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Nodal and spectral minimal partitions

– The state of the art in 2015 –

V. Bonnaillie-Noël∗, and B. Helffer†

June 23, 2015

Abstract

In this article, we propose a state of the art concerning the nodal and spectral minimal
partitions. First we focus on the nodal partitions and give some examples of Courant sharp
cases. Then we are interested in minimal spectral partitions. Using the link with the Courant
sharp situation, we can determine the minimal k-partitions for some particular domains.
We also recall some results about the topology of regular partitions and Aharonov-Bohm
approach. The last section deals with the asymptotic behavior of minimal k-partition.
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1 Introduction

We consider mainly the Dirichlet realization of the Laplacian operator in Ω, when Ω is a bounded
domain in R2 with piecewise-C1 boundary (corners or cracks permitted). This operator will be
denoted by H(Ω). We would like to analyze the relations between the nodal domains of the
eigenfunctions of H(Ω) and the partitions of Ω by k open sets Di which are minimal in the
sense that the maximum over the Di’s of the groundstate energy of the Dirichlet realization of
the Laplacian H(Di) is minimal. This problem can be seen as a strong competition limit of
segregating species in population dynamics (see [35, 37] and references therein).

Definition 1.1 A partition (or k-partition for indicating the cardinal of the partition) of Ω
is a family D = {Di}1≤i≤k of k mutually disjoint sets in Ω (with k ≥ 1 an integer).

We denote by Ok = Ok(Ω) the set of partitions of Ω where the Di’s are domains (i.e. open and
connected). We now introduce the notion of the energy of a partition.

Definition 1.2 For any integer k ≥ 1, and for D = {Di}1≤i≤k in Ok(Ω), we introduce the
energy of the partition:

Λ(D) = max
1≤i≤k

λ(Di). (1.1)

The optimal problem we are interested in is to determine for any integer k ≥ 1

Lk = Lk(Ω) = inf
D∈Ok(Ω)

Λ(D). (1.2)

We can also consider the case of a two-dimensional Riemannian manifold and the Laplacian is
then the Laplace Beltrami operator. We denote by {λj(Ω), j ≥ 1} (or more simply λj if there is
no ambiguity) the non decreasing sequence of its eigenvalues and by {uj , j ≥ 1} some associated
orthonormal basis of eigenfunctions. For shortness, we often write λ(Ω) instead of λ1(Ω). The
groundstate u1 can be chosen to be strictly positive in Ω, but the other excited eigenfunctions
uk must have zerosets. Here we recall that for u ∈ C0(Ω), the nodal set (or zeroset) of u is
defined by :

N(u) = {x ∈ Ω
∣∣ u(x) = 0} . (1.3)

In the case when u is an eigenfunction of the Laplacian, the µ(u) components of Ω \N(u) are
called the nodal domains of u and define naturally a partition of Ω by µ(u) open sets, which
will be called a nodal partition.
Our main goal is to discuss the links between the partitions of Ω associated with these eigen-
functions and the minimal partitions of Ω.

2 Nodal partitions

2.1 Minimax characterization

Flexible criterion

We first give a flexible criterion for the determination of the bottom of the spectrum.
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Theorem 2.1 Let H be an Hilbert space of infinite dimension and P be a self-adjoint semi-
bounded operator1 of form domain Q(P ) ⊂ H with compact injection. Let us introduce

µ1(P ) = inf
φ∈Q(P )\{0}

〈Pφ | φ〉H
‖φ‖2

, (2.1)

and, for n ≥ 2

µn(P ) = sup
ψ1,ψ2,...,ψn−1∈Q(P )

inf
φ∈[span (ψ1,...,ψn−1)]⊥;

φ∈Q(P )\{0}

〈Pφ | φ〉H
‖φ‖2

. (2.2)

Then µn(P ) is the n-th eigenvalue when ordering the eigenvalues in increasing order (and count-
ing the multiplicity).

Note that the proof involves the following proposition

Proposition 2.2 Under the conditions of Theorem 2.1, suppose that there exist a constant a
and a n-dimensional subspace V ⊂ Q(P ) such that

〈Pφ , φ〉H ≤ a‖φ‖2, ∀φ ∈ V.

Then µn(P ) ≤ a .

This could be applied when P is the Dirichlet Laplacian (form domain H1
0 (Ω)), the Neumann

Laplacian (form domain H1(Ω)) and the Harmonic oscillator (form domain B1(Rn) := {u ∈
L2(Rn) : xju ∈ L2(Rn), ∂xju ∈ L2(Rn)}).

An alternative characterization of λ2

L2(Ω) was introduced in (1.2). We now introduce another spectral sequence associated with
the Dirichlet Laplacian.

Definition 2.3 For any k ≥ 1, we denote by Lk(Ω) (or Lk if there is no confusion) the smallest
eigenvalue (if any) for which there exists an eigenfunction with k nodal domains. We set
Lk(Ω) = +∞ if there is no eigenfunction with k nodal domains.

Proposition 2.4 L2(Ω) = λ2(Ω) = L2(Ω).

Proof: By definition of Lk, we have L2 ≤ L2.
The equality λ2 = L2 is a standard consequence of the fact that a second eigenfunction has
exactly two nodal domains: the upper bound is a consequence of Courant and the lower bound
is by orthogonality.
It remains to show that λ2 ≤ L2. This is a consequence of the min-max principle. For any
ε > 0, there exists a 2-partition D = {D1, D2} of energy Λ such that Λ < L2 + ε. We can
construct a 2-dimensional space generated by the two ground states (extended by 0) u1 and u2

of energy less than Λ. This implies:

λ2 ≤ Λ < L2 + ε .

It is sufficient to take the limit ε→ 0 to conclude. �
1The operator is associated with a coercive continuous symmetric sesquilinear form via Lax-Milgram’s theorem.

See for example [51].
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2.2 On the local structure of nodal sets

We refer for this section to the survey of P. Bérard [5] or the book by I. Chavel [33]. We first
mention a proposition (see [33, Lemma 1, p. 21-23]) which is implicitly used in many proofs
and was overlooked in [39].

Proposition 2.5 If u is an eigenfunction associated with λ and D is one of its nodal domains
then the restriction of u to D belongs to H1

0 (D) and is an eigenfunction of the Dirichlet real-
ization of the Laplacian in D. Moreover λ is the ground state energy in D.

Proposition 2.6 Let f be a real valued eigenfunction of the Dirichlet-Laplacian on a two di-
mensional locally flat Riemannian manifold Ω with smooth boundary. Then f ∈ C∞(Ω). Fur-
thermore, f has the following properties:

1. If f has a zero of order ` at a point x0 ∈ Ω then the Taylor expansion of f is

f(x) = p`(x− x0) +O(|x− x0|`+1), (2.3)

where p` is a real valued, non-zero, harmonic, homogeneous polynomial function of degree
`.
Moreover if x0 ∈ ∂Ω, the Dirichlet boundary conditions imply that

f(x) = a r` sin `ω +O(r`+1), (2.4)

for some non-zero a ∈ R, where (r, ω) are polar coordinates of x around x0. The angle ω
is chosen so that the tangent to the boundary at x0 is given by the equation sinω = 0.

2. The nodal set N (f) is the union of finitely many, smoothly immersed circles in Ω, and
smoothly immersed lines, with possible self-intersections, which connect points of ∂Ω. Each
of these immersions is called a nodal line. The connected components of Ω \ N (f) are
called nodal domains.

3. If f has a zero of order ` at x0 ∈ Ω then exactly ` segments of nodal lines pass through
x0. The tangents to the nodal lines at x0 dissect the disk into 2` equal angles.
If f has a zero of order ` at x0 ∈ ∂Ω then exactly ` segments of nodal lines meet the
boundary at x0. The tangents to the nodal lines at x0 are given by the equation sin `ω = 0,
where ω is chosen as in (2.4).

Proof: The proof that f ∈ C∞(Ω) can be found in [96, Theorem 20.4]. The function f
is actually analytic in Ω (property of the Laplacian). Hence, f being non identically 0, Part 1
becomes trivial. See [13, 34] for the proof of the other parts (no problem in dimension 2). �

Remark 2.7 • In the case of Neumann condition, Proposition 2.6 remains true if the Taylor
expansion (2.4) for a zero of order ` at a point x0 ∈ ∂Ω is replaced by

f(x) = a r` cos `ω +O(r`+1),

where we have used the same polar coordinates (r, ω) centered at x0.

• Proposition 2.6 remains true for polygonal domains, see [41] and for more general domains
[61] (and references therein).

From the above, we should remember that nodal sets are regular in the sense:

– The singular points on the nodal lines are isolated.
– At the singular points, an even number of half-lines meet with equal angle.
– At the boundary, this is the same adding the tangent line in the picture.

This will be made more precise later for more general partitions in Subsection 4.2.
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2.3 Weyl’s theorem

If nothing else is written, we consider the Dirichlet realization of the Laplacian in a bounded
regular set Ω ⊂ Rn, which will be denoted by H(Ω). For λ ∈ R, we introduce the counting
function N(λ) by:

N(λ) := ]{j : λj < λ} . (2.5)

We write N(λ,Ω) if we want to recall in which open set the realization is considered.
Weyl’s theorem (established by H. Weyl in 1911) gives the asymptotic behavior of N(λ) as
λ→ +∞.

Theorem 2.8 (Weyl) As λ→ +∞,

N(λ) ∼ ωn
(2π)n

|Ω|λ
n
2 , (2.6)

where ωn denotes the volume of a ball of radius 1 in Rn and |Ω| the volume of Ω.

In dimension n = 2, we find:

N(λ) ∼ |Ω|
4π
λ . (2.7)

Proof: The proof of Weyl’s theorem can be found in [95], [39, p. 42] or in [33, p. 30-32]. We
sketch here the so called Dirichlet-Neumann bracketing technique, which goes roughly in the
following way and is already presented in [39].
The idea is to use a suitable partition {Di}i to prove lower and upper bound according to∑

iN(λ,Di). If the domains Di are cubes, the eigenvalues of the Laplacian (with Dirichlet
or Neumann conditions) are known explicitly and this gives explicit bounds for N(λ,Di) (see
(3.1) for the case of the square). Let us provide details for the lower bound which is the most
important for us. For any partition D = {Di}i in Ω, we have∑

i

N(λ,Di) ≤ N(λ,Ω) . (2.8)

Given ε > 0, we can find a partition {Di}i of Ω by cubes such that |Ω \∪iDi| ≤ ε|Ω|. Summing
up in (2.8), and using Weyl’s formula (lower bound) for each Di, we obtain:

N(λ,Ω) ≥ (1− ε)|Ω|λ
n
2 + oε(λ

n
2 ) .

