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MODIFIED SCATTERING FOR THE CUBIC SCHRÖDINGER EQUATION

ON PRODUCT SPACES: THE NONRESONANT CASE

BENOÎT GRÉBERT, ÉRIC PATUREL AND LAURENT THOMANN

Abstract. We consider the cubic nonlinear Schrödinger equation on the spatial domain R×T
d,

and we perturb it with a convolution potential. Using recent techniques of Hani-Pausader-
Tzvetkov-Visciglia, we prove a modified scattering result and construct modified wave operators,
under generic assumptions on the potential. In particular, this enables us to prove that the
Sobolev norms of small solutions of this nonresonant cubic NLS are asymptotically constant.

1. Introduction

1.1. Motivation and backgrounds. In the last years, much effort has been done to under-
stand the weak turbulence phenomenon in Hamiltonian nonlinear dispersive PDEs. The central
question is the following: once we have proved the global well posedness of a PDE in a Sobolev
space Hs0 , we want to know whether

(i) the solutions remain bounded for all time and in all Sobolev norms, i.e.

‖u(t)‖s ≤ Cs‖u(0)‖s, ∀s ≥ s0

at least for small initial conditions (a strong stability results for the origin),
(ii) there exist initial conditions leading to unbounded solutions, i.e.

∃u(0) such that lim sup
t→+∞

‖u(t)‖s = +∞ for some s ≥ s0.

The first significant result in direction (ii) is due to Bourgain [6, Section 4] who showed a
polynomial growth of Sobolev norms for a nonlinear wave equation in 1d with periodic boundary
conditions. Later on, Colliander-Keel-Staffilani-Takaoka-Tao (see [14]), considered the cubic

nonlinear Schrödinger equation, on the two dimensional torus T2 =
(
R/(2πZ)

)2

i∂tu+∆u = |u|2u, (t, x) ∈ R× T
2 (1.1)

and proved that for any K ≥ 1 there exists a solution u and a time T such that ‖u(T )‖s ≥
K‖u(0)‖s. Of course, this result is weaker than the assertion (ii) but it suggests a possible
unbounded behavior for some solutions. After that, Guardia-Kaloshin (see [23]), improving
the dynamical step, proved that the time T satisfies a polynomial bound 0 < T < Kc for some
absolute constant c > 0. A maybe less intuitive extension is then obtained by M. Guardia
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2 BENOÎT GRÉBERT, ÉRIC PATUREL AND LAURENT THOMANN

(see [22]): he proves that this ”almost unbounded” behavior is not a consequence of the exact
resonances in (1.1), since it persists when one adds a small convolution potential V :

i∂tu+∆u+ V ⋆ u = |u|2u, (t, x) ∈ R× T
2. (1.2)

In fact, in [14] (resp. in [23, 22]) the authors proved that the solutions of (1.1) (resp. (1.2))
remain close to the solution of a finite dimensional (depending on K) resonant system and
they constructed an explicit solution vK of this finite dimensional dynamical system (which also
depends on K) satisfying ‖vK(T )‖s ≥ K‖vK(0)‖s.
However we could expect that, since the potential V generically kills the exact resonances, the
solutions of (1.2) would not follow the resonant dynamics. Actually in a series of paper initiated
by [1, 5], Bambusi-Grébert developed a Birkhoff normal form technic that shows that, in the
context of (1.2), assertion (i) is almost satisfied for a generic choice of V . Precisely they proved
a stability result of kind (i) for t ≤ Cε−M where ε = ‖u0‖s ≪ 1 and M is an arbitrary constant
fixed from the beginning (see also [4, 3, 21] for developments or [2, 20] for a simple presentation).
Notice that this stability result is even stronger in analytic regularity as conjectured in [10] and
proved in [17]: if the initial datum is analytic in a strip then the solution is bounded in a strip

of half width during a time of order ε−σ| ln ε|β where ε > 0 is the initial size of the solution and
0 < β < 1. Surprisingly, the result in [22] shows that the resonant behavior in (1.2) may coexist
with these almost stability results.

Let us also mention some interesting phenomena concerning the periodic Szegö equation
introduced by Gérard and Grellier [19]. Recently, in [18] they showed the alternative (ii) for
generic initial conditions, despite of an infinite number of conservation laws. Concerning the
Szegö equation on the real line, Pocovnicu [27] proved (ii) by giving an explicit example.

