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Abstract
Probabilistic logic programming (PLP) combines logic programs and probabilities. Due to 
its expressiveness and simplicity, it has been considered as a powerful tool for learning and 
reasoning in relational domains characterized by uncertainty. Still, learning the parameter 
and the structure of general PLP is computationally expensive due to the inference cost. We 
have recently proposed a restriction of the general PLP language called hierarchical PLP 
(HPLP) in which clauses and predicates are hierarchically organized. HPLPs can be con-
verted into arithmetic circuits or deep neural networks and inference is much cheaper than 
for general PLP. In this paper we present algorithms for learning both the parameters and 
the structure of HPLPs from data. We first present an algorithm, called parameter learning 
for hierarchical probabilistic logic programs (PHIL) which performs parameter estimation 
of HPLPs using gradient descent and expectation maximization. We also propose structure 
learning of hierarchical probabilistic logic programming (SLEAHP), that learns both the 
structure and the parameters of HPLPs from data. Experiments were performed compar-
ing PHIL and SLEAHP with PLP and Markov Logic Networks state-of-the art systems for 
parameter and structure learning respectively. PHIL was compared with EMBLEM, Prob-
Log2 and Tuffy and SLEAHP with SLIPCOVER, PROBFOIL+, MLB-BC, MLN-BT and 
RDN-B. The experiments on five well known datasets show that our algorithms achieve 
similar and often better accuracies but in a shorter time.
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1  Introduction

Probabilistic logic programs (PLPs) extend logic programs (LPs) with probabilities 
(Riguzzi, 2018). Due to its expressiveness, PLPs have been, for more than two decades 
now, used for modeling, learning and reasoning in domains where uncertainty plays a 
crucial role, such as bioinformatics (Mørk & Holmes, 2012; De Raedt et  al., 2007), 
natural language processing (Riguzzi et al., 2017; Nguembang Fadja & Riguzzi, 2017) 
and link prediction in social networks (Meert et al., 2010) just to cite a few.

Despite its expressiveness and simplicity, learning the parameters and the structure 
of general PLPs is still a computationally expensive task due to the high cost of infer-
ence often performed many times during the learning process. In Nguembang Fadja 
et  al. (2017) we proposed a new language called hierarchical probabilistic logic pro-
gramming (HPLP) which is a restriction of the language of logic programs with anno-
tated disjunctions (Vennekens et al., 2004) in which clauses and predicates are hierar-
chically organized. HPLPs can be translated in an efficient way into arithmetic circuits 
(ACs) from which computing the probability of queries is linear in the number of nodes 
of the circuit. This makes inference and learning in HPLPs faster than for general PLPs.

In this paper, we present and implement algorithms for learning both the parameters 
and the structure of HPLPs from data. In order to estimate the parameters of an HPLP, 
the algorithm, parameter learning for hierarchical probabilistic logic programs (PHIL), 
first translates the HPLP into a set of arithmetic circuits (ACs) sharing parameters and 
then applies gradient descent or expectation maximization (EM) over the ACs. The gra-
dients are computed by evaluating the ACs bottom-up and top-down and the expecta-
tions by performing message passing over the ACs. Besides, we present an algorithm, 
called structure learning of hierarchical probabilistic logic programming (SLEAHP), 
that learns both the structure and the parameters of HPLP from data. SLEAHP gener-
ates a large HPLP from a bottom clause obtained from a language bias as described in 
Bellodi and Riguzzi (2015) and subsequently applies a regularized version of PHIL on 
the generated HPLP to cut clauses with a small value of their parameter.

The paper is organized as follows: Sect. 2 defines general concepts underlying first 
order logic and logic programming. Section  3 introduces general notions of PLP and 
investigates inference in general PLP. Then, hierarchical probabilistic logic programs 
are described in Sect. 4. Sects. 5 and 6 present parameter and structure learning respec-
tively. Related work is discussed in Sect. 7. Experiments are presented in Sects. 8 and 9 
concludes the paper.

2 � Background

Before describing probabilistic logic programming (PLP) and hierarchical PLP (HPLP) in 
the following sections, let us define some basic concepts of first order logic (FOL) and 
logic programming (LP). Readers familiar with these concepts can safely skip this section.

2.1 � First order logic

Given a domain of interest, a constant identifies an individual entity in the domain. 
A variable refers to objects in the domain. A function symbol (or functor) univocally 
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identifies an object of the domain as a function of n other (called arity) objects. A predi-
cate symbol is a generic relation (which can be true or false) among n objects.

A term is a variable, a constant, or a functor, f, applied to terms, f (t1, t2,… , tn) . An atom is 
a predicate, p, applied to terms, p(t1, t2,… , tn) . A literal is an atom or its negation. A formula 
is built from atoms using universal and existential quantifier ( ∃,∀ ) and logical connectives 
( ¬,∨,∧,→,↔ ). A FOL theory is a conjunction of formulas. An expression (literal, term or 
formula) is ground if it does not contain any variable. A clause is a disjunction of literals with 
all variables universally quantified with scope the entire disjunction. A clause with exactly one 
positive literal is called definite clause.

The Herbrand universe of a theory T is the set of all ground terms constructed by using 
the function symbols and constants in T. If the theory does not contain function symbols, the 
Herbrand universe is finite. The Herbrand base of a theory T is the set of all ground atoms 
obtained from predicates appearing in T and terms of its Herbrand universe. If the theory does 
not contain function symbols, the Herbrand base is finite as well. A Herbrand interpretation 
is an assignment of a truth value to all atoms in the Herbrand base. An interpretation is a 
(Herbrand) model of a theory T, if all the formulas of T are evaluated to true with respect the 
interpretation.

2.2 � Logic programming

A definite logic program (LP), P, is a set of definite clauses represented as

where the head of the clause, h, is an atom and its body, b1,… , bn , is a conjunction of 
atoms. A fact is a definite clause with empty body and is written h. For definite clauses, 
Herbrand models have an important property: the intersection of a set of Herbrand models 
of P is still a Herbrand model of P. The intersection of all Herbrand models is called the 
minimal Herbrand model (MHM) of P. Intuitively, the MHM is the set of all ground atoms 
that are entailed by the LP.

A Normal LP allows negative literals in the body of clauses. A normal clause is repre-
sented as

where h, b1,… , bn, c1 … cm are atoms. The literals not ci for i = 1,… ,m are default nega-
tion iterals and are different from classical truth-functional logical negative literals ¬ci . 
There are different semantics for default negation including Clark’s completion (1978), sta-
ble models (Gelfond & Lifschitz, 1988) and well-founded semantics (Przymusinski, 1989; 
Van Gelder et  al., 1991). The well-founded semantics assigns a three-valued model to a 
program, i.e., it identifies a three-valued interpretation as the meaning of the program. In 
this paper we use the well-founded semantics for range restricted normal programs. In such 
programs, variables appearing in the head of a clause must appear in positive literals in its 
body.

h ∶ −b1,… , bn

h ∶ −b1,… , bn, not c1 … not cm.
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3 � Probabilistic logic programming

Probabilistic Logic Programming (PLP) combines Logic Programming with probability. PLP 
under the distribution semantics has been shown expressive enough to represent a wide variety 
of domains characterized by uncertainty (Alberti et  al., 2016; Riguzzi et  al., 2016; Alberti 
et al., 2017). A PLP under the distribution semantics defines a probability distribution over 
normal logic programs called instances or worlds. Each world is assumed to have a total well-
founded model. The distribution is extended to queries and the probability of a query is com-
puted by marginalizing the joint distribution of the query and the worlds. We consider in this 
paper a PLP language with a general syntax called Logic Programs with Annotated Disjunc-
tions (LPADs) (Vennekens et al., 2004).

Programs in LPADs allow alternatives in the head of clauses. Each clause head is a dis-
junction of atoms annotated with probabilities. Consider a program P with p clauses: 
P = {C1,… ,Cp} . Each clause Ci takes the form:

where hi1,… , hini are logical atoms, bi1,… , bimi
 are logical literals and �i1,… ,�ini are real 

numbers in the interval [0, 1] that sum up to 1. bi1,… , bimi
 is indicated with body(Ci) . Note 

that if ni = 1 the clause corresponds to a non-disjunctive clause. We also allow clauses 
where 

∑ni
k=1

𝜋ik < 1 : in this case, the head of the annotated disjunctive clause implicitly 
contains an extra atom null that does not appear in the body of any clause and whose 
annotation is 1 −

∑ni
k=1

�ik . We denote by ground(P) the grounding of an LPAD P, i.e. the 
replacement of all variables with constants. We consider here programs without function 
symbols so ground(P) is always finite.

Each grounding Ci�j of a clause Ci corresponds to a random variable Xij with values 
{1,… , ni} where ni is the number of head atoms of Ci . The random variables Xij are independ-
ent of each other. An atomic choice (Poole, 1997) is a triple (Ci, �j, k) where Ci ∈ P , �j is a 
substitution that grounds Ci and k ∈ {1,… , ni} identifies one of the head atoms. In practice 
(Ci, �j, k) corresponds to an assignment Xij = k.

A selection � is a set of atomic choices that, for each clause Ci�j in ground(P), contains an 
atomic choice (Ci, �j, k) . Let us indicate with SP the set of all selections. A selection � iden-
tifies a normal logic program l� defined as  l� = {(hik ∶− body(Ci))�j|(Ci, �j, k) ∈ �} . l� is 
called an instance or possible program of P. Since the random variables associated to ground 
clauses are independent, we can assign a probability to instances:

We consider only sound LPADs where, for each selection � in SP , the well-founded model 
of the possible program l� chosen by � is two-valued. We write l𝜎 ⊧ q to mean that the 
query q is true in the well-founded model of the possible program l� . Since the well-
founded model of each possible program is two-valued, q can only be true or false in l�.

Let LP denotes the set of all instances and P(LP) the distribution over instances. The prob-
ability of a query q given an instance l is P(q|l) = 1 if l ⊧ q and 0 otherwise. The probability of 
a query q is given by

hi1 ∶ �i1;… ;hini ∶ �ini ∶− bi1,… , bimi

P(l�) =
∏

(Ci,�j ,k)∈�

�ik

(1)P(q) =
∑
l∈LP

P(q, l) =
∑
l∈LP

P(q|l)P(l) = ∑
l∈LP∶l⊧q

P(l)
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Example 1  Let us consider the UWCSE domain (Kok & Domingos, 2005) in which the 
objective is to predict the “advised_by” relation between students and professors. In this 
case a program for advised_by∕2 may be

where project(C, A) means that C is a project with participant A, ta(C, A) means that A is a 
teaching assistant (TA) for course C and taught_by(C,B) means that course C is taught by 
B. The probability that a student is advised by a professor depends on the number of joint 
projects and on the number of courses the professor teaches where the student is a TA, the 
higher these numbers the higher the probability.

The facts in the program state that harry is a student and ben is a professor. They have 
one joint project and ben teaches one course where harry is a TA. Suppose we want to 
compute the probability of q = advised_by(harry, ben) , the first clause has one grounding 
with head q where the body is true and the second clause has one grounding with head q 
where the body is true. The possible programs where q is true are those that contain at least 
one of these ground clauses independently of the presence of other groundings so

3.1 � Inference in PLP

Computing the probabilities of queries by generating all possible programs is infeasible as the 
number of possible programs is exponential in the number of probabilistic clauses. Therefore 
much work has been devoted to the development of faster alternatives.

The most common approach for exact inference involves knowledge compilation: the pro-
gram is converted to a Boolean language from which the computation of the probability of the 
query is fast.

In order to convert the program to a Boolean language, we must consider composite 
choices: a composite choice � is a consistent set of atomic choices, i.e., a set where the same 
ground clause Ci�j appears once.

Given a composite choice � , we can define the set of possible programs compatible with 
� L� as L𝜅 = {l𝜎|𝜎 ∈ SP, 𝜅 ⊆ 𝜎} . Given a set K of composite choices, LK is the set of pos-
sible programs compatible with K and is defined as LK = ∪�∈KL� . A composite choice � is 
an explanation for a query q if q is true in all possible programs of L� . A set K of composite 
choices for a query q is covering if the set of all possible programs where q is true is LK.

Given a covering set of explanations K of a query q, we can build the Boolean formula

advised_by(A,B) ∶ 0.3 ∶−

student(A), professor(B), project(C,A), project(C,B).

advised_by(A,B) ∶ 0.6 ∶−

student(A), professor(B), ta(C,A), taught_by(C,B).

student(harry).

professor(ben).

project(pr1, harry).project(pr1, ben).

taught_by(c1, ben).

ta(c1, harry).

P(advised_by(harry, ben)) = 0.3 ⋅ 0.6 + 0.3 ⋅ 0.4 + 0.7 ⋅ 0.6 = 0.72

B(q) = ∨�∈K ∧(C,�,k)∈� XC� = k
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where XC� is a discrete random variable having values in {1,… , n} with n the number of 
heads of clause C. The probability that q is true is the probability that B(q) takes value true, 
given the probability distributions over the variables XC� that are all independent of each 
other.

We can associate a probability to a composite choice as follows:
P(�) =

∏
(Ci,�j,k)∈�

�ik . However, to compute P(q) it is not possible to use a summation 
even if B(q) is a disjunction because the individual disjuncts may share some of the varia-
bles. We must make the disjuncts mutually exclusive so that their probabilities can be 
summed up.

This task is solved by knowledge compilation: B(q) is converted into a language such as 
Binary Decision Diagrams (BDDs), Deterministic Decomposable Negation Normal Form 
(d-DNNF) or Sentential Decision Diagrams (SDD) from which computing P(q) is linear in 
the number of nodes. However, compilation to one of these languages has a cost of #P in 
the number of random variables.

In order to speed up inference, some languages impose restrictions. For example, 
PRISM (Sato, 1995) requires the program to be such that queries always have a pairwise 
incompatible covering set of explanations. In this case, once the set is found, the computa-
tion of the probability amounts to performing a sum of products. For programs to allow 
this kind of approach, they must satisfy the assumptions of independence of subgoals and 
exclusiveness of clauses, which mean that (Sato et al., 2018): 

1.	 the probability of a conjunction (A, B) is computed as the product of the probabilities 
of A and B (independent-and assumption),

2.	 the probability of a disjunction (A; B) is computed as the sum of the probabilities of A 
and B (exclusive-or assumption).

These assumptions can be stated more formally by referring to explanations. Given an 
explanation � , let RV(�) = {Ci�j|(Ci, �j, k) ∈ �} be the set of random variables in � . Given 
a set of explanations K, let RV(K) =

⋃
�∈K RV(�) . Two sets of explanations, K1 and K2 , 

are independent if RV(K1) ∩ RV(K2) = � and exclusive if, ∀�1 ∈ K1, �2 ∈ K2 , �1 and �2 are 
incompatible.

The independent-and assumption means that, when deriving a covering set of explana-
tions for a goal, the covering sets of explanations Ki and Kj for two ground subgoals in the 
body of a clause are independent.

The exclusive-or assumption means that, when deriving a covering set of explanations 
for a goal, two sets of explanations Ki and Kj obtained for a ground subgoal h from two dif-
ferent ground clauses are exclusive. This implies that the atom h is derived using clauses 
that have mutually exclusive bodies, i.e., that their bodies are not true at the same time in 
any world.

These assumptions make the computation of probabilities ”truth-functional” (Gerla, 
2001) (the probability of conjunction/disjunction of two propositions depends only on the 
probabilities of those propositions), while in the general case this is false.

In Riguzzi and Swift (2011) the authors proposed the system PITA(IND, IND) that 
performs inference on programs that satisfy the independent-or assumption instead of the 
exclusive-or assumption: 

3.	 the probability of a disjunction (A; B) is computed as if A and B were independent 
(independent-or assumption).
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This means that, when deriving a covering set of explanations for a goal, two sets of expla-
nations Ki and Kj obtained for a ground subgoal h from two different ground clauses are 
independent.

