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SUMMARY

Renal cell carcinoma (RCC) is not a single disease, but several histologically defined cancers with 

different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 

843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary 

RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC 

subtypes reveals distinctive features of each subtype that provide the foundation for the 

development of subtype-specific therapeutic and management strategies for patients affected with 

these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways 

correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA 

hypermethylation, and increases in the immune-related Th2 gene expression signature correlated 

with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an 

increased immune signature, and a uniform and distinct metabolic expression pattern identified a 

subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival.

Graphical abstract

In Brief Ricketts et al. find distinctive features of each RCC subtype, providing the foundation for 

development of subtypespecific therapeutic and management strategies. Somatic alteration of 

BAP1, PBRM1, and metabolic pathways correlates with subtype-specific decreased survival, 

while CDKN2A alteration, DNA hypermethylation, and Th2 immune signature correlate with 

decreased survival within all subtypes.

INTRODUCTION

Renal cell carcinoma (RCC) affects nearly 300,000 individuals worldwide annually and is 

responsible for more than 100,000 deaths each year. Our understanding of RCC has evolved 

over the past 40 years, from considering RCC as a single entity to our current understanding 

that RCC is made up of many different subtypes of renal cancer, each with different 

histology, distinctive genetic and molecular alterations, different clinical courses, and 
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different responses to therapy (Linehan, 2012; Linehan et al., 2010; Moch et al., 2016). The 

canonical classification of RCC consists of three major histologic RCC subtypes (Hsieh et 

al., 2017; Linehan et al., 2006; Moch et al., 2016). Clear cell renal cell carcinoma (ccRCC) 

is the most common subtype (~75%); papillary renal cell carcinoma (PRCC) accounts for 

15%–20% and is subdivided into types 1 and 2; and chromophobe renal cell carcinoma 

(ChRCC) represents ~5% of RCC.

The Cancer Genome Atlas (TCGA) Research Network has conducted a series of 

comprehensive molecular characterizations in distinctive histologic types of cancers 

including ccRCC, ChRCC, and PRCC (Cancer Genome Atlas Research Network, 2013; 

Cancer Genome Atlas Research Network et al., 2016; Davis et al., 2014). These studies 

revealed a remodeling of cellular metabolism in ccRCC involving downregulation of Krebs 

cycle genes, upregulation of pentose phosphate pathway genes, and decreased AMPK in 

higher-stage, high-grade, and low-survival disease. A distinct PRCC subtype was identified 

that was characterized by a CpG island methylator phenotype (CIMP-RCC) and associated 

with early-onset disease, poor survival, and germline or somatic mutation of the fumarate 

hydratase (FH) gene, and a subset of ChRCC with genomic rearrangements within the TERT 
promoter region was identified that correlated with highly elevated TERT expression and 

manifestation of kataegis, uncovering a distinct mechanism of TERT upregulation in cancer. 

A previous study by Chen et al. (2016) compared all available kidney tumor samples 

available within TCGA irrelevant of histologic type using cluster analysis of the multi-

platform genetic and genomic data to show that the majority of the histologic subtypes could 

be reconstituted. In addition, this study identified samples that fell outside of the major 

subtypes and identified several mutation, methylation, and immune expression profiles that 

correlated with histologic subtypes within the complete TCGA kidney cohort.

The importance of histology cannot be understated in the study of RCC. To highlight the 

most meaningful somatic alterations in the entire cohort and within each major histologic 

subtype, we performed an integrated comparative genomic analysis of all available 

histologically confirmed TCGA samples of ccRCC, PRCC, and ChRCC to identify shared 

and subtype-specific molecular features that will provide the foundation for the development 

of disease-specific therapeutic approaches and prognostic biomarkers for RCC.

RESULTS

Evaluation of RCC Histologic Subtypes

In total, 894 samples of kidney cancer were initially submitted to TCGA and were available 

for analysis, including 537 ccRCC, 291 PRCC, and 66 ChRCC. The initial TCGA analyses 

of each RCC subtype had excluded several samples due to inconsistent/incorrect histologic 

classification or therapy prior to sample collection. This included the removal of a small 

number of samples, such as transitional cell carcinomas, that are kidney cancers that are not 

classified as RCCs. Additional samples not utilized in previous studies were also re-

evaluated by histologic review and removed if considered inappropriate and 15 samples 

originally submitted as ccRCC were reclassified as ChRCC. This resulted in a final cohort of 

843 TCGA-RCC consisting of 488 ccRCC, 274 PRCC, and 81 ChRCC. The 274 PRCC 

were further divided into four subgroups consisting of 160 type 1 PRCC, 70 type 2 PRCC, 
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34 unclassified PRCC, and 10 CpG island methylator phenotype-associated (CIMP)-RCC 

(Table S1).

Comparison of Major RCC Histologic Subtypes

Initial comparison of these RCC was performed using chromosomal copy number profiles, 

mRNA, miRNA, and lncRNA expression profiles and visualized in a heatmap with the 

RCCs ordered by histologic subtype, then stage, then vital status (Figure 1A). Clear cell 

RCC demonstrated significant loss of chromosome 3p and gain of 5q, type 1 PRCC 

demonstrated gains of chromosomes 7 and 17, and ChRCC demonstrated a pattern of 

chromosomal losses that included 1, 2, 6, 10, 13, and 17 (Figure 1B). These data confirmed 

previous observations concerning the copy number patterns within the different RCC 

histologic subtypes, and somatically gained alterations in chromosomal copy number 

patterns provide the clearest distinction between subtypes. While specific patterns of copy 

number alteration were not observed in the CIMP-RCC or the type 2 PRCC, both 

demonstrated an increased loss of chromosome 22 that encodes NF2 from the HIPPO 

pathway and SMARCB1, a fundamental component of the SWI/SNF complex, and the 

CIMP-RCC had loss of chromosome 13q at a similar rate to ChRCC (60% versus 61.3%) 

that encodes RB1 and BRCA2 (Figure 1B). Analysis of RNA expression across the 

combined cohort demonstrated distinct mRNA, miRNA, and lncRNA clusters that 

associated with each histologic RCC type. Two mRNA, three miRNA, and five lncRNA 

clusters were enriched in ccRCC, while two mRNA, two miRNA, and two lncRNA clusters 

represented the majority of the PRCC (Figures S1A–S1C). The ChRCC samples 

demonstrated a distinct uniformity by being present in a single cluster for each RNA type, 

while the CIMP-RCC had a distinct mRNA cluster and shared a lncRNA cluster with the 

ChRCC.

Survival Differences across the Major RCC Histologic Subtypes

The variation between the RCC histologic subtypes extended to survival outcomes (Figure 

1C). Previously, CIMP-RCC was found to have the poorest PRCC survival but now 

demonstrated the worst survival of all RCC subtypes, including ccRCC (p < 0.0001). Clear 

cell RCC demonstrated the next poorest survival when compared to all other RCC subtypes, 

while type 1 PRCC and ChRCC associated with the best survival that was statistically 

indistinguishable (p = 0.9138). These histologic-specific differences in survival and the 

uneven representation of each histologic subtype within the cohort produces a potential 

confounding factor for survival associations evaluated across the entire cohort. With clear 

distinctions between the histologic subtypes established, survival associations within 

histologic subtypes are likely to be more relevant than those across the entire cohort.