More recently Hani-Pausader-Tzvetkov-Visciglia considered in [24] the cubic nonlinear Schrödinger
equation on the wave-guide manifolds R× T

d

i∂tu+∆R×Tdu = |u|2u, (t, x, y) ∈ R× R× T
d, (1.3)

so they added a direction of diffusion in the PDE. Due to the dispersion along one variable, we
expect that this equation is less ”turbulent” than (1.1). Actually they proved that in the case
d = 1 the equation (1.3) satisfies the assertion (i) in the alternative above, and when 2 ≤ d ≤ 4
it satisfies the assertion (ii).

In this work we add a convolution potential V to (1.3), i.e. we consider

i∂tu+∆R×Tdu+ V ⋆ u = |u|2u, (t, x, y) ∈ R× R× T
d (1.4)

and we prove that for generic choice of the potential V assertion (i) holds true. So in that ”less
turbulent” case, the exact resonances are determinant to decide the limit dynamics: when we
kill the exact resonances we turn off the weak turbulence phenomenon. As proven in [24], in
the case d = 1, the resonances are trivial, and this leads to (i). One difficulty in the study
of (1.3) and of (1.4) is that the nonlinearity is long range and thus may induce strong nonlinear
interactions. Here the range has to be computed with respect to the dimension of the Euclidian
component of the domain: hence a cubic nonlinearity is long range on R

d′ × T
d for d′ ≤ 1.

Let us recall the heuristics which leads to define the notion of short and long range of the
nonlinearity |u|pu. If one believes that the solution of NLS decays like the linear evolution group
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(‖e
it∆

Rd
′
×Tdu0‖L∞ ∼ t−d′/2 when t −→ +∞), then one says that the nonlinearity is short range

if the potential |u|p ∼ t−pd′/2 is integrable at infinity.
The control of higher order Sobolev norms (i.e. assertion (i)) in the case of short range nonlin-

earities may be obtained by global in time Strichartz inequalities (see e.g. [11, p.7, Theorem 2]).
In [32], Tzvetkov and Visciglia recently proved scattering results, with large initial conditions,
on R

d × T. This shows that (i) may also hold true on product manifolds and for large initial
conditions. For long range nonlinearities on Euclidean spaces, given initial data of arbitrary size
(at least in the defocusing case), it is possible to obtain polynomial bounds ([6, 7, 30, 31, 12, 28])

like O(tα(s−1)) for the Hs norm, with s > 1 and α > 0 depending on the context, a notable
exception being integrable NLS (cubic NLS on R), where these norms are bounded in time. On
compact domains, such studies for NLS give rise to similar polynomial bounds ([6, 31, 29, 13]).
Our main result in this paper is to prove assertion (i) under a smallness assumption on the
initial data. We guess that an adaptation of the upside-down I-method, which gave some of the
most accurate results quoted before, could be done in our context and give polynomial bounds
for Sobolev norms of any order, without smallness assumption on the initial data.

Finally, observe that even for linear Schrödinger equations on compact manifolds we only
have in general subpolynomial bounds (O(tε) for every ε > 0, or under analytic assumptions
logarithmic bounds). See [8, 9, 34, 15].

In [24], the proof consists in establishing a modified scattering and in constructing modified
wave operators. It turns out that the modified asymptotic dynamics are dictated by the resonant
part of (1.3) and that this resonant system has solutions with infinitely growing high Sobolev
norms Hs. In our case, we can follow the same strategy but, since we add the convolution
potential V , the modified asymptotic dynamics are dictated by a non resonant system which
does not allow interaction between different energy levels.

Notice that when one adds a second direction of diffusion, i.e. considering (1.3) on R
2 × T

d,
then the solutions scatter to constant solutions (see Tzvetkov-Visciglia [33]) and thus we are
again in case (i), which is coherent with the short range of the nonlinearity. So (1.3) on R× T

d

seems to be a limit case with respect to the alternative above. In this perspective, we can
conjecture that (1.1) is weak turbulent in the sense of (ii) (actually more turbulent than (1.3)).
The case of (1.2) is less clear, in particular in view of the existence of plenty of linearly stable
KAM tori proved in [16].