Let us deal now with the upper bound. For any partition D = {Di}i in Rn such that Ω ⊂ ∪Di,
we have the upper bound

N(λ,Ω) ≤
∑
i

N(λ,−∆Neu
Di ) , (2.9)

where N(λ,∆Neu
Di

) denotes the number of eigenvalues, below λ, of the Neumann realization of
the Laplacian in Di. Then we choose a partition with suitable cubes for which the eigenvalues
are known explicitly. �

Remark 2.9 To improve the lower bound with more explicit remainder, we can use more ex-
plicit lower bounds for the counting function for the cube (see Subsection 3.3 in the 2D case)
and also consider cubes of size depending on λ. This will be also useful in Subsection 9.3.
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We do not need here improved Weyl’s formulas with control of the remainder (see however
in the analysis of Courant sharp cases (3.1) and (3.8)). We nevertheless mention a formula due
to V. Ivrii in 1980 (cf [69, Chapter XXIX, Theorem 29.3.3 and Corollary 29.3.4]) which reads:

N(λ) =
ωn

(2π)n
|Ω|λ

n
2 − 1

4

ωn−1

(2π)n−1
|∂Ω|λ

n−1
2 + r(λ), (2.10)

where r(λ) = O(λ
n−1
2 ) in general but can also be shown to be o(λ

n−1
2 ) under some rather generic

conditions about the geodesic billiards (the measure of periodic trajectories should be zero) and
C∞ boundary. This is only in this case that the second term is meaningful.
Formula (2.10) can also be established in the case of irrational rectangles as a very special
case in [70], but more explicitly in [72] without any assumption of irrationality. This has also
been extended in particular to specific triangles of interest (equilateral, right angled isosceles,
hemiequilateral) by P. Bérard (see [6] and references therein).

Remark 2.10 1. The same asymptotics (2.6) is true for the Neumann realization of the
Laplacian. The two-terms asymptotics (2.10) also holds but with the sign + before the
second term.

2. For the harmonic oscillator (particular case of a Schrödinger operator −∆ + V , with
V (x)→ +∞ as |x| → +∞) the situation is different. One can use either the fact that the
spectrum is explicit or a pseudodifferential calculus. For the isotropic harmonic oscillator
−∆ + |x|2 in Rn, the formula reads

N(λ) ∼ ω2n−1

(2π)n
λn

2n
. (2.11)

Note that the power of λ appearing in the asymptotics for the harmonic oscillator in Rn
is, for a given n, the double of the one obtained for the Laplacian.

2.4 Courant’s theorem and Courant sharp eigenvalues

This theorem was established by R. Courant [38] in 1923 for the Laplacian with Dirichlet or
Neumann conditions.

Theorem 2.11 (Courant) The number of nodal components of the k-th eigenfunction is not
greater than k.

Proof: The main arguments of the proof are already present in Courant-Hilbert [39, p. 453-
454]. Suppose that uk has (k + 1) nodal domains {Di}1≤i≤k+1. We also assume λk−1 < λk.

Considering k of these nodal domains and looking at Φa :=
∑k

i=1 aiφi where φi is the ground
state in eachDi, we can determine ai such that Φa is orthogonal to the (k−1) first eigenfunctions.
On the other hand Φa is of energy ≤ λk. Hence it should be an eigenfunction for λk. But Φa

vanishes in the open set Dk+1 in contradiction with the property of an eigenfunction which
cannot be flat at a point. �

On Courant’s theorem with symmetry

Suppose that there exists an isometry g such that g(Ω) = Ω and g2 = Id. Then g acts nat-
urally on L2(Ω) by gu(x) = u(g−1x) , ∀x ∈ Ω , and one can naturally define an orthogonal
decomposition of L2(Ω)

L2(Ω) = L2
odd ⊕ L2

even ,

7



where by definition L2
odd = {u ∈ L2 , gu = −u}, resp. L2

even = {u ∈ L2 , gu = u}. These
two spaces are left invariant by the Laplacian and one can consider separately the spectrum of
the two restrictions. Let us explain for the “odd case” what could be a Courant theorem with
symmetry. If u is an eigenfunction in L2

odd associated with λ, we see immediately that the nodal
domains appear by pairs (exchanged by g) and following the proof of the standard Courant
theorem we see that if λ = λoddj for some j (that is the j-th eigenvalue in the odd space), then
the number µ(u) of nodal domains of u satisfies µ(u) ≤ j.
We get a similar result for the ”even” case (but in this case a nodal domain D is either g-
invariant or g(D) is a distinct nodal domain).
These remarks lead to improvement when each eigenspace has a specific symmetry. This will
be the case for the sphere, the harmonic oscillator, the square (see (3.6)), the Aharonov-Bohm
operator, . . . where g can be the antipodal map, the map (x, y) 7→ (−x,−y), the map (x, y) 7→
(π − x, π − y), the deck map (as in Subsection 8.5), . . .

Definition 2.12 We say that (u, λ) is a spectral pair for H(Ω) if λ is an eigenvalue of the
Dirichlet-Laplacian H(Ω) on Ω and u ∈ E(λ)\{0}, where E(λ) denotes the eigenspace attached
to λ.

Definition 2.13 We say that a spectral pair (u, λ) is Courant sharp if λ = λk and u has k
nodal domains. We say that an eigenvalue λk is Courant sharp if there exists an eigenfunction
u associated with λk such that (u, λk) is a Courant sharp spectral pair.

If the Sturm-Liouville theory shows that in dimension 1 all the spectral pairs are Courant sharp,
we will see below that when the dimension is ≥ 2, the Courant sharp situation can only occur
for a finite number of eigenvalues.

The following property of transmission of the Courant sharp property to sub-partitions will
be useful in the context of minimal partitions. Its proof can be found in [3].

Proposition 2.14

1. Let (u, λ) be a Courant sharp spectral pair for H(Ω) with λ = λk and µ(u) = k. Let
D(k) = {Di}1≤i≤k be the family of the nodal domains associated with u. Let L be a subset
of {1, . . . , k} with ]L = ` and let DL be the subfamily {Di}i∈L. Let ΩL = Int (∪i∈LDi)\∂Ω.
Then

λ`(ΩL) = λk, (2.12)

where {λj(ΩL)}j are the eigenvalues of H(ΩL).

2. Moreover, when ΩL is connected, u
∣∣
ΩL

is Courant sharp and λ`(ΩL) is simple.

2.5 Pleijel’s theorem

Motivated by Courant’s Theorem, Pleijel’s theorem (1956) says

Theorem 2.15 (Weak Pleijel’s theorem) If the dimension is ≥ 2, there is only a finite
number of Courant sharp eigenvalues of the Dirichlet Laplacian.

This theorem is the consequence of a more precise theorem which gives a link between Pleijel’s
theorem and partitions. For describing this result and its proof, we first recall the Faber-Krahn
inequality:

8



Theorem 2.16 (Faber-Krahn inequality) For any domain D ⊂ R2, we have

|D| λ(D) ≥ λ(#) , (2.13)

where |D| denotes the area of D and # is the disk of unit area B
(

0, 1√
π

)
.

Remark 2.17 Note that improvements can be useful when D is ”far” from a disk. It is then
interesting to have a lower bound for |D| λ(D)− λ(#). We refer for example to [26] and [50].
These ideas are behind recent improvements by Steinerberger [92], Bourgain [25] and Donnelly
[42] of the strong Pleijel’s theorem below. See also Subsection 9.1.

By summation of Faber-Krahn’s inequalities (2.13) applied to each Di and having in mind
Definition 1.2, we deduce:

Lemma 2.18 For any open partition D in Ω we have

|Ω| Λ(D) ≥ ](D)λ(#) , (2.14)

where ](D) denotes the number of elements of the partition.

Note that instead of using summation, we can prove the previous lemma by using the fact that
there exists some Di with |Di| ≤ |Ω|

k and apply Faber-Krahn’s inequality for this Di. There
is no gain in our context, but in other contexts (see for example Proposition 3.10), we could
have a Faber-Krahn’s inequality with constraint on the area, which becomes satisfied for k large
enough (see [12]).
Let us now give the strong form of Pleijel’s theorem.

Theorem 2.19 (Strong Pleijel’s theorem) Let φn be an eigenfunction of H(Ω) associated
with λn(Ω). Then

lim sup
n→+∞

µ(φn)

n
≤ 4π

λ(#)
, (2.15)

where µ(φn) is the cardinal of the nodal components of Ω \N(φn).

Remark 2.20 Of course, this implies Theorem 2.15. We have indeed

λ(#) = πj2 ,

and j ' 2.40 is the smallest positive zero of the Bessel function of first kind. Hence

4π

λ(#)
=

(
2

j

)2

< 1 .

Proof: We start from the following identity

µ(φn)

n

n

λn

λn
µ(φn)

= 1 . (2.16)

Applying Lemma 2.18 to the nodal partition of φn (which is associated with λn), we have

λn
µ(φn)

≥ λ(#)

|Ω|
.

Let us take a subsequence φni such that limi→+∞
µ(φni )

ni
= lim supn→+∞

µ(φn)
n , and implement-

ing in (2.16), we deduce:

λ(#)

|Ω|
lim sup
n→+∞

µ(φn)

n
lim inf
λ→+∞

N(λ)

λ
≤ 1. (2.17)

Having in mind Weyl’s formula (2.7), we get (2.14). �
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To finish this section, let us mention the particular case of irrational rectangles (see [15] and
[86]).

Proposition 2.21 Let us denote by R(a, b) the rectangle (0, aπ)×(0, bπ), with a > 0 and b > 0.
We assume that b2/a2 is irrational. Then Theorem 2.19 is true for the rectangle R(a, b) with
constant 4π/λ(#) replaced by 4π/λ(2) = 2/π, where 2 is a square of area 1. Moreover we have

lim sup
n→+∞

µ(φn)

n
=

2

π
. (2.18)

Proof: Since b2/a2 is irrational, the eigenvalues λ̂m,n are simple and eigenpairs are given,
for m ≥ 1, n ≥ 1, by

λ̂m,n =
m2

a2
+
n2

b2
, φm,n(x, y) = sin

mx

a
sin

ny

b
. (2.19)

Without restriction we can assume a = 1. Thus we have µ(φm,n) = mn . Applying Weyl

asymptotics (2.7) with λ = λ̂m,n gives

k(m,n) := ]{(m̃, ñ) : λ̂m̃,ñ(b) < λ} =
bπ

4

(
m2 +

n2

b2

)
+ o(λ) . (2.20)

We have λk(m,n)+1 = λ̂m,n . We observe that µ(φn,m)/k(n,m) is asymptotically given by

P (m,n; b) :=
4mn

π
(
m2b+ n2

b

) ≤ 2

π
. (2.21)

Taking a sequence (mk, nk) such that b = limk→∞
nk
mk

with mk → +∞ , we deduce

lim
k→+∞

P (mk, nk; b) =
2

π
, (2.22)

which gives the proposition by using this sequence of eigenfunctions φmk,nk . �

Remark 2.22 There is no hope in general to have a positive lower bound for lim inf µ(φn)/n.
A. Stern for the square and the sphere (1925), H. Lewy for the sphere (1977), J. Leydold for the
harmonic oscillator [79] (see [11, 7, 8] for the references, analysis of the proofs and new results)
have constructed infinite sequences of eigenvalues such that a corresponding eigenfunctions have
two or three nodal domains. On the contrary, it is conjectured in [65] that for the Neumann
problem in the square this lim inf should be strictly positive.
Coming back to the previous proof of Proposition 2.21, one immediately sees that

lim
m→+∞

P (m, 1; b) = 0 .

