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Abstract

In this paper we propose a novel numerical approach for the Boltzmann equation with
uncertainties. The method combines the efficiency of classical direct simulation Monte Carlo
(DSMC) schemes in the phase space together with the accuracy of stochastic Galerkin (sG)
methods in the random space. This hybrid formulation makes it possible to construct meth-
ods that preserve the main physical properties of the solution along with spectral accuracy
in the random space. The schemes are developed and analyzed in the case of space ho-
mogeneous problems as these contain the main numerical difficulties. Several test cases are
reported, both in the Maxwell and in the variable hard sphere (VHS) framework, and confirm
the properties and performance of the new methods.

Keywords: Boltzmann equation, Kinetic equations, Uncertainty Quantification, Direct
Simulation Monte Carlo methods, stochastic Galerkin methods

Mathematics Subject Classification:

1 Introduction

Kinetic equations are commonly used to describe the aggregate trends of phenomena involving
large number of interacting particles. Their effectivity has been proven in rather different re-
search fields, ranging from classical rarefied gas dynamics and granular media to socio-economy
and traffic flow engineering. Without having the ambition to review the enormous literature on
this field of research, we mention [8,11,12,18,34,40] and the references therein for an introduction
to the subject.

Despite the established literature in the deterministic description of physical phenomena, in
real world applications it is of paramount importance to quantify and control possible deviations
from expected trends. In particular, experimentally unavoidable uncertainties are often present
due to incomplete information on the microscopic dynamics, initial states or the boundary con-
ditions of the problem. The impact of these uncertainties must be taken into account in the
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model parameters and initial distributions. The general idea is based on considering those quan-
tities as random variables that influence the evolution of the kinetic distribution and, therefore,
increase the dimensionality of the problem.

In details, let f = f(z, v, t) be a nonnegative function describing the evolution of a distribu-
tion of particles travelling with velocity v ∈ R

dv at time t ≥ 0 and z ∈ Ω ⊆ R
dz is a random

vector characterizing the uncertain parameters. Under the assumption of space homogeneity,
the evolution of f is obtained by the following Boltzmann equation

∂

∂t
f =

1

ε
Q(f, f), (1)

with initial condition f(z, v, 0) = f0(z, v) that may be considered uncertain. In (1) the parameter
ǫ > 0 is the Knudsen number and Q(·, ·) defines a collision operator. In the present work we
concentrate on challenging case of the nonlinear Boltzmann operator describing binary collisions
among particles

Q(f, f)(z, v, t)

=

∫

Rdv

∫

Sdv−1

B(z, |v − v∗|, ω)[f(z, v′, t)f(z, v′∗, t)− f(z, v, t)f(z, v∗, t)]dωdv∗,
(2)

where ω is a unit vector of the sphere S
dv−1. As usual, in (1) we adopted the notation (v′, v′∗)

to represent the collisional velocities associated to the velocities (v, v∗) and collision parameter
ω, i.e.

v′ =
v + v∗

2
+

|v − v∗|
2

ω, v′∗ =
v + v∗

2
− |v − v∗|

2
ω. (3)

The kernel B(z, |v− v∗|, ω) is a nonnegative function selecting the frequency of interactions and
whose form is

B(z, |v − v∗|, ω) = bγ(ω, z)|v − v∗|γ(z),
and γ(z) characterizes the interaction forces between molecules. The case γ = 0 is often referred
as Maxwellian case whereas γ = 1 as the hard sphere case, see [11] for an overview. Note that,
since in a space homogeneous setting the Knudsen number acts simply as a scaling factor for
the time variable, to simplify notations in the sequel we will fix ε = 1.

In recent years we have seen a growing interest in building numerical methods for kinetic
equations with uncertainty and studying their properties (see the collection [25]). A very well
established direction of research concerns the construction of stochastic Galerkin-type methods
based on the use of deterministic methods in the phase space. Such methods have demonstrated
numerical and theoretical evidence of spectral accuracy in different contexts [19, 20, 26, 28, 36].
Their computational cost, however, is generally high due to the curse of dimensionality present in
kinetic equations and even more reinforced by the terms that model uncertainty. Moreover, the
main physical properties of the solution, among which its positivity, are lost by the numerical
method. Another class of methods recently developed is based on the use of control variate
techniques in a multi-fidelity context [14,15,29]. These methods, are significantly more efficient
than Galerkin’s stochastic approaches, especially for problems with high dimensionality of the
random space. Moreover, being based on Monte Carlo collocation techniques in the parameter
space their non intrusive nature permits to preserve the physical properties of the underlying
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deterministic numerical methods in the phase space. We mention that, recently, multilevel
Monte Carlo techniques have been also developed for some kinetic equations [22].

In this work we study a different approach from the previous ones, inspired by recent particle
methods based on stochastic polynomial chaos expansions for mean-field equations [9, 10]. The
aim of the methods is to combine the efficiency of DSMC techniques for the nonlinear Boltzmann
equation in phase space [1,2,5,30] (see also [23,38] for convergence results) with the accuracy of
stochastic Galerkin methods in parameter space [19, 39]. This novel hybrid formulation makes
it possible to construct efficient methods that preserve the main physical properties of the so-
lution along with spectral accuracy in the random space. In the present paper the schemes are
developed and analyzed in the case of space homogeneous problems as they contain most of the
main numerical difficulties. We stress that the approach presented here fall within the class of
intrusive methods and, although we develop our methods for the classical case of rarefied gas dy-
namics, the derivation is quite general and admits several natural extensions to other Boltzmann
type kinetic equations with uncertainties in various fields, such as Boltzmann’s semiconductor
equation [24] and the Landau-Fokker-Planck equation of plasma physics [20]. We refer also to
the recent work [35] where intrusive gPC Monte Carlo methods have been derived for the linear
Boltzmann equation.

The rest of the manuscript is organized as follows. First, in Section 2 we recall the classical
DSMC method by Nanbu [1, 30] in the case of Maxwell molecules and show how to derive its
stochastic Galerking projection when uncertainties are present. Next Section 3 is devoted to the
challenging case of variable hard sphere, where the presence of the dummy collision technique
based on acceptance-rejection, introduces additional difficulties. We show how to overcome
these problems with a suitable reformulation of the Monte Carlo simulation algorithm. Next,
in Section 4 we test the methodology for several problems including the Kac equation, and
the Boltzmann equation for Maxwell molecules and variable hard sphere. In this latter case,
we show, in particular, that a suitable regularization of the acceptance-rejection technique is
necessary in order to keep spectral accuracy. Some conclusions are reported in the last Section.
In separate Appendices we give details on the exact solutions used as comparison and show
consistency of the novel hybrid representation based on statistical samples in the phase space
combined with generalized polynomial chaos expansions in the random space.

2 DSMC-sG for Maxwellian molecules with uncertainties

In this section we briefly recall the basics of DSMC methods for the Boltzmann equation in the
simplified case of Maxwellian molecules and the fundamentals on stochastic Galerkin techniques.
Next we show how to derive the corresponding DSMC-sG approach.

