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Current recommendations and novel
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Abstract

The increase in food production requires reduction of the damage caused by plant pathogens, minimizing the environmental
impact of management practices. Soil-borne pathogens are among themost relevant pathogens that affect soybean crop yield.
Soybean sudden death syndrome (SDS), caused by several distinct species of Fusarium, produces significant yield losses in the
leading soybean-producing countries in North and South America. Current management strategies for SDS are scarce since
there are no highly resistant cultivars and only a few fungicide seed treatments are available. Because of this, innovative
approaches for SDSmanagement need to be developed. Here, we summarize recently explored strategies based on plant nutri-
tion, biological control, priming of plant defenses, host-induced gene silencing, and the development of new SDS-resistance
cultivars using precision breeding techniques. Finally, sustainable management of SDS should also consider cultural control
practices with minimal environmental impact.
© 2021 Society of Chemical Industry.
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1 INTRODUCTION
Soybean sudden death syndrome (SDS) is one of the most yield-
limiting soybean diseases in North and South America. Multiple
variables influence SDS development, such as edaphic properties
of each field plot, the interaction with other soil-borne pathogens
like nematodes, the agronomic practices carried out by each pro-
ducer (rotations, tillage system, fertilization), and the associations
with certain field-specific environmental factors of each particular
year. These variables interact in many ways, explaining why
numerous field experiments have obtained contradictory results
in the last 50 years.
The disease is caused by several species of the soil-borne fungus

Fusarium: F. virguliforme (F.v.), F. tucumaniae (F.t.), F. brasiliense (F.
b.), F. crassistipitatum (F.cr.), and a novel undescribed Fusarium
spp. (Table 1).10–13,16 F. cuneirostrum was reported to cause SDS
in earlier literature, but it was recharacterized and removed from
the list in recent classification.18 These species are classified into
clade 2 of the Fusarium solani species complex (FSSC).19 In North
America, F.v. is widely prevalent, but F.b. and F.cu. have also been
detected in some regions of the USA.14 In South America, F.t. and
F.b. are themost prevalent species in Argentina and Brazil, respec-
tively, but other Fusarium species have also been isolated.10–13

Members of the FSSC are identified based on phenotypic analyses
of macro- and microscopic characters and phylogenetic
analyses of multilocus DNA sequence data.10,12,13 Additionally,
the comparison of whole-genome sequences has allowed a better
characterization of the FSSC, establishing differences in their life
cycle20,21 and in their sensitivity to chemical compounds.21

Finally, differences in the reproduction betweenmembers of FSSC
in clade 2 have been described based on the structural organiza-
tion of the mating-type locus, indicating that some species could
be sexually propagated. However, only F.t. has been shown to
exhibit this type of propagation to date.15,22,23

F. tucumaniae and F. virguliforme overwinter primarily as chla-
mydospores both in infested crop residues and free in the soil.
These resistance structures can survive in the soil for several years.
Sexual recombination of F. tucumaniae was confirmed to have
occurred. In contrast, F. virguliforme never produced perithecia.15

Therefore, the F. tucumaniae life cycle in S. America includes a sex-
ual reproductive mode while the F. virguliforme population in the
USA may be exclusively asexual. Other sources of primary
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inoculum are residues from other crops (such as corn) and alterna-
tive hosts. Germinating soybeans plus warming temperatures
lead to the germination of the chlamydospores, allowing for the
infection cycle to begin (Fig. 1). After planting, the roots of
the newly emerging seedlings are particularly susceptible to
Fusarium and root infection in soybean can occur within days of
planting. Primary infection is favored by high soil moisture. Ini-
tially, symptoms generated by SDS-causing pathogens of the
FSSC include root discoloration, necrosis, and dieback. Later,
the pathogen colonizes the vascular tissue in the basal area of
the plant, a few centimeters above the soil line. Once established
in the xylem, the pathogen produces toxins which are systemi-
cally transferred throughout the plant leading to the foliar symp-
toms. Thus, foliar symptoms are not typically seen until later in the
season around the flowering stage. Various phytotoxins were iso-
lated from soybean xylem sap.24–26 Among them, a 13.5 kDa pro-
tein named Fvtox1 causes interveinal chlorosis and necrosis in
leaves of susceptible soybean varieties.24,27 Interestingly, foliar
SDS-like symptoms development requires light, which suggests
that FvTox1 alters the photosynthetic process.24,28 In addition,
toxin-associated symptoms are affected by other environmental
conditions such as temperature and media substrate29–31 and,
consequently, environmental changes over the years can explain
the appearance of various degrees of foliar symptoms in the
field.5,32 In addition to this, some reports have shown inconsis-
tencies between SDS foliar symptom severity and yield
reduction,5,33 making the screening for SDS-resistant germplasm
and evaluation of other management tools more complex.
Recently, Kandel et al. found a mean yield decline of 0.51% for
each unit increase in a foliar disease index that combines foliar

disease incidence and disease severity, providing an estimated
yield reduction based on foliar symptoms.34

