct consequence of ([[UE), since we
have r ~ v/t and so

esssup |e™" f(z) — e f(y)] < 2Mle™ fllimis,) SN fllimp n S inf M(f)(2),
m,yEBr ZEB\/E

which yields (HY ).

Now for (ii). Assume (F;p) for some p € [1,4+00]. First, note that for ¢ = 2s

inf M, (e f)(2) < [Bysllle  fll, + sup e f(@)] S [Byal 7| fllps
ZGB\/g 'TEB\/E

where we used (UE)). By applying the above estimate to (A.3]), we can obtain
(H,,) from (H! ) with the same reasoning as in the proof of part (i). (H,) then

: PP
easily follows.

Let us finally prove (iii). Assume (H,] ) for somen € (0,1} and p € [1,+oc]. Let B,,
B/ be a pair of concentric balls with respective radii r and Vt, where 0 < r < /1.
Then we know that

r

Vit

Let us split f = Z fls,B ), and define for £ >0
>0

n
p—Osche—th)s( ) B | £l

I(¢) := p- Oscp, [e_tL(f]lse(Bﬁ))} ;
where Sy(B, /) stands for the dyadic annuli
Sg(B\/Z) = 25+1B\/§ \ QZB\/E
We have (H)),) for every X € [0,7)], therefore, for £ <1,

10 % (%) (iBﬂ Iflpdu) " (%)ff My(F)).

For ¢ > 2, we similarly have

(A1) 10 < (%) o (][f \flpdu> "

Moreover, using again ([UE]), we have

P 1/p 1/p
ws) 10 <2(f |ertampand a) e (f i)
- 2B
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which yields

—tL P v —tL
’6 (f]lse(BﬁDdu’ dp ) < le™(fLsys )L,
1/p

_ Y
< e (s ) (5,0 S e ][ Py

By interpolating between (A.4) and (A.D), we get for every A € [0,7n), with ¢, a
constant depending on A,

r A
IS (—=) e rd
0% () (L, 1

By summing over ¢ > 0, we obtain

(f, ") <05 () a6,

ZZO \/% ZEB\/E
which is (H

1/p

6—th o e—th d,u
B

;D,;D)‘
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