If A and B are independent, the probability of their disjunction is

by the laws of probability theory.
In the next section we present Hierarchical Probabilistic Logic Programs (HPLPs) 

which, by construction, satisfy the independent-or assumption. This makes the compu-
tation of probabilities in such programs “truth-functional” (Gerla, 2001). With the inde-
pendent-or assumption we can collect the contribution of multiple groundings of a clause. 
Therefore it is suitable for domains where entities may be related to a varying number of 
other entities. The differences in numbers are taken into account by the semantics. The 
assumption is not weaker or stronger than the exclusive-or one. It is probably less easy for 
users to write HPLP programs than PRISM programs but our aim is to devise an algorithm 
for automatically learning them.

4 � Hierarchical probabilistic logic programs

Suppose we want to compute the probability of atoms for a single predicate r using a PLP. 
In particular, we want to compute the probability of a ground atom r(�) , where � is a vec-
tor of terms. Let us call r the target predicate. This is a common situation in relational 
learning.

We consider a specific form of LPADs defining r in terms of input predicates (their 
definition is given as input and is certain) and hidden predicates, defined by clauses of the 
program. We discriminate between input predicates, which encapsulate the input data and 
the background knowledge, and target predicates, which are predicates we are interested in 
predicting. Hidden predicates are disjoint from input and target predicates. Each clause in 
the program has a single head atom annotated with a probability. Furthermore, the program 
is hierarchically defined so that it can be divided into layers. Each layer defines a set of hid-
den predicates in terms of predicates of the layer immediately below or in terms of input 
predicates. A generic clause C is of the form

 where �(�,�) is a conjunction of literals for the input predicates. The vector � represents 
variables appearing in the head of C and � represents the variables introduced by input 
predicates. bi(�,�) for i = 1,… ,m is a literal built on a hidden predicate. Variables in � 
are existentially quantified with scope the body. Only literals for input predicates can intro-
duce new variables into the clause. Moreover, all literals for hidden predicates must use the 
whole set of variables of the predicate in the head � and input predicates � , see predicate 
r1_1(A,B,C) Example 2. This restriction is imposed to allow independence among ground 
clauses associated to target/hidden predicates, see Sect. 4.1. Moreover, we require that the 
predicate of each bi(�,�) does not appear elsewhere in the body of C or in the body of any 
other clause, i.e each hidden predicate literal is unique in the program. We call hierarchical 

P(A ∨ B) =P(A) + P(B) − P(A ∧ B)

= P(A) + P(B) − P(A)P(B)

C = p(�) ∶ � ∶− �(�,�), b1(�,�),… , bm(�,�)
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PLP (HPLP) the language that admits only programs of this form (Nguembang Fadja et al., 
2017). A generic hierarchical program is defined as follows:

where r is the target predicate and r1_1…_n is the predicate of b1_1…_n , e.g. r1_1 and rn_1 are 
the predicates of b1_1 and bn_1 respectively. The bodies of the lowest layer of clauses are 
composed only of input predicates and do not contain hidden predicates, e.g C2 and C1_1_1 
in Example 2. Note that here the variables were omitted except for rule heads.

A generic program can be represented by a tree, Fig. 1 with a node for each clause and 
literal for hidden predicates. Each clause (literal) node is indicated with C� ( b� ) where � is 
a sequence of integers encoding the path from the root to the node. The predicate of literal 
b� is r� which is different for every value of �.

Example 2  Let us consider a modified version of the program of Example 1:

C1 = r(�) ∶ �1 ∶− �1, b1_1,… , b1_m1

…

Cn = r(�) ∶ �n ∶− �n, bn_1,… , bn_mn

C1_1_1 = r1_1(�) ∶ �1_1_1 ∶− �1_1_1, b1_1_1_1,… , b1_1_1_m111

…

C1_1_n11
= r1_1(�) ∶ �1_1_n11 ∶− �1_1_n11

, b1_1_n11_1,… , b1_1_n11_m11n11

…

Cn_1_1 = rn_1(�) ∶ �n_1_1 ∶− �n_1_1, bn_1_1_1,… , bn_1_1_mn11

…

Cn_1_nn1
= rn_1(�) ∶ �n_1_nn1 ∶− �n_1_nn1

, bn_1_nn1_1,… , bn_1_nn1_mn1nn1

…

C1 = advised_by(A,B) ∶ 0.3 ∶−

student(A), professor(B), project(C,A), project(C,B),

r1_1(A,B,C).

C2 = advised_by(A,B) ∶ 0.6 ∶−

student(A), professor(B), ta(C,A), taughtby(C,B).

C1_1_1 = r1_1(A,B,C) ∶ 0.2 ∶−

publication(P,A,C), publication(P,B,C).

r

C1

b1 1

C1 1 1 . . . C1 1 n11

. . . b1 m1

C1 m1 1 . . . C1 m1 n1m1

. . . Cn

bn 1

Cn 1 1 . . . Cn 1 nn1

. . . bn mn

Cn mn 1 . . . Cn mn nnmn

. . .

Fig. 1   Probabilistic program tree



1645Machine Learning (2021) 110:1637–1693	

1 3

where publication(P, A, C) means that P is a publication with author A produced in pro-
ject C and student/1,  professor/1,  project/2,  ta/2,  taughtby/2 and publication/3 are input 
predicates.

In this case, the probability of q = advised_by(harry, ben) depends not only on the num-
ber of joint courses and projects but also on the number of joint publications from projects. 
Note that the variables of the hidden predicate r1_1(A,B,C) is the union of the variables 
� = {A,B} of the predicate advised_by(A,B) in the head of the clause and � = {C} which 
is the variable introduced by the input predicate project(C, A) in the body. The clause for 
r1_1(A,B,C) ( C1_1_1 ) computes an aggregation over publications of a project and the clause 
level above ( C1 ) aggregates over projects.

This program can be represented with the tree of Fig. 2.

4.1 � Inference in HPLP

HPLPs satisfy the independent-or assumption as every hidden predicate appears just once 
in the body of a single clause and has all the variables of the clause as arguments. If we 
consider the grounding of the program, each ground atom for a hidden predicate appears 
in the body of a single ground clause. A ground atom for a hidden predicate may appear 
in the head of more than one ground clauses and each ground clause can provide a set of 
explanations for it but these sets do not share random variables. Moreover, HPLPs also 
satisfy the independent-and assumptions as every ground atom for a hidden predicate in the 
body of a ground clause has explanations that depend on disjoint sets of random variables.

Remember that atoms for input predicates are not random, they are either true or false in 
the data and they play a role in determining which groundings of clauses contribute to the 
probability of the goal: the groundings whose atoms for input predicates are false do not 
contribute to the computation of the probability.

Given a ground clause G�i = a� ∶ ��i ∶− b�i1,… , b�im��

. where � is a path, we can com-
pute the probability that the body is true by multiplying the probability of being true of 
each individual literals. If the literal is positive, its probability is equal to the probability of 
the corresponding atom. Otherwise it is one minus the probability of the corresponding 
atom. Therefore the probability of the body of G�i is P(b�i1,… , b�im��

) =
∏m�

i=k
P(b�ik) and 

P(b�ik) = 1 − P(a�ik) if b�ik = ¬a�ik . If P(b�ik) is a literal for an input predicate, P(b�ik) = 1 

Fig. 2   Probabilistic program tree 
for Example 2

advisedby(A, B)

C1

r1 1(A, B,C)

C1 1 1

C2
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if it is true and P(b�ik) = 0 otherwise. We can use this formula because HPLPs satisfy the 
independent-and assumption.

Given a ground atom a� for a hidden predicate, to compute P(a�) we need to take into 
account the contribution of every ground clause for the predicate of a� . Suppose these 
clauses are {G�1,… ,G�o�

} . If we have a single ground clause 
G�1 = a� ∶ ��1 ∶− b�11,… , b�1m�1

 , then

If we have two clauses, the contribution of each clause is computed as above. Note that, 
random variables associated with these contributions are independent since we allow hid-
den predicates in the body of each clause to use the whole set of variables appearing in the 
head and those introduced by input predicates. It is also worth noting that the probability of 
a disjunction of two independent random variables is

Therefore, if we have two clauses their contributions are combined as follows:

where we defined the operator ⊕ that combines two probabilities as follows 
p⊕ q = 1 − (1 − p) ⋅ (1 − q) . This operator is commutative and associative and we can 
compute sequences of applications as

The operator is called probabilistic sum and is the t-norm of the product fuzzy logic (Hájek, 
1998). Therefore, if the probabilistic program is ground, the probability of the example 
atom can be computed with the Arithmetic Circuit (AC) of Fig. 3, where nodes are labeled 
with the operation they perform and edges from ⊕ nodes are labeled with a probabilistic 
parameter that must be multiplied by the child output before combining it with ⊕ . We can 
thus compute the output p in time linear in the number of ground clauses. Note that, the 
AC can also be interpreted as a deep neural network with nodes (or neurons) whose (non 

P(a�) = ��1 ⋅ P(body(G�1)).

P(a ∨ b) = P(a) + P(b) − P(a) ⋅ P(b) = 1 − (1 − P(a)) ⋅ (1 − P(b)).

P(a�) = 1 − (1 − 𝜋�1 ⋅ P(body(G�1)) ⋅ (1 − 𝜋�2 ⋅ P(body(G�2)))

= (𝜋�1 ⋅ P(body(G�1)))⊕ (𝜋�2 ⋅ P(body(G�2))).

(2)
⨁
i

pi = 1 −
∏
i

(1 − pi)

⊕

×

⊕

×

π1 1 1

. . . ×

π1 1 n11

p1 1
. . . ⊕

×

π1 m1 1

. . . ×

π1 m1 n1m1

p1 m1

π1

q1
. . . ×

⊕

×

πn 1 1

. . . ×

πn 1 nn1

pn 1
. . . ⊕

×

πn mn 1

. . . ×

πn mn nnmn

pn mn

πn

qn

p

. . .

Fig. 3   Arithmetic circuit/neural net
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linear) activation functions are × and ⊕ . When the program is not ground, we can build its 
grounding obtaining a circuit/neural network of the type of Fig. 3, where however some 
of the parameters can be the same for different edges. In this case the circuit will exhibit 
parameter sharing.

Example 3  Consider the completed version of Example 2: An online implementation can 
be found at https://​cplint.​eu/​examp​le/​phil/​uwcse.​pl

where we suppose that harry and ben have two joint courses c1 and c2 , two joint projects 
pr1 and pr2 , two joint publications p1 and p2 from project pr1 and two joint publications p3 
and p4 from project pr2 . The resulting ground program is

C1 = advised_by(A,B) ∶ 0.3 ∶−

student(A), professor(B), project(C,A), project(C,B),

r1_1(A,B,C).

C2 = advised_by(A,B) ∶ 0.6 ∶−

student(A), professor(B), ta(C,A), taughtby(C,B).

C1_1_1 = r1_1(A,B,C) ∶ 0.2 ∶−

publication(P,A,C), publication(P,B,C).

student(harry).

professor(ben).

project(pr1, harry). project(pr2, harry).

project(pr1, ben). project(pr2, ben).

taught_by(c1, ben). taught_by(c2, ben).

ta(c1, harry). ta(c2, harry).

publication(p1, harry, pr1). publication(p2, harry, pr1).

publication(p3, harry, pr2). publication(p4, harry, pr2).

publication(p1, ben, pr1). publication(p2, ben, pr1).

publication(p3, ben, pr2). publication(p4, ben, pr2).

G1 = advisedby(harry, ben) ∶ 0.3 ∶−

student(harry), professor(ben), project(pr1, harry),

project(pr1, ben), r1_1(harry, ben, pr1).

G2 = advisedby(harry, ben) ∶ 0.3 ∶−

student(harry), professor(ben), project(pr2, harry),

project(pr2, ben), r1_1(harry, ben, pr2).

G3 = advisedby(harry, ben) ∶ 0.6 ∶−

student(harry), professor(ben), ta(c1, harry), taughtby(c1, ben).

G4 = advisedby(harry, ben) ∶ 0.6 ∶−

student(harry), professor(ben), ta(c2, harry), taughtby(c2, ben).

G1_1_1 = r1_1(harry, ben, pr1) ∶ 0.2 ∶−

publication(p1, harry, pr1), publication(p1, ben, pr1).

G1_1_2 = r1_1(harry, ben, pr1) ∶ 0.2 ∶−

publication(p2, harry, pr1), publication(p2, ben, pr1).

G2_1_1 = r1_1(harry, ben, pr2) ∶ 0.2 ∶−

publication(p3, harry, pr2), publication(p3, ben, pr2).

G2_1_2 = r1_1(harry, ben, pr2) ∶ 0.2 ∶−

publication(p4, harry, pr2), publication(p4, ben, pr2).

https://cplint.eu/example/phil/uwcse.pl
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The program tree is shown in Fig.  4 and the corresponding arithmetic circuit in Fig.  5 
together with the values computed by the nodes. Inference in the AC of Fig. 5 can be com-
puted at https://​cplint.​eu/​examp​le/​phil/​uwcse.​pl by running the query

4.2 � Building the arithmetic circuit

The network can be built by performing inference using tabling and answer subsumption 
using PITA(IND,IND) (Riguzzi, 2014; Riguzzi & Swift, 2010). Suppose we want to com-
pute the probability of a query, which is typically the target predicate in hierarchical PLP. 
To speed the computation, PITA(IND,IND) applies a program transformation that adds 
an extra argument to the query and to each subgoal of the program. The probability of 
answers to each subgoal is stored in the extra argument. In fact, when a subgoal returns, the 

inference_hplp(advisedby(harry, ben), ai,Prob).

adivsedby(harry, ben)

G1

r1 1(harry, ben, pr1)

G1 1 1 G1 1 2

G2

r1 1(harry, ben, pr2)

G2 1 1 G2 1 2

G3 G4

Fig. 4   Ground probabilistic program tree for Example 3

⊕
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⊕

1

0.2

1

0.2

0.36

0.3

0.36

×

⊕

1

0.2

1

0.2

0.36

0.3

0.36

×

1

0.6

1

×

1

0.6

1

0.873

Fig. 5   Arithmetic circuit/neural net for Example 3

https://cplint.eu/example/phil/uwcse.pl
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extra argument will be instantiated to the probability of the ground atom that corresponds 
to the subgoal without the extra argument. Note that because of its structure, when a sub-
goal returns the original arguments are guaranteed to be instantiated in hierarchical PLP.

Moreover, suitable literals are also added to the body of clauses for combining the extra 
arguments of the subgoals: the probability to be assigned to the extra argument of the head 
atom is the product of probabilities of the answers for the subgoals in the body.

Since a subgoal may unify with the head of multiple groundings of multiple clauses, 
we need to combine the contributions of these groundings. This is achieved by means of 
tabling with answer subsumption (Swift & Warren, 2012). Tabling keeps a store of sub-
goals encountered in a derivation together with answers to these subgoals. If one of the 
subgoals is encountered again, its answers are retrieved from the store rather than recom-
puting. Answer subsumption (Swift & Warren, 2012) is a tabling feature that, when a new 
answer for a tabled subgoal is found, combines old answers with the new one. This combi-
nation operator is the probabilistic sum in PITA(IND, IND). Computation by PITA(IND, 
IND) is thus equivalent to the evaluation of the program arithmetic circuit.

We use an algorithm similar to PITA(IND,IND) to build the Arithmetic circuit or the 
neural network instead of just computing the probability. To build the arithmetic circuit, it 
is enough to use the extra argument for storing a term representing the circuit instead of the 
probability and changing the implementation of the predicates for combining the values of 
the extra arguments in the body and for combining the values from different clause ground-
ings. The result of inference would thus be a term representing the arithmetic circuit.

There is a one to one correspondence between the data structure built by 
PITA(IND,IND) and the circuit so there is no need of an expensive compilation step. The 
term representing the AC in Fig. 5 is1

or([and([0, or([and([2])])]), and([0, or([and([2])])]),
and([0, or([and([2])])]), and([0, or([and([2])])]), and([1]), and([1])]

 where the operators and and or represent the product × and the probabilistic sum ⊕ respec-
tively. Once the ACs are built, parameter learning can be performed over them by applying 
gradient descent/back-propagation or expectation maximization. The following section pre-
sents these algorithms and their regularized versions. Because of the constraints imposed 
on HPLPs, writing these programs may be unintuitive for human so we also propose, in 
Sect. 6, an algorithm for learning both the structure and the parameters from data.