Remark 2.23 Inspired by computations of [15], it has been conjectured by Polterovich [86]
that the constant 2/π = 4π/λ(�) is optimal for the validity of a strong Pleijel’s theorem with a
constant independent of the domain (see the discussion in [58]). A less ambitious conjecture is
that Pleijel’s theorem holds with the constant 4π/λ(7), where 7 is the regular hexagon of area
1. This is directly related to the hexagonal conjecture which will be discussed in Section 9.
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2.6 Notes

Pleijel’s Theorem extends to bounded domains in Rn, and more generally to compact n-
manifolds with boundary, with a constant γ(n) < 1 replacing 4π/λ(#) in the right-hand side
of (2.15) (see Peetre [83], Bérard-Meyer [12]). It is also interesting to note that this constant is
independent of the geometry. It is also true for the Neumann Laplacian in a piecewise analytic
bounded domain in R2 (see [86] whose proof is based on a control of the asymptotics of the
number of boundary points belonging to the nodal sets of the eigenvalue λk as k → +∞, a
difficult result proved by Toth-Zelditch [93]).

3 Courant sharp cases: examples

This section is devoted to determine the Courant sharp situation for some examples. Outside
its interest in itself, this will be also motivated by the fact that it gives us examples of minimal
partitions. This kind of analysis seems to have been initiated by Å. Pleijel. First, we recall that
according to Theorem 2.15, there is a finite number of Courant sharp eigenvalues. We will try
to quantify this number or to find at least lower bounds or upper bounds for the largest integer
n such that λn−1 < λn with λn Courant sharp.

3.1 Thin domains

This subsection is devoted to thin domains for which Léna proves in [74] that, under some
geometrical assumption, any eigenpair is Courant sharp as soon as the domain is thin enough.
Let us fix the framework. Let a > 0, b > 0 and h ∈ C∞((−a, b),R+). We assume that h has a
unique maximum at 0 which is non degenerate. For ε > 0, we introduce

Ωε =
{

(x1, x2) ∈ R2 , −a < x1 < b and − εh(x1) < x2 < εh(x1)
}
.

Theorem 3.1 For any k ≥ 1, there exists εk > 0 such that, if 0 < ε ≤ εk , the first k Dirichlet
eigenvalues {λj(Ωε), 1 ≤ j ≤ k} are simple and Courant sharp.

Proof: The asymptotic behavior of the eigenvalues for a domain whose width is proportional
to ε, as ε → 0, was established by L. Friedlander and M. Solomyak [48] and the first terms of
the expansion are given. An expansion at any order was proved by D. Borisov and P. Freitas
for planar domains in [23]. The proof of Léna is based on a semi-classical approximation of
the eigenpairs of the Schrödinger operator. Then he established some elliptic estimates with a
control according to ε and applies some Sobolev imbeddings to prove the uniform convergence
of the quasimodes and their derivative functions. The proof is achieved by adapting some
arguments of [46] to localize the nodal sets. �

Remark 3.2 • The rectangle Ωε = (0, π)× (0, επ) does not fulfill the assumptions of The-
orem 3.1. Nevertheless (see Subsection 3.2), we have:
For any k ≥ 1, there exists εk > 0 such that λj(Ωε) is Courant sharp for 1 ≤ j ≤ k
and 0 < ε ≤ εk. Furthermore, when 0 < ε < εk, the nodal partition of the corresponding
eigenfunction uj consists of j similar vertical strips.

• In the case of the flat torus T(a, b) = (R/aZ)×(R/bZ), with 0 < b ≤ a, the first eigenvalue
λ1 is always Courant sharp. If b ≤ 2/k, the eigenvalues λ2j for 1 ≤ j ≤ k are Courant
sharp and if b < 2/k, the nodal partition of any corresponding eigenfunction consists of
2j similar strips (see Subsection 3.5).
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3.2 Irrational rectangles

The detailed analysis of the spectrum of the Dirichlet Laplacian in a rectangle is the example
treated as the toy model in [84]. Let R(a, b) = (0, aπ) × (0, bπ). We recall (2.19). If it is
possible to determine the Courant sharp cases when b2/a2 is irrational (see for example [61]),
it can become very difficult in general situation. If we assume that b2/a2 is irrational, all the
eigenvalues have multiplicity 1. For a given λ̂m,n, we know that the corresponding eigenfunction
has mn nodal domains. As a result of a case by case analysis combined with Proposition 2.14,
we obtain the following characterization of the Courant sharp cases:

Theorem 3.3 Let a > b and b2

a2
6∈ Q. Then the only cases when λ̂m,n is a Courant sharp

eigenvalue are the following:

1. (m,n) = (2, 3) if 8
5 <

a2

b2
< 5

3 ;

2. (m,n) = (2, 2) if 1 < a2

b2
< 5

3 ;

3. (1, n) if n2−1
3 < a2

b2
.

Remark 3.4 Note that in Case 3 of Theorem 3.3, we can remove the assumption that b2

a2
6∈ Q.

3.3 Pleijel’s reduction argument for the rectangle

The analysis of this subsection is independent of the arithmetic properties of b2/a2. Following
(and improving) a remark in a course of R. Laugesen [73], one has a lower bound of N(λ) in
the case of the rectangle R = R(a, b) := (0, aπ) × (0, bπ), which can be expressed in terms
of area and perimeter. One can indeed observe that the area of the intersection of the ellipse

{ (x+1)2

a2
+ (y+1)2

b2
< λ} with R+ × R+ is a lower bound for N(λ).

The formula (to compare with the two terms asymptotics (2.10)) reads for λ ≥ 1
a2

+ 1
b2

:

N(λ) >
1

4π
|R|λ− 1

2π
|∂R|
√
λ+ 1 . (3.1)

We get, in the situation λn−1 < λn ,

n >
πab

4
λn − (a+ b)

√
λn + 2 . (3.2)

On the other hand, if λn is Courant sharp, Lemma 2.18 gives the necessary condition

n

λn
≤ πab

j2
. (3.3)

Then, combining this last relation with (3.2), we get the inequality a+b√
λn

> πab
(

1
4 −

1
j2

)
, and

finally a Courant sharp eigenvalue λn should satisfy:

λn <
1

π2

(
1

4
− 1

j2

)−2(a+ b

ab

)2

, (3.4)

with
1

π2

(
1

4
− 1

j2

)−2

' 17.36 .
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Hence, using the expression (2.19) of the eigenvalues, we have just to look at the pairs `,m ∈ N∗
such that

`2

a2
+
m2

b2
<

1

π2

(
1

4
− 1

j

)−2(a+ b

ab

)2

.

Suppose that a ≥ b. We can then normalize by taking a = 1. We get the condition:

`2 +
1

b2
m2 <

1

π2

(
1

4
− 1

j2

)−2(1 + b

b

)2

' 17.36

(
1 + b

b

)2

≤ 69.44 .

This is compatible with the observation (see Subsections 3.1 and 3.2) that when b is small, the
number of Courant sharp cases will increase. In any case, when a = 1, this number is ≥ [1

b ] and
using (3.3),

n ≤ λnπ
ab

j2
≤ 1

π

(
j

4
− 1

j

)−2 (1 + b)2

b
≤ 9.27

(1 + b)2

b
.

In the next subsection we continue with a complete analysis of the square.

3.4 The square

We now take a = b = 1 and describe the Courant sharp cases.

Theorem 3.5 In the case of the square, the Dirichlet eigenvalue λk is Courant sharp if and
only if k = 1, 2, 4.

Remark 3.6 This result was obtained by Pleijel [84] who was nevertheless sketchy (see [11]) in
his analysis of the eigenfunctions in the k-th eigenspace for k = 5, 7, 9 for which he only refers
to pictures in Courant-Hilbert [39], actually reproduced from Pockel [85]. Details can be found
in [11] or below.

Proof: From the previous subsection, we know that it is enough to look at the eigenvalues
which are less than 69 (actually 68 because 69 is not an eigenvalue). Looking at the necessary
condition (3.3) eliminates most of the candidates associated with the remaining eigenvalues
and we are left after computation with the analysis of the three cases k = 5, 7, 9. These
three eigenvalues correspond respectively to the pairs (m,n) = (1, 3), (m,n) = (2, 3) and
(m,n) = (1, 4) and have multiplicity 2. Due to multiplicities, we have (at least) to consider the
family of eigenfunctions (x, y) 7→ Φm,n(x, y, θ) defined by

(x, y) 7→ Φm,n(x, y, θ) := cos θ φm,n(x, y) + sin θ φn,m(x, y) , (3.5)

for m,n ≥ 1, and θ ∈ [0, π).
Let us analyze each of the three cases k = 5, 7, 9. For λ7 ((m,n) = (2, 3)) and λ9 ((m,n) =
(1, 4)), we can use some antisymmetry argument. We observe that

φm,n(π − x, π − y, θ) = (−1)m+nφ(x, y, θ) . (3.6)

Hence, when m+n is odd, any eigenfunction corresponding to m2 +n2 has necessarily an even
number of nodal domains. Hence λ7 and λ9 cannot be Courant sharp.
For the remaining eigenvalue λ5 ((m,n) = (1, 3)), we look at the zeroes of Φ1,3(x, y, θ) and
consider the C∞ change of variables cosx = u , cos y = v , which sends the square (0, π)× (0, π)
onto (−1, 1) × (−1, 1). In these coordinates, the zero set of Φ1,3(x, y, θ) inside the square is
given by: cos θ (4v2 − 1) + sin θ (4u2 − 1) = 0 .
Except the two easy cases when cos θ = 0 or sin θ = 0, which can be analyzed directly (product
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situation), we immediately get that the only possible singular point is (u, v) = (0, 0), i.e. (x, y) =
(π2 ,

π
2 ), and that this can only occur for cos θ + sin θ = 0, i.e. for θ = π

4 .
We can then conclude that the number of nodal domains is 2, 3 or 4.
This achieves the analysis of the Courant sharp cases for the square of the Dirichlet-Laplacian.
�

Remark 3.7 For an eigenvalue λ, let µ̂max(λ) = maxu∈E(λ) µ(u). For a given eigenvalue λ̂m,n
of the square with multiplicity ≥ 2, a natural question is to determine if

µ̂max(λ̂m,n) = µmax(m,n) with µmax(m,n) = sup{mjnj : m2
j + n2

j = m2 + n2} .

The problem is not easy because one has to consider, in the case of degenerate eigenvalues, linear
combinations of the canonical eigenfunctions associated with the λ̂m,n . Actually, as stated above,
the answer is negative. As observed by Pleijel [84], the eigenfunction Φ1,3, 3π

4
defined in (3.5)

corresponds to the fifth eigenvalue and has four nodal domains delimited by the two diagonals,
and µmax(1, 3) = 3. One could think that this guess could hold for large enough eigenvalues
but uk := Φ1,3, 3π

4
(2kx, 2ky) is an eigenfunction associated with the eigenvalue λn(k) = λ̂2k,3·2k =

10 · 4k with 4k+1 nodal domains. Using Weyl’s asymptotics, we get that the corresponding
quotient µ(uk)

n(k) is asymptotic to 8
5π . This does not contradict the Polterovich conjecture (see

Remark 2.23).