Gene and Pathway Alteration Associates with Survival in Specific RCC Subtypes

Previous analyses of each histologic RCC subtype had identified a combined total of 16 

significantly mutated genes (SMGs) including 9 associated with ccRCC, 11 associated with 

PRCC, and 2 associated with ChRCC (Figure S2A; Cancer Genome Atlas Research 

Network, 2013; Cancer Genome Atlas Research Network et al., 2016; Davis et al., 2014). 

Analysis across RCC types revealed that TP53 and PTEN were the only SMGs shared by 

ccRCC, PRCC, and ChRCC (2.6% and 4.5%, 1.5% and 3.4%, and 31.1% and 8.1%, 
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respectively). Across the entire cohort, neither TP53 nor PTEN correlated with poor 

survival, but histologic-specific analysis demonstrated that TP53 mutation correlated with 

decreased survival in ccRCC (p = 0.0002) and PRCC (p = 0.0049), while PTEN mutation 

correlated with decreased survival in ChRCC (p = 0.0138) (Figures 2A and S2B). Clear cell 

RCC and PRCC, but not ChRCC, shared three chromatin remodeling SMGs: PBRM1 
(38.0% and 4.5%, respectively), SETD2 (13.2% and 6.4%, respectively), and BAP1 (11.0% 

and 5.6%, respectively). While BAP1 mutation correlated with decreased survival across the 

entire cohort (p = 0.0002) and within the ccRCC group (p = 0.0035), BAP1 mutation did not 

correlate with survival in PRCC or ChRCC. Similarly, PBRM1 mutation, which has been 

shown to not correlate with survival in ccRCC, was found to correlate with decreased 

survival in PRCC (p = 0.0008) that was specific to type 1 PRCC (p < 0.0001) (Figures 2A 

and S2B). CDKN2A mutation, hypermethylation, or deletion was found in 15.8% of tumors, 

with alterations in each RCC subtype accounting for 16.2% of ccRCC, 5.0% of type 1 

PRCC, 18.6% of type 2 PRCC, 100% of CIMP-PRCC, and 19.8% of ChRCC (Figure 2B). 

Loss of the region of chromosome 9p encoding CDKN2A was the most frequent event 

across the cohort (11.7%), followed by promoter hypermethylation (4.2%) and mutation 

(0.7%) (Table S1). CDKN2A alteration provided the sole example of a change that 

correlated with decreased survival across the entire cohort (p < 0.0001) and in each major 

histologic subtype, ccRCC (p < 0.0001), type 1 PRCC (p = 0.0067), type 2 PRCC (p = 

0.0006), and ChRCC (p = 0.0018) (Figure 2C).

Eight SMGs were frequently mutated (≥ 2.0%) in more than one RCC subtype. Mutation of 

at least 1 of the 16 SMGs was found in 81% of ccRCC, 39.1% of PRCC, and 43.2% of 

ChRCC (Figure S2A). While the overall mutation rate for ChRCC was found to be 

significantly less than either ccRCC or PRCC (p = 0.0254 and p < 0.0001, respectively), the 

PRCC mutation rate was higher than ccRCC (p < 0.0001) (Figure S2C). Within PRCC, the 

most aggressive subtype, CIMP-RCC, was found to have the lowest overall rate of mutation. 

Pathogenic SMG mutations were not detected in several tumors, particularly PRCC and 

ChRCC. Several SMGs were members of pathways that contained genes mutated at lower 

frequencies. In the VHL/HIF pathway, TCEB1 and CUL2 mutations in ccRCC were 

mutually exclusive with VHL mutation (Figure S2D). HIPPO and NRF2/ARE pathway 

mutations were present in both PRCC (9.0% and 7.9%, respectively) and ccRCC (3.9% and 

3.2%, respectively) (Figure S2D). While chromatin remodeling pathway gene mutations 

were notably frequent in both ccRCC (69.3%) and PRCC (53.0%), they were less common 

in ChRCC (14.9%) (Figure S2D and Table S2). Mutations of SWI/SNF complex genes, 

including PBRM1, ARID1A, and SMARCA4, were the most common chromatin 

remodeling complex alterations within ccRCC (47.1%), followed by mutation of the histone 

methyltransferases including SETD2 and MLL3 (23.8%), the histone demethylases 

including KDM5C (13.0%), the BAP1/ASXL1 histone de-ubiquitinase complex (12.1%), 

and the histone acetyltransferases (4.8%), compared with frequencies of 24.1%, 23.7%, 

17.3%, 6.8%, and 7.5%, respectively, in PRCCs (Figure 2D). Chromatin remodeling gene 

mutations were more frequent in type 2 PRCC (55.3%) than in type 1 PRCC (40.6%). While 

mutations of the PI3K/AKT pathway were frequent both across (14.6%) as well as within 

each RCC subtype (16.2% of ccRCC, 9.8% of PRCC, and 18.9% of ChRCC), they 
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correlated with decreased survival only in ChRCC (p = 0.0018) (Figures S2D and S2E and 

Table S2).

Mitochondrial (mt) DNA mutation analysis, which was previously performed only in 

ChRCC (Davis et al., 2014), was conducted in a representative number of tumors from all 

RCC subtypes. Nonsense or missense mutations in mitochondria-encoded genes with high 

heteroplasmy (>75%) as well as frameshift mutations with >50% heteroplasmy were 

considered significant. Mitochondrial DNA mutations were found in 13% of 62 ccRCC, 

33% of 99 PRCC (with similar frequencies for type 1 and type 2), and 20% of 65 ChRCC. 

High-heteroplasmy truncating (nonsense or frameshift) mutations were enriched in ChRCC 

(14%) compared to PRCC (6%) or ccRCC (2%) (Figure S2F) and mtDNA copy number was 

increased in ccRCC, PRCC, and ChRCC that carried mtDNA mutations (p = 0.0036, p = 

0.0036, and p = 0.0029, respectively) (Figure S2F).

Hypermethylation Correlates with Decreased Survival

Previous analyses of methylation by Chen et al. (2016) had demonstrated that a subset of the 

DNA methylation probes within the RCC samples highlighted the differences in cell of 

origin for the major RCC histologic subtypes. This subset of probes was subsequently used 

to evaluate hypermethylation patterns within the samples but was potentially confounded by 

the difference in tumor origin. While hypermethylated ccRCC and PRCC samples were 

identified, no hypermethylated ChRCC samples were observed. An analysis limited to 

probes that are unmethylated in all normal tissues identified in 1,532 variably 

hypermethylated markers that identified a cluster of 240 RCCs with increased DNA 

hypermethylation (methylation cluster 1) that associated with significantly poorer survival (p 

< 0.0001) (Figure 3A and Table S1). This cluster consisted of the 10 CIMP-RCC, 182 

ccRCC (37.3%), 23 type 2 PRCC (32.9%), 16 ChRCC (19.8%), and a small number of type 

1 and unclassified PRCC. The remaining two clusters, one containing type 1 and type 2 