5 � Parameter learning

In this section, we present an algorithm, called parameter learning for hierarchical proba-
bilistic logic programs (PHIL), which learns HPLP’s parameters from data. We present 
two versions of PHIL. The first, deep PHIL (DPHIL), learns HPLP’s parameters by apply-
ing a gradient-based method and the second, expectation maximization PHIL (EMPHIL), 
applies expectation maximization (EM). Different regularized versions of each algorithm 
will also be presented. The parameter learning algorithm can be defined as follows:

1  Obtaining by running the query inference_hplp(advisedby(harry, ben), ai,Prob,Circuit). at https://​cplint.​
eu/​examp​le/​phil/​uwcse.​pl.

https://cplint.eu/example/phil/uwcse.pl
https://cplint.eu/example/phil/uwcse.pl
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Definition 1  (Parameter learning problem) Given a HPLP H with parameters 
� = {�1 ⋯�n} , an interpretation I defining input predicates and a training set 
E = {e1,… , eM , ��� eM+1,… , ��� eN} where each ei is a ground atom for the target predi-
cate r, find the values of � that maximize the log likelihood (LL)

where P(ei) is the probability assigned to ei by H ∪ I.

Maximizing the LL can be equivalently seen as minimizing the sum of cross entropy 
errors erri for all the examples

where ei is an example with yi indicating its sign ( yi = 1 if the example is positive and 
yi = 0 otherwise) and pi indicating the probability that the atom is true.

DPHIL and EMPHIL minimize the cross entropy error or equivalently maximize the 
log-likelihood of the data. These algorithms (and their regularized variants) are presented 
in Sects. 5.1 and 5.2 respectively.

5.1 � Gradient descent: DPHIL

DPHIL computes the gradient of the error err (4) with respect to each parameter and 
updates the parameters. We do this by building an AC for each example and by running a 
dynamic programming algorithm for computing the gradient. To simplify gradient compu-
tation, we transformed the AC of Fig. 3 as follows: weight, �i , labeling arcs from ⊕ to × 
nodes, are set as children leaves of × nodes and shared weights are considered as individual 
leaves with many × parents. Moreover, negative literals are represented by nodes of the 
form not(a) with the single child a. The AC in Fig. 5 is converted into the one shown in 

(3)LL = arg max
�

(
M∑
i=1

logP(ei) +

N∑
i=M+1

log(1 − P(ei))

)

(4)err =

N+M∑
i=1

(−yi logP(ei) − (1 − yi) log(1 − P(ei)))

r

× × × ×

0.3 0.6

× × × ×

0.2

Fig. 6   Converted arithmetic circuit of Fig. 5
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Fig. 6. Note that, the ACs in Figs. 5 and 6 are equivalent but the one in Fig. 6 highlights 
parameters sharing which is more convenient for illustrating the algorithm.

The standard gradient descent algorithm computes gradients at each iteration using all 
examples in the training set. If the training set is large, the algorithm can converge very 
slowly. To avoid slow convergence, gradients can be computed using a single example, ran-
domly selected in the training set. Even if in this case the algorithm can converge quickly, 
it is generally hard to reach high training set accuracy. A compromise often used is mini 
batch stochastic gradient descent (SGD): at each iteration a mini batch of examples is ran-
domly sampled to compute the gradient. This method usually provides fast converge and 
high accuracy. DPHIL, shown in Algorithm 1, implements SGD.

After building the ACs and initializing the weights, the gradients and the moments, line 2–6, 
DPHIL performs two passes over each AC in the current batch, line 8–15. In the first, the cir-
cuit is evaluated so that each node is assigned a real value representing its probability. This 
step is bottom-up or forward (line 12) from the leaves to the root. The second step is backward 
(line 13) or top-down, from the root to the leaves, and computes the derivatives of the loss func-
tion with respect to each node. At the end of the backward step, G contains the vector of the 
derivatives of the error with respect to each parameter. Line 16 updates the weights.

The parameters are repeatedly updated until a maximum number of steps, MaxIter , is 
reached, or until the difference between the LL of the current and the previous iteration 
drops below a threshold, � , or the difference is below a fraction � of the current LL. Finally, 
function updatetheory (line 18) updates the parameters of the theory.

Algorithm 1 Function DPHIL.
1: function PHIL(Theory, ε, δ,MaxIter, β1, β2, η, ε̂, Strategy)
2: Examples ← BuildACs(Theory) � Build the set of ACs
3: for i ← 1 → |Theory| do � Initialize weights,gradient and moments vector
4: W [i] ← random(Min,Max) � initially W [i] ∈ [Min,Max].
5: G[i] ← 0.0, G[i] ← 0.0 M0[i] ← 0.0, M1[i] ← 0.0
6: end for
7: Iter ← 1
8: repeat
9: LL ← 0
10: Batch ← NextBatch(Examples) � Select the batch according to the strategy
11: for all node ∈ Batch do
12: P ← Forward(node)
13: Backward(G,− 1

P
, node)

14: LL ← LL+ logP
15: end for
16: UpdateWeightsAdam(W,G,M0,M1, β1, β2, η, ε̂, Iter)
17: until LL− LL0 < ε ∨ LL− LL0 < −LL.δ ∨ Iter > MaxIter
18: FinalTheory ← UpdateTheory(Theory,W )
19: return FinalTheory
20: end function

We reparametrized the program using weights between - ∞ and + ∞ and expressing the 
parameters using the sigma function �i = �(Wi) =

1

1+e−Wi
(5) . In this way we do not have to 

impose the constraint that the parameters are in [0,1].
Function forward 2 is a recursive function that takes as input an AC node (root node) 

and evaluates each node from the leaves to the root, assigning value v(n) to each node n. If 
node = not(n) , p = FORWARD(n) is computed and 1 − p is assigned to v(node), lines 2–5. 
If node =

⨁
(n1,… nm) , function v(ni) = FORWARD(ni) is recursively called on each 
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child node, and the node value is given by v(node) = v(n1)⊕…⊕ v(ni) , lines  7–13. If 
node = ×(�i, n1,… nm) , function v(ni) = FORWARD(ni) is recursively called on each child 
node, and the node value is given by v(n) = �i ⋅ v(n1) ⋅… ⋅ v(nn) , lines 14–20.

Algorithm 2 Function Forward
1: function Forward(node) � node is an AC
2: if node = not(n) then
3: v(node) ← 1− Forward(n)
4: return v(node)
5: else
6: � Compute the output example by recursively call Forward on its sub AC
7: if node =

⊕
(n1, . . . nm) then �

⊕
node

8: for all nj do
9: v(nj) ← Forward(nj)
10: end for
11: v(node) ← v(n1)⊕ . . .⊕ v(nm)
12: return v(node)
13: else � and Node
14: if node = ×(πi, n1, . . . nm) then
15: for all nj do
16: v(nj) ← Forward(nj)
17: end for
18: v(node) ← πi · v(n1) · . . . · v(nm)
19: return v(node)
20: end if
21: end if
22: end if
23: end function

Procedure backward takes an evaluated AC node and computes the derivative of the 
contribution of the AC to the cost function, err = −y log(p) − (1 − y) log(1 − p) where 
p is the probability of the atom representing the example. This derivative is given in 
Eq. 6, see “Appendix 10.1” for the proof.

with

where pan indicate the parents of n.
This leads to procedure backward shown in Algorithm 3 which is a simplified ver-

sion for the case v(n) ≠ 0 for all 
⨁

 nodes. To compute d(n), Backward proceeds by 
recursily propagating the derivative of the parent node to the children. Initially, the 
derivative of the error with respect to the root node, − 1

v(r)
 , is computed. If the current 

node is not(n), with derivative AccGrad, the derivative of its unique child, n, is 

(6)
�err

�v(n)
= −d(n)

1

v(r)

(7)d(n) =

⎧
⎪⎪⎨⎪⎪⎩

d(pan)
v(pan)

v(n)
if n is a

⨁
node,

d(pan)
1−v(pan)

1−v(n)
if n is a × node∑

pan
d(pan).v(pan).(1 − �i) if n = �(Wi)

−d(pan) pan = not(n)
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−AccGrad , line  2-3. If the current node is a 
⨁

 node, with derivative AccGrad, the 
derivative of each child, n, is computed as follows:

and back-propagated, line 5-9. If the current node is a × node, the derivative of a non leaf 
child node n is computed as follows:

the one for a leaf child node n = �i is

and back-propagated, line 11-15. For leaf node, i.e a �i node, the derivative is accumulated, 
line 20.

Algorithm 3 Procedure Backward
1: procedure Backward(G,AccGrad, node)
2: if node = not(n) then
3: Backward(G,−AccGrad, n)
4: else
5: if node =

⊕
(n1, . . . nm) then �

⊕
node

6: for all nj do
7: AccGrad′1 ← AccGrad · v(node)

v(ni)
8: Backward(G,AccGrad′, ni)
9: end for
10: else
11: if node = ×(πi · n1, . . . nm) then � × node
12: for all nj do � non leaf child
13: AccGrad′ ← AccGrad · 1−v(node)

1−v(nj)

14: Backward(G,AccGrad′1, nj)
15: end for
16: AccGrad′2 ← AccGrad · v(node).(1− σ(Wi)) � leaf child
17: Backward(G,AccGrad′2, πi)
18: else � leaf node
19: let node = πi

20: G[i] ← G[i] +AccGrad
21: end if
22: end if
23: end if
24: end procedure

After the computation of the gradients, weights are updated. Standard gradient descent 
adds a fraction � , called learning rate, of the gradient to the current weights. � is a value 
between 0 and 1 that is used to control the parameter update. Small � can slow down the 
algorithm and find local minimum. High � avoids local minima but can swing around 
global minima. A good compromise updates the learning rate at each iteration combining 
the advantages of both strategies. We use the update method Adam, adaptive moment esti-
mation (Kingma & Ba, 2014), that uses the first order gradient to compute the exponential 

AccGrad� = AccGrad ⋅
1 − v(node)

1 − v(n)

AccGrad�
1
= AccGrad ⋅

v(node)

v(n)

AccGrad�
2
= AccGrad ⋅ v(node) ⋅ (1 − �(Wi)
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moving averages of the gradient and the squared gradient. Hyper-parameters �1 , �2 ∈ [0, 1) 
control the exponential decay rates of these moving averages. These quantities are estima-
tions of the first moment (the mean M0 ) and the second moment (the uncentered variance 
M1 ) of the gradient. The weights are updated with a fraction, current learning rate, of the 
combination of these moments, see Procedure updateweightsadam in Algorithm 4.

Algorithm 4 Procedure UpdateWeightsAdam
1: procedure UpdateWeightsAdam(W,G,M0,M1, β1, β2, η, ε̂, iter)

2: ηiter ← η

√
1−βiter

2

1−βiter
1

3: for i ← 1 → |W | do
4: M0[i] ← β1 ·M0[i] + (1− β1) ·G[i]
5: M1[i] ← β2 ·M1[i] + (1− β2) ·G[i] ·G[i]
6: W [i] ← W [i]− ηiter · M0[i]

(
√

M1[i])+ε̂

7: end for
8: end procedure

5.1.1 � DPHIL regularization: DPHIL
1
 and DPHIL

2

In deep learning and machine learning in general, a technique called regularization is 
often used to avoid over-fitting. Regularization penalizes the loss function by adding a 
regularization term for favoring smaller parameters. In the literature, there exist two main 
regularization techniques called L1 and L2 regularization that differ on the way they penal-
ize the loss function. While L1 adds to the loss function the sum of the absolute value of the 
parameters, L2 adds the sum of their squares. Given the loss function defined in Eq. 4, the 
corresponding regularized loss function are given by Eqs. 8 and 9 .

where the regularization hyper-parameter � determines how much to penalize the param-
eters and k the number of parameters. When � is zero, the regularization term becomes zero 
and we are back to the original loss function. When � is large, we penalize the parameters 
and they tend to become small. Note also that we add the regularization term from the ini-
tial loss function because we are performing minimization. The main difference between 
these techniques is that while L1 favor sparse parameters (parameters closer to zero) L2 
does not. Moreover in general, L1 (resp. L2 ) is computationally inefficient(resp. efficient 
due to having analytical solutions).

Now let us compute the derivative of the regularized error with respect to each node in 
the AC. The regularized term depends only on the leaves (the parameters �i ) of the AC. So 
the gradients of the parameters can be calculated by adding the derivative of the regulariza-
tion term with respect to �i to the one obtained in Eq. 7. The regularized errors are given 
by:

(8)err1 =

N+M∑
i=1

−yi logP(ei) − (1 − yi) log(1 − P(ei)) + �

k∑
i=1

|�i|

(9)err2 =

N+M∑
i=1

−yi logP(ei) − (1 − yi) log(1 − P(ei)) +
�

2

k∑
i=1

�2
i
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where �i = �(Wi) . Note that since 0 ≤ �i ≤ 1 we can consider �i rather than |�i| in L1 . So

So Eq. 7 becomes

In order to implementent the regularized version of DPHIL ( DPHIL1 and DPHIL2 ), the 
forward and the backward passes described in algorithms 2 and 3 remain unchanged. The 
unique change occurs while updating the parameters in the Algorithm 4. UpdateWeights-
Adam line 6 becomes

5.2 � Expectation maximization: EMPHIL

We propose another algorithm, EMPHIL, that learns the parameters of HPLP by applying 
expectation maximization (EM). The algorithm maximizes the log-likelihood LL defined 
in Eq. 3 by alternating between an expectation (E) and a maximization (M) step. E-step 
computes the expected values of the incomplete data given the complete data and the cur-
rent parameters and the M-step determines the new values of the parameters that maximize 
the likelihood. Each iteration is guaranteed to increase the log-likelihood. Given a hier-
archical PLP H = {Ci|i = 1,⋯ , n} (each Ci annotated with the parameter �i ) and a train-
ing set of positive and negative examples E = {e1,… , eM , ��� eM+1,… , ��� eN} , EMPHIL 
proceeds as follows:

Let Ci a generic rule and g(i) = {j|�j is a substitution grounding Ci} . For a single exam-
ple e, the E-step computes �[ci0|e] and �[ci1|e] for all rules Ci . cix is the number of times a 
variable Xij takes value x for x ∈ {0, 1} , for all j ∈ g(i) . So �[cix�e] = ∑

j∈g(i) P(Xij = x�e) . 
These values are aggregated over all examples obtaining

(10)Ereg =

�
�
∑k

i=1
�i forL1

�

2

∑k

i=1
�2
i
forL2

(11)
�Ereg

�Wi

=

⎧
⎪⎨⎪⎩

�
��(Wi)

�Wi

= � ⋅ �(Wi) ⋅ (1 − �(Wi)) = � ⋅ �i ⋅ (1 − �i)

�

2

��(Wi)
2

�Wi

= � ⋅ �(Wi) ⋅ �(Wi) ⋅ (1 − �(Wi)) = � ⋅ �2
i
⋅ (1 − �i)

(12)d(n) =

⎧
⎪⎪⎨⎪⎪⎩

d(pan)
v(pan)

v(n)
if n is a

⨁
node,

d(pan)
1−v(pan)

1−v(n)
if n is a × node

∑
pan

d(pan).v(pan).(1 − �i) +
�Ereg

�Wi

if n = �(Wi)

−d(pan) pan = not(n)

(13)W[i] ← W[i] − 𝜂iter ∗
M0[i]

(
√
M1[i]) + 𝜖

+
𝜕Ereg

𝜕Wi

(14)N0[i] = �[ci0] =
∑
e∈E

∑
j∈g(i)

P(Xij = 0|e)

(15)N1[i] = �[ci1] =
∑
e∈E

∑
j∈g(i)

P(Xij = 1|e)
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Then the M-step computes �i by maximum likelihood, i.e. �i =
N1

N0+N1

 . Note that for a single 
substitution �j of clause Ci we have P(Xij = 0|e) + P(Xij = 1|e) = 1 . So 
E[ci0] + E[ci1] =

∑
e∈E �g(i)� . So the M-step computes

Therefore to perform EMPHIL, we have to compute P(Xij = 1|e) for each example e by 
performing the belief propagation algorithm over the factor graph associated with the AC. 
Message passing is then applied over the AC. We show, in the Appendix  10.2, that the 
messages in the bottom-up, cN , and top-down, tN , are respectively given as

where v(N) is the value of node N, P is its parent and the operator ⊖ is defined as

cN is performed by applying the forward pass described in Algorithm 2.
Since the belief propagation algorithm (for ACs) converges after two passes, we can 

compute the unnormalized belief of each parameter during the backward pass by multiply-
ing tN by v(N) (that is all incoming messages). Algorithm 5 performs the backward pass of 
belief propagation algorithm and computes the normalized belief of each parameter, i.e tN . 
It also computes the expectations N0 and N1 for each parameter, lines 17–19.