3.5 Flat tori

Let T(a, b) be the torus (R/aZ)× (R/bZ), with 0 < b ≤ a. Then the eigenvalues of the Laplace-
Beltrami operator on T(a, b) are

λm,n(a, b) = 4π2

(
m2

a2
+
n2

b2

)
, with m ≥ 0, n ≥ 0 , (3.7)

and a basis of eigenfunctions is given by sinmx sinny , cosmx sinny , sinmx cosny , cosmx cosny,
where we should eliminate the identically zero functions when mn = 0. The multiplicity can
be 1 (when m = n = 0), 2 when m = n (and no other pair gives the same eigenvalue), 4 for
m 6= n if no other pair gives the same eigenvalue, which can occur when b2/a2 ∈ Q. Hence the
multiplicity can be much higher than in the Dirichlet case.

Irrational tori

Theorem 3.8 Suppose b2/a2 be irrational. If min(m,n) ≥ 1, then the eigenvalue λm,n(a, b) is
not Courant sharp.

Proof: The proof given in [60] is based on two properties. The first one is to observe that
if λm,n(a, b) = λk(m,n) then k(m,n) ≥ 4mn+ 2m+ 2n− 2 .
The second one is to prove (which needs some work) that for m,n > 0 any eigenvalue in
E(λm,n(a, b)) has either 4mn nodal domains or 2D(m,n) nodal domains where D(m,n) is the
greatest common denominator of m and n. �

Hence we are reduced to the analysis of the case when mn = 0.
As mentioned in Remark 3.2, it is easy to see that, independently of the rationality or irationality
of b2

a2
, for b ≤ 2

k , the eigenvalues λ1 = 0, and λ2` for 1 ≤ ` ≤ k are Courant sharp.
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The isotropic torus

In this case we can completely determine the cases where the eigenvalues are Courant sharp.
The first eigenvalue has multiplicity 1 and the second eigenvalue has multiplicity 4. By the
general theory we know that this is Courant sharp. C. Léna [75] has proven:

Theorem 3.9 The only Courant sharp eigenvalues for the Laplacian on T2 := (R/Z)2 are the
first and the second ones.

Proof: The proof is based on a version of the Faber-Krahn inequality for the torus which
reads:

Proposition 3.10 If Ω is an open set in T2 of area ≤ 1
π , then the standard Faber-Krahn

inequality is true.

Combined with an explicit lower bound for the Weyl law, one gets

N(λ) ≥ 1

4π
λ− 2

π

√
λ− 3 . (3.8)

One can then proceed in a similar way as for the rectangle case with the advantage here that
the only remaining cases correspond to the first and second eigenvalues. �

3.6 The disk

Although the spectrum is explicitly computable, we are mainly interested in the ordering of
the eigenvalues corresponding to different angular momenta. Consider the Dirichlet realization
in the unit disk B(0, 1) ⊂ R2 (where B(0, r) denotes the disk of radius r). We have in polar

coordinates: −∆ = − ∂2

∂r2
− 1

r
∂
∂r −

1
r2

∂2

∂θ2
.

The Dirichlet boundary conditions require that any eigenfunction u satisfies u(1, θ) = 0, for
θ ∈ [0, 2π). We analyze for any ` ∈ N the eigenvalues λ̃`,j of(

− d2

dr2
− 1

r

d

dr
+
`2

r2

)
f`,j = λ̃`,jf`,j , in (0, 1) .

The operator is self adjoint for the scalar product in L2((0, 1), r dr). The corresponding eigen-
functions of the eigenvalue problem take the form

u(r, θ) = c f`,j(r) cos(`θ + θ0), with c 6= 0 , θ0 ∈ R , (3.9)

where the f`,j are suitable Bessel functions. For the corresponding λ̃`,j ’s, we find the following
ordering

λ1 = λ̃0,1 < λ2 = λ3 = λ̃1,1 < λ4 = λ5 = λ̃2,1 < λ6 = λ̃0,2

< λ7 = λ8 = λ̃3,1 < λ9 = λ̃10 = λ̃1,2 < λ11 = λ12 = λ̃4,1 < . . .
(3.10)

We recall that the zeros of the Bessel functions are related to the eigenvalues by the relation:

λ̃`,k = (j`,k)
2 . (3.11)

Moreover all the j`,k are distinct (see Watson [94]). This comes back to deep results by C.L.
Siegel [90] proving in 1929 a conjecture of J. Bourget (1866). The multiplicity is either 1 (if
` = 0) or 2 if ` > 0 and we have

µ(u1) = 1; µ(u) = 2 , ∀u ∈ E(λ2) ; µ(u) = 4 , ∀u ∈ E(λ4) ; µ(u6) = 2 , · · ·

Hence λ1, λ2 and λ4 are Courant sharp and it is proven in [61] that we have finally:
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Proposition 3.11 Except the cases k = 1, 2 and 4, the eigenvalue λk of the Dirichlet Laplacian
in the disk is never Courant sharp.

Notice that the Neumann case can also be treated (see [66]) and that the result is the same. As
observed in [4] Siegel’s theorem also holds for the zeroes of the derivative of the above Bessel
functions [89, 90].

3.7 Angular sectors

Let Σω be an angular sector of opening ω. We are interested in finding the Courant sharp
eigenvalues in function of the opening ω. The eigenvalues (λ̌m,n(ω), uωm,n) of the Dirichlet
Laplacian on the angular sector Σω are given by

λ̌m,n(ω) = j2
m π
ω
,n and uωm,n(ρ, θ) = Jm π

ω
(jm π

ω
,n ρ) sin(mπ( θω + 1

2)),

where jm π
ω
,n is the n-th positive zero of the Bessel function of the first kind Jm π

ω
. The Courant

sharp situation is analyzed in [21] and can be summed up in the following proposition:

Proposition 3.12 Let us define

ω1
k = inf{ω ∈ (0, 2π] : λ̌1,k(ω) ≥ λ̌2,1(ω)}, ∀k ≥ 2,

ω2
k = inf{ω ∈ (0, 2π] : λ̌k,1(ω) < λ̌1,2(ω)}, for 2 ≤ k ≤ 5.

If 2 ≤ k ≤ 5, the eigenvalue λk is Courant sharp if and only if ω ∈]0, ω1
k] ∪ [ω2

k, 2π].
If k ≥ 6, the eigenvalue λk is Courant sharp for ω ≤ ω1

k.

3.8 Notes

Some other cases have been analyzed:

– the square for the Neumann-Laplacian, by Helffer–Persson-Sundqvist [65],

– the annulus for the Neumann-Laplacian, by Helffer–Hoffmann-Ostenhof [59],

– the sphere by Leydold [80, 81] and Helffer-Hoffmann-Ostenhof–Terracini [63],

– the irrational torus by Helffer–Hoffmann-Ostenhof [60],

– the equilateral torus, the equilateral, hemi-equilateral and right angled isosceles triangles by
Bérard-Helffer [10],

– the isotropic harmonic oscillator by Leydold [79], Bérard-Helffer [8] and Charron [32] .

Except for the cube [64], similar questions in dimension > 2 have not been considered till now
(see however [32] for Pleijel’s theorem).

4 Introduction to minimal spectral partitions

Most of this section comes from the founding paper [61].
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4.1 Definition

We now introduce the notion of spectral minimal partitions.

Definition 4.1 (Minimal energy) Minimizing the energy over all the k-partitions, we intro-
duce:

Lk(Ω) = inf
D∈Ok(Ω)

Λ(D). (4.1)

We will say that D ∈ Ok(Ω) is minimal if Lk(Ω) = Λ(D).

Sometimes (at least for the proofs) we have to relax this definition by considering quasi-open or
measurable sets for the partitions. We will not discuss this point in detail (see [61]). We recall
that if k = 2, we have proved in Proposition 2.4 that L2(Ω) = λ2(Ω).

More generally (see [61]), for any integer k ≥ 1 and p ∈ [1,+∞[, we define the p-energy of
a k-partition D = {Di}1≤i≤k by

Λp(D) =
(1

k

k∑
i=1

λ(Di)
p
) 1
p
. (4.2)

The notion of p-minimal k-partition can be extended accordingly, by minimizing Λp(D). Then
we can consider the optimization problem

Lk,p(Ω) = inf
D∈Ok

Λp(D) . (4.3)

For p = +∞, we write Λ∞(D) = Λ(D) and Lk,∞(Ω) = Lk(Ω) .

4.2 Strong and regular partitions

The analysis of the properties of minimal partitions leads us to introduce two notions of regu-
larity that we present briefly.

Definition 4.2 A partition D = {Di}1≤i≤k of Ω in Ok is called strong if

Int (∪iDi) \ ∂Ω = Ω . (4.4)

We say that D is nice if Int (Di) = Di, for any 1 ≤ i ≤ k.

For example, in Figure 12, only the fourth picture gives a nice partition. Attached to a strong
partition, we associate a closed set in Ω :

Definition 4.3 (Boundary set)

∂D = ∪i (Ω ∩ ∂Di) . (4.5)

∂D plays the role of the nodal set (in the case of a nodal partition). This leads us to introduce
the set Oreg

k (Ω) of regular partitions, which should satisfy the following properties :

(i) Except at finitely many distinct xi ∈ Ω∩∂D in the neigborhood of which ∂D is the union
of ν(xi) smooth curves (ν(xi) ≥ 2) with one end at xi, ∂D is locally diffeomorphic to a
regular curve.

(ii) ∂Ω∩∂D consists of a (possibly empty) finite set of points yj . Moreover ∂D is near yj the
union of ρ(yj) distinct smooth half-curves which hit yj .
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(iii) ∂D has the equal angle meeting property, that is the half curves cross with equal angle at
each singular interior point of ∂D and also at the boundary together with the tangent to
the boundary.

We denote by X(∂D) the set corresponding to the points xi introduced in (i) and by Y (∂D)
corresponding to the points yi introduced in (ii).

Remark 4.4 This notion of regularity for partitions is very close to what we have observed for
the nodal partition of an eigenfunction in Proposition 2.6. The main difference is that in the
nodal case there is always an even number of half-lines meeting at an interior singular point.

(a) Bipartite partitions.

(b) Non bipartite partitions.

Figure 1: Examples of partitions.

Examples of regular partitions are given in Figure 1. More precisely, the partitions rep-
resented in Figures 1(a) are nodal (we have respectively some nodal partition associated with
the double eigenvalue λ2 and with λ4 for the square, λ15 for the right angled isosceles triangle
and the last two pictures are nodal partitions associated with the double eigenvalue λ12 on the
equilateral triangle). On the contrary, all the partitions presented in Figures 1(b) are not nodal.

4.3 Bipartite partitions

Definition 4.5 We say that two sets Di, Dj of the partition D are neighbors and write Di ∼ Dj,
if

Dij := Int (Di ∪Dj) \ ∂Ω

is connected. We say that a regular partition is bipartite if it can be colored by two colors (two
neighbors having two different colors).
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Nodal partitions are the main examples of bipartite partitions (see Figure 1(a)). Figure 1(b)
gives examples of non bipartite partitions. Some examples can also be found in [40].