1.2. Statement of the result. Denote by T
d =

(
R/(2πZ)

)d
. In this this work we study

the asymptotic behavior of the cubic defocusing nonlinear Schrödinger equation posed on the
wave-guide manifolds R× T

d,

{
i∂tU +∆R×TdU + V ⋆ U = |U |2U, (t, x, y) ∈ R× R× T

d,

U(0, x, y) = U0(x, y),
(1.5)

where the unknown U is a complex-valued function, and where V is a generic perturbation which
only depends on the variable y. In the sequel we denote by D the whole linear operator

D = ∆R×Td + V ⋆ = ∂2
x +∆Td + V ⋆ .
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For p ∈ Z
d, we denote by V̂p the Fourier coefficients of V . The eigenvalues of the operator

∆Td + V ⋆ are

λp := −|p|2 + V̂p, p ∈ Z
d.

In this paper we assume that V belongs to the following space (m > d/2, R > 0)

Wm =
{
V (x) =

∑

a∈Zd

vae
ia·x | v′a :=

va(1 + |a|)m

R
∈ [−1/2, 1/2] for any a ∈ Z

d
}

(1.6)

that we endow with the product probability measure1.

In the sequel we suppose that the following non resonance assumption is satisfied

Assumption 1.1. (Non resonance assumption): There exist c > 0 and γ > 0 such that for

all (p, q, r, s) ∈ Z
d with

{
|p|, |r|

}
6=

{
|q|, |s|

}
one has

∣∣λp − λq + λr − λs

∣∣ ≥ c

ν3(p, q, r, s)γ
(1.7)

where ν3(p, q, r, s) is the third largest number among |p|, |q|, |r|, |s|.

This condition means that if
∣∣λp − λq + λr − λs

∣∣ is small, then at least three terms among{
|p|, |q|, |r|, |s|

}
are large. Such a condition is well-adapted to control quadri-linear terms (see

the proof of Lemma 2.2).
It turns out that Assumption 1.1 is generic in the following sense:

Lemma 1.2. Fix m > d/2, R > 0. There exists a set Vm ⊂ Wm of measure 1 such that, for

any µ ∈ Vm, Assumption 1.1 holds true.

The proof is quite standard and is a consequence of [17, Proposition 2.7] (see also [5]).

We now define the limit system

i∂τG(τ) = R[G(τ), G(τ), G(τ)], (1.8)

where

FR×Td R[G,G,G](ξ, p) =
∑

p1+p3=p+p2
{|p1|,|p3|}={|p|,|p2|}

Ĝ(ξ, p1)Ĝ(ξ, p2)Ĝ(ξ, p3).

Here Ĝ(ξ, p) = FR×TdG(ξ, p) is the Fourier transform of G at (ξ, p) ∈ R× Z
d. Observe that the

dependence on ξ is merely parametric. The system (1.8) is the resonant system for the cubic NLS
equation on T

d, with the operator ∆Td + V ⋆, provided that the non resonant assumption (1.7)
is satisfied.

In the sequel we fix N0 = N0(d, γ) a large integer which will be given by the proof, which only
depends on the dimension d and on the parameter γ > 0 which appears in (1.7). For N ≥ N0

we define the Banach spaces S and S+ by the norms

‖F‖S := ‖F‖HN
x,y

+ ‖xF‖L2
x,y

, ‖F‖S+ := ‖F‖S + ‖(1− ∂xx)
4F‖S + ‖xF‖S .

Following the same line as in [24], we prove that the solutions of (1.5) scatter to solutions of
the resonant system (1.8):

1Here, for a = (a1, . . . , ad) ∈ Z
d, |a|2 = a

2
1 + · · ·+ a

2
d.
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Theorem 1.3. Let 1 ≤ d ≤ 4 and N ≥ N0. There exists ε = ε(N, d) > 0 such that if U0 ∈ S+

satisfies

‖U0‖S+ ≤ ε,

and if U(t) solves (1.5) with initial data U0, then U ∈ C((0,+∞);HN ) exists globally and exhibits

modified scattering to its resonant dynamics (1.8) in the following sense: there exists G0 ∈ S
such that if G(t) is the solution of (1.8) with initial data G(0) = G0, then

‖U(t)− eitDG(π ln t)‖HN (R×Td) −→ 0 as t −→ +∞,

and

‖U(t)‖L∞
x H1

y
≤ C(1 + |t|)−

1

2 .

At this stage we observe that the dynamics of (1.8) are bounded (see Lemma 3.4). Actu-
ally (1.8) is globally well-posed in H1

x,y for 1 ≤ d ≤ 4, and all HN
x,y norms are conserved by the

flow:
‖G(t)‖HN

x,y
= ‖G0‖HN

x,y
.