(16)�i =
N1∑

e∈E �g(i)�

(17)cN = v(N)

(18)tN =

⎧
⎪⎪⎨⎪⎪⎩

tP

tP+v(P)⊖v(N)⋅tP+(1−v(P)⊖v(N))⋅(1−tp)
ifP is a ⊕ node

tP⋅
v(P)

v(N)
+(1−tP)⋅(1−

v(P)

v(N)
)

tP⋅
v(P)

v(N)
+(1−tP)⋅(1−

v(P)

v(N)
)+(1−tP)

ifP is a × node

1 − tP ifP is a¬ node

(19)v(p)⊖ v(n) = 1 −
1 − v(p)

1 − v(n)
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Algorithm 5 Procedure Backward in EMPHIL
1: procedure BackwardEM(tp, node,N0, N1)
2: if node = not(n) then
3: Backward(1− tp, n,B,Count)
4: else
5: if node =

⊕
(n1, . . . nm) then �

⊕
node

6: for all child ni do
7: tni ← tp

tp+v(node)�v(ni)·tp+(1−v(node)�v(ni))·(1−tp)
8: BackwardEM(tni , ni, B, Count)
9: end for
10: else
11: if node = ×(n1, . . . nm) then � × node
12: for all child ni do

13: tni ←
tp· v(node)

v(ni)
+(1−tp)·(1− v(node)

v(ni)
)

tp· v(node)
v(ni)

+(1−tp)·(1− v(node)
v(ni)

)+(1−tp)

14: BackwardEM(tni , ni, B, Count)
15: end for
16: else � leaf node πi

17: let E = πitp
(πitp+(1−πi)(1−tp)

18: N1[i] ← N1[i] + E
19: N0[i] ← N0[i] + 1− E
20: end if
21: end if
22: end if
23: end procedure

EMPHIL is then presented in Algorithm 6. After building the ACs (sharing parameters) 
for positive and negative examples and initializing the parameters, the expectations and the 
counters, lines 2–5, EMPHIL proceeds by alternating between expectation step 8–13 and 
maximization step  13–24. The algorithm stops when the difference between the current 
value of the LL and the previous one is below a given threshold or when such a difference 
relative to the absolute value of the current one is below a given threshold. The theory is 
then updated and returned (lines 26–27).
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Algorithm 6 Function EMPHIL.
1: function EMPHIL(Theory, ε, δ,MaxIter, γ, a, b, Type)
2: Examples ← BuildACs(Theory) 
 Build the set of ACs
3: for i ← 1 → |Theory| do
4: Π[i] ← random;B[i], Count[i] ← 0 
 Initialize the parameters
5: end for
6: LL ← −inf ; Iter ← 0
7: repeat
8: LL0 ← LL,LL ← 0 
 Expectation step
9: for all node ∈ Examples do
10: P ← Forward(node)
11: BackwardEM(1, node,N0, N1)
12: LL ← LL+ logP
13: end for � Maximization step
14: for i ← 1 → |Theory| do
15: switch Type

16: case 0: Π[i] ← B[i]
N0[i]+N1[i]

17: case 1: Π[i] ← 4N1[i]
2(γ+N0[i]+N1[i]+

√
(N0[i]+N1[i])2+γ2+2γ(N0[i]−N1[i]))

18: case 2:

19: let V = 2
√

3N0+3N1+γ
γ

cos





arccos





√
γ

3N0+3N1+γ

(
9N0
2 −9N1+γ

)

3N0+3N1+γ





3 − 2π
3





20: Π[i] ← V
3 + 1

3
21: case 3: Π[i] ← N1+a

N0+N1+a+b

22: end switch
23: B[i], Count[i] ← 0
24: end for
25: until LL− LL0 < ε ∨ LL− LL0 < −LL.δ ∨ Iter > MaxIter
26: FinalTheory ← UpdateTheory(Theory,Π)
27: return FinalTheory
28: end function

5.2.1 � EMPHIL regularization: EMPHIL
1
 , EMPHIL

2
 and EMPHIL

B

In this section, we propose three regularized versions of EMPHIL. As described in Li 
et al. (2005), EM can be regularized for two reasons: first, for highlighting the strong 
relationship existing between the incomplete and the missing data, assuming in the 
standard EM algorithm, and second for favoring smaller parameters. We regularize 
EMPHIL mainly for the latter reason. As in gradient descent regularization, we define 
the following regularization objective functions for L1 and L2 respectively.

where � = �i , N0 and N1 are the expectations computed in the E-step (see Eqs. 14 and 15 ). 
The M-step aims at computing the value of � that maximizes J(�) . This is done by solving 
the equation �J(�)

��
= 0 . The following theorems give the optimal value of � in each case (see 

appendix 10.3 for the proofs).

(20)J(�) =

{
N1 log � + N0 log(1 − �) − �� for L1
N1 log � + N0 log(1 − �) −

�

2
�2 for L2
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Theorem 1  The L1 regularized objective function:

is maximum in

Theorem 2  The L2 regularized objective function:

is maximum in

We consider another regularization method for EMPHIL (called EMPHILB ) which is 
based on a Bayesian update of the parameters assuming a prior that takes the form of a Dir-
ichlet with parameters [a,  b]. In M-step instead of computing �i =

N1

N0+N1

 , EMPHILB 
computes

as described in Bishop (2016). a and b are hyper-parameters. We choose a = 0 and b as a 
fraction of the training set size, see Sect. 8, since we want small parameters.

So algorithms EMPHIL (the standard EM), EMPHIL1 , EMPHIL2 and EMPHILB differ 
in the way they update the parameters in the M-step, Algorithm 6 lines 15-22.

6 � Structure learning

In the previous section, the structure of an HPLP was given and the task was to learn its 
parameters from data. Since hidden predicates could be difficult to interprete for humans in 
many domains of interest, providing the structure of an HPLP may be unintuitive and tedi-
ous even for experts in the domains. In this section, we propose an algorithm for learning 
both the structure and the parameters from data. The structure is learned by mean of predi-
cate invention. The Structure learning problem is defined as follows:

Definition 2  (Structure Learning Problem) Given a set of mega-examples (interpreta-
tions), each containing positive and negative examples for a target predicate and facts for 
input predicates, I = {e1,… , eM , ��� eM+1,… , ��� eN} , find the HPLP with parameters � 
that maximizes the (log) likelihood

(21)J1(�) = N1 log � + N0 log(1 − �) − ��

�1 =
4N1

2(� + N0 + N1 +
√
(N0 + N1)

2 + �2 + 2�(N0 − N1))

(22)J2(�) = N1 log � + N0 log(1 − �) −
�

2
�2

�2 =

2
�

3N0+3N1+�

�
cos

⎛
⎜⎜⎜⎜⎝

arccos

⎛
⎜⎜⎝

√
�

3N0+3N1+�

�
9N0
2

−9N1+�

�

3N0+3N1+�

⎞
⎟⎟⎠

3
−

2�

3

⎞
⎟⎟⎟⎟⎠

3
+

1

3

(23)�i =
N1 + a

N0 + N1 + a + b
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where P(eik ) is the probability assigned to eik (an example from the interpretation k). Note 
that a mega-example, also called mega-interpretation, describes one world in the domain 
of interest. It includes positive and negative examples for the target predicate and fact for 
input predicates. It is called mega because it can include more than one example, positive 
or negative. A mega-example is similar to a partial interpretation in a context-dependent 
partial interpretation defined in Law et al. (2016)

SLEAHP learns HPLPs by generating an initial set of bottom clauses (from a language 
bias) from which a large HPLP is derived. Then SLEAHP performs structure learning by 
using parameter learning. Regularization is used to bring as many parameters as possible close 
to 0 so that their clauses can be removed, thus pruning the initial large program and keeping 
only useful clauses.

6.1 � Language bias

An initial set of clauses are generated according to a language bias expressed by means of 
mode declaration. A mode declaration (Muggleton, 1995) is a set of head, modeh(rec,  s), 
and body, modeb(rec, s), declarations where rec is a recall and s, called schema, is a template 
for ground literals in the head or body of clauses. The schema contains special place-marker 
terms of the form #type, +type and -type, which stand, respectively, for ground terms, 
input variables and output variables of a type. The language defined by a set of mode declara-
tions M is indicated with L(M). In clauses from L(M), an input variable in a body literal of a 
clause must be either an input variable in the head or an output variable in a preceding body 
literal in the clause. The head atoms (resp. body literals) of clauses are obtained from some 
head (resp. body) declaration in M by replacing all # place-markers with ground terms and all 
+ (resp. -) place-markers with input (resp. output) variables. This type of mode declarations is 
extended with place-marker terms of the form -# which are treated as # when defining L(M ) 
but differ in the creation of the bottom clauses, see Sect. 6.2.1.

6.2 � Description of the algorithm

In order to learn an HPLP, SLEAHP (Algorithm 7) initially generates a set of bottom clauses, 
line 2. Then an n-ary tree, whose nodes are literals appearing in the head or in the body of bot-
tom clauses is constructed, line 3. Then an initial HPLP is generated from the tree, line 4 and 
a regularized version of PHIL is performed on the initial program. Finally clauses with very 
small probabilities are removed, line 5. The components of this algorithm are described in the 
following subsections.

(24)LL = arg max
�

NI∑
k

(
M∑
i=1

logP(eik ) +

N∑
i=M+1

log(1 − P(eik ))

)
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Algorithm 7 Function Structure learning
1: function SLEAHP(NInt,NS,NA,MaxProb,NumLayer,MaxIter, ε, δ,MinProb)
2: Clauses ←genClauses(NInt,NS,NA) � Generate clauses
3: Tree ←genTree(Clauses) � Build the tree
4: init HPLP ←genHPLP(Clauses,MaxProb,NumLayer) � Generate the initial HPLP
5: (LL, final HPLP ) ←PHIL Reg(init HPLP,MaxIter, ε, δ) � Learns the parameters
6: return final HPLP
7: end function

6.2.1 � Clause generation

Algorithm 8 generates a set of bottom clauses as in Progol (Muggleton, 1995). Given 
a language bias and a set of mega-examples, Algorithm  8 generates a set of bottom 
clauses. These bottom clauses are then used for creating a tree of literals, Algorithm 9.

Consider the target predicate r/ar, the predicate of the schema s associates with a 
fact modeh(rec, s) in the language bias. In order to create a clause, a mega-example I 
and an answer h for the goal schema(s) are randomly selected with replacement, I from 
the available set of mega-examples and h from the set of all answers found for the goal 
schema(s) in I. schema(s) is the literal obtained from s by replacing all place-markers 
with distinct variables X1 ⋯Xar . Then h is saturated using Progol’s saturation method as 
described in Muggleton (1995).

This cycle is repeated for a user-defined number NS of times and the resulting ground 
clause BC = h ∶− b1,… , bm is then processed to obtain a probabilistic program clause 
by replacing each term in a + or - place-marker with a variable, using the same vari-
able for identical terms. Terms corresponding to # or -# place-markers are instead kept 
in the clause. This process is repeated for a number NInt of input mega-examples and a 
number NA of answers, thus obtaining NInt ⋅ NA bottom clauses.
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Algorithm 8 Function GenerateClauses
1: function genClauses(NInt,NS,NA)
2: for all predicates P/Ar do
3: Clauses ← []
4: for all modeh declarations modeh(rec, s) with P/Ar predicate of s do
5: for i = 1 → NInt do
6: Select randomly a mega-example I
7: for j = 1 → NA do
8: Select randomly an atom h from I matching schema(s)
9: Bottom clause BC ←Saturation(h, rec,NS), let BC be Head :− Body
10: Clauses ← [Head : 0.5 :− Body|Clauses]
11: end for
12: end for
13: end for
14: end for
15: return Clauses
16: end function

6.2.2 � Tree generation

Since an HPLP can be mapped into a tree as described in Sect. 4, we create a tree whose 
nodes are literals appearing in the head or in the body of bottom clauses generated in 
the previous section. Every node in the tree share at least one variable with its parent. 
The tree is then converted into the initial HPLP, see Sect. 6.2.3.

To create the tree, Algorithm  9, starts by considering each Bottom clause in turn, 
line 3. Each bottom clause creates a tree, lines 4 - 11. Consider the following bottom 
clause

where Arg and Argi are tuples of arguments and bi(Argi) (with arguments Argi ) are literals. 
Initially r(Arg) is set as the root of the tree, lines 5. Literals in the body are considered in 
turn from left to right. When a literal bi(Argi) is chosen, the algorithm tries to insert the 
literal in the tree, see Algorithm 10. If bi(Argi) cannot be inserted, it is set as the right-most 
child of the root. This proceeds until all the bi(Argi) are inserted into a tree, lines 6–11. 
Then the resulted tree is appended into a list of trees (initially empty), line 11, and the list 
is merged obtaining a unique tree, 13. The trees in L are merged by unifying the arguments 
of the roots.

BC = r(Arg) ∶− b1(Arg1),… , bm(Argm)
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Algorithm 9 generate tree
1: function genTree(Bottoms)
2: L ← []
3: for all Bottom in Bottoms do
4: let Bottom be r(Arg) :− b1(Arg1), . . . , bm(Argm)
5: Tree ← r(Arg) � r(Arg) is the root of the tree
6: for all bi(Argi) do
7: if not(insertTree(Tree, bi(Argi))) then
8: addChild(r(Arg),bi(Argi))
9: end if

10: end for
11: L ← L · append(Tree)
12: end for
13: final Tree ← mergeTrees(L)
14: return final Tree
15: end function

To insert the literal, bi(Argi) , into the tree, Algorithm 10, nodes in the tree are visited 
in depth-first. When a node b(Arg) is visited, if Arg and Argi share at least one variable, 
bi(Argi) is set as the right-most child of b(Arg) and the algorithm stops and returns True. 
Otherwise InsertTree is recursively called on each child of b(Arg), lines 6 - 12. The algo-
rithm returns False if the literal cannot be inserted after visiting all the nodes, line 3.

Algorithm 10 insert a literal into a Tree
1: function insertTree(Tree,bi(Argi))
2: if Tree=NULL then � All nodes are visited
3: return False
4: else
5: let Tree be b(Arg)
6: if shareArgument(Arg,Argi) then
7: addChild(Tree,bi(Argi))
8: return True
9: else

10: for all Child of Tree do
11: return insertTree(Child, bi(Argi))
12: end for
13: end if
14: end if
15: end function

Example 4  Consider the following bottom clause from the UWCSE dataset:

In order to build the tree, advised_by(A,B) is initially set as the root of the tree. Then 
predicates in the body are considered in turn. The predicates student(A) (resp. professor(B), 

advised_by(A,B) ∶−

student(A), professor(B), has_position(B,C),

publication(D,B), publication(D,E), in_phase(A,F),

taught_by(G,E,H), ta(I, J,H).
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hasposition(B,  C) and publication(D,  B)) are set as the children of advised_by(A,B) 
because their arguments share variable A (resp. B). Then the predicate publication(D, E) 
is set as a child of publication(D,  B) because their arguments share variable D, 
in_phase(A,F) as a child of advised_by(A,B) (they share variable A), taughtby(G, E, H) 
as a child of publication(D, E) (they share variable E) and finally ta(I, J, H) as a child of 
taughtby(G, E, H) (they share variable H). The corresponding tree is shown in Fig. 7.