Note that in the case of a planar domain we know by graph theory that if for a regular
partition all the ν(xi) are even then the partition is bipartite. This is no more the case on a
surface. See for example the third subfigure in Figure 4 for an example on T2.

4.4 Main properties of minimal partitions

It has been proved by Conti-Terracini-Verzini [35, 37, 36] (existence) and Helffer–Hoffmann-
Ostenhof–Terracini [61] (regularity) the following theorem:

Theorem 4.6 For any k, there exists a minimal k-partition which is strong, nice and regular.
Moreover any minimal k-partition has a strong, nice and regular representative2. The same
result holds for the p-minimal k-partition problem with p ∈ [1,+∞).

The proof is too involved to be presented here. We just give one statement used for the existence
(see [36]) for p ∈ [1,+∞). The case p = +∞ is harder.

Theorem 4.7
Let p ∈ [1,+∞) and let D = {Di}1≤i≤k ∈ Ok be a p-minimal k-partition associated with Lk,p
and let (φi)i be any set of positive eigenfunctions normalized in L2 corresponding to (λ(Di))i.
Then, there exist ai > 0, such that the functions ui = aiφi verify in Ω the variational inequalities

(I1) −∆ui ≤ λ(Di)ui,

(I2) −∆
(
ui −

∑
j 6=i uj

)
≥ λ(Di)ui −

∑
j 6=i λ(Dj)uj.

These inequalities imply that U = (u1, ..., uk) is in the class S∗ as defined in [37] which ensures
the Lipschitz continuity of the ui’s in Ω. Therefore we can choose a partition made of open
representatives Di = {ui > 0}.
Other proofs of a somewhat weaker version of the existence statement have been given by
Bucur-Buttazzo-Henrot [29], Caffarelli-Lin [31]. The minimal partition is shown to exist first in
the class of quasi-open sets and it is then proved that a representative of the minimizer is open.
Note that in some of these references these minimal partitions are also called optimal partitions.

When p = +∞, minimal spectral properties have two important properties.

Proposition 4.8 If D = {Di}1≤i≤k is a minimal k-partition, then

1. The minimal partition D is a spectral equipartition, that is satisfying:

λ(Di) = λ(Dj) , for any 1 ≤ i, j ≤ k .

2. For any pair of neighbors Di ∼ Dj,

λ2(Dij) = Lk(Ω) . (4.6)

Proof: For the first property, this can be understood, once the regularity is obtained by
pushing the boundary and using the Hadamard formula [67] (see also Subsection 5.2). For the
second property, we can observe that {Di, Dj} is necessarily a minimal 2-partition of Dij and
in this case, we know that L2(Dij) = λ2(Dij) by Proposition 2.4. Note that it is a stronger
property than the claim in (4.6). �

2possibly after a modification of the open sets of the partition by capacity 0 subsets.
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Remark 4.9 In the proof of Theorem 4.6, one obtains on the way the useful construction.
Attached to each Di, there is a distinguished ground state ui such that ui > 0 in Di and such
that for each pair of neighbors {Di, Dj}, ui − uj is the second eigenfunction of the Dirichlet
Laplacian in Dij.

Let us now establish two important properties concerning the monotonicity (according to k or
the domain Ω).

Proposition 4.10 For any k ≥ 1, we have

Lk(Ω) < Lk+1(Ω). (4.7)

Proof: We take indeed a minimal (k+ 1)-partition of Ω. We have proved that this partition
is regular. If we take any subpartition by k elements of the previous partitions, this cannot be
a minimal k-partition (it has not the “strong partition” property). So the inequality in (4.7) is
strict. �

The second property concerns the domain monotonicity.

Proposition 4.11 If Ω ⊂ Ω̃, then

Lk(Ω̃) ≤ Lk(Ω) , ∀k ≥ 1 .

We observe indeed that each partition of Ω is a partition of Ω̃.

4.5 Minimal spectral partitions and Courant sharp property

A natural question is whether a minimal partition of Ω is a nodal partition. We have first the
following converse theorem (see [54, 61]):

Theorem 4.12 If the minimal partition is bipartite, this is a nodal partition.

Proof: Combining the bipartite assumption and the pair compatibility condition mentioned
in Remark 4.9, it is immediate to construct some u ∈ H1

0 (Ω) such that

u|Di = ±ui, ∀1 ≤ i ≤ k, and −∆u = Lk(Ω)u in Ω \X(∂D).

But X(∂D) consists of a finite set and −∆u − Lk(Ω)u belongs to H−1(Ω). This implies that
−∆u = Lk(Ω)u in Ω and hence u is an eigenfunction of H(Ω) whose nodal set is ∂D. �

The next question is then to determine how general is the previous situation. Surprisingly
this only occurs in the so called Courant sharp situation. For any integer k ≥ 1, we recall that
Lk(Ω) was introduced in Definition 2.3. In general, one can show, as an easy consequence of
the max-min characterization of the eigenvalues, that

λk(Ω) ≤ Lk(Ω) ≤ Lk(Ω) . (4.8)

The last but not least result (due to [61]) gives the full picture of the equality cases:

Theorem 4.13 Suppose Ω ⊂ R2 is regular. If Lk(Ω) = Lk(Ω) or Lk(Ω) = λk(Ω), then

λk(Ω) = Lk(Ω) = Lk(Ω) . (4.9)

In addition, there exists a Courant sharp eigenfunction associated with λk(Ω).
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This answers a question informally mentioned in [30, Section 7].

Proof: It is easy to see using a variation of the proof of Courant’s theorem that the
equality λk = Lk implies (4.9). Hence the difficult part is to get (4.9) from the assumption that
Lk = Lk = λm(k), that is to prove that m(k) = k. This involves a construction of an exhaustive
family {Ω(t), t ∈ (0, 1)}, interpolating between Ω(0) := Ω \ N (φk) and Ω(1) := Ω, where φk
is an eigenfunction corresponding to Lk such that its nodal partition is a minimal k-partition.
This family is obtained by cutting small intervals in each regular component of N (φk). Lk
being an eigenvalue common to all H(Ω(t)), but its labelling changing between t = 0 and t = 1,
we get by a tricky argument a contradiction for some t0 where the multiplicity of Lk should
increase. �

4.6 On subpartitions of minimal partitions

Starting from a given strong k-partition, one can consider subpartitions by considering a sub-
family of Di’s such that Int (∪Di) is connected, typically a pair of two neighbors. Of course
a subpartition of a minimal partition should be minimal. If it was not the case, we should be
able to decrease the energy by deformation of the boundary. The next proposition is useful and
reminiscent of Proposition 2.14.

Proposition 4.14 Let D = {Di}1≤i≤k be a minimal k-partition for Lk(Ω). Then, for any
subset I ∈ {1, . . . , k}, the associated subpartition DI = {Di}i∈I satisfies

Lk(Ω) = Λ(DI) = L|I|(Ω
I) , (4.10)

where ΩI := Int (∪i∈IDi) .

This is clear from the definition and the previous results that any subpartition DI of a minimal
partition D should be minimal on ΩI and this proves the proposition. One can also observe
that if this subpartition is bipartite, then it is nodal and actually Courant sharp. In the same
spirit, starting from a minimal regular k-partition D of a domain Ω, we can extract (in many
ways) in Ω a connected domain Ω̃ such that D becomes a minimal bipartite k-partition of Ω̃.
It is achieved by removing from Ω a union of a finite number of regular arcs corresponding to
pieces of boundaries between two neighbors of the partition.

Corollary 4.15 If D is a minimal regular k-partition, then for any extracted connected open
set Ω̃ associated with D, we have

λk(Ω̃) = Lk(Ω̃) . (4.11)

This last criterion has been analyzed in [20] for glueing of triangles, squares and hexagons as a
test of minimality in connexion with the hexagonal conjecture (see Subsection 9.1).

4.7 Notes

Similar results hold in the case of compact Riemannian surfaces when considering the Laplace-
Beltrami operator (see [33]) (typically for S2[63] and T2[75]). In the case of dimension 3, let us
mention that Theorem 4.13 is proved in [62]. The complete analysis of minimal partitions was
not achieved in [61] but it is announced in the introduction of [87] that it can now be obtained.

5 On p-minimal k-partitions

The notion of p-minimal k-partition has been already defined in Subsection 4.4. We would like
in this section to analyze the dependence on p of these minimal partitions.
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5.1 Main properties

Inequality (4.8) is replaced by the following one (see [63] for p = 1 and [56] for general p)1

k

k∑
j=1

λj(Ω)p

 1
p

≤ Lk,p(Ω) . (5.1)

This is optimal for the disjoint union of k-disks with different (but close) radius.

5.2 Comparison between different p’s

Proposition 5.1 For any k ≥ 1 and any p ∈ [1,+∞), there holds

1

k1/p
Lk(Ω) ≤ Lk,p(Ω) ≤ Lk(Ω) , (5.2)

Lk,p(Ω) ≤ Lk,q(Ω) , if p ≤ q . (5.3)

Let us notice that (5.2) implies that

lim
p→+∞

Lk,p(Ω) = Lk(Ω) ,

and this can be useful in the numerical approach for the determination of Lk(Ω).
Notice also the inequalities can be strict! It is the case if Ω is a disjoint union of two disks,
possibly related by a thin channel (see [29, 63] for details).
In the case of the disk B ⊂ R2, we do not know if the equality L2,1(B) = L2,∞(B) is satisfied or
not. Other aspects of this question will be discussed in Section 9.

Coming back to open sets in R2, it was established recently in [56] that the inequality

L2,1(Ω) < L2,∞(Ω) (5.4)

is “generically” satisfied. Moreover, we can give explicit examples (equilateral triangle) of convex
domains for which this is true. This answers (by the negative) some question in [29]. The proof
(see [56]) is based on the following proposition:

Proposition 5.2 Let Ω be a domain in R2 and k ≥ 2. Let D be a minimal k-partition for Lk(Ω)
and suppose that there is a pair of neighbors {Di, Dj} such that for the second eigenfunction
φij of H(Dij) having Di and Dj as nodal domains we have∫

Di

|φij(x, y)|2dxdy 6=
∫
Dj

|φij(x, y)|2dxdy . (5.5)

Then
Lk,1(Ω) < Lk,∞(Ω) . (5.6)

The proof involves the Hadamard formula (see [67]) which concerns the variation of some simple
eigenvalue of the Dirichlet Laplacian by deformation of the boundary. Here we can make the
deformation in ∂Di ∩ ∂Dj .

We recall from Proposition 4.8 that the∞-minimal k-partition (we write simply minimal k-
partition in this case) is a spectral equipartition. This is not necessarily the case for a p-minimal
k-partition. Nevertheless we have the following property:
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Proposition 5.3 Let D be a p-minimal k-partition. If D is a spectral equipartition, then this
k-partition is q-minimal for any q ∈ [p,+∞].

This leads us to define a real p(k,Ω) as the infimum over p ≥ 1 such that there exists a p-
minimal k-equipartition.