As a consequence we obtain our main result

Corollary 1.4. Let 1 ≤ d ≤ 4 and N ≥ N0. There exists ε = ε(N, d) > 0 such that if U0 ∈ S+

satisfies

‖U0‖S+ ≤ ε,

and if U(t) solves (1.5) with initial data U0, then U ∈ C((0,+∞);HN ) exists globally and

‖U(t)‖HN
x,y

≤ CN ε

for some constant CN depending only on V and N . Moreover, ‖U(t)‖HN
x,y

tends to a constant

when t −→ +∞.

This shows that every solution to (1.5) issued from a small and smooth initial condition has
asymptotically constant Sobolev norms.

We also notice that, as in [24], we can construct modified wave operators in the following
sense:

Theorem 1.5. Let 1 ≤ d ≤ 4 and N ≥ N0. There exists ε = ε(N, d) > 0 such that if G0 ∈ S+

satisfies

‖G0‖S+ ≤ ε,

and G(t) solves (1.8) with initial data G0, then there exists U ∈ C((0,∞);HN ) a solution of (1.5)
such that

‖U(t)− eitDG(π ln t)‖HN (R×Td) −→ 0 as t −→ +∞.

There are analogue statements in the limit t −→ −∞.

As we mentioned previously, the analogues of Theorems 1.3 and 1.5 in the case V = 0 were
proved in [24] (see also [25]). We show here that the same strategy as [24] also applies in a case
where there are small divisors. Most of the arguments of [24] apply mutatis mutandis and we
will rely on them. In this text, we focus on the differences, namely on the control of the terms
containing small divisors.

In [24], the regularity condition was N0 = 30. Here, the corresponding N0 is not explicit, and
possibly large: it depends on γ which appears in (1.7) and Lemma 1.2. It would be interesting
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to understand what happens to less regular initial conditions, namely the case N0 ≥ 1. But this
seems to be a very difficult question.

It is likely that in the previous statements we can avoid the restriction d ≤ 4. This assumption
was needed in [24], because this was the condition such that the corresponding limit system was
well-posed in the energy space, namely H1. Here instead, we can use that every Hs-norm is
invariant by the flow of the limit system (1.8), and we expect that we can follow the analysis
in [24] and replace H1 by Hs for s > d/2.

1.3. Notations. For the reader’s convenience, we keep most of the notations used in [24], and
we recall them below.

• Fourier transforms and frequency localisation: We define the Fourier transform on R by

ĝ(ξ) :=
1

2π

∫

R

e−ixξg(x)dx.

Similarly, if F (x, y) depends on (x, y) ∈ R × T
d, F̂ (ξ, y) denotes the partial Fourier transform

in x. The Fourier coefficient of h : Td → C is given by

hp :=
1

(2π)d

∫

Td

h(y)e−i〈p,y〉dy, p ∈ Z
d.

The full spacial Fourier transform reads

(FF ) (ξ, p) =
1

(2π)d

∫

Td

F̂ (ξ, y)e−i〈p,y〉dy = F̂p(ξ).

We define the Littlewood-Paley projections in the x variable by

(FQ≤NF ) (ξ, p) = ϕ(
ξ

N
) (FF ) (ξ, p),

where ϕ ∈ C∞
c (R), ϕ(x) = 1 when |x| ≤ 1 and ϕ(x) = 0 when |x| ≥ 2. Next, we define

QN = Q≤N −Q≤N/2, Q≥N = 1−Q≤N/2.

• Resonant sets: We define the zero momentum set by

M :=
{
(p, q, r, s) ∈ Z

4d : p− q + r − s = 0
}
, (1.9)

and the resonant set by

Γ0 :=
{
(p, q, r, s) ∈ M : λp − λq + λr − λs = 0

}
.

Under Assumption 1.1 on (µj)j≥0 we have

Γ0 =
{
(p, q, r, s) ∈ M : (|p| = |q| and |r| = |s|) or (|p| = |s| and |q| = |r|)

}
.

• Structure of the nonlinearity: Let us define the trilinear form N t by

N t[F,G,H] := e−itD
(
eitDF · e−itDG · eitDH

)
. (1.10)

Let U(t, x, y) = eitDF (t), then we see that U solves (1.5) if and only if F solves

i∂tF (t) = N t[F (t), F (t), F (t)].
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A direct computation shows that

FN t[F,G,H](ξ, p) =
∑

(p,q,r,s)∈M

eit[λp−λq+λr−λs]

∫

R2

eit2ηκF̂q(ξ−η)Ĝr(ξ−η−κ)Ĥs(ξ−κ)dκdη .