2.1 Classical DSMC method

In order to present the classical DSMC algorithm we first focus on the case without uncertainty.
We are interested in the evolution of the density f = f(v, t), v ∈ R

dv , t ≥ 0, solution of (1)
with initial condition f(v, 0) = f0(v). In the Maxwellian case, i.e. B ≡ 1, we may rewrite (1) as
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follows
∂

∂t
f =

[
Q+(f, f)− µf

]
, (4)

where Q+(f, f) denotes the gain part of the collision operator, µ > 0 is a constant and we
assumed

∫

Rdv f(v∗, t)dv∗ = 1 so that f is a probability density. More precisely, under the above
assumptions, we have explicitly µ = 2dv−1π.

To introduce the DSMC scheme we consider a simulation algorithm based on the time discrete
form of (4) originally proposed by Nambu [30]. Let us consider a time interval [0, tmax], and
let us discretize it in ntot intervals of size ∆t. Let us denote by fn(v) an approximation of
f(v, n∆t). The forward Euler scheme writes

fn+1 = (1− µ∆t) fn + µ∆t
Q+(fn, fn)

µ
.

Clearly if fn is a probability density both Q+(fn, fn)/µ and fn+1 are probability densities
provided that µ∆t ≤ 1. A symmetrized version of the algorithm based on this probabilistic
interpretation is reported below [1,30].

Algorithm 2.1 (Nanbu-Babovski for Maxwell molecules).

1. Compute the initial velocities {v0i , i = 1, . . . , N},
by sampling them from the initial density f0(v)

2. for n = 0 to ntot − 1
given {vni , i = 1, . . . , N}

◦ set Nc = Sround(µN∆t/2)
◦ select Nc pairs (i, j) uniformly among all possible pairs,
- perform the collision between i and j, and compute
v′i and v′j according to the collision law

- set vn+1
i = v′i, v

n+1
j = v′j

◦ set vn+1
i = vni for all the particles that have not been selected

end for

Here by Sround(x) we denote the stochastic rounding of a positive real number x

Sround(x) =

{
⌊x⌋+ 1 with probability x− ⌊x⌋
⌊x⌋ with probability 1− x+ ⌊x⌋

where ⌊x⌋ denotes the integer part of x.
The kinetic distribution, as well as its moments, is then recovered from the empirical density

distribution

fN(v, t) =
1

N

N∑

i=1

δ(v − vi(t)), (5)

where δ(·) is the the Dirac delta, or some suitable regularization of (5).

Remark 2.1.
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• The algorithm just described can be applied to a variety of Boltzmann equation with ve-
locity independent collision kernel. The only difference consists in the computation of the
collisional velocities.

• Note that, the method become very expensive and practically unusable near the fluid regime
because in this case the collision time between the particles becomes very small, and a
huge number of collisions is needed in order to reach a fixed final time. Methods which
overcome this kind of limitation, based on exponential time discretizations and implicit-
explicit Runge-Kutta methods have been proposed in [13, 32, 33]. In the sequel, even if
we focus our attention on the classic DSMC algorithm described above, our methodology
extends naturally also to this latter class of algorithms.

2.2 DSMC-sG methods

We consider the stochastic Galerkin extension of the DSMC algorithm 2.1 in presence of uncer-
tainties f = f(z, v, t). Similarly to Section 2.1, in the case of Maxwell molecules B ≡ 1, the
collision operator can be rewritten as

Q(f, f)(z, v, t) = Q+(f, f)(z, v, t) − µf(z, v, t), (6)

where µ > 0 is a constant and we assumed
∫

Rdv f(z, v∗, t) dv∗ = 1, ∀ z ∈ Ω.
We consider a set of N samples vi(z, t), i = 1, . . . , N from the kinetic solution at time t and

approximate vi(z, t) by its generalized polynomial chaos (gPC) expansion

vMi (z, t) =

M∑

m=0

v̂i,m(t)Φm(z),

where {Φm(z)}Mm=0 are a set of orthogonal polynomials, of degree less or equal to M orthonormal
with respect to the PDF p(z)

∫

Ω
Φn(z)Φm(z)p(z) dz = E[Φm(·)Φn(·)] = δmn, m, n = 0, . . . ,M,

and v̂i,m is the projection of the solution with respect to Φm

v̂i,m(t) =

∫

Ω
vi(z, t)Φm(z)p(z) dz = E[vi(·, t)Φm(·)].

We underline that the generation of the set of stochastic samples vi(z, t) is a problem in it-
self different from the standard particle generation in DSMC methods. Although this aspect
is fundamental for the practical application of the method, to simplify the presentation, we
have postponed the details of the approach used in Appendix B.1. Similarly, the convergence
properties of the resulting gPC expansion of the samples are analyzed in Appendix B.2.

To define the DSMC-sG algorithm we consider the projection on the above space of the
collision process in the DSMC method. In the case of the uncertain Boltzmann collision term
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(6) we have

v′i(z, t) =
1

2
(vi(z, t) + vj(z, t)) +

1

2
|vi(z, t)− vj(z, t)|ω,

v′j(z, t) =
1

2
(vi(z, t) + vj(z, t))−

1

2
|vi(z, t)− vj(z, t)|ω.

Let us observe that
|v′i(z, t) − v′j(z, t)| = |vi(z, t) − vj(z, t)|, (7)

so that the modulus of the relative velocity is unchanged during collisions.
We first substitute the velocities by their gPC expansion

vMi
′
(z, t) =

1

2
(vMi (z, t) + vMj (z, t)) +

1

2
|vMi (z, t)− vMj (z, t)|ω,

vMi
′
(z, t) =

1

2
(vMi (z, t) + vMj (z, t)) − 1

2
|vMi (z, t)− vMj (z, t)|ω

and then project by integrating against Φm(z) p(z) on Ω to get for m = 0, . . . ,M

v̂′i,m(t) =
1

2
(v̂i,m(t) + v̂j,m(t)) +

1

2
V̂ m
ij ω, (8)

v̂′j,m(t) =
1

2
(v̂i,m(t) + v̂j,m(t))−

1

2
V̂ m
ij ω (9)

where

V̂ m
ij =

∫

Ω
|vMi (z, t) − vMj (z, t)|Φm(z) p(z) dz, (10)

for each m = 0, . . . ,M , are collision matrices consisting of N2 elements.
The sG extensions of the DSMC algorithms by Nanbu for Maxwell molecules is reported

below.

Algorithm 2.2 (DSMC-sG for Maxwell molecules).