5.3 Examples

Bourdin-Bucur-Oudet [24] have proposed an iterative method to exhibit numerically candidates
for the 1-minimal k-partition. Their algorithm can be generalized to the case of the p-norm with
p < +∞ and this method has been implemented for several geometries like the square or the
torus. For any k ≥ 2 and p ≥ 1, we denote by Dk,p the partition obtained numerically. Some
examples of Dk,p are given in Figures 2 for the square. For each partition Dk,p = {Dk,p

i }1≤i≤k, we

represent in Figures 3 the eigenvalues (λ(Dk,p
i ))1≤i≤k, the energies Λp(Dk,p) and Λ∞(Dk,p). We

observe that for the case of the square, if k /∈ {1, 2, 4} (that is to say, if we are not in the Courant
sharp situation), then the partitions obtained numerically are not spectral equipartitions for any
p < +∞. In the case k = 3, the first picture of Figure 2 suggests that the triple point (which
is not at the center for p = 1) moves to the center as p → +∞. Consequently, the p-minimal
k-partition can not be optimal for p = +∞ and

p(k,�) = +∞ for k ∈ {3, 5, 6, 7, 8}.

Conversely, for any p, the algorithm produces a nodal partition when k = 2 and k = 4. This
suggests

p(k,�) = 1 for k ∈ {1, 2, 4}.

Figure 2: Candidates Dk,p for the p-minimal k-partition on the square, p = 1, 2, 5, 10 (in blue,
magenta, green and red respectively), k = 3, 5, 6.

In the case of the isotropic torus (R/Z)2, numerical simulations in [75] for 3 ≤ k ≤ 6 suggest
that the p-minimal k-partition is a spectral equipartition for any p ≥ 1 and thus

p(k, (R/Z)2) = 1 for k = 3, 4, 5, 6.

Candidates are given in Figure 4 where we color two neighbors with two different colors, using
the minimal number of colors.

5.4 Notes

In the case of the sphere S2, it was proved that (5.4) is an equality (see [14, 47] and the references
in [63]). But this is the only known case for which the equality is proved. For k = 3, it is a
conjecture reinforced by the numerical simulations of Elliott-Ranner [45] or more recently of B.
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Figure 3: Energies of Dk,p according to p, k = 3, 5, 6 on the square.

Figure 4: Candidates for isotropic torus, k = 3, 4, 5, 6.

Bogosel [16]. For k = 4, simulations produced by Elliott-Ranner [45] for L4,1 suggest that the
spherical tetrahedron is a good candidate for a 1-minimal 4-partition. For k > 6, it seems that
the candidates for the 1-minimal k-partitions are not spectral equipartitions.

6 Topology of regular partitions

6.1 Euler’s formula for regular partitions

In the case of planar domains (see [54]), we will use the following result.

Proposition 6.1 Let Ω be an open set in R2 with piecewise C1,+ boundary and D be a k-
partition with ∂D the boundary set (see Definition 4.3 and notation therein). Let b0 be the
number of components of ∂Ω and b1 be the number of components of ∂D∪ ∂Ω. Denote by ν(xi)
and ρ(yi) the numbers of curves ending at xi ∈ X(∂D), respectively yi ∈ Y (∂D). Then

k = 1 + b1 − b0 +
∑

xi∈X(∂D)

(ν(xi)

2
− 1
)

+
1

2

∑
yi∈Y (∂D)

ρ(yi) . (6.1)

This can be applied, together with other arguments to determine upper bounds for the
number of singular points of minimal partitions. This version of the Euler’s formula appears
in [68] and can be recovered by the Gauss-Bonnet formula (see for example [9]). There is a
corresponding result for compact manifolds involving the Euler characteristics.

Proposition 6.2 Let M be a flat compact surface M without boundary. Then the Euler’s
formula for a partition D = {Di}1≤i≤k reads

k∑
i=1

χ(Di) = χ(M) +
∑

xi∈X(∂D)

(ν(xi)

2
− 1
)
,
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where χ denotes the Euler characteristics.

It is well known that χ(S2) = 2, χ(T2) = 0 and that for open sets in R2 the Euler characteristic
is 1 for the disk and 0 for the annulus.

6.2 Application to regular 3-partitions

Following [55], we describe here the possible “topological” types of non bipartite minimal 3-
partitions for a general domain Ω in R2.

Proposition 6.3 Let Ω be a simply-connected domain in R2 and consider a minimal 3-partition
D = {D1, D2, D3} associated with L3(Ω) and suppose that it is not bipartite. Then the boundary
set ∂D has one of the following properties:

[a] one interior singular point x0 ∈ Ω with ν(x0) = 3, three points {yi}1≤i≤3 on the boundary
∂Ω with ρ(yi) = 1;

[b] two interior singular points x0, x1 ∈ Ω with ν(x0) = ν(x1) = 3 and two boundary singular
points y1, y2 ∈ ∂Ω with ρ(y1) = 1 = ρ(y2);

[c] two interior singular points x0, x1 ∈ Ω with ν(x0) = ν(x1) = 3 and no singular point on
the boundary.

The three types are described in Figure 5.

y1•

y2 •

y3
•

•x0
•
x1

x0•
y1 •

•y2

x1•

x0
•

Figure 5: Three topological types : [a], [b] and [c].

The proof of Proposition 6.3 relies essentially on the Euler formula. This leads (with some
success) to analyze the minimal 3-partitions with some topological type. We actually do not
know any example where the minimal 3-partitions are of type [b] and [c]. Numerical computa-
tions never produce candidates of type [b] or [c] (see [20] for the square and the disk, [21] for
angular sectors and [18] for complements for the disk).
Note also that we do not know about results claiming that the minimal 3-partition of a domain
with symmetry should keep some of these symmetries. We actually know in the case of the disk
(see [55, Proposition 1.6]) that a minimal 3-partition cannot keep all the symmetries.
In the case of angular sectors, it has been proved in [21] that a minimal 3-partition can not be
symmetric for some range of ω’s.

6.3 Upper bound for the number of singular points

Proposition 6.4 Let D be a minimal k-partition of a simply connected domain Ω with k ≥ 2.
Let Xodd(∂D) be the subset among the interior singular points X(∂D) for which ν(xi) is odd
(see Definition 4.3). Then the cardinal of Xodd(∂D) satisfies

]Xodd(∂D) ≤ 2k − 4 . (6.2)
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Proof: Euler’s formula implies that for a minimal k-partition D of a simply connected
domain Ω the cardinal of Xodd(∂D) satisfies

]Xodd(∂D) ≤ 2k − 2 . (6.3)

Note that if b1 = b0, we necessarily have a singular point in the boundary. If we implement the
property that the open sets of the partitions are nice, we can exclude the case when there is
only one point on the boundary. Hence, we obtain

b1 − b0 +
1

2

∑
i

ρ(yi) ≥ 1 ,

which implies (6.2). �

6.4 Notes

In the case of S2 one can prove that a minimal 3-partition is not nodal (the second eigenvalue
has multiplicity 3), and as a step to a characterization, one can show that non-nodal minimal
partitions have necessarily two singular triple points (i.e. with ν(x) = 3).
If we assume, for some k ≥ 12, that a minimal k-partition has only singular triple points and
consists only of (spherical) pentagons and hexagons, then Euler’s formula in its historical version
for convex polyedra V −E + F = χ(S2) = 2 (where F is the number of faces, E the number of
edges and V the number of vertices) implies that the number of pentagons is 12. This is what
is used for example for the soccer ball (12 pentagons and 20 hexagons). We refer to [45] for
enlightening pictures.
More recently, it has been proved by Soave-Terracini [91, Theorem 1.12] that

L3(Sn) =
3

2

(
n+

1

2

)
.

7 Examples of minimal k-partitions

7.1 The disk

In the case of the disk, Proposition 3.11 tells us that the minimal k-partition are nodal only
for k = 1, 2, 4. Illustrations are given in Figure 6(a). For other k’s, the question is open.

(a) Minimal k-partitions, k = 1, 2, 4. (b) 3-partition.

Λ(D) ' 104.37 Λ(D) ' 110.83

(c) Energy for two 5-partitions.

Figure 6: Candidates for the disk.

Numerical simulations in [17, 18] permit to exhibit candidates for the Lk(B1) for k = 3, 5 (see
Figure 6). Nevertheless we have no proof that the minimal 3-partition is the “Mercedes star”
(see Figure 6(b)), except if we assume that the center belongs to the boundary set of the minimal
partition [55] or if we assume that the minimal 3-partition is of type [a] (see [18, Proposition
1.4]).
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7.2 The square

When Ω is a square, the only cases which are completely solved are k = 1, 2, 4 as mentioned in
Theorem 3.5 and the minimal k-partitions for k = 2, 4 are presented in the Figure 1(a). Let us
now discuss the 3-partitions. It is not too difficult to see that L3 is strictly less than L3. We
observe indeed that λ4 is Courant sharp, so L4 = λ4, and there is no eigenfunction corresponding
to λ2 = λ3 with three nodal domains (by Courant’s Theorem). Restricting to the half-square
and assuming that there is a minimal partition which is symmetric with one of the perpendicular
bisectors of one side of the square or with one diagonal line, one is reduced to analyze a family of
problems with mixed conditions on the symmetry axis (Dirichlet-Neumann, Dirichlet-Neumann-
Dirichlet or Neumann-Dirichlet-Neumann according to the type of the configuration ([a], [b] or
[c] respectively). Numerical computations3 in [20] produce natural candidates for a symmetric
minimal 3-partition. Two candidates Dperp and Ddiag are obtained numerically by choosing the

Figure 7: Candidates Dperp and Ddiag for the square.

symmetry axis (perpendicular bisector or diagonal line) and represented in Figure 7. Numerics
suggests that there is no candidate of type [b] or [c], that the two candidates Dperp and Ddiag

have the same energy Λ(Dperp) ' Λ(Ddiag) and that the center is the unique singular point
of the partition inside the square. Once this last property is accepted, one can perform the
spectral analysis of an Aharonov-Bohm operator (see Section 8) with a pole at the center. This
point of view is explored numerically in a rather systematic way by Bonnaillie-Noël–Helffer [17]
and theoretically by Noris-Terracini [82] (see also [22]). In particular, it was proved that, if the
singular point is at the center, the mixed Dirichlet-Neumann problems on the two half-squares
(a rectangle and a right angled isosceles triangle depending on the considered symmetry) are
isospectral with the Aharonov-Bohm operator. This explains why the two partitions Dperp and
Ddiag have the same energy. So this strongly suggests that there is a continuous family of

Figure 8: A continuous family of 3-partitions with the same energy.

minimal 3-partitions of the square. This is done indeed numerically in [17] and illustrated in
Figure 8. This can be explained in the formalism of the Aharonov-Bohm operator presented in
Section 8, observing that this operator has an eigenvalue of multiplicity 2 when the pole is at the
center. This is reminiscent of the argument of isospectrality of Jakobson-Levitin-Nadirashvili-
Polterovich [71] and Levitin-Parnovski-Polterovich [78]. We refer to [19, 17] for this discussion
and more references therein.

3see http://w3.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions/
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Figure 9 gives some 5-partitions obtained with several approaches: Aharonov-Bohm ap-
proach (see Section 8), mixed conditions on one eighth of the square (with Dirichlet condition
on the boundary of the square, Neumann condition on one of the other part and mixed Dirichlet-
Neumann condition on the last boundary). The first 5-partition corresponds with what we got
by minimizing over configurations with one interior singular point. The second 5-partition Dperp

(which has four interior singular points) gives the best known candidate to be minimal.