The resonant part of the nonlinearity is defined by

FR[F,G,H](ξ, p) :=
∑

(p,q,r,s)∈Γ0

F̂q(ξ)Ĝr(ξ)Ĥs(ξ). (1.11)

• Norms: We consider the following Sobolev norm on sequences

‖{ap}‖
2
hs
p
:=

∑

p∈Zd

[
1 + |p|2

]s
|ap|

2.

In the sequel we will need the norm on functions F : R× T
d −→ C

‖F‖2Z := sup
ξ∈R

[
1 + |ξ|2

]2 ∑

p∈Zd

[
1 + |p|2

]
|F̂p(ξ)|

2 = sup
ξ∈R

[
1 + |ξ|2

]2
‖F̂p(ξ)‖

2
h1
p
.

2. Structure of the nonlinearity

In this section we explain how we can adapt the method of [24] in order to prove Theorems 1.3
and 1.5. The first step is to understand well the structure of the nonlinearity N t in (1.10), and
this is the content of Proposition 2.1 below. With this result at hand, Theorems 1.3 and 1.5 are
proven exactly as in [24, Sections 5 and 6] by fixed point arguments. Therefore we only focus
on the proof of Proposition 2.1.

We show here that the nonlinear term can be decomposed into an effective term, plus a
remainder, which is - roughly speaking- integrable in time. Namely we can write

N t[F,G,H] =
π

t
R[F,G,H] + E t[F,G,H]

where R is given in (1.11).
For some small enough absolute constant δ > 0, we define the space-time norms

‖F‖XT
:= sup

0≤t≤T

{
‖F (t)‖Z + (1 + |t|)−δ‖F (t)‖S + (1 + |t|)1−3δ‖∂tF (t)‖S

}
,

‖F‖X+

T
:= ‖F‖XT

+ sup
0≤t≤T

{
(1 + |t|)−5δ‖F (t)‖S+ + (1 + |t|)1−7δ‖∂tF (t)‖S+

}
.

The next result is an analogue of [24, Proposition 3.1] and reads as follows

Proposition 2.1. Assume that for T ≥ 1, F,G,H : R → S satisfy

‖F‖XT
+ ‖G‖XT

+ ‖H‖XT
≤ 1. (2.1)

Then for t ∈ [T/4, T ], we can write

E t[F (t), G(t),H(t)] = E t
1 + E t

2 ,
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where the following bounds hold uniformly in T ≥ 1,

T−δ‖

∫ T

T/2
Ei(t)dt‖S . 1, i = 1, 2,

T 1+δ sup
T/4≤t≤T

‖E1(t)‖Z . 1,

T
1

10 sup
T/4≤t≤T

‖E3(t)‖S . 1,

where E2(t) = ∂tE3(t). Assuming in addition

‖F‖X+

T
+ ‖G‖X+

T
+ ‖H‖X+

T
≤ 1, (2.2)

we also have that

T−5δ‖

∫ T

T/2
Ei(t)dt‖S+ . 1, T 2δ‖

∫ T

T/2
Ei(t)dt‖S . 1, i = 1, 2.

We now explain how we can prove this result.
To begin with, for T ≥ 1, we decompose the nonlinearity N t according to the high and the

low frequencies in the x-variable

N t =
∑

A,B,C

max(A,B,C)≥T
1
6

N t[QAF,QBG,QCH] +
∑

A,B,C

max(A,B,C)≤T
1
6

N t[QAF,QBG,QCH].

The first term is treated in [24, Lemma 3.2]. We turn to the second one, and in the sequel we
assume that

F = Q≤T 1/6F, G = Q≤T 1/6G, H = Q≤T 1/6H . (2.3)

We decompose the second term by taking into account the resonances w.r.t to the y-variable,
namely ∑

A,B,C

max(A,B,C)≤T
1
6

N t[QAF,QBG,QCH] = N t
0 [F,G,H] +N t

nr[F,G,H],

where N t
0 is defined by

FN t
0 [F,G,H](ξ, p) :=

∑

(p,q,r,s)∈Γ0

∫

R2

eit2ηκF̂q(ξ − η)Ĝr(ξ − η − κ)Ĥs(ξ − κ)dκdη .