6.2.3 � HPLP generation

Once the tree is built, an initial HPLP is generated at random from the tree. Before describ-
ing how the program is created, note that for computation purpose, we considered clauses 
with at most two literals in the body. This can be extended to any number of literals. 
Algorithm 11 takes as input the tree, Tree, an initial probability, 0 ≤ MaxProb ≤ 1 , a rate, 
0 ≤ rate ≤ 1 , and the number of layers 1 ≤ NumLayer ≤ height(Tree) of HPLP we are about 
to generate. Let ( �k = X1,⋯ ,Xk , �l = Y1,⋯ , Yl , �t = Z1,⋯ , Zt and �m = W1,⋯ ,Wm ) 
be tuples of variables.

In order to generate the initial HPLP, the tree is visited breadth-first, starting from level 
1. For each node ni at level Level ( 1 ≤ Level ≤ NumLayer ), ni is visited with probability 
Prob. Otherwise ni and the subtree rooted at ni are not visited. Prob is initialized to Max-
Prob, 1.0 by default. The new value of Prob at each level is Prob ∗ rate where rate ∈ [0, 1] 
is a constant value, 0.95 by default. Thus the deeper the level, the lower the probability 
value. Supposing that ni is visited, two cases can occur: ni is a leaf or an internal node.

If ni = bi(�li
) is a leaf node with parent Parenti , we consider two cases. If 

Parenti = r(�k) (the root of the tree), then the clause

is generated, lines 9-11. Otherwise

is generated. hiddenpath(�ti
) is the hidden predicate associated with Parenti and path is the 

path from the root to Parenti , lines 13-16.
If ni = bi(�li

) is an internal node having parent Parenti , we consider two cases. If Parenti 
is the root, the clause

is generated. hidden_i(�ti
) is associate with b_i(�li

) and �ti
= �k ∪ �li

 , lines  20-21. If 
Parenti is an internal node with the associated hidden predicate hiddenpath(�t) then the 
clause

is generated where �mi
= �t ∪ �li

 , lines 24-25.
The generated clause C is added into a list (initially empty), line 28, and the algorithm 

proceeds for every node at each level until layer NumLayer is reached or all nodes in the 
tree are visited, line 5. Then hidden predicates appearing in the body of clauses without 
associated clauses (in the next layer) are removed, line  34, and the program is reduced, 
line 35. To reduce the program, a set of clauses (without hidden predicates in the body) 
that are renaming of each other are reduced to a single representative of the set. Note that, 

C = r(�k) ∶ 0.5 ∶− bi(�li
).

C = hiddenpath(�ti
) ∶ 0.5 ∶− bpath_i(�li

).

C = r(�k) ∶ 0.5 ∶− bi(�li
), hidden_i(�ti

).

C = hiddenpath(�t) ∶ 0.5 ∶− bpath_i(�li
), hiddenpath_i(�mi

).
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atoms in the head of the generated clauses are all annotated with probability 0.5 for exposi-
tion purposes. These values are replaced by random values between 0 and 1 at the begin-
ning the parameter learning process, see Algorithm 7 line 5.

advised by(A,B)

student (A) professor (B) has posistion(B,C) publication(D,B)

publication(D,E)

taughtby(G,E,H)

ta(I,J,H)

inphase(A,F)

Fig. 7   Tree created from the bottom clause of Example 4
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Algorithm 11 Function GenerateHPLP
1: function GenerateHPLP(Tree,MaxProb,Rate,NumLayer)
2: HPLP ← []
3: Level ← 1
4: Prob ← MaxProb
5: while Level < NumLayer and all nodes in Tree are not visited do
6: for all node ni at level Level having parent Parenti do
7: if maybe(Prob) then
8: if ni is a leaf node then � ni is a leaf node
9: if Parenti is the root node then

10: let ni be bi(Yli ) and Parenti be r(Xk)
11: C ← r(Xk) : 0.5 :− bi(Yli ).
12: else
13: let Parenti be bpath(Xk)
14: hiddenpath(Zti ) is associated with bpath(Xk)
15: ni ← bpath i(Yli )
16: C ← hiddenpath(Zti ) : 0.5 :− bpath i(Yli ).
17: end if
18: else � ni is an internal node
19: if Parenti is the root node then
20: let ni be ← bi(Yli ) and Zti be Xk ∪Yli
21: C ← r(Xk) : 0.5 :− bi(Yli ), hidden i(Zti ).
22: else
23: let Parent be bpath(Xk)
24: ni be bpath i(Yli ) and Wmi be Zt ∪Yli
25: C ← hiddenpath(Zt) : 0.5 :− bpath i(Yli ), hiddenpath i(Wmi ).
26: end if
27: end if
28: HPLP ← [C|HPLP ]
29: end if
30: end for
31: Prob ← Prob ∗Rate
32: level ← level + 1
33: end while
34: HPLP ← removeHidden(HPLP )
35: initial HPLP ← reduce(HPLP )
36: Return initial HPLP
37: end function

Example 5  The HPLP generated from the tree of Fig. 7 is:

advised_by(A,B) ∶ 0.5 ∶− student(A).

advised_by(A,B) ∶ 0.5 ∶− professor(B).

advised_by(A,B) ∶ 0.5 ∶− has_position(B,C).

advised_by(A,B) ∶ 0.5 ∶− publication(D,B), hidden1(A,B,D).

advised_by(A,B) ∶ 0.5 ∶− in_phase(A,E).

hidden1(A,B,D) ∶ 0.5 ∶− publication(D,F), hidden1_1(A,B,D,F).

hidden1_1(A,B,D,F) ∶ 0.5 ∶− taught_by(G,F,H),

hidden1_1_1(A,B,D,F,G,H).

hidden1_1_1(A,B,D,F,G,H) ∶ 0.5 ∶− ta(I, J,H).
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7 � Related work

PHIL is related to ProbLog2, (Fierens et al., 2015) which is an algorithm for learning prob-
abilistic logic programs parameters using Expectation Maximization. PHIL and ProbLog2 
differ from the Probabilistic language they use. While PHIL uses hierachical PLP (Nguem-
bang Fadja et al., 2017) which is a restriction of Logic Programs with Annotated Disjunc-
tions (LPADs) (Vennekens et al., 2004), ProbLog2 uses an extended version of the Prob-
Log language in which both facts and rules can be annotated with probabilities. To perform 
inference, PHIL converts a program into ACs and evaluates the ACs bottom-up. ProbLog2 
converts a program into a weighted boolean formulas (WBFs). The WBFs are then con-
verted into deterministic-decomposable negation normal forms (d-DNNFs), see Darwiche 
(2004), which are in turn converted into arithmetics circuits for performing Weighted 
Model Counting (WMC) (Sang et al., 2005). ProbLog2 performs parameter learning using 
EM on top of the circuits.

PHIL related to EMBLEM (Expectation maximization over binary decision diagrams 
for probabilistic logic programs; Bellodi & Riguzzi, 2013) which is an algorithm for learn-
ing PLP parameters by applying EM over Binary decision diagram (Akers, 1978).

EMPHIL, ProbLog2 and EMBLEM are strongly related as they all apply the EM algo-
rithm. The main difference among these languages is the computation cost for compiling 
the program. In EMBLEM and ProbLog2, the generation of BDDs and ACs respectively 
is #P in the number of ground clauses while the ACs generation in HPLP is linear in the 
number of ground clauses. Once the BDDs for EMBLEM and the ACs for HPLP and Prob-
Log2 are generated, inference is linear in the number of nodes in BDDs or circuits.

PHIL is also related to Tuffy Niu et al. (2011) which is a machine learning algorithm 
that performs MAP/Marginal inference and parameter learning on Markov logic networks 
(MLNs). Differently from PHIL which uses a top-down approach to perform the ground-
ings of clauses (as in ProLog), Tuffy uses a bottom-up approach. In fact, Tuffy expresses 
grounding as a sequence of SQL queries similarly to waht is done in Datalog. Indeed, it 
relies on a RDBMS such as PostgreSQL (Drake & Worsley, 2002). Each predicate in the 
input MLN is associated with a relation in the RDBMS where each row represents a ground 
atom. Given a MLN query (which could be a conjunction of predicates), Tuffy produces a 
SQL query that joins together the relations corresponding to the predicates in MLN to pro-
duce the atom of the ground clauses. While PHIL relies on ACs, generated from a PLP, to 
perform inference, Tuffy relies on the WalkSAT algorithm (Kautz et al., 1996). Two algo-
rithms to perform inference are available in the Tuffy systems: the default WalkSAT and a 
modified version of MAxSAT (Raman et al., 1998) algorithm called SweepSAT (Niu et al., 
2011). To learn Markov logic networks weights, Tuffy implements the Diagonal Newton 
(DN) algorithm described in Lowd and Domingos (2007). The DN algorithm is a gradient 
descent-based algorithm which relies on the Hessian matrix to update the weights. In fact 
at each iteration DN uses the inverse of the diagonalized Hessian to compute the gradient. 
Tuffy’s parameter learning algorithm is related more to DPHIL than EMPHIL since both 
are based on gradient descent.

SLEAHP is related to SLIPCASE (Bellodi & Riguzzi, 2012), SLIPCOVER (Bellodi & 
Riguzzi, 2015) which are algorithms for learning general PLP, and LIFTCOVER, Nguem-
bang Fadja and Riguzzi (2018) which is an algorithm for learning liftable PLP, where the 
head of all the clauses in the program share the same predicate (the target predicate) and 
their bodies contain only input predicates. Therefore, Liftable PLP can be seen as a restric-
tion of HPLP where hidden predicates and clauses are not allowed. Both LIFTCOVER 



1668	 Machine Learning (2021) 110:1637–1693

1 3

and SLIPCOVER learn the program by performing a search in the space of clauses and 
then refine the search by greedily adding refined clauses into the theory, while SLIPCASE 
performs search by theory revision. SLIPCASE and SLIPCOVER use EMBLEM to tune 
the parameters and compute the log-likehood of the data and LIFTCOVER uses a Gradient 
descent or EM-based method.

SLEAHP is also related to PROBFOIL+ (Raedt et al., 2015) which is a generalization 
of mFOIL (Džeroski, 1993). PROBFOIL+ learns both the structure and the parameters 
of ProbLog programs by performing a hill climbing search in the space of Programs. It 
consists of a covering loop in which one rule is added to the program at each iteration. 
The covering loop ends when a condition based on a global scoring function is satisfied. 
The rule added at each iteration is obtained by a nested loop which iteratively adds literals 
to the body of the rule performing a beam search in the space of clauses (as in mFOIL) 
guided by a local scoring function.

Similar to LIFTCOVER, SLIPCOVER and PROBFOIL+, SLEAHP initially performs a 
search in the space of clauses but , differently from these systems, it creates a tree of liter-
als from which a large HPLP is generated. Then a regularized version of PHIL is applied to 
the HPLP to tune the parameters and discard irrelevant rules.

SLEAHP finds prominent bottom clauses from which a tree of literals is built. To gener-
ate a bottom clause, SLEAHP randomly selects a mega-example and randomly selects in 
it an atom for the target predicate. Then, bottom clauses are buit as in Progol (Muggleton, 
1995). Much work exists on using stochastic components for learning the structure of logic 
programs, see Železnỳ et  al. (2006), Železnỳ et  al. (2004) and Železnỳ et  al. (2002). In 
Železnỳ et  al. (2006) and Železnỳ et  al. (2004), the authors present an empirical study 
of randomised restarted search in Inductive Logic Programming. Specifically, a search in 
the clause subsumption lattice is performed by applying different strategies. These strate-
gies all include restarts and differ mainly on the starting clause and the refinement opera-
tion. Both algorithms described in Železnỳ et  al. (2006) and SLEAHP saturate the bot-
tom clauses as in Progol, see Muggleton (1995). Differently from Železnỳ et  al. (2006), 
SLEAHP generates a tree of literals from the bottom clauses instead of performing clause 
refinements. In Železnỳ et al. (2002) the authors propose an algorithm called Randomized 
Rapid Restarts (RRR). To randomize the lattice search of clauses, the algorithm begins by 
randomly selecting a starting clause, then it generates deterministic refinements through a 
non traditional refinement operator producing a radial lattice, and finally it returns the first 
clause satisfying conditions on minimal accuracy. This operation is done for a maximum 
number of restarts.

SLEAHP performs a form of predicate invention: the hidden predicates represent new 
predicates that are not present in the data. Much work has been devoted to predicate inven-
tion. In Cropper and Muggleton (2019) and Cropper et al. (2019), for example, the authors 
propose algorithms that are able to perform predicate invention. Both proposals rely on a 
form of language bias based on metarules, i.e., rule skeletons where the predicate of liter-
als is a not specified. Learning is then performed by metainterpretation and new predicates 
are introduced when applying the metarules. These works focus on learning programs: the 
learned theory often involve recursion. Instead, the language of HPLP is less expressive, 
as recursion is not allowed, and the focus here is on learning probabilistic classifiers, i.e., 
functions returning the class of an individual given what is known about him.

SLEAHP performs structure learning of HPLP by parameter learning, i.e, it initially 
generates a large HPLP and performs a regularized parameter learning on it. Then, clauses 
providing no contribution are pruned, typically those with low values of probabilities. 
Learning the structure of models by exploiting the regularization of parameter learning has 
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been successfully investigated, e.g. in Lee et al. (2007) and Huynh and Mooney (2011). In 
Lee et al. (2007), the authors present an algorithm for learning the structure of log-linear 
graphical model, e.g Markov networks (MNs), using L1-regularization. The algorithm starts 
with a reasonable number of features and progressively introduces new features into the 
model letting the L1-regularization scheme discard features providing no contribution, i.e. 
those with small weight, via an optimization process. In Huynh and Mooney (2011), the 
authors present an algorithm named OSL for learning the structure of MLNs by exploiting 
parameter estimation. OSL starts with a (possibly) empty set of clauses and, at each step, 
new clauses are added in order to improve the prediction of the model. Similarly to Lee 
et al. (2007), regularization is applied to the new set of clauses to discard clauses which 
are not useful in the long run. SLEAHP and algorithms described in Lee et al. (2007) and 
Huynh and Mooney (2011) all use regularization in parameter learning, i.e. L1 and L2 for 
SLEAHP and L1 for the others, to perform structure learning. But differently from Lee 
et al. (2007) and Huynh and Mooney (2011), which apply the regularization at each step, 
SLEAHP applies the regularization once on a large HPLP. This can be done since infer-
ence in HPLP is cheaper.

To perform structure learning, SLEAHP learns the parameters of an AC obtained from 
an initially large HPLP. Learning the structure of (graphical) models by exploiting ACs has 
also been explored in the literature, see Lowd and Rooshenas (2013) and Rooshenas and 
Lowd (2016). In Lowd and Rooshenas (2013) the authors describe an algorithm, named 
ACMN, which learns the structure of MNs using ACs. ACMN performs a greedy search in 
the structure space. It initially considers a MN structure which includes all single-variable 
features. The MN is then compiled into an AC and the algorithm gradually updates the AC, 
by splitting features, without recompiling it from scratch. In Rooshenas and Lowd (2016) 
the authors present an algorithm called DACLearn which discriminatively learns an AC 
which represents a conditional distribution. DACLearn searches in the combinatorial space 
of conjunctive features by greedily selecting features that increase the conditional likeli-
hood. While SLEAHP, at each step, updates the parameters of the AC (i.e of the leaves), 
both ACMN and DACLearn update the AC that represents the model by adding features. 
The ACs learned in SLEAHP and DACLearn represent a conditional distribution instead 
of a full joint distribution as the one modelled by ACMN. In ACMN and DACLearn the 
AC is composed of sums and products while in SLEAHP the AC is composed of probabil-
istic sums, (Eq. 2) and products.