Yield losses caused by severe SDS infection are the result of pre-
mature defoliation of soybean plants and decreased seed size.5,35

Flower and pod abortion can also be observed when severe SDS
occurs during flowering and pod-filling.5,36 However, yield losses
due to SDS are variable and dependent on the interaction of soy-
bean genotype, Fusarium pathotypes present in the field plots,
weather and edaphic conditions such as relative abundance of
multiple microbial taxa in the soil, macro- and micronutrients
availability, soil pH, macroporosity and cultural practices, among
the main factors.37-39 In terms of its economic impact, SDS is con-
sidered to be one of the top 10 soybean diseases of North Amer-
ica39 with average yield losses of 0.82 million metric tons per year
between 1996 to 200940 and US$321,5 million per year between
1996 ando 2016.39 Additionally, SDS generates significant yield
losses in Argentina and Brazil, two other leading soybean-
producing countries1,41 (Table 1).
Particularly in the USA, the synergism between F.v. and Hetero-

dera glycines, the soybean cyst nematode (SCN) has been
reported to cause a decrease in soybean yield when both patho-
gens are present in a given field plot.42,43 According to a 3-year
research study, Westphal et al. suggested that F.v. depended on
infections by H. glycines to cause highly severe damage.44 Simi-
larly, Roth et al. reported that the additional presence of SCN
can increase the risk of severe SDS epidemics.45 In Argentina,
the presence of H. glycines and other nematode species such as
Meloidogyne incognita, M. javanica, and Helicotylenchus spp. has
been reported,46 but their association with SDS is not common
(Scandiani M, pers. comm.). In Brazil, H. glycines has been reported

Table 1. Differential aspects of SDS in the three main soybean producing countries

Feature Argentina Brazil USA Reference

Soybean area in 2020 (million
hectares)

16.7 36.9 30.33 Global Market
Analysis, FAS,

USDA, November
2020

Soybean production in 2020
(million metric tons)

49 126 96.67

Yield losses caused by SDS 22% (4–46)1 and up
to 90%2

38% (30–40)3,4 5–15% on average, 20–80%
according to cultivar reaction,

weather conditions and
growth stage at the time of

infection5–8

1,2,5–8

SDS and cyst nematode
association importance

Not important/
unknown

Not important/
unknown

Important 9

Prevalent Fusarium species
causing SDS

F. tucumaniae10,11 F. brasiliense11 F. virguliforme10 10–14

Other Fusarium species reported
to cause SDSa

F. virguliforme12

F. brasiliense11

F. crassistipitatum13

F. tucumaniae10,11

F. crassistipitatum13
F. brasiliense14

Other Fusarium species
associated with SDSb

- F. paranaense sp.
nov.4

F. phaseoli14

Fusarium sp.14 c

Fusarium sexual stage Present Not reported Not reported 12,15

a In South Africa, a novel undescribed Fusarium sp. was isolated from soybean and caused root-rot and foliar SDS symptoms on soybean.16 In Japan,
Fusarium azukicola sp. nov. was isolated from azuki bean (Vigna angularis) and caused root-rot and typical SDS foliar symptoms when inoculated on
soybean.17
b Fusarium species isolated from soybean and other Fabaceae causing only root rot or root rot and foliar chlorosis, but not typical SDS symptoms on
soybean.
c Undescribed Fusarium sp. from FSSC clade 2 and strains in FSSC clade 5 and FSSC clade 11.
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in at least 10 states,47,48 but there are no reports of an association
between these two pathogens.
Due to the increase in human population and dietary changes,

food demand is expected to grow by 60% by the year 2050.49 In par-
allel, soil depletion, disease risk associated with monoculture, and
increasing costs due to fungicide resistance negatively impact food
production and affordability.50,51 Therefore, improvement in the effi-
ciency of management practices is needed to reduce the environ-
mental impact of agriculture and to increase food production. In
recent decades, new practices, such as reduced tillage strategies that
use less fuel and preserve organic carbon closer to the surface of the
soil, have been implemented in soybean production. However, no-till
or reduced tillage can cause an increase in disease pressure, espe-
cially of those diseases caused by soil-borne fungal pathogens.52

Also, the demand for sustainable agriculture calls for the develop-
ment of alternative strategies for the control of fungal diseases. In
particular, themanagement of SDS is limited due to the lack of highly
resistant cultivars and the availability of only a few fungicides.34,53

Therefore, the development of new tools for the sustainable man-
agement of SDS is required. Here, we discuss different strategies cur-
rently being tested for SDSmanagement, together with some recent
approaches developed for other fungal pathogens based on the use
of gene-editing techniques and RNA silencing mechanisms. Finally,
we evaluate the efficacy of these tools for the management of SDS
(Table 2).