1. Compute the initial gPC expansions {vM,0
i , i = 1, . . . , N},

from the initial density f0(v)

2. for n = 0 to ntot − 1
given {v̂m,n

i , i = 1, . . . , N, m = 0, . . . ,M}
◦ set Nc = Sround(µN∆t/2)
◦ select Nc pairs (i, j) uniformly among all possible pairs,

◦ Compute the collision matrices V̂ m
ij , m = 0, . . . ,M ,

for all Nc collision pairs using (10)
- perform the collision between i and j, and compute
v̂′i,m and v̂′j,m according to (8)-(9)

- set v̂n+1
i,m = v̂′i,m, v̂n+1

j,m = v̂′j,m
◦ set v̂n+1

i,m = v̂ni,m for all the particles that have not been selected

end for
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Remark 2.2.

• The DSMC-sG algorithms just described extends naturally to other DSMC methods, in-
cluding Bird’s method [3]. We omit the details for brevity.

• Note that, since i and j are selected at random for a total of Nc ≤ N/2 pairs, we do not
need all N2 elements in the collision matrix (10) to evaluate the collision process. For
fixed values of i and j we approximate the vector V̂ m

ij by Gauss quadrature

V̂ m
ij (t) ≈

H∑

h=0

wh|vMi (zh, t)− vMj (zh, t)|Φm(zh). (11)

The resulting scheme requires O(MH) operations to compute vMi (zh, t) and vMj (zh, t) for

all h’s and O(MH) operations to evaluate V̂ m
ij (t) for all m’s. Taking H = M the total

cost of a Monte Carlo collision at each time step is therefore O(M2), and the total cost of
a DSMC-sG time step is O(M2Nc).

3 DSMC-sG for hard spheres with uncertainties

The DSMC methods have to be modified when the scattering cross section is not constant. First
we describe the so called dummy collision technique [3, 30, 32] in the deterministic setting and
then we discuss how to extend the DSMC-sG methodology to this general case.

3.1 Classical DSMC method

To this aim let us first consider the deterministic case for variable hard spheres (VHS) molecules
where the collision kernel has the form

B(z, v, v∗, ω) = B(|v − v∗|), (12)

and satisfies a cut-off hypothesis, which is essential from a numerical point of view.
We will denote by QΣ(f, f) the collision operator obtained by replacing the kernel B with

the kernel BΣ

BΣ(|v − v∗|) = min {B(|v − v∗|),Σ} , Σ > 0.

Thus, for a fixed Σ, let us consider the homogeneous problem

∂f

∂t
= QΣ(f, f).

The operator QΣ(f, f) can be written in the form P (f, f)− µf taking

P (f, f) = Q+
Σ(f, f) + f(v)

∫

Rdv

∫

Sdv−1

[Σ−BΣ(|v − v∗|)]f(v∗) dω dv∗,
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with µ = 2dv−1πΣ and

Q+
Σ(f, f) =

∫

Rdv

∫

Sdv−1

BΣ(|v − v∗|)f(v′)f(v′∗) dω dv∗.

The generalization of the DSMC scheme is obtained by using the acceptance-rejection technique
to sample the post collisional velocity according to P (f, f)/µ.

Algorithm 3.1 (Nanbu-Babovski for VHS molecules).

1. Compute the initial velocities {v0i , i = 1, . . . , N},
by sampling them from the initial density f0(v)

2. for n = 0 to ntot − 1
given {vni , i = 1, . . . , N}

◦ compute an upper bound Σ of the cross section
◦ set µ = 2d−1πΣ and Nc = Sround(µN∆t/2)
◦ select Nc dummy collision pairs (i, j) uniformly
among all possible pairs, and for those
- compute the relative cross section Bij = B(|vi − vj |)
- if Σ ξ < Bij, ξ uniform in (0, 1)

perform the collision between i and j, and compute
v′i and v′j according to the collision law

set vn+1
i = v′i, v

n+1
j = v′j

◦ set vn+1
i = vni for all the particles that have not been selected

end for

The upper bound Σ should be chosen as small as possible, to avoid inefficient rejection, and
it should be computed fast. It is be too expensive to compute Σ as

Σ = Bmax ≡ max
ij

B(|vi − vj |),

since this computation would require an O(N2) operations. An upper bound of Bmax is obtained
by taking Σ = B(2∆v), where

∆v = max
i

|vi − v̄|, v̄ :=
1

N

∑

i

vi.

3.2 DSMC-sG for VHS molecules

The extension of the DSMC-sG algorithm to the VHS case is not straightforward due to the
acceptance-rejection process which in general depends on the random parameter z. In the sequel
we will consider

B(z, v, v∗, ω) = B(z, |v − v∗|), (13)
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and denote by QΣ(f, f) the collision operator obtained by replacing the kernel B with the kernel
BΣ

BΣ(z, |v − v∗|) = min {B(z, |v − v∗|),Σ} , Σ > 0.

Given a random number ξ uniform in (0, 1), we rewrite the acceptance-rejection collision process
in the equivalent form

v′i(z, t) = vi(z, t) −
1

2
Ψ(Σ ξ < Bij(z)) ((vi(z, t)− vj(z, t)) − |vi(z, t)− vj(z, t)|ω) ,

v′j(z, t) = vj(z, t) +
1

2
Ψ(Σ ξ < Bij(z)) ((vi(z, t) − vj(z, t)) − |vi(z, t) − vj(z, t)|ω) ,

(14)

where Ψ(·) is the indicator function and

Bij(z) = B(z, |vi(z, t) − vj(z, t)|).

Note that (7) still holds true. Thanks to the new formulation, we can perform the projection
on the space of modes in the gPC expansion to get for m = 0, . . . ,M

v̂′i,m(t) = v̂i,m(t)− 1

2
Ŵm

ij (ξ) +
1

2
V̂ m
ij (ξ)ω, (15)

v̂′j,m(t) = v̂j,m(t) +
1

2
Ŵm

ij (ξ)−
1

2
V̂ m
ij (ξ)ω, (16)

where now

Ŵm
ij (ξ) =

∫

Ω
Ψ(Σ ξ < Bij(z))

(
vMi (z, t) − vMj (z, t)

)
Φm(z)p(z) dz, (17)

V̂ m
ij (ξ) =

∫

Ω
Ψ(Σ ξ < Bij(z))|vMi (z, t)− vMj (z, t)|Φm(z)p(z) dz. (18)

The above quantities are computed at each collision for a given i, j and ξ. Using Gauss quadra-
ture we have

Ŵm
ij (ξ) ≈

H∑

h=0

whΨ(Σ ξ < BM
ij (zh))

(
vMi (zh, t)− vMj (zh, t)

)
Φm(zh)

V̂ m
ij (ξ) ≈

H∑

h=0

whΨ(Σ ξ < BM
ij (zh))|vMi (zh, t)− vMj (zh, t)|Φm(zh),

where
BM

ij (zh) = B(z, |vMi (z, t) − vMj (z, t)|). (19)

Note that, similarly to Remark 2.2, for given i, j and ξ the quantities Ŵm
ij (ξ) and V̂ m

ij (ξ) can
be computed at a cost O(MH).

We can summarize the DSMC-sG method for VHS molecules as follows.