PRCC (methylation cluster 2) and the other containing ccRCC and ChRCC (methylation 

cluster 3), had similar survival. In contrast to the distinct CIMP-RCC tumors that had 

notably high levels of DNA hypermethylation, the remainder of methylation cluster 1 had a 

less pronounced increase in hypermethylation across the genome. Histologic subtype-

specific analysis confirmed decreased survival with the increased hypermethylation pattern 

in every major RCC histologic subtype (all p < 0.0001) (Figure 3B). Within the PRCC 

tumors, this correlation remained significant after excluding the CIMP-RCC from the PRCC 

tumors (p < 0.0001) and when type 1 PRCC (p = 0.0328) and type 2 PRCC (p = 0.0314) 

were independently evaluated (Figures 3B and S3A). Increased hypermethylation was 

associated with higher-stage disease in ccRCC, PRCC (with or without CIMP), and ChRCC 

(all p < 0.0001) and was associated with SETD2 mutation in ccRCC (p < 0.0001), either 

PBRM1 mutation or SETD2 mutation in type 2 PRCC (p = 0.0053, p = 0.0270, 

respectively), and TP53 mutation in ChRCC (p = 0.0119) (Figure S3B). Genes represented 

by the 1,532 probes that characterized the hypermethylated cluster were enriched for genes 

in the WNT pathway. Previous studies have identified hypermethylation of the WNT 

pathway regulatory genes, SFRP1 and DKK1, in ccRCC (Ricketts et al., 2014). Increased 

methylation of probes for these two genes (DKK1, cg07684796; SFRP1, cg15839448) was 

observed in the methylated cluster 1 samples (Figure S3C), and hypermethylation of either 
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of these genes correlated with poorer survival in ccRCC, PRCC, and ChRCC (p = 0.0015, p 

< 0.0001, and p = 0.0021, respectively) and in PRCC excluding the CIMP-RCC tumors (p = 

0.0035) (Figures 3C and S3D).

Specific mRNA Signatures Associate with RCC Histologic Subtypes

A weighted gene co-expression network analysis (WGCNA), performed to identify sets 

(modules) of highly correlated genes and to assess their relationships to clinical variables 

and biological functions, revealed several gene modules that differentiated the RCCs by 

histology, stage, or survival status (Figure 4). Clear cell RCC showed the expected increase 

in expression of the vasculature development signature, due to activation of the VHL/HIF 

pathway, and the previously observed increase in immune response signature (p = 4 × 10−86) 

in comparison to PRCC and ChRCC (Figure 4B). The RNA metabolic process and the 

mitotic cell cycle signature was specifically increased in ccRCC (p = 5 × 10−26 and p = 5 × 

10−25, respectively), while an increased amino acid metabolic process signature (p = 4 × 

10−35) and retention of cilium signature (p = 3 × 10−140) was unique to PRCC (Figure 4B). 

In ChRCC, an increased ion transmembrane transport signature was observed (Figure 4). 

Subtype analysis of PRCC revealed an increased RNA splicing signature in type 1 PRCC (p 

= 2 × 10−12) compared to type 2 PRCC, while the cilium signature was significantly higher 

in the type 1 PRCC (p = 8 × 10−101) than in the type 2 PRCC (p = 4 × 10−7).

Metabolic Gene Expression Associates with Survival

Evaluation of tumor metabolism was performed by comparing the expression profiles for 12 

major metabolic processes across all samples (Figure 5A and Table S3). Expression of the 

Krebs cycle and the electron transport chain (ETC) genes provided a clear distinction 

between the major histologic subtypes, with low expression in ccRCC and CIMP-RCC, high 

expression in ChRCC, and intermediate expression in type 1 and type 2 PRCC (Figure 5B). 

This correlated with increased expression of the pyruvate dehydrogenase complex (PDC) 

activation genes in ChRCC, that would help fuel the Krebs cycle and oxidative 

phosphorylation, and the increased expression of PDC suppression genes in ccRCC, which 

would result in glycolysis-dependent energy production (Figures 5B and S4A). Subtype 

analysis revealed that glycolytic gene expression was consistently higher in ccRCC and type 

2 PRCC, while expression of the Krebs cycle genes was significantly higher in type 2 PRCC 

compared to type 1 PRCC (p < 0.0001) (Figure S4A). Although expression of PDC 

activation genes was low in all ccRCC, stage III-IV ccRCC demonstrated significantly lower 

expression than stage I-II ccRCC (p = 0.0005) and lower PDC activation gene expression in 

ccRCC was associated with decreased survival (p < 0.0001) (Figures S4A and S4B). 

Expression of 5′ AMP-activated protein kinase (AMPK), which negatively regulates fatty 

acid synthesis and positively regulates mitochondria production, was increased in ChRCC 

and decreased in the CIMP-RCC (Figure 5B). As previously observed in the TCGA ccRCC 

analysis, AMPK expression was significantly lower in stage III-IV ccRCC compared to 

stage I-II ccRCC (p = 0.0005), and lower expression correlated with poorer survival (p = 

0.0005) (Figures S4A and S4B). Ribose sugar metabolism gene expression was increased in 

type 2 PRCC compared to type 1 PRCC (p < 0.0001) and greatly increased in CIMP-RCC in 

comparison to all other RCC subtypes (p < 0.0001) (Figure 5C). The increased ribose sugar 

metabolism expression previously associated with higher stage and poorer survival 
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prognosis in ccRCC was confirmed in the current study (p = 0.0069), and increased ribose 

sugar metabolism expression was found to also be associated with decreased survival in 

PRCC (p = 0.0031) (Figures 5D and S4B).

Six ChRCC were identified that presented as distinct metabolic outliers within that 

histologic subtype (Figure S5A). Compared to the other ChRCC, these samples had low 

expression of the Krebs cycle and electron transport chain genes, lower expression of the 

AMPK pathway genes, and increased expression of the genes in the ribose synthesis 

pathway, and all these features were associated with poorer prognosis in other RCC 

histologic subtypes (Figure 5E). These metabolically divergent (MD) ChRCC were high 

stage (stage III or IV), demonstrated the hypermethylation pattern described above, lacked 

the chromosomal copy number losses normally associated with ChRCC, and were 

associated with much poorer survival in comparison to other ChRCC (p < 0.0001) (Figures 

5F and S5A). Four of the six MD-ChRCC were found to have sarcomatoid de-differentiation 

(Figure S5B). Several of these MD-ChRCCs were initially misidentified as ccRCC and then 

re-assigned after a pathology review by urologic pathology experts, reflecting their unusual 

pathology.

Immune Signature Analysis

An increased immune cell infiltrate gene expression signature in ccRCC in comparison to 

PRCC and ChRCC has been elucidated by several studies, including importance of single 

gene markers such as PDCD1 (PD1) and CD247 (PDL1) (Chen et al., 2016; Geissler et al., 

2015). Analysis using a refined immune cell gene-specific signatures (Table S4) confirmed 

that, with the exception of the Th17, IL-8, and CD56bright NK cell gene signatures, there was 

nearly universal upregulation of these immune signatures in ccRCC compared to the PRCC 

or ChRCC (Figures 6A and S6A). The T helper 17 cell (Th17) gene signature had increased 

expression in ChRCC, while the IL-8 and CD56bright NK cell gene signatures had increased 

expression in PRCC. Separation of the PRCC tumors highlighted distinct differences in the 

CIMP-RCC compared to the remaining PRCC, including increased expression of the Th2, 

activated dendritic cell (aDC), plasmacytoid dendritic cell (pDC), and Mast cell gene 

signatures, that produced a profile more similar to ccRCC (Figures 6B and S6B). T cell 

receptor (TCR) profiling used to identify TCR clonotype expression within the cohort 

demonstrated patterns of subtype-specific TCR clonotype expression suggesting variation in 