The quantity N t
0 contains the resonant interactions of the nonlinearity. Observe that under

Assumption 1.1 there are much fewer resonances than in the case V = 0, therefore the anal-
ysis of [24] also applies in our context. More precisely, the arguments of [24, Lemma 3.7 and
Remark 3.8] show that this term can be written

N t
0 [F,G,H] =

π

t
R[F,G,H] + E t[F,G,H],

where E t satisfies the estimates of Proposition 2.1. We also refer to the end of the proof of [24,
Proposition 3.1] for more details.

The contribution of N t
nr is slightly different in our case than in the case considered in [24],

because of the presence of small denominators. In this context, we are able to prove the following
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Lemma 2.2. For T ≥ 1, assume that F , G, H: R → S satisfy (2.1) and (2.3). Then for

t ∈ [T/4, T ], we can write

N t
nr[F (t), G(t),H(t)] = Ẽ t

1 + E t
2,

where it holds that, uniformly in T ≥ 1,

T 1+2δ sup
T/4≤t≤T

‖Ẽ1(t)‖S . 1, T 1/10 sup
T/4≤t≤T

‖E3(t)‖S . 1,

where E2(t) = ∂tE3(t). Assuming in addition that (2.2) holds we have

T 1+2δ sup
T/4≤t≤T

‖Ẽ1(t)‖S+ . 1, T 1/10 sup
T/4≤t≤T

‖E3(t)‖S+ . 1.

Proof. To begin with, let us recall the following estimate
∥∥∥

∑

(q,r,s) : (p,q,r,s)∈M

c1qc
2
rc

3
s

∥∥∥
ℓ2p

. min
σ∈S3

‖cσ(1)‖ℓ2p‖c
σ(2)‖ℓ1p‖c

σ(3)‖ℓ1p , (2.4)

which a direct consequence of Young’s convolution estimates.

To prove the lemma, we start by decomposing N t
nr along the non-resonant level sets as follows:

let ϕ ∈ C∞
0 (R) be such that ϕ ≡ 1 near 0, then define

Ot
1[f, g, h](ξ) :=

∫

R2

e2itηκ(1− ϕ(t
1

4 ηκ))f̂ (ξ − η)ĝ(ξ − η − κ)ĥ(ξ − κ)dηdκ,

Ot
2[f, g, h](ξ) :=

∫

R2

e2itηκϕ(t
1

4 ηκ)f̂ (ξ − η)ĝ(ξ − η − κ)ĥ(ξ − κ)dηdκ.

N t
nr[F,G,H] = N t

nr,1[F,G,H] +N t
nr,2[F,G,H] (2.5)

FN t
nr,j[F,G,H](ξ, p) =

∑

(p,q,r,s)∈Γnr

eitωOt
j [Fq, Gr,Hs](ξ),

where we used the notation Γnr = M\Γ0 for the non resonant terms in M.

• The first term N t
nr,1[F,G,H] in (2.5) can be controlled exactly as [24], this is the content

of [24, Lemma 3.6].

• We now control the term N t
nr,2[F,G,H]. In the sequel we write

{
F,G,H

}
=

{
F a, F b, F c

}

and we assume that (2.3) holds true. Then we define

‖f‖Y := ‖〈x〉
9

10 f‖L2
x
+ ‖f‖

H
3N
4

x

,

and we note that if N > N0(d, γ) large enough we have
∑

p∈Zd

‖|p|γFp‖Y . ‖F‖S . (2.6)

Let t ≥ T/4. By [24, Estimate (3.20)] we have the bound

‖Ot
2[F

a, F b, F c]‖L2
ξ
. (1 + |t|)−1+δ min

σ∈S3

‖F σ(a)‖L2
x
‖F σ(b)‖Y ‖F

σ(c)‖Y . (2.7)
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We write

eitωOt
2[f, g, h] = ∂t

(eitω
iω

Ot
2[f, g, h]

)
−

eitω

ω

(
∂tO

t
2

)
[f, g, h]

−
eitω

iω
Ot

2[∂tf, g, h]−
eitω

iω
Ot

2[f, ∂tg, h] −
eitω

iω
Ot

2[f, g, ∂th], (2.8)

where
(
∂tO

t
2

)
[f, g, h](ξ) :=

∫

R

∂t

(
e2itηκϕ(t

1

4 ηκ)
)
f̂(ξ − η)ĝ(ξ − η − κ)ĥ(ξ − κ)dηdκ.