Algorithm 3.2 (DSMC-sG for VHS molecules).
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1. Compute the initial gPC expansions {vM,0
i , i = 1, . . . , N},

from the initial density f0(v)

2. for n = 0 to ntot − 1
given {v̂ni,m, i = 1, . . . , N, m = 0, . . . ,M}

◦ compute an upper bound Σ of the cross section
◦ set µ = 2d−1πΣ and Nc = Sround(µN∆t/2)
◦ select Nc dummy collision pairs (i, j) uniformly
among all possible pairs and for those
- Select ξ uniformly in (0, 1)

- Compute the collision matrices Ŵm
ij (ξ), V̂

m
ij (ξ), i, j = 1, . . . , N ,

m = 0, . . . ,M , using (17)-(18).
- perform the dummy collision between i and j, computing
v̂′i,m and v̂′j,m according to (15)-(16)

- set v̂n+1
i,m = v̂′i, v̂

n+1
j,m = v̂′j,m

◦ set v̂n+1
i,m = v̂ni,m for all the particles that have not been selected

end for

In the reformulation of the acceptance-rejection algorithm we introduced the indicator func-
tion Ψ(·). Nevertheless, in the stochastic Galerkin framework we obtain spectral approximation
only for smooth functions. Therefore, the microscopic binary collision term (14) may deteriorate
the overall convergence of the DSMC-sG scheme. In order to overcome this problem one can
consider the following regularization

v′i(z, t) = vi(z, t) −
1

2
K(β(Σ ξ −Bij(z))) ((vi(z, t)− vj(z, t))− |vi(z, t)− vj(z, t)|ω) ,

v′j(z, t) = vj(z, t) +
1

2
K(β(Σ ξ −Bij(z))) ((vi(z, t)− vj(z, t)) − |vi(z, t) − vj(z, t)|ω) ,

(20)

where K(β(·)) is a sigmoid function dependent on the parameter β ≫ 0. These regularized
acceptance-rejection collision process (20), however, introduces a dissipation of the energy. To
overcome this issue and keep exact energy and momentum conservation one can couple (20)
with a thermalization process of the form

v′′i (z, t) = (v′i(z, t) − u(z))

√

T (z)

T ′(z)
+ u(z), v′′j (z, t) = (v′j(z, t)− u(z))

√

T (z)

T ′(z)
+ u(z), (21)

being u(z) the mean velocity and T (z), T ′(z) the pre-collision and post-collision temperatures.

Remark 3.1. The generalization of the above DSMC-sG algorithm for VHS to other Monte
Carlo methods is not straightforward as in the case of Maxwell molecules. In particular, in the
case of Bird’s algorithm we must deal with the additional difficulty of a local time step which
depends from z. Here we will not discuss further this aspect that will be the subject of future
investigations.
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4 Numerical tests

In this section we present several numerical tests for the novel DSMC-sG algorithms applied to
classical space homogeneous collisional kinetic equations of the type (1)-(2). In more details, we
first compare numerical and exact solutions of the Kac model and of the 2D model for Maxwellian
molecules with uncertainties. Next, we consider the case of hard spheres and compare the
performance of the scheme in several benchmark tests.

4.1 Test 1: Kac model
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(a) t = 0
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(d) t = 0 (e) t = 1 (f) t = 5

Figure 1: Test 1. Evolution of the exact and reconstructed expected solution (top row) and of
its variance (bottom row) of the Kac model (22) with random initial temperature (26) and α(z)
like in (25) with κ = 0.25. We considered N = 106 particles and M = 5 Galerkin modes whereas
the time discretization of [0, 5] with ∆t = 10−1. The density reconstruction in the velocity space
has been performed in the interval [−5, 5] with Nv = 100 gridpoints.

Let us consider first the Kac model

∂

∂t
f(z, v, t) =

1

2π

∫ 2π

0

∫

R

[
f(z, v′, t)f(z, v′∗, t)− f(z, v, t)f(z, v∗, t)

]
dv∗dω (22)

with binary interactions given by

v′(z) = v(z) cos ω − v∗(z) sinω

v′∗(z) = v(z) sinω + v∗(z) cos ω
(23)
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Figure 2: Test 1. Left: evaluation of momentum and temperature from expected exact solution
and the particle one. Right: evolution of the expected fourth order moment E[M4], see (27).
The moments are extrapolated from the evolution described in Figure 1.

and v, v∗ ∈ R, ω ∈ [0, 2π]. In the following, we will consider an uncertain initial temperature of
the system. Hence, we consider the uncertain initial distribution

f0(z, v) = α(z)
√

α(z)v2e−α(z)v2 , (24)

where in particular we chose

α(z) = 2 + κz, z ∼ U([−1, 1]). (25)

It can be verified that mass and energy are conserved whereas momentum is not in general since
it decays to zero. Anyway, since f0 in (24) is already centered the evolution of f(z, v, t) solution
of the Kac model conserves also the mean velocity defined at time t = 0 as m =

∫

R
vf0(z, v)dv.

Therefore, mass and momentum are not dependent on the introduced uncertainty whereas the
temperature reads

T (z) =
1

2

∫

R

v2f0(z, v)dv =
3
√
π

8α(z)
. (26)

Under the above assumptions we can analytically obtain the exact solution of such model as

f(z, v, t) = (A(z, t) +B(z, t)v2)e−s(z,t)v2 ,

where A(z, t), B(z, t), and s(z, t) are given in (38) and (39), see Appendix A.1 for further details.
In order to test the DSMC-sG scheme we compare the reconstructed expected density with the
quantity E[f(z, v, t)] which can be computed at each time step.

In Figure 1 we report the evolution of the expected exact solution E[f ] and of its recon-
struction through the introduced DSMC-sG methods. In details, at the computational level we
considered N = 106 particles for the DSMC algorithm and M = 5 for the stochastic Galerkin
projection. The projection of the samples from the initial distribution has been performed as

12



described in Appendix B. Furthermore, we considered α(z) as in (25) with κ = 0.25 and M = 5
Galerkin modes for each particle of the method. The evolution is reported with the kinetic den-
sity reconstructed by considering the histogram on a grid in [−5, 5] with Nv = 100 gridpoints
and ∆t = 10−1. We can clearly observe an excellent agreement in time of the DSMC-sG solution
with the expected density solution of the Kac model (22)-(23).

Next, we define the k-order moment of the distribution f(z, v, t) as

Mk(z, t) =

∫

R

vkf(z, v, t)dv, k ∈ N, (27)

whose approximation can be obtained at the particle gPC level as

MkM (t) ≈ 1

N

N∑

i=1

(vMi )k(z, t),

and thus, its expectation reads

E[Mk](t) ≈ 1

N

N∑

i=1

∫

Ω
(vMi )k(z, t)p(z)dz.

In Figure 2 we represent the evolution of the expected first, second and fourth order moments,
respectively E[M1], E[M2] and E[M4]. We plot their evolution obtained from the exact solution
of the model and its approximation through DSMC-sG scheme with N = 106 particles and
M = 5 degree polynomials for the stochastic Galerkin approximation. It can be easily observed
how the DSMC-sG method preserves exactly the conserved quantities and captures very well
the evolution of the fourth order moment.