Ground HPLPs can also be seen as neural network (NNs) where the nodes in the arith-
metic circuits are the neurons and the activation function of nodes is the probabilistic sum. 
Parameter learning by DPHIL is in fact performed as in NNs by backpropagation. Combin-
ing logical languages with NNs is an active research field, see De Raedt et al. (2019) for 
an excellent review. For example, relational neural networks (RelNNs; Kazemi & Poole, 
2018) generalize relational logistic regression (RLR) by stacking multiple RLR layers 
together. The authors provide strong motivations for having multiple layers, highlighting in 
particular that the layers improve the representation power by allowing aggregation at dif-
ferent levels and on different object populations. HPLPs benefit from the same advantage. 
Moreover, HPLPs keep a semantics as probabilistic logic programs: the output of the net-
work is a probability according to the distribution semantics.

In Sourek et  al. (2016) the authors discuss an approach for building deep neural net-
works using a template expressed as a set of weighted rules. Similarly to our approach, 
the resulting network has nodes representing ground atoms and nodes representing ground 
rules and the values of ground rule nodes are aggregated to compute the value of atom 
nodes. Differently from us, the contribution of different ground rules are aggregated in two 
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steps, first the contributions of different groundings of the same rule sharing the same head 
and then the contributions of groundings for different rules, resulting in an extra level of 
nodes between the ground rule nodes and the atom nodes. The proposal is parametric in the 
activation functions of ground rule nodes, extra level nodes and atom nodes. In particular, 
the authors introduce two families of activation functions that are inspired by Lukasiewicz 
fuzzy logic. In this paper we show that by properly restricting the form of weighted rules 
and by suitably choosing the activation functions, we can build a neural network whose 
output is the probability of the example according to the distribution semantics.

8 � Experiments

PHIL2 has been implemented in SWI-Prolog (Wielemaker et al., 2012) and C as program-
ming languages. It can be installed using pack_install(phil) on SWI-Prolog. Experiments3 
were performed on GNU/Linux machines with an Intel Xeon E5-2697 core 2 Duo (2,335 
MHz) comparing our algorithms with the state-of-the-art parameter and structure learn-
ing algorithms including ProbLog2 (Fierens et al., 2015), EMBLEM (Bellodi & Riguzzi, 
2013), Tuffy (Niu et  al. (2011)), SLIPCOVER (Bellodi & Riguzzi, 2015), PROBFOIL+ 
(Raedt et al., 2015), MLN-BC, MLN-BT (Khot et al., 2011) and RDN-B (Natarajan et al., 
2012). While SLIPCOVER learns logic programs with Annotated Disjunctions PROB-
FOIL+ learns ProbLog programs as described in Sect. 7.

MLN-BC and MLN-BT learn Markov logic networks (MLNs) considering a series of 
relational functional approximation problems. Two kinds of representations for the gradi-
ents on the pseudo-likelihood are used: clause-based (MLN-BC) and tree-based (MLN-
BT). At each gradient step, MLN-BC simply learns a set of Horn clauses with an asso-
ciated regression value, while MLN-BT consider MLNs as a set of relational regression 
trees, in which each path from the root to a leaf can be seen as a clause and the regres-
sion values in the leaves are the clause weights. The goal is to minimize the squared error 
between the potential function and the functional gradient over all training examples.

RDN-B learns Relational Dependency Networks (RDNs) considering a series of 
relational function approximation problems using Friedman’s functional gradient-based 
boosting. RDN-B approximates the joint distribution of a relational model to a product 
of conditional distributions over ground atoms. It considers the conditional probabil-
ity distribution of each predicate as a set of relational regression trees each of which 
approximates the corresponding gradient. These regression trees serve as the individual 
components of the final potential function. They are learned such that at each iteration 
the new set of regression trees aims at maximizing the likelihood. The different regres-
sion trees provide the structure of the conditional distributions while the regression val-
ues at the leaves form the parameters of the distributions.

Section 8.1 describes the various datasets used in the experiments. Then in Sect. 8.2, 
PHIL (DPHIL and EMPHIL) and its regularized versions was compared with ProbLog2 
and EMBLEM. Finally, Sect.  8.4 presents experiments comparing SLEAHP with SLIP-
COVER, PROBFOIL+, MLN-BC, MLN-BT and RDN-B. Moreover, we provide phil in 

2  The code is available at https://​github.​com/​Arnau​dFadja/​phil.
3  Experiments are available at https://​bitbu​cket.​org/​Arnau​dFadja/​hiera​rchic​alplp_​exper​iments/​src/​master/ .

https://github.com/ArnaudFadja/phil
https://bitbucket.org/ArnaudFadja/hierarchicalplp_experiments/src/master/
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cplint on SWISH4 which is a web application for reasoning and learning with probabilistic 
logic programs. In the application, the user can write hierarchical PLPs and perform infer-
ence, parameter and structure learning without installing phil locally.

8.1 � Datasets

The proposed systems were experimented on five well known datasets:
The Mutagenesis dataset (Srinivasan et al., 1996) contains information about a num-

ber of aromatic/heteroaromatic nitro drugs, and their chemical structures in terms of 
atoms, bonds and other molecular substructures. For example, the dataset contains 
atoms of the form bond(compound,  atom1,  atom2,  bondtype) which states that in the 
compound, a bond of type bondtype can be found between the atoms atom1 and atom2. 
The goal is to predict the mutagenicity of the drugs which is important for understand-
ing carcinogenesis. The subset of the compounds having positive levels of log mutagen-
icity are labeled active (the target predicate) and the remaining ones are inactive.

The Carcinogenesis dataset (Srinivasan et al., 1997) is similar to Mutagenesis dataset 
whose objective is to predict the carcinogenicity of molecular.

The Mondial dataset (May, 1999) contains data from multiple geographical web data 
sources. The goal is to predict the religion of a country as Christian (target predicate 
christian_religion(A)).

The UWCSE dataset (Beerenwinkel et al., 2005) contains information about the Com-
puter Science department of the University of Washington. The goal is to predict the target 
predicate advisedby(A, B) expressing that a student (A) is advised by a professor (B).

In the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD15) 
dataset5 the task is to predict gender of a client based on E-commerce data. The dataset was 
also used in Kazemi and Poole (2018).

8.2 � Experiments: parameter learning

In this section, we present experiments comparing PHIL with EMBLEM, ProbLog2 and 
Tuffy on the five datasets. We manually build the initial HPLPs for the datasets UWCSE 
and PAKDD15 and generate those for Mutagenesis,6 Carcinogenesis and Mondial using 
SLEAHP. The following hyper-parameters were used:

As stop conditions, we use � = 10−4 , � = 10−5 , MaxIter = 1000 for PHIL and EMBLEM 
and MIN_IMPROV = 10−4 , MaxIter = 1000 for ProbLog2. We use the Adam hyper-
parameters �1 = 0.9 , �2 = 0.999 , � = 0.9 , 𝜖 = 10−8 and we apply batch gradient descent 
(all ACs are used for computing gradients at each iteration) on every dataset except for 
UWCSE where we use stochastic gradient descent with batch size BatchSize = 100 . In the 
regularized version of PHIL, � = 10 is used as regularization coefficient and clauses with 
parameters less than MinProb = 10−5 are removed. We experiment with three versions of 
EMPHILB ( EMPHILB1

 , EMPHILB2
 , EMPHILB3

 ) which use a = 0 and differ from the 

4  phil on SWISH is available at https://​cplint.​eu/​examp​le/​phil/​phil_​examp​les.​swinb. The manual is avail-
able at https://​arnau​dfadja.​github.​io/​phil.
5  A full description is available at https://​knowl​edgep​it.​ml/​pakdd​15-​data-​mining-​compe​tition/.
6  An online version is available at http://​cplint.​eu/e/​phil/​muta.​pl.

https://cplint.eu/example/phil/phil_examples.swinb
https://arnaudfadja.github.io/phil
https://knowledgepit.ml/pakdd15-data-mining-competition/
http://cplint.eu/e/phil/muta.pl
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fraction of the examples n they use at the M-step. They respectively use b =
n

10
 , b =

n

5
 , 

b =
n

4
 . The parameters in the gradient descent method are initialized between [-0.5, 0.5] 

and the ones in the EM between [0,1].
In order to test the performance of the algorithms, we apply the cross-validation method: 

each dataset is partitioned into NF folds of which one is used for testing and the remaining 
for training. The characteristics of the datasets in terms of number of clauses NC, layers 
NL, folds NF and the average number of Arithmetic circuits NAC for each fold of each 
dataset are summarized in Table 1.

We draw, for each test fold, the receiver operating characteristics (ROC) and the preci-
sion-recall (PR) curves and compute the area under each curve (AUCROC and AUCPR) as 
described in Davis and Goadrich (2006). The average values (over the folds) of the areas 
for each algorithm are shown in Tables 2, 3. Table 4 shows the average training time. In 
these tables, the best values are highlighted in bold. Note that EMBLEM ran out of mem-
ory on the datasets Carcinogenesis and Mondial and we could not compute the areas and 
the training time. Moreover, to start learning, ProbLog2 needed more memory. Tuffy ran 
out of memory on all datasets. We found it was due to the fact that, before performing 
inference/parameter learning, Tuffy maps all predicates and ground clauses into relations in 
a PostgreSQL database as explained in Sect. 7. Since all programs have hidden predicates 
which are not included in the input predicates, Tuffy attempts to populate the database with 
all possible groundings of the hidden predicates which requires much memory. In all data-
sets, Tuffy ran out of 500 Giga hard disk memory available.

8.2.1 � Discussion of the results for parameter learning

The experiments show that PHIL beats EMBLEM, ProbLog2 and Tuffy either in terms of 
area or in terms of time in all datasets. In Table 4, we highlight in italic the times associated 
with the best accuracies from Tables 2 and 3 . It can be observed that these times are either 
the best or in the same order of the best time, in bold. Among DPHIL (resp. EMPHIL) and 
its regularized versions, DPHIL2 (resp. EMPHIL2 ) is often a good compromise in terms of 
accuracy and time. Note also that regularization is often not necessary in dataset with few 
clauses like the Mondial dataset. Between DPHIL and EMPHIL, DPHIL is often conveni-
ent in dataset with many clauses and examples (see Mutagenesis).

Tables 2 and 3 present several values that are very close to each other both for PHIL 
systems and the other systems (EMBLEM and ProbLog2). This probably means that 
EMBLEM, ProbLog2, PHIL and their regularized versions return solutions of the same 
quality. To verify this assertion, a statistical significance test (t-test) was performed among 
these systems. Tables showing the p-values are in Supplementary Material and in the 
Experiments repository 3.We compute the t-test between the fold values in datasets split-
ting in more than 2 folds i.e in Mutagenesis (10 folds), UWCSE (5 folds) and Mondial (5 
folds). We use a paired two-tailed t-test. The test was done w.r.t the AUCROC (highlighted 
in yellow) and w.r.t to the AUCPR (highlighted in green). In the tables showing the p-val-
ues, EMPHILB refers to EMPHILB1

.
The tests show that PHIL systems are statistically equivalent both in terms of AUCROC 

and in terms of AUCPR in all dataset except in Mutagenesis in which EMPHILB and 
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DPHIL1 are almost always significantly worse than the others. Indeed, in Mutagene-
sis, EMPHILB is always significantly worse than the other systems ( p ≤ 0.009 ) for both 
AUCROC and AUCPR except for DPHIL1 where p = 0.15 and p = 0.19 for AUCROC and 

Table 1   Dataset characteristics

Characteristic Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

NC 58 38 10 17 11
NL 9 7 6 8 4
NF 10 1 5 5 10
NAC 169.2 298 176 3353.6 3000

Table 2   Average area under ROC curve for parameter learning

AUCROC Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

DPHIL 0.888943 0.602632 0.531157 0.941525 0.506362
DPHIL

1

0.841021 0.571053 0.534817 0.960876 0.504912
DPHIL

2

0.880465 0.618421 0.534563 0.949548 0.514218
EMPHIL 0.885358 0.684211 0.534822 0.968560 0.504742
EMPHIL

1

0.884016 0.684211 0.536009 0.938121 0.504741
EMPHIL

2

0.885478 0.623684 0.534622 0.969046 0.504742
EMPHIL

B
1

0.833539 0.619730 0.536042 0.930243 0.504196
EMPHIL

B
2

0.821356 0.640780 0.537011 0.930243 0.504196
EMPHIL

B
3

0.820220 0.640780 0.534996 0.930243 0.475363
EMBLEM 0.887695 - - 0.968354 0.501014
ProbLog2 0.828655 0.594737 0.533905 0.968909 0.500000
Tuffy – – – – –

Table 3   Average area under PR curve for parameter learning

AUCPR Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

DPHIL 0.947100 0.595144 0.138932 0.227438 0.223219
DPHIL

1

0.886598 0.563875 0.142331 0.191302 0.222783
DPHIL

2

0.929244 0.580041 0.147390 0.219806 0.218153
EMPHIL 0.944511 0.679966 0.142374 0.277760 0.222618
EMPHIL

1

0.944758 0.679712 0.142696 0.275985 0.222609
EMPHIL

2

0.944517 0.655781 0.142066 0.307713 0.222618
EMPHIL

B
1

0.880013 0.649090 0.142810 0.261578 0.222043
EMPHIL

B
2

0.868837 0.641630 0.143275 0.261578 0.222043
EMPHIL

B
3

0.867759 0.641630 0.142540 0.261578 0.250876
EMBLEM 0.944394 – – 0.262565 0.231962
ProbLog2 0.901450 0.568821 0.132498 0.306378 0.220833
Tuffy – – – – –
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AUCPR respectively. The same situation can be observed for DPHIL1 ( p ≤ 0.01 ) with the 
other systems.

EMBLEM, on the Mutagenis dataset, is statistically equivalent to EMPHIL and its regu-
larized versions both in terms of AUCROC and in terms of AUCPR. This does not happen 
in the gradient versions of PHIL except for DHPIL. This situation is clearly understandable 
since EM versions of PHIL and EMBLEM all rely on the EM algorithm. They compute 
the same expectations. The former on a factor graph and the latter on a Binary Decision 
Diagram.

ProbLog is not statistically equivalent to the other systems except in the Mondial dataset 
in which there is a possible equivalence with other systems both in terms of AUCROC and 
in terms of AUCPR.

8.3 � Experiments: structure learning

In this section, we present experiments comparing SLEAHP with state-of-the art structure 
learning systems on the five datasets described in Sect. 8.1. We compared SLEAHP with 
PLP systems such as SLIPCOVER (Bellodi & Riguzzi, 2015) and PROBFOIL+ (Raedt 
et  al., 2015). We also compared SLEAHP with Statistical Relational Learning methods 
such as MLN-BC and MLN-BT (Khot et  al., 2011) for learning Markov logic networks 
(MLNs) and with RDN-B (Natarajan et al., 2012) for learning Relational Dependency Net-
works. Note that the dataset PAKDD15 was randomly divided into 10 folds and the same 
language bias expressed in terms of modes was used in all systems. To generate the initial 
HPLP in SLEAHP, we used MaxProb = 1.0 , Rate = 0.95 and Maxlayer = +∞ for every 
dataset except in UWCSE where we used Maxlayer = 3 . After generating the initial HPLP 
we use the same hyper-parameters presented in Sect. 8.2 to perform parameter learning. 
We performed five experiments (one for each regularization). SLEAHPG1

 (resp. SLEAHPG2
 

) uses DPHIL1 (resp. DPHIL2 ) and SLEAHPE1
 (resp. SLEAHPE2

 and SLEAHPB ) uses 
EMPHIL1 (resp. EMPHIL2 and EMPHILB1

 ). The average area under the ROC/PR curves 
and the average time are shown in Tables 5, 6, 7 respectively. In these tables, the best val-
ues are highlighted in bold. The results indicated with - for PROBFOIL+ mean that it was 

Table 4   Average time for parameter learning

Time Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

DPHIL 2.8573 178.2680 265.4160 0.0884 34.8170
DPHIL

1

5.2059 177.4270 311.3280 0.2910 20.5704
DPHIL

2

5.4450 88.5100 301.1392 0.2214 4.9517
EMPHIL 4.4430 106.5540 270.6688 0.2890 6.6106
EMPHIL

1

4.8940 181.0890 317.4202 1.0000 7.0691
EMPHIL

2

5.0046 146.8440 245.3830 0.8372 6.6334
EMPHIL

B
1

2.6478 85.3210 248.1978 0.1572 6.0990
EMPHIL

B
2

1.5820 80.4270 261.3612 0.1266 8.8722
EMPHIL

B
3

1.4937 94.6850 274.9598 0.1190 6.0985
EMBLEM 125.62 – – 0.9666 154.51
ProbLog2 722.00 38685.00 1607.60 161.40 596.90
Tuffy – – – – –
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not able to terminate in 24 h, in Mondial on some folds, in UWCSE and PAKDD15 on all 
folds. The results with * for MLN-BC indicates that the algorithm did not learn any theory.