We define E3 by

FE3(ξ, p) :=
∑

(p,q,r,s)∈Γnr

eitω

iω
Ot

2[Fq, Gr,Hs](ξ).

We now estimate the contribution of each term in (2.8). Here we face an additional difficulty,
since |ω| is not bounded from below by a constant as in [24]. Therefore we will need Assump-
tion 1.1.

⋆ We first consider the term FxE3. By [24, Lemma 7.4] it is enough to prove that

‖E3‖L2
x,y

. (1 + |t|)−1+δ min
σ∈S3

‖F σ(a)‖L2
x,y

‖F σ(b)‖S‖F
σ(c)‖S .

By symmetry, the previous inequality will be implied by

‖E3‖L2
x,y

. (1 + |t|)−1+δ‖F a‖L2
x,y

‖F b‖S‖F
c‖S , (2.9)

and we now prove this estimate. Let K ∈ L2
ξ,p(R × Z

d), then

〈K,FE3〉L2
ξ,p×L2

ξ,p
≤

∑

(p,q,r,s)∈Γnr

∣∣〈Kp,
1

ω
Ot

2[F
a
q , F

b
r , F

c
s ]〉L2

ξ×L2
ξ

∣∣

≤
∑

(p,q,r,s)∈Γnr

‖Kp‖L2
ξ

∥∥ 1
ω
Ot

2[F
a
q , F

b
r , F

c
s ]
∥∥
L2
ξ

Then, using (1.7), we can assume that on Γnr, |ω| ≥ c|r|−γ or |ω| ≥ c|s|−γ , therefore by (2.7)

〈K,FE3〉L2
ξ,p×L2

ξ,p
.

∑

(p,q,r,s)∈Γnr

‖Kp‖L2
ξ

(
‖Ot

2[F
a
q , |r|

γF b
r , F

c
s ]‖L2

ξ
+ ‖Ot

2[F
a
q , F

b
r , |s|

γF c
s ]‖L2

ξ

)

. (1 + |t|)−1+δ
∑

(p,q,r,s)∈Γnr

‖Kp‖L2
ξ
‖F a

q ‖L2
x

∥∥|r|γF b
r

∥∥
Y
‖|s|γF c

s ‖Y .

The estimate (2.9) then follows from an application of (2.4) and (2.6).

⋆ Since (1+ |t|)1/4(∂tO
t
2) satisfies similar estimates as Ot

2, the second term in the right hand-
side of (2.8) can be estimated as E3 and is therefore acceptable.

⋆ The contribution of the terms in the second line of (2.8) is estimated as E3 and by using
the definition of the XT ∗ norm.

This ends the estimation of Ot
2 and the proof of Lemma 2.2. �



MODIFIED SCATTERING ON R× Td : THE NONRESONANT CASE 11

3. The resonant system

In this section, we study the resonant system which dictates the dynamics of (1.5). For p ∈ Z,
we consider the system

i∂tap(t) =
∑

(p,q,r,s)∈Γ0

aq(t)ar(t)as(t) =: R[a(t), a(t), a(t)]p. (3.1)

This is a Hamiltonian system for the symplectic form

Ω({ap}, {bq}) = Im
[ ∑

p∈Zd

apbp

]
= Re〈−i{ap}, {bp}〉ℓ2p×ℓ2p

and Hamiltonian
〈R(a, a, a), a〉ℓ2p×ℓ2p

=
∑

(p,q,r,s)∈Γ0

apaqaras.

The next result gives a geometrical description of the resonant set, but will not be used in
the sequel.

Lemma 3.1. The points (p, q, r, s) ∈ Γ0 if and only if {p, q, r, s} are the successive edges of

a rectangle such that the origin belongs to the perpendicular bisector hyperplane of one of its

vertices.