Finally, in order to show the spectral convergence property of the scheme we consider a
reference DSMC-sG evolution of M4M (z, t) obtained with N = 106, ∆t = 0.1 and stochastic
Galerkin scheme up to order M = 25. Hence, if we store the collisional tree generating the
reference solution, we may check the L2 convergence of the DSMC-sG algorithm. In Figure 3
we present the decay of the L2 error for increasing M obtained from the initial distribution (24)
with α(z) like in (25), where κ = 0.25 and κ = 0.75. In details, the left figure we show the
error produced by the DSMC-sG algorithm at fixed time T = 5 whereas, in the right figure,
we show in the semilogarithmic scale the obtained error in the whole time interval [0, 5]. The
spectral accuracy of the DSMC-sG approach in the parameter space appears clearly from these
numerical results.

4.2 Test 2: 2D Maxwell model

We consider a 2D Boltzmann model (1)-(2) with B ≡ 1 and binary interactions (3) where

ω =

(
cos θ
sin θ

)

, θ = 2πξ, ξ ∼ U([0, 1]).

We consider an uncertain initial distribution v = (vx, vy) ∈ R
2

f0(z, v) =
α2(z)v2

π
e−α(z)v2

, v =
√

v2x + v2y , (28)
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Figure 3: Test 1. Left: L2 error in the evaluation of M4M with respect to a reference solution
at time T = 5. Right: evolution of the same error in the whole time interval [0, 5]. In both
cases we considered N = 106 and ∆t = 0.1 and the errors have been computed for two different
κ = 0.25 and κ = 0.75 in the definition of the initial distribution (24) .

so that f0 has the uncertain temperature

T (z) =
1

α(z)
. (29)

An exact solution is given by (see Appendix A.2)

f(z, v, t) =
1

2πs(z, t)

[

1− 1− α(z)s(z, t)

α(z)s(z, t)

(

1− v2

2s(z, t)

)]

e
− v

2

2s(z,t) , (30)

where s(z, t) =
2− e−t/8

2α(z)
. We will consider α(z) = 2 + κz, with z ∼ U([−1, 1]).

The projection of the initial samples from the initial 2D distribution has been performed as
described in Algorithm B.1.

In Figure 4 and 5 we report the contour plots of the expected solution and its variance at
the initial time t = 0 and at time t = 5. In details, we compare the evolution of E[f ](v, t) and
Var(f)(v, t) computed through the exact solution (30) and the DSMC-sG algorithm. A initial
set of N = 106 particles distributed like f0(z, t) in (28) has been considered with a number of
Galerkin projections M = 5. In particular, for the reconstruction step we used a cartesian mesh
in [−L,L]2, L = 5, composed by Nv × Nv = 1002 gridpoints. We observe again a very good
agreement between the DSMC-sG algorithm and the exact solution of the kinetic model.

Furthermore, to emphasize the good agreement of the computed approximation for all times,
we depict in Figure 6 the evolution at times t = 0, 1, 5 of the marginal of E[f ] and Var(f).

Finally, in Figure 7 we present spectral convergence of the scheme computed through the
fourth order moment of the 2D model with α(z) = 2 + κz, κ = 0.25 and κ = 0.75 with
z ∼ U([−1, 1]). As reference solution we considered M4 at time T = 5 obtained with N = 106

14



(a) E(f) Exact, t = 0 (b) E(f) DSMC-sG, t = 0

(c) E(f) Exact, t = 5 (d) E(f) DSMC-sG, t = 5

Figure 4: Test 2. Expected distribution of the 2D Boltzmann model for Maxwell molecules
with uncertain temperature 1/α(z) and α(z) = 2+κz, z ∼ U([−1, 1]) and κ = 0.25. Left figure:
expectation taken from the exact solution of the problem (30). Right figure: reconstructed
expectation through DSMC-sG method. We considered a set of N = 106 particles with M = 5
gPC expansion and ∆t = 10−1.
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(a) Var(f) Exact, t = 0 (b) Var(f) DSMC-sG, t = 0

(c) Var(f) Exact, t = 5 (d) Var(f) DSMC-sG, t = 5

Figure 5: Test 2: Variance of the solution of the 2D Boltzmann model for Maxwell molecules
with uncertain temperature 1/α(z) and α(z) = 2+κz, z ∼ U([−1, 1]) and κ = 0.25. Left figure:
variance of the exact solution of the problem (30). Right figure: reconstructed variance through
DSMC-sG method. The rest of the parameters are the same as in Figure 4.
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(a) t = 0 (b) t = 1 (c) t = 5

(d) t = 0 (e) t = 1 (f) t = 5

Figure 6: Test 2. Evolution at times t = 0, 1, 5 of the marginal E[f ] and Var(f) from exact
solution (30) and DSMC-sG approximation of the 2D Boltzmann model for Maxwell molecules
with uncertain temperature. We considered N = 106 particles with M = 5 Galerkin projections
and ∆t = 10−1. The reconstruction step has been performed in [−5, 5]2 through 1002 gridpoints.

particles and M = 25 Galerkin projections and the evolution is computed with ∆t = 10−1.
In the right plot we present the decay of the L2(Ω) error for increasing M = 0, . . . , 14 in
semilogarithmic scale. In the left plot we represent also the whole evolution of M4 computed
through exact solution and through its DSMC-sG approximation. Similarly to the Kac model,
we obtain numerical evidence of spectral convergence.

4.3 Test 3: VHS molecules

We consider a 2D Boltzmann model with non-Maxwellian kernel of the form

B(z, |v(z) − v∗(z)|) = bγ(ω)|v(z) − v∗(z)|γ ,

where γ = (k−5)/(k−1). In particular we concentrate on the VHS model [3] where bγ(θ) = Cγ

and Cγ is a positive constant. The case γ = 0 refers to the model for Maxwellian molecules
whereas γ = 1 describes a hard sphere gas. Let us consider an uncertain initial distribution
function which is a sum of two Gaussian distributions with uncertain variance

f(z, v, 0) =
1

2πσ2(z)

[

e
−|v−2σ(z)e1|

2

2σ2(z) + e
−|v+2σ(z)e1|

2

2σ2(z)

]

, (31)
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Figure 7: Test 2. Left: Convergence of the L2(Ω) error with respect to the fourth order
moment obtained from a reference solution computed with N = 106 particles and M = 25 from
the DSMC-sG methods. Right: evolution of the fourth order moment in the interval [0, 5] for
exact and DSMC-sG approximation with N = 106 and M = 5.

where e1 = (1, 0). This distribution can be employed to check the evolution of the components
of the stress tensor defined as

Pij(z, t) =

∫

R2

(vi − ui)(vj − uj)f(z, v, t)dv, i, j = 1, 2, (32)

where ui are the components of the mean velocity. For Maxwellian molecules, i.e. α = 0, we
can derive exact evolution of the components of the stress tensor

P11(z, t) = T (z) +
1

2
w(t), P22(z, t) = T (z)− 1

2
w(t), (33)

being
T (z) = σ2(z), (34)

the temperature and w(t) = w0e
−t/2 and w0 = 4π, see [6, 31]. In the following tests we will

consider

σ(z) =
λπ

6
(1 + κz) , z ∼ U([−1, 1]), (35)

with λ = 2
3+

√
2
. In Figure 8 we compute the evolution of the components of the expected stress

tensor in the case γ = 0 and for the values κ = 0.1, and κ = 0.5. The evolution obtained with
DSMC-sG method, with N = 106 particles and Galerkin projections of order M = 5, is then
compared with the exact one. The expected values are accurately approximated by the scheme.
Furthermore, we computed Var(P11)(t) and Var(P22)(t) to build the variability area highlighted
in grey in Figure 8 through the standard deviations from the expected stress tensor.