T cell response between ccRCC, PRCC, and ChRCC tumors (Figure S6C). In accordance 

with previous findings, gene signatures correlated with reduced survival, including 

signatures that represented T cells, B cells, macrophages, dendritic cells, and NK cells 

(Figure S6D). The T helper 2 cell (Th2) gene signature was increased in most ccRCC, all 

CIMP-RCC, and in outliers of the ChRCC, with six of the top seven Th2 gene signature 

scores within the ChRCC tumors representing the aggressive MD-ChRCC tumors (Figure 

6B). Notably, an increased Th2 gene signature represented the only biomarker that 

correlated with poor survival when evaluated within each major histologic subtype, ccRCC 

(p = 0.0001), PRCC (p = 0.0002), and ChRCC (p = 0.0284) (Figure 6C). Subtype separation 

of the PRCC demonstrated that this correlation was present only in PRCC type 2 (p = 

0.0089) (Figure 6C). Expression of the Th17 gene signature was associated with increased 
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survival in ccRCC (p = 0.0021), with additional positive correlation in ChRCC (p = 0.0362) 

(Figure S6E).

DISCUSSION

The importance of identifying and differentiating the subtypes and even rare variants of 

renal cell carcinoma (RCC) is critical for management and treatment of patients affected 

with this disease. Although histologic subtyping divides tumors into distinct RCC groups, it 

is limited in its ability to provide in-depth analysis of mechanisms that produce these 

differences. In the present study, comprehensive genetic and genomic analysis demonstrated 

that different histologically defined RCC subtypes are characterized by distinctive 

mutations, chromosomal copy number alterations, and expression patterns of mRNA, 

miRNA, and lncRNA, and that the combination of histology plus genomics provides unique 

insight into patient-centered management. These combined differentiating features, obtained 

via a tumor or liquid biopsy, provide invaluable information and prognostic biomarkers to 

guide clinical and surgical management.

While this study characterizes the differences between the major RCC histologic subtypes, 

shared features within the RCC subtypes may also provide more universal prognostic 

markers and targets for therapy. The loss of CDKN2A, which encodes p16, by either gene 

deletion, promoter hypermethylation, or mutation, found in 16% of RCC, correlated with 

poor survival in ccRCC, PRCC, and ChRCC. Loss of CDKN2A is known to correlate with 

poor outcome in ccRCC, PRCC, and other cancer types, but this demonstrates that it is a 

universal feature of RCC and is potentially targetable with CDK4/6 inhibitors that target the 

downstream effects of p16 loss (Hamilton and Infante, 2016). Increased promoter 

hypermethylation also was found to be associated with decreased survival in ccRCC, PRCC, 

and ChRCC. Previous studies have shown increased levels of DNA hypermethylation 

correlating with poorer outcome that was limited to ccRCC and PRCC without identifying 

potentially impacted pathways (Cancer Genome Atlas Research Network, 2013; Cancer 

Genome Atlas Research Network et al., 2016; Chen et al., 2016). This study highlighted 

hypermethylation of WNT pathway regulatory genes and demonstrated that analysis of 

hypermethylation in two specific WNT regulatory genes, SFRP1 and DKK1, recapitulated 

the correlation with decreased survival in ccRCC, PRCC, and ChRCC. Increased DNA 

methylation was associated with SETD2 mutation, which is known to alter DNA 

methylation patterns (Tiedemann et al., 2016), in ccRCC and PRCC, and increased DNA 

methylation was similarly associated with PBRM1 mutation in PRCC. Hypermethylation of 

SFRP1 and DKK1 could provide a prognostic biomarker for RCC and has been previously 

proposed in ccRCC (Hirata et al., 2011; Ricketts et al., 2014; Urakami et al., 2006). This 

suggests that treatment with de-methylating agents could be beneficial in patients with 

increased levels of promoter hypermethylation.

This study also demonstrated features that were shared by some RCC subtypes, but not all, 

and underlines the importance of evaluating these alterations within each RCC subtype as 

well as across all subtypes. Previous studies using TCGA data and other cohorts have shown 

that BAP1 mutation, but not PBRM1 mutation, correlates with poor survival in ccRCC and 

these correlations were confirmed in a mixed cohort of ccRCC and PRCC TCGA tumors 
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(Chen et al., 2016; Hakimi et al., 2013; Kapur et al., 2013). By analysis of the histologic 

subtype of RCC, we confirmed these correlations in ccRCC and showed that while BAP1 
mutations did not correlate with survival in PRCC, PBRM1 mutations did associate with 

poor survival in type 1 PRCC.

Assessment of the RCC metabolic states within RCC revealed significant metabolic 

alterations. High ribose metabolism gene expression was present in both ccRCC and CIMP-

RCC, with CIMP-RCC showing the greatest expression, likely due to the increased 

production of NADPH counteracting the cellular stress induced by the loss of fumarate 

hydratase in these tumors (Ooi et al., 2011; Patra and Hay, 2014; Sourbier et al., 2014). Type 

2 PRCC had increased expression of the glycolysis, ribose metabolism, and Krebs cycle 

genes in comparison to type 1 PRCC, suggesting a more metabolically active tumor, 

consistent with its more aggressive nature. Increased expression of the ribose metabolism 

genes correlated with poor survival in both ccRCC and PRCC. These findings suggest that 

targeting the ribose metabolism pathway could be a potential therapeutic approach in 

ccRCC, type 2 PRCC, and CIMP-RCC.

The immune expression signature is an increasingly important feature of ccRCC, given the 

recent introduction of checkpoint inhibitor therapy (Lee and Motzer, 2016; Motzer et al., 

2015), and patterns of immune infiltration in RCC have been observed in several studies 

(Chen et al., 2016; Geissler et al., 2015). The role of this feature in determining the 

therapeutic responsiveness of ccRCC will be important in future therapeutic planning. A 

recent study using TCGA RCC data demonstrated that differences in expression in specific 

checkpoint-related genes, such as PDCD1 (PD1) and CD247 (PDL1), correlated with patient 

survival within ccRCC cases (Chen et al., 2016). While we observed the same general 

pattern as previously seen with PRCC overall demonstrating little expression of the immune 

signature associated with ccRCC, we found CIMP-RCC to have an increased immune 

signature expression for select immune gene signatures, including the Th2 gene signature, 

like that seen in ccRCC. This suggests this most aggressive type of RCC, CIMP-RCC, may 

benefit from checkpoint inhibitor therapy in a similar manner to ccRCC. Although the Th2 

gene signature was considerably higher in ccRCC and CIMP-RCC tumors compared to 

other tumor subtypes, the relative levels of Th2 gene signature within each major RCC 

histologic subtype correlated with poor patient survival, as had been previously observed in 

ccRCC (Şenbabaoǧlu et al., 2016). This suggests that once expression ranges are defined for 

each subtype, this Th2 gene signature could provide a useful prognostic marker for all RCC 

subtypes.

While the current study confirmed the previous finding of CIMP-RCC as a specific PRCC 

subtype, in this analysis we identified a subset of metabolically divergent (MD) ChRCC that 

also demonstrated a uniform and distinct metabolic expression pattern associated with 

extremely poor survival. The MD-ChRCC had decreased Krebs cycle, ETC, and AMPK 

gene expression and increased ribose metabolism gene expression similar to higher-stage 

ccRCCs. All the MD-ChRCC were high stage and generally lacked the classic ChRCC-

associated pattern of chromosomal loss, and most demonstrated sarcomatoid differentiation. 