8.3.1 � Discussion of the results for structure learning

In terms of quality of the solutions, SLEAHP outperforms SLIPCOVER in the three data-
sets Mutagenesis, UWCSE and PAKDD15, and achieves solution of similar quality in the 
other datasets. Note that SLEAHPE1

 and other EM regularizations do not perform well, 
in terms of AUCPR, on the UWCSE dataset. On the other hand, on the same dataset, 
SLEAHPG1

 and SLEAHPG2
 outperform SLIPCOVER in terms of accuracy and time. This 

motivates the use of different types of algorithms and regularizations. In terms of computa-
tion time, SLEAHP outperforms SLIPCOVER in almost all datasets excepts in UWCSE in 
which the computation time still remains reasonable. In Table 7 we also highlight in italic, 
as done in Table 4, the times associated with the best accuracies of SLEAHP from Tables 5 
and 6 . Between DPHIL and EMPHIL regularizations, as stated before, DPHIL is often 
preferred in dataset with large examples (see UWCSE).

With respect to PROBFOIL+, SLEAHP outperforms PROBFOIL+ in terms of solution 
quality and time in all datasets.

With respect to MLN-BT/BC systems, SLEAHP systems beat them in all datasets except 
in UWCSE in which they provide similar solutions of quality. In terms of AUCROC, SLE-
AHP beats RDN-B in the Carcinogenis dataset and provides similar quality in the other 
datasets. In terms of AUCPR, SLEAHP beats RDN-B in three out of five datasets includ-
ing Mutagenesis, Carcinogenesis and PAKDD15. In the other datasets it provides similar 
solutions of quality.

In terms of time, SLEAHP systems clearly outperform the other systems in all datasets 
except in UWCSE where it provides a learning time similar to that of SLIPCOVER.

We also performed a statistical significance test for structure learning as done for 
parameter learning. The p-values for each couple of systems are shown in the supplemen-
tary material and in the Experiments repository 3. so in this case, it can be observed that 
SLEAHP systems are statistically equivalent both in terms of AUCROC and in terms of 
AUCPR in almost all datasets except in Mutagenesis in which SLEAHPB is always signifi-
cantly worse than SLEAHPE1

 and SLEAHPE2
 ( p < 0.05 ) for both AUCROC and AUCPR. 

In UWCSE and Mondial, there is only one significance difference, that of SLEAHPG1
 with 

Table 5   Average area under the ROC curve for structure learning

AUCROC Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

SLEAHP
G

1

0.889676 0.493421 0.483865 0.936160 0.506252
SLEAHP

G
2

0.845452 0.544737 0.472843 0.925436 0.506242
SLEAHP

E
1

0.878727 0.660526 0.433016 0.907789 0.503251
SLEAHP

E
2

0.904933 0.414135 0.483798 0.904347 0.505691
SLEAHP

B
0.822833 0.618421 0.464058 0.925099 0.504196

SLIPCOVER 0.851000 0.676000 0.600000 0.919000 0.500000
PROBFOIL+ 0.881255 0.556578 – – –
MLN-BC 0.543847 0.561842 0.394252 0.912803 *
MLN-BT 0.841584 0.410526 0.590406 0.961906 0.500000
RDN-B 0.925142 0.521053 0.697147 0.958913 0.500000
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the other systems. SLIPCOVER and PROBFOIL+ in all datasets, except in UWCSE and 
Mondial, are almost always statistically equivalent to SLEAHP sytems both in terms of 
AUCROC and in terms of AUCPR. This situation can be clearly observed in the Mutagen-
esis dataset. PROBFOIL+, in the Mutagenesis dataset, is almost always statistically equiv-
alent to SLIPCOVER and SLEAHP systems both in terms of AUCROC and in terms of 
AUCPR. It can be also observed that in all datasets, except in Mutagenesis, MLN-BC/
BT and RDN-B systems are not statistically equivalent to PLP systems (SLEAHP, SLIP-
COVER and ProbFoil) both in terms of AUCROC and in terms of AUCPR. Overall, SLE-
AHP systems are almost alway statistically equivalent among themselves and can be used 
interchangeably. However, stochastic gradient descent-based systems are faster in dataset 
with a large number of ACs (e.g UWCSE).

To summarize, SLEAHP beats other systems in terms of computation time in almost all 
datasets and achieves a similar quality of the solution. We believe that as the dimension of 
data increases the gap between SLEAHP learning time and the other systems learning time 
would be strongly remarkable. This would make SLEAHP a good compromise between 
accuracy and learning time.

Table 6   Average area under the PR curve for structure learning

AUCPR Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

SLEAHP
G

1

0.929906 0.498091 0.701244 0.148115 0.223074
SLEAHP

G
2

0.918519 0.502135 0.690782 0.131750 0.223028
SLEAHP

E
1

0.948563 0.598095 0.632270 0.059562 0.220226
SLEAHP

E
2

0.955678 0.540510 0.623542 0.069861 0.225017
SLEAHP

B
0.900300 0.552477 0.623542 0.059655 0.222043

SLIPCOVER 0.885000 0.600000 0.733792 0.113000 0.220833
PROBFOIL+ 0.937497 0.534393 – – –
MLN-BC 0.686894 0.581305 0.631976 0.058467 *
MLN-BT 0.894080 0.506972 0.709318 0.1833378 0.220833
RDN-B 0.953618 0.577169 0.768584 0.266790 0.220833

Table 7   Average time for structure learning

Time Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

SLEAHP
G

1

41.8250 48.7600 59.5054 219.6410 192.4396
SLEAHP

G
2

47.1344 10524.0900 14.0470 194.9706 162.9938
SLEAHP

E
1

48.0152 303.0570 60.8316 387.6650 151.7217
SLEAHP

E
2

45.9245 92.3820 61.0996 312.2604 68.2432
SLEAHP

B
13.1478 1399.0090 14.6698 295.6734 61.5347

SLIPCOVER 74610.7000 17419.4500 650.3630 141.3600 242.7077
PROBFOIL+ 1726.6000 15433.0000 – – –
MLN-BC 91.7700 59.73500 56.5007 376.2356 *
MLN-BT 360.8563 87.5020 53.5568 891.4226 915.5794
RDN-B 183.7140 61.5000 192.0487 501.1176 793.7661
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8.4 � Comparing PHIL and SLEAHP

The performance, either in terms of AUCROC, AUCPR and time was recapped for both 
PHIL and SLEAHP in the same tables in order to highlight a possible benefit of learning 
the structure of HPLPs instead of manually building them. The different tables (Tables 8, 
9 and 10) are available in the appendix and in the Experiments repository 3. SLEAHP is 
highlighted in bold. From Tables 8 and 9, it can be clearly observed that SLEAHP provides 
similar and often better performance in terms of AUCROC and AUCPR in all datasets. 
In the Mondial dataset, in particular, SLEAHP outperforms PHIL in terms of AUCPR. In 
terms of time (see Table 10) SLEAHP drastically outperforms PHIL in all datasets except in 
PAKDD15. This is mainly due to the fact that SLEAHP generates the initial hierarchical PLP 
with a depth that leads to a good compromise between solution quality and learning time. 
In the PAKDD15 dataset, PHIL learning time outperforms SLEAHP learning time because 
the programs generated by SLEAHP were remarkably deeper than the one manually built 
used with PHIL. These observations show the usefulness of performing structure learning 
with SLEAHP. Having a reasonable tradeoff between solution quality and learning time over-
comes the tedious process of manually writing the structure of a program for each dataset.

9 � Conclusion

In this work we have presented different algorithms for learning both the structure and the 
parameters of hierarchical PLP from data. We first presented PHIL, Parameter learning for 
HIerarchical probabilistic logic programs, that learns the parameters of hierarchical PLP 
from data. Two versions of PHIL have been presented: DPHIL which learns the param-
eters by applying gradient descent and EMPHIL which applies Expectation Maximization. 
Different regularized versions of DPHIL ( DPHIL1 , DPHIL2 ) and EMPHIL(EMPHIL1 , 
EMPHIL2 , EMPHILB ) have also been proposed. These regularizations favor small param-
eters during learning. Then, we proposed SLEAHP which learns both the structure and 
the parameters of hierarchical PLP from data. SLEAHP initially generates a large HPLP 
(containing many clauses) and applies a regularized version of PHIL to perform parameter 
learning. Clauses with a small parameters are removed from the final program.

Finally we performed experiments comparing, in five real datasets, PHIL with 
EMBLEM, ProbLog2 and Tuffy and SLEAHP with SLIPCOVER, PROBFOIL+, MLN-
BC, MLN-BT and RDN-B. PHIL and SLEAHP achieve similar and often better accura-
cies in a shorter time. The significance tests performed among the different versions of 
PHIL and SLEAHP show that these versions are statistically equivalent and can be used 
interchangeably.

Regarding the restriction imposed on the number of literals in the body of clauses in 
SLEAHP, we plan to extend this number in order to explore a large space of HPLPs. We 
also plan to extend HPLPs in domains with continuous random variables in order to apply 
PHIL and SLEAHP to data such as images.
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Appendix

Gradient calculation

In this section we describe how to compute the derivative of the error w.r.t each node of the 
AC.

Consider the root node r of the AC for an example e. We want to compute �err
�v(n)

 for each 
node n in the AC. By the chain rule,

Let us first compute �err
�v(r)

 where v(r) is the output of the AC
For a positive example, p = v(r) , while for a negative example r = not(n) , p = 1 − v(r) . In 

this case, the error defined in Eq. 4 becomes err = − log(v(r)) . Therefore

Let us now compute the derivative, d(n), of v(r) with respect to each v(n)

d(n) can be computed by observing that d(r) = 1 and, by the chain rule of calculus, for an 
arbitrary non root node n with pan indicating its parents

If parent pan is a × node with n′ indicating its children v(pan) =
∏

n� v(n
�) and if node n is 

not a leaf (not a parameter node), then

if n = �i then

The derivative of pan with respect to Wi corresponding to �i is:

If parent pan is a 
⨁

 node with n′ indicating its children
v(pan) =

⨁
n� v(n

�) = 1 −
∏

n� (1 − v(n�))

�err

�v(n)
=

�err

�v(r)

�v(r)

�v(n)

(25)
�err

�v(r)
= −

1

v(r)

d(n) =
�v(r)

�v(n)

(26)d(n) =
∑
pan

�v(r)

�v(pan)

�v(pan)

�v(n)
=
∑
pan

d(pan)
�v(pan)

�v(n)
.

(27)
�v(pan)

�v(n)
=
∏
n�≠n

v(n�) =
v(pan)

v(n)

(28)
�v(pan)

��i
=

∏
n�≠�i

v(n�) =
v(pan)

�i

(29)

�v(pan)

�Wi

=
�v(pan)

��(Wi)

��(Wi)

�Wi

=
�v(pan)

��(Wi)
�(Wi)(1 − �(Wi))

=
�v(pan)

��i
�i(1 − �i) =

v(pan)

�i
�i(1 − �i)

= v(pan)(1 − �(Wi))
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If the unique parent of n is a not(n) v(pan) = 1 − v(n) and

Because of the graph construction, 
⨁

 and × nodes can only have one × and 
⨁

 parent 
respectively. Leaf nodes can have many × parent nodes. Therefore Eq. 26 can be written as

Combining Eqs. 25 and 32 we have:

Message passing

This appendix describes how to perform message passing over the arithmetic circuit.
In order to illustrate the passes, we construct a graphical model associated with the AC 

and then apply the belief propagation (BP) algorithm (Pearl, 1988).
A Bayesian Network (BN) can be obtained from the AC by replacing each node with a 

random variable. The variables associated with an 
⨁

 node have a conditional probabilistic 
table (CPT) that encodes deterministic OR function, while variables associated with an × 
node have a CPT encoding a deterministic AND function. Variables associated with a ¬ 
node have a CPT encoding the NOT function. Leaf nodes associated with the same param-
eter are split into as many nodes Xij as the groundings of the rule Ci , each associated with 
a CPT such that P(Xij = 1) = �i . We convert the BN into a Factor Graph (FG) using the 
standard translation because BP can be expressed in a simpler way for FGs. The FG cor-
responding to the AC of Fig. 6 is shown in Fig. 8.

After constructing the FG, P(Xij = 0|e) and P(Xij = 1|e) are computed by exchanging 
messages among nodes and factors until convergence. In the case of FG obtained from an 
AC, the graph is a tree and it is sufficient to propagate the message first bottom-up and then 
top-down. The message from a variable N to a factor f is defined as, see Nguembang Fadja 
et al. (2018) and Pearl (1988):

where nb(X) is the set of neighbors of X (the set of factors X appears in). The message 
from a factor f to a variable N is defined as:

(30)
�v(pan)

�v(n)
=
∏
n�≠n

(1 − v(n�)) =
1 − v(pan)

1 − v(n)

(31)
�v(pan)

�v(n)
= −1

(32)d(n) =

⎧
⎪⎪⎨⎪⎪⎩

d(pan)
v(pan)

v(n)
if n is a

⨁
node,

d(pan)
1−v(pan)

1−v(n)
if n is a × node∑

pan
d(pan).v(pan).(1 − �i) if n = �(Wi)

−d(pan) pan = not(n)

(33)
�err

�v(n)
= −d(n)

1

v(r)

(34)�N→f (n) =
∏

h∈nb(N)�f

�h→N(n)
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where nb(f) is the set of arguments of f. After convergence, the belief of each variable N is 
computed as follows:

that is the product of all incoming messages to the variable. By normalizing b(n) we obtain 
P(N = n|e) ( n ∈ {0, 1} ). We want to develop an algorithm for computing b(n) over the AC. 
So we want the AC nodes to send messages. Let cN = �f→N(N = 1) be the normalized mes-
sages in the bottom-up pass and tN = �f→N(N = 1) the normalized messages in the top-
down pass. We proved in Nguembang Fadja et al. (2018) that cN = v(N) and

(35)�f→N(n) =
∑
⌝N

(f (n, �)
∏

Y∈nb(f )�N

�Y→f (y))

(36)b(n) =
∏

f∈nb(N)

�f→N(n)

P

for

Q1 Q2 Q3 Q4

fand fand fand fand

P11 X12 X21 P22 X31 X41

for forf12 f21 f31 f41

Q111 Q112 Q221 Q222

fand fand fand fand

X1111 X1121 X2211 X2221

f1111 f1121 f2211 f2221

Fig. 8   Factor graph
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where v(N) is the value of node N, P is its parent and the operator ⊖ is defined as

Regularization

In this appendix we give the proofs of Theorems 1 and 2.