The evolution of the expected stress tensor for γ = 0, 1, 2 is shown in Figure 9. In agreement
with the deterministic case, see [31] we may observe how the decay of E[P11] is stronger for
γ > 0 than the Maxwellian case, corresponding to γ = 0. This behavior is emphasized in
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(a) κ = 0.1 (b) κ = 0.1

(c) κ = 0.5 (d) κ = 0.5

Figure 8: Test 3. Evolution of the expected P11(z, t) from initial density (31) in the case γ = 0
and C0 = 1/2π and two level of initial uncertainty κ = 0.1 and κ = 0.5 in (35). We compare
the exact evolution (33) with the one obtained from DSMC-sG scheme for VHS molecules with
γ = 0 with N = 106 particles with M = 5 Galerkin projections. In grey we highlighted the
displacement obtained through standard deviations
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Figure 9: Test 3. Evolution of the expected stress tensor E[P11] for γ = 0, 1, 2 obtained from
DSMC-sG scheme with N = 106 and M = 5, ∆t = 10−1. In the right picture we present the
evolution in the interval [0, 1] in semilogarithmic scale to highlight the different expected trends
in hard sphere gases.

semilogarithmic scale in the left picture of Figure 9. Each dynamics is obtained through DSMC-
sG scheme with N = 106 particles and M = 5 Galerkin projections of the binary collisions.

In the reformulation (20)-(21) of the binary collision term for hard gases in Section 3.2, in
order to recover spectral accuracy, we proposed to replace the discontinuous function present
in the original dynamics (14) with a smooth sigmoid function K(β(·)) coupled with a post-
interaction thermalization process. The function needs to be an approximation of the indicator
function Ψ(·) and has been introduced in order to preserve the smoothness of projected quantities
required in a stochastic Galerkin approach. Let us consider the sigmoid function

K(β(x− y)) =
tanh(β(x− y)) + 1

2
, β > 0.

In Figure 10 we compute the L2 error of the stochastic Galerkin methods for increasing number
of projections with respect to the approximated stress tensor PM

11 . A reference solution com-
puted with M = 50 and N = 106 particles is considered from the initial distribution (31) with
temperature (34) and κ = 0.1. If we consider the original binary dynamics (14), even if the
expectation of P11(z, t) is well described, it can be seen that spectral accuracy of the method
is lost due to the discontinuity of function Ψ. On the other hand, the same test performed for
the modified binary dynamics (20) without thermalization (see Figure 10, left) recovers spec-
tral accuracy but at the price of a dissipative dynamics since the regularized interaction is no
more conservative for the energy. For increasing β ≫ 0, as expected, the convergence of the
scheme deteriorates even if energy dissipation vanish and the expectation of P11(z, t) is well ap-
proximated. Coupling now, (20) with the thermalization process (21) (see Figure 10, right) we
recover an accurate evolution of P11(z, t) together with the spectral convergence of the scheme
for moderate values of β > 0, which, as expected, deteriorates for β ≫ 0.
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Figure 10: Test 3. Convergence of the L2 error of the DSMC-sG scheme for the VHS model with
γ = 1 where the binary dynamics are given by (14) (left column) or (20)-(21) (right column).
The error is computed from PM

11 (z, t) at time t = 1, ∆t = 10−1, with N = 106 particles.
Reference solution computed with M = 50.
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Figure 11: Test 4. Evolution of the expected stress tensors P11(z1, z2, t) and P22(z1, z2, t) from
the initial density (31) in the case σ(z1) = λπ

6 (1 + κ1z1), and uncertain interaction kernel of
the form (36) characterized by γ(z2) = κ2(1 + z2). We compare the univariate Maxwellian case
corresponding to the choice κ2 = 0 with the bivariate case where κ2 = 1. In both tests κ1 = 0.5
and z1, z2 ∼ U([−1, 1]) are two independent random variables.

4.4 Test 4: VHS molecules with bivariate uncertainty

In the last test we consider a 2D Boltzmann VHS model with bivariate uncertainty z = (z1, z2)
with independent components and with the same distribution p(z). In details, we consider an
uncertain initial distribution function of the form (31) with σ(z1) = λπ

6 (1 + κ1z1), κ1 > 0.
Furthermore, we consider an uncertain interaction kernel of the form

B(z2, |v(z1, z2)− v∗(z1, z2)|) = C0|v(z1, z2)− v∗(z1, z2)|γ(z2), (36)

with C0 = 1/2π. In this test we will consider z1, z2 ∼ U([−1, 1]), and γ(z2) = κ2(1+ z2), κ2 > 0.
These choices are coherent with the case where both the initial temperature of the gas and the
nature of the molecules are affected by uncertainty. In particular, we consider a collision kernel
of the form (36) characterizing gases with collisions that may span from Maxwellian to hard
potentials.

In Figure 11 we report the evolution of the expected values of the diagonal components of the
stress tensor E[P11], E[P22] and of their variance in the bivariate case with κ1 = 0.5, κ2 = 1 and
in the univariate case obtained with κ1 = 0.5, κ2 = 0. The univariate setting is here conformal
with the Maxwellian case studied in Section 4.3. It can be observed that the uncertainty on the
collision kernel determines a faster trend to equilibrium in the resulting variable hard sphere gas
than in the univariate Maxwellian case corresponding to κ2 = 0. The dynamics are obtained
through DSMC-sG scheme with N = 105 particles and M = 5 Galerkin projections of the binary
collisions.
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5 Conclusions

We introduced a novel hybrid approach for uncertainty quantification in collisional kinetic equa-
tions of Boltzmann type. The method combines an efficient DSMC solver in the physical space
with a stochastic Galerkin method in the random space. This coupling, however, is non trivial
since it amounts on a generalized Polynomial Chaos expansion of the statistical samples and
on the Galerkin projection of the corresponding DSMC solver. In particular, in the variable
hard sphere case, this requires a suitable reformulation of the classical DSMC method. Several
numerical examples for space homogeneous problems confirm the efficiency and the accuracy of
the resulting solver. We emphasize that the methodology here presented is fully general and
can be extended to other Boltzmann-type equations outside the classical rarefied gas dynam-
ics setting. Extension of DSMC-sG methods to semiconductor Boltzmann equations, to the
Landau-Fokker-Planck equation of plasma physics and applications to space non homogenous
situations are under study and will be presented in forthcoming researches.
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A Exact solutions of Maxwell-type kinetic equations with un-

certainty

In the following we sketch the general methodology to recover the well-known exact solutions of
Maxwell-type models [4, 16,27] in the presence of uncertain parameters.