A recent study has also shown a correlation between the absence of the classical ChRCC 

chromosome loss and aggressive, high-grade, metastatic ChRCC (Casuscelli et al., 2017). 
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Many of these MD-ChRCC features are represented in a recently characterized sarcomatoid 

ChRCC-derived cell line that could provide a model for further investigation of these tumors 

(Yang et al., 2017). The combination of histopathology and expression analysis may provide 

a definitive classification for ChRCC and enable the identification of aggressive variants that 

may require alternative management and therapy, including the potential for adjuvant 

therapy.

Understanding the molecular and genetic features that characterize the RCC subtypes will 

provide the foundation for the development of improved methods for both clinical and 

surgical management and therapies to treat this disease. Besides identifying discrete 

genomic characteristics that are critical for the understanding of individual RCC subtypes, 

we have identified unifying features, such as the effect of the Th2 immune gene signature on 

survival, which cross disease subtypes and which will help provide the foundation for the 

development of effective forms of therapy for patients with advanced disease.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Primary tumor samples Multiple tissue source 
sites, processed through 
the Biospecimen Core 
Resource

See Biospecimen Acquisition in EXPERIMENTAL MODEL AND SUBJECT 
DETAILS

Critical Commercial Assays

Genome-Wide Human SNP 
Array 6.0

ThermoFisher Scientific Cat: 901153

Infinium 
HumanMethylation450 
BeadChip Kit

Illumina Cat: WG-314-1002

Illumina Barcoded Paired-
End Library Illumina 
Preparation Kit

Illumina https://www.illumina.com/techniques/sequencing/ngs-library-prep.html

TruSeq RNA Library Prep 
Kit

Illumina Cat: RS-122-2001

TruSeq PE Cluster 
Generation Kit

Illumina Cat: PE-401-3001

Deposited Data

Raw and processed clinical, 
array and Genomic sequence 
data.

Data Commons https://portal.gdc.cancer.gov/legacy-archive

Processed RNA sequence 
data

Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/

Digital pathology images Cancer Digital Slide 
Archive

http://cancer.digitalslidearchive.net/

Software and Algorithms

ConsensusClusterPlus Wilkerson and Hayes, 
2010

http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html

Cufflinks Trapnell et al., 2013 https://cole-trapnell-lab.github.io/cufflinks/
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 package Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/DESeq2.html

Genome Analysis Toolkit McKenna et al., 2010 https://software.broadinstitute.org/gatk/

GSNAP Wu and Watanabe, 2005 http://research-pub.gene.com/gmap/

MiXCR v1.7.1 Bolotin et al., 2013 https://mixcr.readthedocs.io/en/latest/

MuTect Cibulskis et al., 2013 http://archive.broadinstitute.org/cancer/cga/mutect

MUSE Fan et al., 2016 http://bioinformatics.mdanderson.org/main/MuSE

Pindel Ye et al., 2009 http://gmt.genome.wustl.edu/packages/pindel/index.html

MUSCLEt Edgar, 2004 http://www.drive5.com/muscle/

MtoolBox Calabrese et al., 2014 https://sourceforge.net/projects/mtoolbox/

Radia Radenbaugh et al., 2014 https://github.com/aradenbaugh/radia

samr Li and Tibshirani, 2013 https://cran.r-project.org/web/packages/samr

Samtools Li et al., 2009 http://samtools.sourceforge.net/

Somatic Sniper Larson et al., 2012 http://gmt.genome.wustl.edu/packages/somatic-sniper/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

VarScan2 Koboldt et al., 2012 http://varscan.sourceforge.net/

WGCNA package Langfelder and Horvath, 
2008

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/

Other

Firehose, FireBrowse The Broad Institute, 
Cambridge MA

https://gdac.broadinstitute.org/, http://firebrowse.org/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. W. Marston Linehan (WML@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Biospecimen Acquisition—All biospecimens were acquired by the Cancer Genome 

Atlas (TCGA) Resource Network. Surgically resected tumor specimens were collected from 

patients diagnosed with renal cell carcinoma (RCC) that had preferably not received any 

prior treatment for their disease, such as chemotherapy or radiotherapy. Individual 

institutional review boards at each tissue source site reviewed the protocols and consent 

documentation and approved the submission of cases to TCGA. All tumors were staged per 

the American Joint Committee on Cancer (AJCC) and each primary tumor specimen had a 

matched normal tissue specimen. The tissue source sites for the Cancer Genome Atlas 

Research Network are listed in the Cancer Genome Atlas Research Network author list for 

this project.

The initial 894 samples of kidney cancer that were submitted to TCGA were re-evaluated by 

a panel of expert pathologists that excluded several samples due to inconsistent or incorrect 

histologic classification or therapy prior to sample collection. This accounts for the variation 

in samples compared to the previous Chen et al. study (Chen et al., 2016). The approved 843 

tumors were subdivided by histologic subtype into 6 groups consisting of 488 clear cell 
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(cc)RCC, 160 Type 1 papillary (P)RCC, 70 Type 2 PRCC, 34 unclassified PRCC, 10 CpG 

island methylator phenotype-associated (CIMP-)RCC, and 81 chromophobe (Ch)RCC based 

on the original pathology reports or re-evaluation by a panel of expert urologic pathologists. 

Six hundred and ninety-three of the tumors had been analyzed in the three individual TCGA 

marker papers. The clinical and genetic characteristics of these patients are described in 

Table S1 in the Supplementary Appendix.

METHOD DETAILS

Somatic Exome Mutation Analysis—Somatic exome sequencing data was available 

and downloaded for 804 of the 843 pan-kidney tumors representing 463 ccRCC, 266 PRCC, 

74 ChRCC. The tumors with sequencing data are designated within Table S1 and all data is 

accessible via the NCI genome data commons (https://gdc.cancer.gov/).

A combined MAF (Mutation Annotation Format) file for all samples was produced by 

extracting the relevant sample data from the TCGA unified ensemble “MC3” call set and 

supplementing this with data from the original three TCGA KIRC, KICH, and KIRP 

publication for samples not present in the TCGA MC3 dataset. The TCGA unified ensemble 

“Multi-Center Mutation Calling in Multiple Cancers” (“MC3′”) call set is the public, open-

access, dataset of somatic mutation calls (SNVs and indels) produced as part of the capstone 

project using all available of cases within TCGA using six different algorithms (MuTect, 

MuSE, Pindel, Somatic Sniper, VarScan2 and Radia) from four centers (Cibulskis et al., 

2013; Fan et al., 2016; Koboldt et al., 2012; Larson et al., 2012; Radenbaugh et al., 2014; Ye 

et al., 2009).

The significantly mutated genes (SMGs) that had been previously identified by the 

MutSigCV algorithm in the previous TCGA KIRC, KICH, and KIRP publications were used 

as the reference SMGs when evaluating the entire pan-kidney dataset. Pathway analysis for 

the HIF pathway, HIPPO pathway, NRF2/ARE pathway, PI3K/AKT pathway and the 

chromatin remodeling pathways was performed using gene lists described in Table S2. The 

pathway analysis involving genes known to be activated in cancer, such as MTOR, PIK3CA, 

and NFE2L2, were limited to missense mutations only.