Λ(DAB) = 111.910 Λ(Dperp) = 104.294 Λ(Ddiag) = 131.666

Figure 9: Three candidates for the 5-partition of the square.

7.3 Flat tori

In the case of thin tori, we have a similar result to Subsection 3.1 for minimal partitions.

Theorem 7.1 There exists bk > 0 such that if b < bk, then Lk(T (1, b)) = k2π2 and the
corresponding minimal k-partition Dk = {Di}1≤i≤k is represented in R(1, b) by

Di =
( i− 1

k
,
i

k

)
× [0 , b ) , for i = 1, . . . , k . (7.1)

Moreover bk ≥ 1
k for k even and bk ≥ min( 1

k ,
j2

k2π
) for k odd.

This result extends Remark 3.2 to odd k’s, for which the minimal k-partitions are not nodal.
We can also notice that the boundaries of the Di in T (1, b) are just k circles.

In the case of isotropic flat tori, we have seen in Subsection 3.5, that minimal partitions
are not nodal for k > 2. Following C. Léna [77], some candidates are given in Figure 4 for
k = 3, 4, 5, 6.

7.4 Angular sectors

Figure 10 gives some symmetric and non symmetric examples for angular sectors. Note that
the energy of the first partition in the second line is lower than any symmetric 3-partition. This
proves that the minimal k-partition of a symmetric domain is not necessarily symmetric.

7.5 Notes

The minimal 3-partitions for the sphere S2 have been determined mathematically in [63] (see
Figure 11). This is an open question known as the Bishop conjecture [14] that the same partition
is a 1-minimal 3-partition. The case of a thin annulus is treated in [59] for Neumann conditions.
The case of Dirichlet is still open.
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Figure 10: Candidates for angular sectors.

Figure 11: Minimal 3-partition of the sphere.

8 Aharonov-Bohm approach

The introduction of Aharonov-Bohm operators in this context is an example of “physical math-
ematics”. There is no magnetic fied in our problem and it is introduced artificially. But the
idea comes from [53], which was motivated by a problem in superconductivity in non simply
connected domains.

8.1 Aharonov-Bohm operators

Let Ω be a planar domain and p = (p1, p2) ∈ Ω. Let us consider the Aharonov-Bohm Laplacian
in a punctured domain Ω̇p := Ω \ {p} with a singular magnetic potential and normalized flux
α. We first introduce

Ap(x) = (Ap
1 (x), Ap

2 (x)) =
(x− p)⊥

|x− p|2
, with y⊥ = (−y2, y1) .

This magnetic potential satisfies

Curl Ap(x) = 0 in Ω̇p.

If p ∈ Ω, its circulation along a path of index 1 around p is 2π (or the flux created by p). If
p 6∈ Ω, Ap is a gradient and the circulation along any path in Ω is zero. From now on, we
renormalize the flux by dividing the flux by 2π.
The Aharonov-Bohm Hamiltonian with singularity p and flux α (written for shortnessHAB(Ω̇p, α))
is defined by considering the Friedrichs extension starting from C∞0 (Ω̇p) and the associated dif-
ferential operator is

−∆αAp := (Dx1 − αA
p
1 )2 + (Dx2 − αA

p
2 )2 with Dxj = −i∂xj . (8.1)
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This construction can be extended to the case of a configuration with ` distinct points p1, . . . ,p`
(putting a flux αj at each of these points). We just take as magnetic potential

AP
α =

∑̀
j=1

αjA
pj , where P = (p1, . . . ,p`) and α = (α1, . . . , α`).

Let us point out that the pj ’s can be in R2 \ Ω, and in particular in ∂Ω. It is important to
observe the following

Proposition 8.1 If α = α′ modulo Z`, then HAB(Ω̇p,α) and HAB(Ω̇p,α
′) are unitary equiv-

alent.

8.2 The case when the fluxes are 1/2.

Let us assume for the moment that there is a unique pole ` = 1 and suppose that the flux α
is 1

2 . For shortness, we omit α in the notation when it equals 1/2. Let Kp be the antilinear
operator Kp = eiθp Γ , where Γ is the complex conjugation operator Γu = ū and

(x1 − p1) + i(x2 − p2) =
√
|x1 − p1|2 + |x2 − p2|2 eiθp ,

θp such that
dθp = 2Ap .

Here we note that because the (normalized) flux of 2Ap belongs to Z for any path in Ω̇p, then
x 7→ exp iθp(x) is a C∞ function (this is indeed the variable θ in polar coordinates centered at
p).
A function u is called Kp-real, if Kpu = u . The operator HAB(Ω̇p) = HAB(Ω̇p,

1
2) is preserving

the Kp-real functions. Therefore we can consider a basis of Kp-real eigenfunctions. Hence we
only analyze the restriction of HAB(Ω̇p,

1
2) to the Kp-real space L2

Kp
where

L2
Kp

(Ω̇p) = {u ∈ L2(Ω̇p) : Kp u = u } .

If there are several poles (` > 1) and α = (1
2 , . . . ,

1
2), we can also construct the antilinear

operator KP, where θp is replaced by

ΘP =
∑̀
j=1

θpj . (8.2)

8.3 Nodal sets of K-real eigenfunctions

As mentioned previously, we can find a basis of KP-real eigenfunctions. It was shown in [53]
and [2] that the KP-real eigenfunctions have a regular nodal set (like the eigenfunctions of the
Dirichlet Laplacian) with the exception that at each singular point pj (j = 1, . . . , `) an odd
number ν(pj) of half-lines meet. So the only difference with the notion of regularity introduced
in Subsection 4.2 is that some ν(pj) can be equal to 1.

Proposition 8.2 The zero set of a KP-real eigenfunction of HAB(Ω̇P) is the boundary set of
a regular partition if and only if ν(pj) ≥ 2 for j = 1, . . . , `.
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Figure 12: Nodal lines of some Aharonov-Bohm eigenfunctions on the square.

Figure 13: Nodal lines for the third Aharonov-Bohm eigenfunction in function of p. on the
diagonal.

Let us illustrate the case of the square with one singular point. Figure 12 gives the nodal lines
of some eigenfunctions of the Aharonov-Bohm operator. In these examples, there are always
one or three lines ending at the singular point (represented by a red point). Note that only the
fourth picture gives a regular and nice partition.

The guess for the punctured square (p at the center) is that any nodal partition of a third
Kp-real eigenfunction gives a minimal 3-partition. Numerics shows that this is only true if the
square is punctured at the center (see Figure 13 and [17] for a systematic study). Moreover the
third eigenvalue is maximal there and has multiplicity two (see Figure 14).

8.4 Continuity with respect to the poles

In the case of a unique singular point, [82], [22, Theorem 1.1] establish the continuity with
respect to the singular point till the boundary.

Theorem 8.3 Let α ∈ [0, 1) and λABk (p, α) be the k-th eigenvalue of HAB(Ω̇p, α). Then the
function p ∈ Ω 7→ λABk (p, α) admits a continuous extension on Ω and

lim
p→∂Ω

λABk (p, α) = λk, ∀k ≥ 1, (8.3)

where λk is the k-th eigenvalue of H(Ω).

The theorem implies that the function p 7→ λABk (p, α) has an extremal point in Ω. Note also
that λABk (p, α) is well defined for p 6∈ Ω and is equal to λk(Ω). One can indeed find a solution φ
in Ω satisfying dφ = Ap, and u 7→ exp(iαφ)u defines the unitary transform intertwining H(Ω)
and HAB(Ω̇p, α).

Figures 14–16 give some illustrations (see also [17, 22]) in the case of a square or of an
angular sector with opening π/3 or π/4 and with a flux α = 1/2.
Figure 14 gives the first eigenvalues of HAB(Ω̇p) in function of p in the square Ω = [0, 1]2 and
demonstrates (8.3). When p = (1/2, 1/2), the eigenvalue is extremal and always double (see in
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(a) p 7→ λABk (p), p ∈ Ω, 1 ≤ k ≤ 5
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(b) p 7→ λABk (p), p = (p, p), 1 ≤ k ≤ 5.
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(c) p 7→ λABk (p), p = (p, 1
2
), 1 ≤ k ≤ 5.

Figure 14: Aharonov-Bohm eigenvalues on the square as functions of the pole.

particular Figures 14(b) and 14(c) which represent the first eigenvalues when the pole is either
on a diagonal line or on a bisector line).
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Figure 15: Aharonov-Bohm eigenvalues for an angular sector Σω of opening ω = π
3 ,

π
4 .

Figures 15 give the first five eigenvalues of HAB(Σ̇ω,p) when Ω is an angular sector Σω of
opening ω = π/3, π/4 in function of p. The k-th line of each figure gives λABk (p) at the point
p ∈ Σω and λk(Σω) outside Σω. We recover (8.3) and observe that there exists always an
extremal point on the symmetry axis. Figure 16 gives the eigenvalues of HAB(Σ̇π

4
,p) when p

belongs to the bisector line of Σπ/4.
Let us analyze what can happen at an extremal point (see [82, Theorem 1.1], [22, Theorem

1.5]).

Theorem 8.4 Suppose α = 1/2. For any k ≥ 1 and p ∈ Ω, we denote by ϕAB,pk an eigenfunc-
tion associated with λABk (p).
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Figure 16: p 7→ λABk (p), p ∈ (0, 1)× {0}, 1 ≤ k ≤ 9, on Σπ/4.

• If ϕAB,pk has a zero of order 1/2 at p ∈ Ω, then either λABk (p) has multiplicity at least 2,
or p is not an extremal point of the map x 7→ λABk (x).

• If p ∈ Ω is an extremal point of x 7→ λABk (x), then either λABk (p) has multiplicity at least

2, or ϕAB,pk has a zero of order m/2 at p, m ≥ 3 odd.

This theorem gives an interesting necessary condition for candidates to be minimal partitions.
Indeed, knowing the behavior of the eigenvalues of Aharonov-Bohm operator, we can localize
the position of the critical point for which the associated eigenfunction can produce a nice
partition (with singular point where an odd number of lines end).
For the case of the square, we observe in Figure 14 that the eigenvalue is never simple at an
extremal point. When Ω is the angular sector Σπ/4 (see Figures 15 and 16), the only critical

points of x 7→ λABk (x) which correspond to simple eigenvalues are inflexion points located on
the bisector line. Their abscissa are denoted a(k), k = 3, 4, 5 in Figure 16. Let p(k) = (a(k), 0).

Figure 17 gives the nodal partitions associated with λABk (p(k)). We observe that there are
always three lines ending at the singular point p(k). In Figure 18 are represented the nodal
partitions for singular points near p(3). When p 6= p(3), there is just one line ending at p.

(a) λAB3 (p(3)) (b) λAB4 (p(4)) (c) λAB5 (p(5))

Figure 17: Nodal lines of an eigenfunction associated with λk(p(k)), k = 3, 4, 5.