A.1 Kac equation with uncertainty

In Section 4.1 we considered the Kac model with uncertain initial temperature. Let us compute
the first moments of the initial density f0 given in (24) such that

i)
∫

R
f0(z, v)dv =

√
π

2

ii)
∫

R
vf0(z, v)dv = 0

iii)
∫

R
v2f0(z, v)dv =

3
√
π

4α(z)
.

It is easily seen that the total mass of the system is conserved in time whereas the momentum
is not conserved for a general initial distribution, indeed it decays to zero with a rate depending
on the distribution of the uncertainty, see [37]. Thanks to the choice (24) we may verify that
the initial momentum is conserved in time.
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In order to find explicit solution of the Kac model with uncertainty we can argue as in
[4, 16,27] and proceed as follows: we consider the class of solutions given by

f(z, v, t) = (A(z, t) +B(z, t)v2)e−s(z,t)v2 , (37)

where A(z, t), B(z, t) satisfy the following system by imposing conservation of mass and energy






√
πα3/2(z)s−1/2(z, t)A(z, t) +

√
π

2
α3/2(z)s−3/2(z, t)B(z, t) =

π

2√
π

2
α3/2(z)s−3/2(z, t)A(z, t) +

3
√
π

4
s−5/2(z, t)B(z, t) =

3
√
π

4α(z)
,

whose solution is given by






A(z, t) =
3

4

√

s(z, t)
(
α−3/2(z)− α−5/2(z)s(z, t)

)

B(z, t) =
s3/2(z, t)

2

(
3α−5/2(z)s(z, t) − α−3/2(z)

)
.

(38)

Therefore, it is sufficient to find exact evolution for s(z, t) to describe the solution of the Kac
model. To this end, we substitute the general solution (37) in the collisional equation (22). We
have

∂tf(z, v, t) = Ȧe−sv2 + (−Aṡ+ Ḃ)v2e−sv2 −Bṡv4e−sv2

Q(f, f)(z, v, t) =

∫

R

[e−s(v2+v2∗)

2π

∫ 2π

0
(A+B(v cosω − v∗ sinω)

2)(A+B(v sinω + v∗ cosω)
2)dω

− (A+Bv2)(A+Bv2)e−s(v2+v2∗)
]

dv∗,

where for brevity we omitted explicit dependence on z and time. We may explicitly compute
the integrals of the collision operator Q(f, f) to obtain

Q(f, f)(z, v, t) =
3
√
πB2

32s2
√
s
e−sv2 +

(√
πAB√
s

− 3
√
π

8

B2

s
√
s

)

v2e−sv2 +

√
πB2

8
√
s

v4e−sv2 .

Equating now the terms in v2n, n = 0, 1, 2 we reduce to solve






Ȧ =
3
√
πB2

32s2
√
s

−Aṡ+ Ḃ =

√
πAB√
s

− 3
√
π

8

B2

s
√
s

Bṡ = −
√
πB2

8
√
s

.

By exploiting the relations established in (38) we may observe that the derived conditions are
all equivalent to the following differential equation depending on the uncertain parameter z that
determines the evolution of s(z, t). We have

ṡ(z, t) = −
√
π

16α2(z)
√

α(z)
(3s2(z, t)− α(z)s(z, t))

s(z, 0) = α(z),
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whose solution is

s(z, t) =
α(z)e

1
16α(z)

√

π
α(z)

t

−2 + 3e
1

16α(z)

√

π
α(z)

t
. (39)

Therefore, plugging (39) in the definition of A(z, t), B(z, t) in (38) we get (37), which is the
exact solution of the Kac model depending on the uncertain quantity z.

A.2 2D Maxwell models with uncertainty

In Section 4.2 we considered the 2D Boltzmann model for Maxwell molecules, i.e. B ≡ 1. In
order to argue as in [4, 16, 27] we can proceed as in Section A.1: let us consider the following
initial distribution with uncertain temperature

f0(z, v) =
α2(z)v2

π
e−α(z)v2

, v =
√

v2x + v2y .

We compute the first moments of f0 to obtain

i)
∫

R2 f0(z, v)dvx dvy = 1

ii)
∫

R2 vf0(z, v)dvx dvy = 0

iii)
1

2

∫

R2 v
2f0(z, v)dvx dvy =

1

α(z)
.

Hence, we consider the class of solutions given by

f(z, v, t) = (A(z, t) +B(z, t)v2)e−v
2/2s(z,t),

and we impose the conservation of mass and energy to obtain
{

2πs(z, t)(A(z, t) + 2B(z, t)s(z, t)) = 1,

2α(z)πs2(z, t)(A(z, t) + 4B(z, t)s(z, t)) = 1.

Analogous computations as in Section A.1 yield

f(z, v, t) =
1

2πs(z, t)

[

1− 1− s(z, t)

s(z, t)

(

1− v2

2s(z, t)

)]

e−v
2/2s(z,t),

where the evolution of s(z, t) is given by

s(z, t) =
1

α(z)

(

1− 1

2
e−t/8

)

.

B Stochastic Galerkin representation of random samples and

consistency of DSMC-sG approximation

In this appendix we describe how to construct a set of random samples and their gPC projection.
Next we derive a consistency estimate for the moments of the resulting empirical density in the
DSMC-sG approximation.
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B.1 Stochastic Galerkin representation of random samples

Given the initial distribution f0(z, v) we need to construct a random sample ṽ(z) = {vi(z)}i=1,...,N

such that for all z ∈ Ω the empirical density

fN
0 (z, v) =

1

N

N∑

i=1

δ(v − vi(z)),

is such that, formally, fN
0 (z, v) → f0(z, v) for N → +∞. For each z standard random sampling

techniques can be employed like direct sampling or acceptance-rejection algorithms, see [32] and
the references therein for an introduction. A direct application of these methods, however, is not
straightforward in the case the samples will be projected using a gPC expansion with respect to
the random quantity.

In the sequel we clarify how we perform projections in the polynomial space PM of a sample.
Therefore, we need to determine vMi (z) such that

fN
0 (z, v) ≈ 1

N

N∑

i=1

δ(v − vMi (z)), vMi (z) =
M∑

k=0

v̂i,kΦk(z).

The problem can be formulated as follows: given an initial density f0(z, v) and the distri-
bution of the uncertain quantities p(z), starting from the Gauss collocation nodes z0, . . . , zH ,
H ∈ N (chosen following the Wiener-Askey scheme, see [39]), we want to obtain the set of
samples

V 0 = {v1(z0), . . . , vN (z0)}T ,
...