Theorem 3  The L1 regularized objective function:

is maximum in

Proof  Deriving J1 w.r.t. � , we obtain

Solving J�
1
= 0 we have:

Equation 41 is a second degree equation whose solutions are

with a = � , b = −N0 − N1 − � and c = N1 The determinant is

To see whether the determinant is positive we must solve the equation

(37)tN =

⎧
⎪⎪⎨⎪⎪⎩

tP

tP+v(P)⊖v(N)⋅tP+(1−v(P)⊖v(N))⋅(1−tp)
ifP is a ⊕ node

tP⋅
v(P)

v(N)
+(1−tP)⋅(1−

v(P)

v(N)
)

tP⋅
v(P)

v(N)
+(1−tP)⋅(1−

v(P)

v(N)
)+(1−tP)

ifP is a × node

1 − tP ifP is a¬ node

(38)v(p)⊖ v(n) = 1 −
1 − v(p)

1 − v(n)

(39)J1(�) = N1 log � + N0 log(1 − �) − ��

�2 =
4N1

2(� + N0 + N1 +
√
(N0 + N1)

2 + �2 + 2�(N0 − N1))

(40)J1(�) =
N1

�
−

N0

1 − �
− �

(41)

N1

�
−

N0

1 − �
− � = 0

N1(1 − �) − N0� − ��(1 − �) = 0

N1 − N1� − N0� − �� + ��2 = 0

��2 − (N0 + N1 + �)� + N1 = 0

� =
−b ±

√
b2 − 4ac

2a

� =b2 − 4ac = (N0 + N1)
2 + �2 + 2(N0 + N1)� − 4�N1

= (N0 + N1)
2 + �2 − 2�N1 + 2�N0
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which gives

Therefore there is no real value for � for which � is 0, so � is always greater or equal to 0 
because for N0 = N1 we have � = 4N2

0
+ �2 which is greater or equal to 0. This means that 

J�
1
= 0 has two real solutions.
Observe that lim�→0+ J1(�) = lim�→1− J1(�) = −∞ . Therefore J1 must have at least a 

maximum in (0, 1). Since in such a maximum the first derivative must be 0 and J′
1
 has two 

zeros, then J1 has a single maximum in (0, 1).
Let us compute the two zeros of J′

1
:

We can see that �1 ≥ 0 and

�2 + (−2N1 + 2N0)� + (N0 + N1)
2 = 0

� =
2N1 − 2N0 ±

√
(2N1 − 2N0)

2 − 4(N0 + N1)
2

2

=
2N1 − 2N0 ±

�
4N2

1
+ 4N2

0
− 8N0N1 − 4N2

0
− 4N2

1
− 8N0N1

2

=
6N1 + 2N0 ±

√
−16N0N1

2

� =
� + N0 + N1 ±

√
(N0 + N1)

2 + �2 + 2�(N0 − N1)

2�

�1 =
� + N0 + N1 −

√
(N0 + N1)

2 + �2 + 2�(N0 − N1)

2�

=
(� + N0 + N1)

2 − (N0 + N1)
2 − �2 − 2�(N0 − N1)

2�(� + N0 + N1 +
√
(N0 + N1)

2 + �2 + 2�(N0 − N1))

=
2�(N0 + N1) − 2�(N0 − N1)

2�(� + N0 + N1 +
√
(N0 + N1)

2 + �2 + 2�(N0 − N1))

=
4�N1

2�(� + N0 + N1 +
√
(N0 + N1)

2 + �2 + 2�(N0 − N1))

=
4N1

2(� + N0 + N1 +
√
(N0 + N1)

2 + �2 + 2�(N0 − N1))

�2 =
� + N0 + N1 +

√
(N0 + N1)

2 + �2 + 2�(N0 − N1)

2�

=
� + N0 + N1 +

�
N2
0
+ N2

1
+ 2N0N1 + �2 + 2�N0 − 2�N1

2�

=
� + N0 + N1 +

�
N2
0
+ N2

1
+ 2N1(N0 − �) + �2 + 2�N0

2�

=
� + N0 + N1 +

�
(N1 − �)2 + N2

0
+ 2N0N1 + 2�N0

2�
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So �1 is the root of J′
1
 that we are looking for. 	�  ◻

Note that, as expected:

Theorem 4  The L2 regularized objective function:

is maximum in

Proof  We want to find the value of � that maximizes J2(�) as a function of N1 , N0 and � , 
with N1 ≥ 0,N0 ≥ 0 and � ≥ 0.

The derivative of J2(�) is

Solving J�
2
(�) = 0 we have:

Equation 44 is a third degree equation. Let us consider a = 1, b = −1, c = −
N0+N1

�
, d =

N1

�
 . 

We want to solve the equation

The number of real and complex roots is determined by the discriminant of the cubic equa-
tion (Cox, 2012):

�1 ≤
4N1

2N0 + 2N1 + 2N0 + 2N1

=
N1

N0 + N1

≤ 1

lim
�→0

�1 =
4N1

2N0 + 2N1 + 2N0 + 2N1

=
N1

N0 + N1

(42)J2(�) = N1 log � + N0 log(1 − �) −
�

2
�2

� =

2
�

3N0+3N1+�

�
cos

⎛
⎜⎜⎜⎜⎝

arccos

⎛⎜⎜⎝

√
�

3N0+3N1+�

�
9N0
2

−9N1+�

�

3N0+3N1+�

⎞⎟⎟⎠
3

−
2�

3

⎞
⎟⎟⎟⎟⎠

3
+

1

3

(43)J�
2
(�) =

N1

�
−

N0

1 − �
− ��

(44)

N1

�
−

N0

1 − �
− �� = 0

N1(1 − �) − N0� − ��2(1 − �) = 0

N1 − N1� − N0� − ��2 + ��3 = 0

��3 − ��2 − (N0 + N1)� + N1 = 0

�3 − �2 −
(N0 + N1)

�
� +

N1

�
= 0

(45)a�3 + b�2 + c� + d = 0

� = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2
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In our case we have

If 𝛥 > 0 the equation has three distinct real roots. If � ≤ N0 + N1

If � ≥ N0 + N1

So Eq. 44 has three real roots that can be computed as (Cox, 2012):

where

�1 is

� = −
27N2

1

�2
+

4N1

�
−

18N1

(
−N0 − N1

)
�2

+

(
−N0 − N1

)2
�2

−
4
(
−N0 − N1

)3
�3

=
4N3

0

�3
+

12N2
0
N1

�3
+

N2
0

�2
+

12N0N
2
1

�3
+

20N0N1

�2
+

4N3
1

�3
−

8N2
1

�2
+

4N1

�

� ≥
4N3

0

(N0 + N1)
3
+

12N2
0
N1

(N0 + N1)
3
+

N2
0

(N0 + N1)
2
+

12N0N
2
1

(N0 + N1)
3

+
20N0N1

(N0 + N1)
2
+

4N3
1

(N0 + N1)
3
−

8N2
1

(N0 + N1)
2
+

4N1

(N0 + N1)

=
1

(N0 + N1)
3
(4N3

0
+ 12N2

0
N1 + N2

0
(N0 + N1) + 12N0N

2
1

+ 20N0N1(N0 + N1) + 4N3
1
− 8N2

1
(N0 + N1) + 4N1(N0 + N1)

2)

=
N0

(
5N0 + 32N1

)

N2
0
+ 2N0N1 + N2

1

≥0

� =
1

�3

(
4N1�

2 + �

(
−27N2

1
+ 18N1

(
N0 + N1

)
+
(
N0 + N1

)2)

+ 4
(
N0 + N1

)3)

≥
1

�3

(
4N1

(
N0 + N1

)2
+ 4

(
N0 + N1

)3

+
(
N0 + N1

)(
−27N2

1
+ 18N1

(
N0 + N1

)
+
(
N0 + N1

)2))

=
1

�3
N0

(
5N2

0
+ 37N0N1 + 32N2

1

)

≥0

�k = 2

√
−
p

3
cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
−

2�k

3

)
+

1

3
for k = 0, 1, 2

p =
3ac − b2

3a2
,

q =
2b3 − 9abc + 27a2d

27a3
.
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Since lim�→0+ J2(�) = lim�→1− J2(�) = −∞ , then J2 must have at least a maximum in 
(0, 1). In such a maximum the first derivative must be 0. J′

2
 has three zeros. Therefore there 

are only two possibilities: either J2 has a single maximum in (0, 1) or it has two (with a 
minimum in between).

Note that

Since we are interested only in maxima and minima, the � factor can be ignored. Now 
J�
2
= 0 if and only if P(�) = �3 − �2 − (A + B)� + A = 0 . Since P(0) = A > 0 and 

P(1) = −B < 0 , then P is zero at least once in (0, 1). The first derivative of P is

P�(�) = 0 has two roots, one negative and the other larger than 1. So P′ is decreasing in 
(0, 1) and therefore P has a single zero. So J′

2
 has a single zero that is a maximum.

Let us now prove that it is �1 of Eq. 46. We show that �1 is in [0, 1] for a specific value of 
� . Since the fact that J′

2
 has a single zero that is a maximum doesn’t depend on the values of 

� , this means that �1 is the maximum we are looking for.
Let us choose � = N0 + N1:

(46)

�1 =

2
�

3N0+3N1+�

�
cos

⎛
⎜⎜⎜⎜⎝

arccos

⎛
⎜⎜⎝

√
�

3N0+3N1+�

�
9N0
2

−9N1+�

�

3N0+3N1+�

⎞
⎟⎟⎠

3
−

2�

3

⎞
⎟⎟⎟⎟⎠

3
+

1

3

J2(�) = N1 log � + N0 log(1 − �) −
�

2
�2

= �

{
N1

�
log � +

N0

�
log(1 − �) −

�2

2

}

= �

{
A log � + B log(1 − �) −

�2

2

}
.

P�(�) = �2 − 2� − (a + b).
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�1 is minimal when N1 is 0 and we get

�1 is maximal when N0 is 0 and we get

�1 =

2
�

3N0+3N1+N0+N1

N0+N1

cos

⎛⎜⎜⎜⎜⎝

arccos

⎛
⎜⎜⎝

√
N0+N1 )

3N0+3N1+N0+N1

�
9N0
2

−9N1+N0+N1

�

3N0+3N1+N0+N1

⎞
⎟⎟⎠

3
−

2�

3

⎞⎟⎟⎟⎟⎠
3

+
1

3

=

2
√
4 cos

⎛⎜⎜⎜⎜⎝

arccos

⎛⎜⎜⎝

√
N0+N1 )

4(N0+N1 )

�
11N0
2

−8N1

�

4(N0+N1 )

⎞⎟⎟⎠
3

−
2�

3

⎞⎟⎟⎟⎟⎠
3

+
1

3

=

4 cos

⎛⎜⎜⎜⎜⎝

arccos

⎛⎜⎜⎝

1
2

�
11N0
2

−8N1

�

4(N0+N1 )

⎞⎟⎟⎠
3

−
2�

3

⎞⎟⎟⎟⎟⎠
3

+
1

3

=

4 cos

⎛⎜⎜⎜⎜⎝

arccos

⎛⎜⎜⎝

�
11N0
2

−8N1

�

8(N0+N1 )

⎞⎟⎟⎠
3

−
2�

3

⎞⎟⎟⎟⎟⎠
3

+
1

3

=

4 cos

�
arccos

�
(11N0−16N1)
16(N0+N1 )

�

3
−

2�

3

�

3
+

1

3

�1 ≥

4 cos

(
arccos

(
11

16

)

3
−

2�

3

)

3
+

1

3

=
4 cos

(
arccos 0.812755561368661

3
−

2�

3

)

3
+

1

3

= −
4 ⋅ 0.25

3
+

1

3

= −
1

3
+

1

3
= 0
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	�  ◻

Note that, as expected, lim�→0 �1 =
N1

N0+N1

 , i.e., with � = 0 we get the formula for the case 
of no regularization. In fact, consider the Maclaurin expansion of arccos(z):

so

Then

�1 ≤

4 cos

(
arccos

(
(−16N1)
16N1

)

3
−

2�

3

)

3
+

1

3

=
4 cos

(
arccos(−1)

3
−

2�

3

)

3
+

1

3

=
4 cos

(
�

3
−

2�

3

)

3
+

1

3

=
4 cos−

�

3

3
+

1

3

=
4

3 ⋅ 2
+

1

3

=
2

3
+

1

3
= 1

arccos(z) =
�

2
− z −

(
1

2

)
z3

3
−
(
1 ⋅ 3

2 ⋅ 4

)
z5

5
−
(
1 ⋅ 3 ⋅ 5

2 ⋅ 4 ⋅ 6

)
z7

7
−⋯

=
�

2
− z − O(z3)

(47)lim
�→0

arccos

⎛⎜⎜⎜⎝

�
�

3N0+3N1+�

�
9N0

2
− 9N1 + �

�

3N0 + 3N1 + �

⎞⎟⎟⎟⎠

(48)= lim
�→0

arccos (z)

(49)= lim
�→0

�

2
−

√
�

(3N0 + 3N1 + �)3

(
9N0

2
− 9N1 + �

)
− O(�

3

2 )

(50)lim
�→0

cos

⎛⎜⎜⎜⎜⎜⎝

arccos

�√
�

3N0+3N1+�

�
9N0

2
−9N1+�

�

3N0+3N1+�

�

3
−

2�

3

⎞⎟⎟⎟⎟⎟⎠
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Since the Maclaurin expansion of sin is

then

So

(51)= lim
�→0

cos

(
arccos (z)

3
−

2�

3

)

(52)= lim
�→0

cos
(
�

6
−

z

3
− O(�

3

2 ) −
2�

3

)

(53)= lim
�→0

cos
(
−
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3
− O(�

3

2 ) −
�

2
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(
−
�

2

)
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−
z
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− O(�

3

2 )
)
+ sin(−

�

2
) sin

(
z

3
− O(�

3

2 ))
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(55)= lim
�→0

− sin
(
z

3
− O(�

3

2 ))
)

sin y = y −
y3

3!
+

y5

5!
−

y7

7!
+⋯

(56)lim
�→0

− sin
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Comparison between PHIL and SLEAHP

See Tables 8, 9 and 10.

Table 8   Average area under ROC curve for PHIL and SLEAHP

AUCROC Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

DPHIL
1

������
G

1

0.841021
0.889676

0.571053
0.493421

0.534817
0.483865

0.960876
 0.936160

0.504912
0.506252

DPHIL
2

������
G

2

0.880465
0.845452

0.618421
0.544737

0.534563
0.472843

0.949548
0.925436

0.514218
0.506242

EMPHIL
1

������
E
1

0.884016
0.878727

0.684211
0.660526

0.536009
0.433016

0.938121
0.907789

0.504741
0.503251

EMPHIL
2

������
E
2

0.885478
0.904933

0.623684
0.414135

0.534622
0.483798

0.969046
0.904347

0.504742
0.505691

EMPHIL
B
1

������
B

0.833539
0.822833

0.619730
0.618421

0.536042
0.464058

0.930243
0.925099

0.504196
0.504196

Table 9   Average area under PR curve for PHIL and SLEAHP

AUCPR Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

DPHIL
1

������
G

1

0.886598
0.929906

0.563875
0.498091

0.142331
0.701244

0.191302
0.148115

0.222783
0.223074

DPHIL
2

������
G

2

0.929244
0.918519

0.580041
0.502135

0.147390
0.690782

0.219806
0.131750

0.218153
0.223028

EMPHIL
1

������
E
1

0.944758
0.948563

0.679712
0.598095

0.142696
0.632270

0.275985
0.059562

0.222609
0.220226

EMPHIL
2

������
E
1

0.944517
0.955678

0.655781
0.540510

0.142066
0.623542

0.307713
0.069861

0.222618
0.225017

EMPHIL
B
1

������
B

0.880013
0.900300

0.649090
0.552477

0.142810
0.623542

0.261578
0.059655

0.222043
0.222043

Table 10   Average time for PHIL and SLEAHP

Time Mutagenesis Carcinogenesis Mondial UWCSE PAKDD15

DPHIL
1

������
G

1

5.2059
41.8250

177.4270
48.7600

311.3280
59.5054

0.2910
219.6410

20.5704
192.4396

DPHIL
2

������
G

2

5.4450
47.1344

88.5100
10524.0900

301.1392
14.0470

0.2214
194.9706

4.9517
162.9938

EMPHIL
1

������
E
1

4.8940
48.0152

181.0890
303.0570

317.4202
60.8316

1.0000
387.665

7.0691
151.7217

EMPHIL
2

������
E
2

5.0046
45.9245

146.8440
92.3820

245.3830
61.0995

0.8372
312.2604

6.6334
68.2432

EMPHIL
B
1

������
B

2.6478
13.1478

85.3210
1399.0090

248.1978
14.6698

0.1572
295.6734

6.0990
61.5347
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