When there are several poles, the continuity result of Theorem 8.3 still holds. Let us explain
shortly this result (see [76] for the proof and more details). This is rather clear in Ω` \ C, where
C denotes the P’s such that pi 6= pj when i 6= j. It is then convenient to extend the function
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(a) λAB3 (p), p = (0.60, 0) (b) λAB3 (p), p ' (a(3), 0) (c) λAB3 (p), p = (0.65, 0)

Figure 18: Nodal lines of an eigenfunction associated with λAB3 (p).

P 7→ λABk (P,α) to (R2)`. We define λABk (P,α) as the k-th eigenvalue of HAB(Ω̇P̃, α̃), where the

m-uple P̃ = (p̃1, . . . , p̃m) contains once, and only once, each point appearing in P = (p1, . . . ,p`)
and where α̃ = (α̃1, . . . , α̃M ) with α̃k =

∑
j,pj=p̃k

αj , for 1 ≤ k ≤ m.

Theorem 8.5 If k ≥ 1 and α ∈ R`, then the function P 7→ λABk (P,α) is continuous in R2`.

This result generalizes Theorems 8.3 and 8.4. It implies in particular continuity of the eigenval-
ues when one point tends to ∂Ω, or in the case of coalescing points. For example, take ` = 2,
α1 = α2 = 1

2 , P = (p1,p2) and suppose that p1 and p2 tends to some p in Ω. Together with
Proposition 8.1, we obtain in this case that λABk (P,α) tends to λk(Ω).

8.5 Notes

More results on the Aharonov-Bohm eigenvalues as function of the poles can be found in
[17, 82, 22, 1, 76]. We have only emphasized in this section on the results which have di-
rect applications to the research of candidates for minimal partitions.
In many of the papers analyzing minimal partitions, the authors refer to a double covering
argument. Although this point of view (which appears first in [53] in the case of domains with
holes) is essentially equivalent to the Aharonov approach, it has a more geometrical flavor. One
can in an abstract way construct a double covering manifold Ω̇P

R above Ω̇P. This permits to lift
the problem on this new (singular) manifold but the KP-real eigenfunctions can be lifted into
real eigenfunctions of the Laplace operator on Ω̇P

R which are antisymmetric with respect to the
deck map (echanging two points having the same projection on Ω̇P). It appears that nodal sets
of antisymmetric Courant sharp eigenfunctions on Ω̇P

R (say with 2k nodal domains) give good
candidates (by projection) for minimal k-partitions. The difficulty is of course with the choice
of P.
In the case of the disk, the construction is equivalent to consider θ ∈ (0, 4π), the deck map
corresponding to the translation by 2π. The nodal set of the 6-th eigenfunction gives by projec-
tion the Mercedes star and the 11-th eigenvalue (which is the 5-th in the space of antiperiodic
functions) gives by projection the candidate presented in Figure 6(b).

9 On the asymptotic behavior of minimal k-partitions.

The hexagon has fascinating properties and appears naturally in many contexts (for example the
honeycomb). If we consider polygons generating a tiling, the ground state energy λ(7) gives the
smallest value (at least in comparison with the square, the rectangle and the equilateral triangle).
We analyze in this section, the asymptotic behavior of minimal k-partitions as k → +∞.
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9.1 The hexagonal conjecture

Conjecture 9.1 The limit of Lk(Ω)/k as k → +∞ exists and

|Ω| lim
k→+∞

Lk(Ω)

k
= λ(7) .

Similarly, one has

Conjecture 9.2 The limit of Lk,1(Ω)/k as k → +∞ exists and

|Ω| lim
k→+∞

Lk,1(Ω)

k
= λ(7) . (9.1)

These conjectures, that we learn from M. Van den Berg in 2006 and are also mentioned in
Caffarelli-Lin [31] for Lk,1, imply in particular that the limit is independent of Ω.
Of course the optimality of the regular hexagonal tiling appears in various contexts in Physics.
It is easy to show, by keeping the hexagons belonging to the intersection of Ω with the hexagonal
tiling, the upper bound in Conjecture 9.1,

|Ω| lim sup
k→+∞

Lk(Ω)

k
≤ λ(7) . (9.2)

We recall that the Faber-Krahn inequality (2.13) gives a weaker lower bound

|Ω|Lk(Ω)

k
≥ |Ω|

Lk,1(Ω)

k
≥ λ(#) . (9.3)

Note that Bourgain [25] and Steinerberger [92] have recently improved the lower bound by using
an improved Faber-Krahn inequality together with considerations on packing property by disks
(see Remark 2.17).
The inequality Lk,1(Ω) ≤ Lk(Ω) together with the upper bound (9.2) shows that the second
conjecture implies the first one.
Conjecture 9.1 has been explored in [20] by checking numerically non trivial consequences of this
conjecture (see Corollary 4.15). Other recent numerical computations devoted to limk→+∞

1
kLk,1(Ω)

and to the asymptotic structure of the minimal partitions by Bourdin-Bucur-Oudet [24] are very
enlightening.

9.2 Universal and asymptotic lower bounds for the length

We refer to [9] and references therein for proof and more results. Let D = {Di}1≤i≤k be a
regular spectral equipartition with energy Λ = Λ(D). We define the length of the boundary set
∂D by the formula,

|∂D| := 1

2

k∑
i=1

|∂Di| . (9.4)

Proposition 9.3 Let Ω be a bounded open set in R2, and let D be a regular spectral equipartition
of Ω. The length |∂D| of the boundary set of D is bounded from below in terms of the energy
Λ(D). More precisely,

|Ω|
2j

√
Λ(D) +

πj

2
√

Λ(D)

(
χ(Ω) +

1

2
σ(D)

)
≤ |∂D| . (9.5)
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Here

σ(D) :=
∑

xi∈X(∂D)

(ν(xi)

2
− 1
)

+
1

2

∑
yi∈Y (∂D)

ρ(yi) ,

which is the quantity appearing in Euler’s formula (6.1).

The proof of [9] is obtained by combining techniques developed by Brüning-Gromes [28] together
with ideas of A. Savo [88].

The hexagonal conjecture leads to a natural corresponding hexagonal conjecture for the
length of the boundary set, namely

Conjecture 9.4

lim
k→+∞

|∂Dk|√
k

=
1

2
`(7)

√
|Ω| , (9.6)

where `(7) = 2
√

2
√

3 is the length of the boundary of 7.

For regular spectral equipartitions D of the domain Ω, inequaly (9.5) and Faber-Krahn’s in-
equality yield,

lim inf
](D)→∞

|∂D|√
](D)

≥
√
π

2

√
|Ω|. (9.7)

Assuming that χ(Ω) ≥ 0, we have the uniform lower bound,

|∂D|√
](D)

≥
√
π

2

√
|Ω|. (9.8)

The following statement can be deduced from particular case of Theorem 1-B established by
T.C. Hales [49] in his proof of Lord Kelvin’s honeycomb conjecture (see also [9]) which states
than in R2 regular hexagons provide a perimeter-minimizing partition of the plane into unit
areas.

Theorem 9.5 For any regular partition D of a bounded open subset Ω of R2,

|∂D|+ 1

2
|∂Ω| ≥ (12)

1
4 (min

i
|Di|)

1
2 ](D) . (9.9)

Theorem 9.6 Let Ω be a regular bounded domain in R2. For k ≥ 1, let Dk be a minimal
regular k-partition of Ω. Then,

lim inf
k→+∞

|∂Dk|√
k
≥ 1

2
`(7)

(
πj2

λ(7)

) 1
2

|Ω|
1
2 . (9.10)

Proof: Let D = {Di}1≤i≤k be a regular equipartition of Ω. Combining Faber-Krahn’s
inequality (2.13) for some Di of minimal area with (9.9), we obtain

|∂D|+ 1

2
|∂Ω| ≥ (12)

1
4 (πj2)

1
2
](D)√
Λ(D)

. (9.11)

Let Dk be a minimal regular k-partition of Ω. Using (9.2) in (9.11) gives (9.10). �
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To see the efficiency of each approach, we give the approximate value of the different constants:

1

2
`(7) ' 1.8612 ,

1

2
`(7)

(
πj2

λ(7)

) 1
2

' 1.8407 ,

√
π

2
' 0.8862 .

Assume now that D̂k := D(uk) is the nodal partition of some k-th eigenfunction uk of H(Ω).
Assume furthermore that χ(Ω) ≥ 0. Combining (9.5) with Weyl’s theorem leads to:

lim inf
k→+∞

|∂D̂k|√
k
≥
√
π

j

√
|Ω| . (9.12)

In the case of a compact manifold this kind of lower bound appears first in [27], see also the
celebrated work by Donnelly-Feffermann [43, 44] around a conjecture by Yau.

9.3 Magnetic characterization and lower bounds for the number of singular
points

Helffer–Hoffmann-Ostenhof prove a magnetic characterization of minimal k-partitions (see [57,
Theorem 5.1]):

Theorem 9.7 Let Ω be simply connected and D be a minimal k-partition of Ω. Then D is the
nodal partition of some k-th KP-real eigenfunction of HAB(Ω̇P) with {p1, . . . ,p`} = Xodd(∂D).

Proof: We come back to the proof that a bipartite minimal partition is nodal for the
Laplacian. Using the uj whose existence was recalled for minimal partitions, we can find a
sequence εj = ±1 such that

∑
j εj exp( i2ΘP(x))uj(x) is an eigenfunction of HAB(Ω̇P), where

ΘP was defined in (8.2). �

The next theorem of [52] improves a weaker version proved in [58].

Theorem 9.8 Let (Dk)k∈N be a sequence of regular minimal k-partitions. Then there exist
c0 > 0 and k0 such that for k ≥ k0,

νk := ]Xodd(∂Dk) ≥ c0k .

Proof: The idea is to get a contradiction if νk/k or a subsequence tends to 0, with what we
get from a Pleijel’s like proof. This involves this time for any k, a lower bound in the Weyl’s
formula (for the eigenvalue Lk) for the Aharonov-Bohm operator HAB(Ω̇P) associated with the
odd singular points of Dk. The proof gives an explicit but very small c0. This is to compare
with the upper bound proven in Subsection 6.3. �

9.4 Notes

The hexagonal conjecture in the case of a compact Riemannian manifold is the same. We refer
to [9] for the details, the idea being that for k large this is the local structure of the manifold
which plays the main role, like for Pleijel’s formula (see [12]). In [45] the authors analyze
numerically the validity of the hexagonal conjecture in the case of the sphere (for Lk,1). As
mentioned in Subsection 6.4, one can add in the hexagonal conjecture that there are (k − 12)
hexagons and 12 pentagons for k large enough. In the case of a planar domain one expects
hexagons inside Ω and around

√
k pentagons close to the boundary (see [24]).
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[5] P. Bérard. Inégalités isopérimétriques et applications. Domaines nodaux des fonctions propres. In
Goulaouic-Meyer-Schwartz Seminar, 1981/1982, pages Exp. No. XI, 10. École Polytech., Palaiseau
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[20] V. Bonnaillie-Noël, B. Helffer, G. Vial. Numerical simulations for nodal domains and
spectral minimal partitions. ESAIM Control Optim. Calc. Var. 16(1) (2010) 221–246.
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Sud 11 2013.
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