Proof. The claim follows from elementary geometry: the condition p−q+r−s = 0 imposes that
the four points form a parallelogram. The resonance condition implies that the origin belongs
to the perpendicular bisectors of two parallel vertices. Since these hyperplanes are parallel and
intersect at the origin, they must coincide, and this implies the orthogonality of the vertices. �

3.1. First integrals and wellposedness.

Lemma 3.2. Let R be defined as in (3.1). For every sequences (a1)p, (a
2)p, (a

3)p indexed by

Z
d with 1 ≤ d ≤ 4

‖R[a1, a2, a3]‖ℓ2p ≤ Cd min
σ∈S3

‖aσ(1)‖ℓ2p‖a
σ(2)‖h1

p
‖aσ(3)‖h1

p
. (3.2)

and consequently, for any s ≥ 1,

‖R[a1, a2, a3]‖hs
p
≤ Cσ,d

∑

σ∈S3

‖aσ(1)‖hs
p
‖aσ(2)‖h1

p
‖aσ(3)‖h1

p
. (3.3)

Proof. Let a0 ∈ ℓ2p and compute

|〈a0, R[a1, a2, a3]〉ℓ2p | ≤
∑

(p,q,r,s)∈Γ0

|a0p||a
1
q ||a

2
r ||a

3
s|.

Then (3.2) follows from [24, Lemma 7.1], since
∑

(p,q,r,s)∈Γ0

|a0p||a
1
q ||a

2
r ||a

3
s| ≤ C

∑

p+r=q+s
|p|2+|r|2=|q|2+|s|2

|a0p||a
1
q ||a

2
r ||a

3
s| .

Estimate (3.3) comes from the Leibniz rule proved in [24, Lemma 7.4]. �

The resonant system is well defined for initial data in h1p:
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Lemma 3.3. Let 1 ≤ d ≤ 4. For any a(0) ∈ h1p, there exists a unique global solution

u ∈ C1(R;h1p) of (3.1). In addition, if a(0) ∈ hsp for s ≥ 1, then the solution belongs to C1(R;hsp),
and in this case the hsp norms are constants of motion.

It would be interesting to know whether the equation (3.1) is well posed in H1 for any d ≥ 1.
One can also ask if the equation (3.1) is wellposed in L2. Using the conservation laws, it is quite
easy to construct solutions in L2 by the means of compactness arguments, but the uniqueness
is unclear.

Proof. From Lemma 3.2 we observe that the mapping a 7→ R [a, a, a] is locally Lipschitz in h1p
uniformly on bounded sets. A contraction mapping argument gives local well-posedness in hsp
for any s ≥ 1, which is extended to a global statement in h1p by the conservation of mass

mass(a) =
∑

p∈Zd

|ap|
2 (3.4)

and the conservation of energy

energy(a) =
∑

p∈Zd

|p|2|ap|
2. (3.5)

Finally observe that the quantities

AN (a) =
( ∑

p∈Zd

|p|2=N

|ap|
2
) 1

2

are also quantities conserved by the dynamics of (3.1): indeed, we have

d

dt

(
A2

N (a)
)

=
∑

p∈Zd

|p|2=N

(
∂tapap + ap∂tap

)

=
∑

p∈Zd

|p|2=N

(
− i

∑

(q,r,s),
(p,q,r,s)∈Γ0

apaqaras + i
∑

(q,r,s),
(p,q,r,s)∈Γ0

apaqaras

)

= −2ℑ
∑

p∈Zd

|p|2=N

∑

(q,r,s),
(p,q,r,s)∈Γ0

apaqaras,

and this last sum is real: for p such that |p|2 = N , if (q, r, s) are such that (p, q, r, s) ∈ Γ0,
then |q|2 = N for example (the case |s|2 = N is similar), and the sum also includes the term
apaqaras corresponding to the rectangle (q, p, s, r) ∈ Γ0, which gives the preservation of AN (a).
This implies in particular that all hsp norms are preserved for s ≥ 0:

‖a‖2hs
p
:=

∑

p∈Zd

[
1 + |p|2

]s
|ap|

2
∑

N≥0

[
1 +N2

]s ∑

p∈Zd

|p|2=N

|ap|
2 =

∑

N≥0

[
1 +N2

]s
A2

N (a),

which completes the proof. �
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3.2. Estimation of solutions to the resonant system.

Lemma 3.4. The equation (1.8) is wellposed for initial conditions in Z or in S. Moreover, for

all N ≥ 0 and all t ≥ 0

‖G(t)‖Z = ‖G0‖Z ,

‖G(t)‖HN
x,y

= ‖G0‖HN
x,y

. (3.6)

Proof. The existence proof follows the lines of [24, Lemma 4.3]. The two equalities in (3.6)
directly follow from the first integrals (3.4) and (3.5), the dependance in ξ being parametric in
the system (1.8). �

The result of Corollary 1.4 is a direct consequence of (3.6).
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