SNP Array-Based Copy Number Analysis—The gene level copy number data 

(focal_data_by_genes) generated by Affymetrix SNP 6.0 arrays using protocols at the 

Genome Analysis Platform of the Broad Institute (McCarroll et al., 2008) was available for 

832 of the 843 pan-kidney tumors representing 481 ccRCC, 271 PRCC, and 80 ChRCC. 

Tumors with copy number data are designated within Table S1 and all data is accessible via 

the NCI genome data commons (https://gdc.cancer.gov/). Estimates for gross chromosomal 

arm gain or loss were produced by averaging the copy number values for all genes within 

each region. Average values greater than 0.3 were considered chromosomal gain and average 

values less than −0.3 were considered chromosomal loss. For individual gene copy number 

analysis, such as CDKN2A loss, copy number values of less than −0.4 were considered to 

represent deletion.

RNA Expression Data Analysis—The level 3 RNA-Seq upper quartile normalized 

RSEM data was available for 839 of the 843 pan-kidney tumors representing 485 ccRCC, 
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273 PRCC, and 81 ChRCC. Tumors with RNA-seq data are designated within Table S1 and 

all data is accessible via the NCI genome data commons and the Gene Expression Omnibus 

(https://gdc.cancer.gov/ and https://www.ncbi.nlm.nih.gov/geo/). Analysis of the RNA data 

was split into miRNA analysis, lncRNA analysis, mRNA signature analysis, and immune 

gene signature analysis.

mRNA Signature Analysis—Raw count data for each sample included was obtained 

from Gene Expression Omnibus (GSE62944) (Rahman et al., 2015). All subsequent 

analyses were performed in R open source programming language. For differential 

expression analysis, RPKM values were calculated from RNaseq raw counts and upper 

quantile normalized. For hierarchical clustering and WGCNA, raw count data were 

processed and normalized using the variance stabilizing transformation (VST) algorithm 

implemented by the DESeq2 package (Love et al., 2014).

Scale-free weighted signed gene co-expression networks were constructed by the WGCNA 

package (Langfelder and Horvath, 2008). Using the top 11000 varying genes according to 

their standard deviation, WGCNA was restricted to the 9000 most connected genes. First, a 

pairwise gene correlation matrix was calculated with a Pearson correlation analysis, which 

was transformed into a weighted matrix to produce an adjacency matrix after raising values 

by an exponent beta (β = 16). Then the adjacency was transformed into a topological overlap 

matrix (TOM). The dynamic tree cut method was used for module identification from the 

hierarchical clustering of genes using 1-TOM as the distance measure with a deepSplit value 

of 2 and a minimum size cutoff of 50 genes. Highly similar modules were identified by 

clustering and then merged together with a height cut-off of 0.2. Finally, modules and their 

relationship to clinical traits were identified using Pearson correlation analysis between the 

modules and external traits. Functional annotation of identified modules was performed 

using tools provided by the WGCNA package.

Kmeans consensus clustering was performed using ConsensusClusterPlus package 

(Wilkerson and Hayes, 2010). The K-value of 6 was selected according to the consensus 

cumulative distribution function, where K > 6 did not produce any appreciable increase in 

consensus (Monti et al., 2003; Wilkerson and Hayes, 2010). Hierarchical unsupervised 

cluster analysis was performed using 7738 genes pertaining to selected WGCNA modules 

(see Figure 4 for modules). Hierarchical clustering was performed using average linkage of 

Euclidean distance.

Non-coding RNA (lncRNA and miRNA) Sequencing and Analysis—mRNA 

sequence reads were aligned to the human reference genome (hg38) and transcriptome 

(Ensembl v82, September 2015) using STAR 2.4.2a (Dobin et al., 2013). STAR was run 

with the following parameters: minimum/maximum intron sizes were set to 30 and 500,000, 

respectively; noncanonical, unannotated junctions were removed; maximum tolerated 

mismatches was set to 10; and the outSAMstrandField intron motif option was enabled. The 

Cuffquant command included with Cufflinks 2.2.1 (Trapnell et al., 2013) was used to 

quantify the read abundances per sample, with fragment bias correction and multiread 

correction enabled, and all other options set to default. To calculate normalized abundance as 

fragments per kilobase of exon per million fragments mapped (FPKM), the Cuffnorm 
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command was used with default parameters. From the FPKM matrix for the 80 tumor 

samples, we extracted 8167 genes with “lincRNA” and “processed_transcript” Ensembl 

biotypes.

From the matrix of 8167 lncRNAs (above), we extracted FPKM profiles for 499 lncRNAs 

that were robustly expressed (mean FPKM ≥ 1) and highly variable (≥ 92.5th FPKM 

variance percentile) across the n = 833 primary tumor cohort. We identified groups of 

samples with similar expression profiles by unsupervised consensus clustering with 

ConsensusClusterPlus (CCP) 1.20.0 (Wilkerson and Hayes, 2010). Calculations were 

performed using Pearson correlations, partitioning around medoids (PAM), a gene fraction 

of 0.95, and 200 iterations. It was anticipated that a hierarchically-related series of finer-

grained and coarser-grained sets of subtypes may be available from a clustering analysis, 

that a particular clustering solution (i.e., number of subtypes) from such a series may be a 

more informative choice for a particular question and context, and that results from multiple 

data types may need to be considered in order to identify a clustering solution to report on 

because it is effective in contributing to the overall insights (Aine et al., 2015; Ronan et al., 

2016). A consensus clustering solution for lncRNAs was selected by initially considering 

information for different numbers of clusters and for a range of clustering approaches. The 

reported clustering solution considered four main factors: a) the consensus membership 

heatmaps and dendrograms; b) the ‘delta’ plot showing how the area under the cumulative 

distribution function of consensus membership values increases as the numbers of clusters 

increases; c) the profile of silhouette width calculated from the consensus memberships, 

which we take as a measure of typical versus atypical cluster membership; and d) how 

KIRC, KIRP Type 1 and 2, and KICH samples were separated and subdivided by the 

clusters. Thus, we selected an 8-cluster solution after assessing consensus membership 

heatmaps, dendrograms, and CCP clustering metrics for up to 10 clusters. To visualize 

typical versus atypical cluster members, we used the R cluster package to calculate a profile 

of silhouette widths (Wcm) from the consensus membership matrix. To generate an 

abundance heatmap for the 8-cluster result, used the pheatmap R package (v1.0.2). We 

ordered the columns to correspond to the above consensus clustering result. We manually 

transferred the upper dendrogram graphic from the consensus result to the heatmap graphic 

that we were generating. For the rows, we identified a subset of lncRNAs that had a mean 

FPKM ≥ 10 and a SAM multiclass (samr 2.0) (Li and Tibshirani, 2013) q value of 0.0 across 

the clusters (see differential abundance, below), transformed the FPKM matrix by 

log10(FPKM + 1), then, in pheatmap, scaled the rows and clustered them with a Pearson 

distance metric and Ward clustering.

We compared unsupervised clusters to clinical and molecular covariates by calculating 

contingency table association p values using R, with a Chi-square or Fisher exact test for 

categorical data, and a Kruskal-Wallis test for real-valued data.