V H = {v1(zH), . . . , vN (zH)}T .

(40)

Then, the projection on the k-th degree term can be obtained by direct integration

v̂i,k =

∫

IZ

vi(z)Φk(z)p(z)dz ≈
H∑

h=0

whvi(zh)Φk(zh).

Note that, the above samples (40) have to be correlated, namely vi(zh), h = 1, . . . ,H should
represent the same sample vi(·) for the various values zh. At the numerical level, in 1D it
is possible to overcome this issue by considering a set of uncorrelated groups of samples V h,
h = 1, . . . ,H which have been ordered for a given h through a simple sorting process in velocity.
This approach, however, cannot be extended directly to higher dimensions in velocity space. In
this latter case, there are various possible techniques that can be adopted, accordingly to the
particular sampling strategy.

If we consider the multidimensional cases treated in Section 4 where the uncertainties are
affecting the temperature of the system defined explicitly in (29) and (34), an effective strategy
is to exploit the classical scaling property of continuous distributions in terms of the second
order moment. This is described in the following algorithm:
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Algorithm B.1 (sG projection of initial random sample).

1. Generate a set of Gaussian nodes (z0, . . . , zH) according to the distribution p(z).

2. for i = 1 to N
Generate a sample vi(z0) using a suitable sampling method
from the initial density f0(z0, v)

Compute vi(zh) =
√

T (zh)vi(z0), h = 1, . . . ,H
end for

3. for m = 0 to M
compute projections on m-th degree linear space {v̂i,m}

end for

B.2 Consistency estimate

The spectral convergence of sG expansion of the samples (see also Section 2.2) for sufficiently
regular functions in the random space follows form standard results in polynomial approximation
theory, we recall for example [17,39]. In particular, let Hr(Ω) be a weighted Sobolev space

Hr(Ω) =

{

v : Ω → R :
∂kv

∂zk
∈ L2(Ω), 0 ≤ k ≤ r

}

.

Thanks to the introduced properties of the polynomial basis of the random space we have

Lemma B.1. For any v(z) ∈ Hr(Ω), r ≥ 0, there exists a constant C independent of M > 0
such that

‖v − vM‖L2(Ω) ≤
C

M r
‖v‖Hr(Ω),

Starting from the above spectral estimate, we want to obtain an overall estimate for the
moments of the particle distribution computed using the Monte Carlo approach.

Given a function f(z, v, t), we define the expected value of f with respect to p(z) as

E[f ] =

∫

Ω
f(z, v, t)p(z)dz,

its empirical measure and the empirical measure in the sG representation as

fN (z, v, t) =
1

N

N∑

j=1

δ(v − vi(z, t)), fN
M (z, v, t) =

1

N

N∑

j=1

δ(v − vMi (z, t)). (41)

Observe that, for any a test function ϕ, if we denote by

〈ϕ, f〉(z, t) :=
∫

Rd

f(z, v, t)ϕ(v) dv,
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we have

〈ϕ, fN 〉(z, t) = 1

N

N∑

j=1

ϕ(vi(z, t)), 〈ϕ, fN
M 〉(z, t) = 1

N

N∑

j=1

ϕ(vMi (z, t)).

Note that, if we assume that
∫

Rd f(z, v, t) dz = 1, then 〈ϕ, f〉(z, t) denotes the expectation of ϕ
with respect to f . Therefore, from the central limit theorem we have [7]

Lemma B.2. The root mean square error satisfies

EV

[(
〈ϕ, f〉(z, t) − 〈ϕ, fN 〉(z, t)

)2
]1/2

=
σϕ(z, t)

N1/2

where

σ2
ϕ(z, t) =

∫

Rd

(ϕ(v) − 〈ϕ, f〉(z, t))2 f(z, v, t) dv.

In the above lemma we used the notation EV to denote the expectation in the velocity
space with respect to f . More precisely, for each z ∈ Ω, 〈ϕ, fN 〉(z, t) is considered as the sum
of N random variables ϕ(v1(z, t)), . . . , ϕ(vN (z, t)) with v1(z, t), . . . , vN (z, t) independent and
identically distributed as f(z, v, t).

Next, for a random variable V (z, t) taking values in L2(Ω) we define

‖V ‖L2(Ω;L2(Rdv )) = ‖EV [V
2]1/2‖L2(Ω),

or equivalentely

‖V ‖L2(Rdv ;L2(Ω)) = EV

[

‖V ‖2L2(Ω)

]1/2
.

We have the following result:

Theorem B.1. Let f(z, v, t) a probability density function in v at time t ≥ 0 and fN
M (z, v, t)

the empirical measure of the N -particles sG approximation with M projections associated to
the samples {v1(z, t), . . . , vN (z, t)} defined in (41). Provided that vi(z, t) ∈ Hr(Ω) for all i =
1, . . . , N , the following estimate holds

‖〈ϕ, f〉 − 〈ϕ, fN
M 〉‖L2(Rdv ;L2(Ω)) ≤

‖σϕ‖L2(Ω)

N1/2
+

C

M r

(

1

N

N∑

i=1

‖∇ϕ(ξi)‖L2(Ω)

)

, (42)

where ϕ is a test function, C is a positive constant independent on M , ξi = (1 − θ)vi + θvMi ,
θ ∈ (0, 1).

Proof. Thanks to the properties of the norm we have

‖〈ϕ, f〉 − 〈ϕ, fN
M 〉‖L2(Rdv ;L2(Ω))

≤ ‖〈ϕ, f〉 − 〈ϕ, fN 〉‖L2(Rdv ;L2(Ω))
︸ ︷︷ ︸

I

+ ‖〈ϕ, fN 〉 − 〈ϕ, fN
M 〉‖L2(Rdv ;L2(Ω))

︸ ︷︷ ︸

II

.
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The first term can be easily estimated using Lemma B.2 to get

I =
‖σϕ(z)‖L2(Ω)

N1/2
.

Let us consider now the second term

II =

∥
∥
∥
∥
∥

1

N

N∑

i=1

(ϕ(vi)− ϕ(vMi ))

∥
∥
∥
∥
∥
L2(Rdv ;L2(Ω))

≤ 1

N

N∑

i=1

‖ϕ(vi)− ϕ(vMi )‖L2(Rdv ;L2(Ω)).

From the mean value theorem ϕ(vi) − ϕ(vMi ) = ∇ϕ(ξi) · (vi − vMi ) for ξi = (1 − θ)vi + θvMi ,
θ ∈ (0, 1). Therefore we have

II ≤ 1

N

N∑

i=1

‖∇ϕ(ξi)‖L2(Ω)‖vi − vMi ‖L2(Ω),

and using Lemma B.1, for C = maxiCi‖vi‖Hr(Ω), we obtain

II ≤ C

M r

(

1

N

N∑

i=1

‖∇ϕ(ξi)‖L2(Ω)

)

.
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