We generated miRNA sequencing (miRNA-seq) data from messenger RNA-depleted RNA, 

as describe in (Chu et al., 2016). Briefly, we aligned ~22-nt reads to the GRCh37/hg19 

reference human genome, assigned read count abundances to miRBase v16 stem-loops and 

5p and 3p mature strands, and assigned miRBase v20 mature strand names to MIMAT 

accession IDs. Note that while we used only reads with exact-match alignments in 
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calculating miRNA abundances, BAM files available from the Genomics Data Commons 

(https://gdc.cancer.gov/) include all sequence reads.

For miRNA, mature strand (miR) sequencing data for n = 811 primary tumors, we extracted 

normalized abundance (RPM) data matrices for ccRCC (n = 457), PRCC (n = 274), and 

ChRCC (n = 80, which included n = 65 KICH and n = 15 that were originally part of the 

KIRC cohort). From RPM data matrices for the 457, 274 and 65 original samples 

respectively, we identified the 304 miRs that were the most-variant 25% (of 1214 miRBase 

v16 strands) for each cohort. Combining the three lists gave 369 unique miR names. In a 

batch-corrected data matrix containing 743 miRs and 9,555 primary tumor samples (of 

10,825 total samples), 367 of the 369 miRs were available, and we generated a batch-

corrected data matrix with 367 miR and 811 primary tumor samples that was the input to 

unsupervised clustering.

Using ConsensusClusterPlus v1.40.0 we assessed consensus membership heatmaps and 

other metrics for six approaches, using Pearson or Spearman correlations as distance 

metrics, and hierarchical, partitioning around meoids (PAM) or k-means clustering. For each 

approach, we assessed solutions with between two and nine clusters. We report on a 6-

cluster solution for Spearman correlations, PAM clustering, and 1000 iterations with a 

random mature-strand fraction of 0.85 for each iteration. We used a similar selection 

methodology for the 6-cluster solution as was described above for the lncRNAs.

We used an approach similar to that described above for lncRNAs to generate a clustering 

heatmap for miRNAs. We first identified miRNAs that were differentially abundant between 

the unsupervised miRNA clusters using a SAM multiclass analysis (samr 2.0) (Li and 

Tibshirani, 2013) in R, with the 367-×-811 RPM input data matrix, 1000 permutations, no 

array centering, a Wilcoxon test statistic, and an FDR threshold of 0.05. For the heatmap we 

used miRNAs that had larger SAMseq scores and q-values of 0.0. We ordered the data 

matrix columns to match the clustering result, manually transferred over the upper 

dendrogram from the consensus clustering graphic, then transformed each row of the matrix 

by log10(RPM+1) and used the pheatmap R package (v1.0.2) to scale and cluster only the 

rows.

We generated a Kaplan-Meier plot for the miRNA clusters using the R survival package 

v2-41.3. We compared unsupervised clusters to clinical and molecular covariates by 

calculating contingency table association p values using R, with a Chi-square or Fisher exact 

test for categorical data, and a Kruskal-Wallis test for real-valued data.

Immune Gene Signature Analysis—Immune gene signatures were derived from 

previously published works (Beck et al., 2009; Bindea et al., 2013; Fan et al., 2011; Iglesia 

et al., 2014; Kardos et al., 2016; Palmer et al., 2006; Rody et al., 2009; Rody et al., 2011; 

Schmidt et al., 2008; Teschendorff et al., 2007). RSEM upper quartile normalized, log-2 

transformed, and mean centered RNA-seq data was matched to predefined immune gene 

signature clusters via Entrez IDs. Each gene signature was calculated as the average value of 

all genes included in the signature (Table S4). Differential expression for each gene 

signature was analyzed between kidney cancer types and subtypes via one-way ANOVA. 
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These p values were adjusted for multiple testing using the Benjamini-Hochberg procedure. 

For hazard ratio forest plots, univariate Cox proportional hazards (CoxPH) model was used 

with signature/clinical variable as a continuous variable compared to patient overall survival. 

T cell receptor repertoire analysis was performed using MiXCR v1.7.1 on default alignment 

and assemble settings (Bolotin et al., 2013). Diversity measurements were analyzed between 

kidney cancer types and subtypes via Mann-Whitney U-test.

DNA Methylation Analysis—Two generations of Illumina Infinium DNA Methylation 

BeadArrays, including the HumanMethylation27 (HM27) and HumanMethylation450 

(HM450) arrays, were used to assay 824 pan-kidney tumors (65 KICH, 485 KIRC and 274 

KIRP) and 392 normal kidney samples in total (Table S1). All data is available from the NCI 

genome data commons (https://gdc.cancer.gov/).

Data from HM27 and HM450 were combined and further normalized using a probe-by-

probe proportional rescaling method to yield a common set of 22,601 probes with 

comparative methylation levels between the two platforms, as described in details on 

Synapse (Syn7073804). Briefly, we rescaled data on HM27 based on between-platform 

difference measured by technical replicates. Probes were further filtered based on 34 

technical replicates measured together with the KIRC samples by removing those showing a 

standard deviation of 0.05 or above. Unsupervised clustering was performed based on 

cancer-specific autosomal loci, which were defined as unmethylated probes in all normal 

tissue types as well as sorted blood populations (mean beta value < 0.2), but methylated 

(beta value > 0.3) in more than 5% samples within any of the kidney tumor type (for tumor 

type with less than 100 samples, we require the portion of methylated samples to be greater 

than 10% instead). To minimize the influence of tumor purity, we dichotomize the 

methylation data into 0’s and 1’s with a beta value cut off of 0.3, and used Ward’s method to 

cluster the distance matrix computed with the Jaccard Index. Heatmaps were generated 

based on row and column orders calculated as above and colored by dichotomized beta 

values.

The DNA methylation level as interrogated by cg07684796, cg15839448 was used for 

DKK1, and SFRP1, respectively, with a beta value of 0.3 or more considered evidence for 

epigenetic silencing.

Survival Analysis—The Kaplan-Meier method was used to generate curves for overall 

survival and the Log-rank test was used to assess the univariate survival differences with no 

correction for multiple testing, unless otherwise stated in specific analyses. Overall survival 

was defined as the time from the nephrectomy to death of any cause.

mtDNA Sequence and Copy Number Analysis—Whole exome sequencing (WXS) 

BAM files, sequenced at BCM Sequencing Center, were obtained for 66 ChRCC, 153 

ccRCC, and 128 PRCC tumor samples and corresponding blood or normal tissue DNA. 

BAM files were used as input of the MToolBox pipeline, that includes GSNAP, MUSCLE, 

and SAMtools, to align reads to the Revised Cambridge Reference Sequence (rCRS) for 

human mitochondrial DNA, extract variant alleles, quantify their heteroplasmy levels and 

related confidence intervals, and obtain functional annotation of the identified variants.
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(Calabrese et al., 2014; Edgar, 2004; Li et al., 2009; Wu and Watanabe, 2005) Samples with 

> 75% mtDNA sequence coverage in Tumor and Normal DNA and variants with > 5% 

mutation load were considered for further analysis (61 ChRCC, 66 ccRCC, and 99 PRCC). 

Variant tables from tumor and corresponding normal DNA were compared to determine 

somatic mutations, which were then classified according to criteria outlined in Figure S2F.

The mtDNA copy number (m) was calculated for samples with mtDNA sequence data as the 

ratio of the number of sequencing reads aligning to the mitochondrial genome (rm) and the 

nuclear genome (rn) according to the following formula: m = rm/rn × R. Correction for tumor 

ploidy and purity (R) was calculated as RTumor = (Purity × Ploidy+(1 Purity) × 2)/2. Allele-

specific copy number and estimates of tumor ploidy and purity were calculated with ASCAT 

(Reznik et al., 2016; Reznik et al., 2017; Van Loo et al., 2010) using matched Affymetrix 

SNP6 array data from tumor and normal tissue. Batch effect on exome enrichment was 

corrected for by applying a linear model that accounted for plate and center IDs as well as 

tissue type.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all analyses, significance was determined as a p value < 0.05 and corrected for multiple 

testing where specified. Univariate analysis was performed unless otherwise specified. 

Survival analyses were performed using GraphPad Prismâ (GraphPad Software, Inc.) or by 

individually specified methodologies. In all cases the “n” represents individual patients from 

which a single tumor was evaluated.

DATA AND SOFTWARE AVAILABILITY

Raw and processed clinical, array and sequence data are all available via the Genomic Data 

Commons download portal (https://portal.gdc.cancer.gov) or Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/-GSE62944) and the digital pathology images are all 

available from the Cancer Digital Slide Archive (http://cancer.digitalslidearchive.net/)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• BAP1, PBRM1, and metabolic pathway changes correlate with RCC subtype-

specific survival

• DNA hypermethylation/CDKN2A alterations associate with poor survival in 

all RCC subtypes

• Immune gene signatures increased in ccRCC and CIMP-RCC

• Increased Th2 gene signature within each RCC subtype associates with 

poorer survival
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Figure 1. Comparison of RCC Histologic Subtypes
(A) Heatmap representation of chromosomal copy number and RNA expression profiles 

between the different histologic RCC subtypes. Chromosomal copy number data are ordered 

by chromosomal arm in descending order (red, gain; blue, loss). The relative RNA 

expression was assessed for the most variable probes within the complete RCC cohort for 

either mRNA (n = 500), miRNA (n = 249), or lncRNA (n = 178) (red, increased; blue, 

decreased). RCC samples were arrayed left to right based on histologic subtype (ccRCC, 

green; type 1 PRCC, light blue; type 2 PRCC, orange; unclassified [Unc.] PRCC, gray; 

CIMP-RCC, red; ChRCC, purple), then tumor stage (stage I, light green; stage II, yellow; 

stage III, orange; stage IV, red), and then vital status (alive, white; deceased, black). (B) 

Percentage of chromosomal copy number alterations between the different histologic RCC 

subtypes. (C) Differences in patient overall survival between the different histologic RCC 

subtypes (log-rank p value).
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Figure 2. Gene and Pathway Alteration Associates with Survival Predictions in Specific RCC 
Subtypes
(A) Differences in patient overall survival within histologic RCC subtypes (ccRCC, green; 

PRCC, blue; ChRCC, purple) dependent upon gene mutation (log-rank p value). (B) 

Oncoprints for CDKN2A gene deletions, hypermethylation, and mutations for the histologic 

RCC subtypes (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, 

gray; CIMP-RCC, red; ChRCC, purple). Mutations were segregated into nonsense (red) and 

missense (blue). (C) Differences in patient overall survival within the histologic RCC 

subtypes (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; ChRCC, purple) 
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dependent upon CDKN2A alteration (log-rank p value). (D) Chromatin remodeling pathway 

mutation frequency within histologic RCC subtypes (ccRCC, green; PRCC, blue; ChRCC, 

purple). Abbreviations: Me, histone methylation; Ac, histone acetylation; Ub, histone 

ubiquitination.
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Figure 3. Hypermethylation Patterns Associate with Survival Predictions
(A) Heatmap representation of the clustering of 1,532 highly variable DNA methylation 

probes that were unmethylated in the normal tissues. A methylation b-value R 0.3 was 

considered hypermethylated. Tumors were annotated for histologic RCC subtype (ccRCC, 

green; type 1 PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; 

ChRCC, purple), tumor stage (stage I, light green; stage II, yellow; stage III, orange; stage 

IV, red), vital status (alive, white; deceased, black), and DKK1 (cg07684796) and SFRP1 
(cg15839448) hypermethylation (hypermethylated, dark green). (B) Differences in patient 

Ricketts et al. Page 28

Cell Rep. Author manuscript; available in PMC 2018 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overall survival within the histologic RCC subtypes (ccRCC, green; PRCC, blue; ChRCC, 

purple) dependent upon methylation cluster (log-rank p value). (C) Differences in patient 

overall survival within ccRCC and ChRCC tumors (ccRCC, green; ChRCC, purple) 

dependent upon hypermethylation of either SFRP1 or DKK1 (log-rank p value).
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Figure 4. RCC Histologic Subtypes Associate with Specific mRNA Signatures
(A) Heatmap representation of the comparison of mRNA expression signatures for major 

cellular processes between the different histologic RCC subtypes (ccRCC, green; type 1 

PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, 

purple). Tumor stage (stage I, light green; stage II, yellow; stage III, orange; stage IV, red) 

and vital status (alive, white; deceased, black) are indicated above the heatmap. (B) Heatmap 

representation showing the relationship between gene expression modules and clinical 

features. Red heatmap shading indicates a positive correlation between a gene module and a 

clinical feature and blue heatmap shading represents a negative correlation.
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Figure 5. Metabolic Analysis of RCC Histologic Subtypes
(A) Schematic of metabolic pathway genes selected for metabolic analysis. (B) Heatmap 

representation of the comparison of mRNA expression signatures for the selected metabolic 

processes between the different histologic RCC subtypes (ccRCC, green; type 1 PRCC, light 

blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple). Tumor 

stage (stage I, light green; stage II, yellow; stage III, orange; stage IV, red) and vital status 

(alive, white; deceased, black) are indicated above the heatmap. (C) Comparative expression 

of the ribose sugar metabolism signature between the different histologic RCC (ccRCC, 

green; ccRCC stage I/II, dark blue; ccRCC stage III/IV, dark red; type 1 PRCC, light blue; 

type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple). (D) Differences 

in patient overall survival within ccRCC dependent upon expression of the ribose sugar 

metabolism signature (log-rank p value). (E) Comparative expression of the Krebs cycle, 

ETC Complex III, AMPK, and ribose sugar metabolism gene signatures between ChRCC 

and metabolically divergent (MD) ChRCC (ChRCC, purple; MD-ChRCC, pink). (F) 

Differences in patient overall survival between ChRCC and MD-ChRCC (log-rank p value).
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Figure 6. Immune Signature Analysis
(A) Supervised clustering of immune gene signature (IGS) expression by individual sample 

(left) or mean IGS expression (right) for the different histologic RCC subtypes (ccRCC, 

green; PRCC, blue; ChRCC, purple). (B) Comparative expression of the Th2 gene signature 

between the histologic RCC subtypes (ccRCC, green; PRCC, blue; type 1 PRCC, light blue; 

type 2 PRCC, orange; CIMP-RCC, red; unclassified PRCC, gray; ChRCC, purple) (t test). 

(C) Comparative differences in patient overall survival within the histologic RCC subtypes 
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(ccRCC, green; PRCC, blue; type 2 PRCC, orange; ChRCC, purple) dependent upon the 

Th2 gene signature (log-rank p value).
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