2 CHEMICAL CONTROL
Infection of soybean root at early seedling stages allows the inva-
sion of xylem and phloem tissues by SDS-causing Fusarium

species and the translocation of the toxins that cause the above-
ground symptoms.47 Thus, delaying the pathogen infection by
seed-applied fungicides can be an effective way to reduce the
appearance of foliar symptoms. Recently, fluopyram (ILEVO, a suc-
cinate dehydrogenase inhibitor developed by BASF, Ludwigsha-
fen, Germany) was registered for the treatment of soybean seed
to manage SDS. This fungicide reduces the initial establishment
of the disease by inhibiting the early stages of the infection pro-
cess and has proved to be effective against F.v., F.b., and F.
t.21,54,55 In particular, Sjarpe et al.54 observed that fluopyram seed
or in-furrow treatment reduced SDS and increased yield relative
to the control. Moreover, these authors evaluated the effect of fluo-
pyram and other seed treatment and foliar products that have been
registered for management of SDS and found that fluopyram pro-
vided the highest level of control of root and foliar symptoms of
SDS among all the treatments.55 Although phytotoxicity has been
observed in cotyledons when fluopyramwas applied as a seed treat-
ment, likely causing a small reduction in plant population, fluopyram
seed treatment has an overall positive impact on soybean yield
under SDS disease pressure.56 A second active ingredient, pydiflume-
tofen (Saltro, another succinate dehydrogenase inhibitor developed
by Syngenta), was also recently introduced to the market. A prelimi-
nary report has indicated promising results.60 A third active ingredi-
ent, cyclobutrifluram (TYMIRIUM), presumed to be an inhibitor of
the mitochondrial electron transport chain complex II based on its
similarity in chemical structure to fluopyram,87 has been shown to
be effective for the control of SDS,61 but it is not yet commercially
available.62

Since the only two active ingredients currently available against
SDS to date have the same single-site mode of action, the risk of

Figure 1. Soybean sudden death syndrome disease cycle. Fusarium overwinters in soybean and corn residues asmacroconidia (stainedwith cotton blue)
in sporodochia on root surface (A), early symptoms of root infection (B), late symptoms of root infection (C), leaf and pod symptoms caused by fungal
toxins (D), reddish pigmentation is observed in basal stems at the end of the disease cycle (E), F. tucumaniae can overwinter as perithecia (F).

www.soci.org MC Rodriguez et al.

wileyonlinelibrary.com/journal/ps © 2021 Society of Chemical Industry. Pest Manag Sci 2021; 77: 4238–4248

4240

http://wileyonlinelibrary.com/journal/ps


fungicide resistance is high.88 Based on this, their use should be
carefully evaluated to avoid the appearance of resistance. In this
sense, sustainable management should consider and quantify
the disease risk to bypass the unnecessary use of fungicide
seed-treatment.89 Additionally, fluopyram and pydiflumetofen
fungicide sensitivities should be monitored to evaluate and
detect changes in the sensitivity to these compounds.57

3 CULTURAL CONTROL
Cold temperatures and wet conditions during the early reproduc-
tive stages of soybean increase SDS foliar symptoms.90,91 Agricul-
tural practices that reduce the exposure to wet and cool weather,
such as late planting, have been suggested to lower disease sever-
ity.65,92 However, late-planted soybean produces less yield
because of the shorter daylight hours during flowering and seed
filling and, hence, it is not recommended as an effective manage-
ment practice.58,92

Another factor influencing SDS development is the degree of
soil compaction affecting the root system of soybean plants. Com-
pacted soils tend to promote SDS development.63,93,94 Therefore,
any measure that allows for more aeration, porosity, and less soil
compaction will be beneficial. This will reduce soil moisture and
will avoid low soil temperatures, making the disease less
intense.64 In this regard, conventional tillage may be effective to
lower the incidence and severity of SDS foliar symptoms.63,64

However, other authors reported little or no effect of tillage on
the intensity of SDS.95 No-till systems usually depend on herbicide
applications, particularly glyphosate, the most widely used herbi-
cide worldwide since 2001.96 The effect of glyphosate on SDS
development is still unclear. A report indicated that glyphosate
can increase the incidence and severity of SDS foliar
symptoms,97 while others claimed that it has no effect.98-100

Finally, it seems that when assessing the impact of tillage, crop
rotation should also be taken into consideration.101,102

Fusarium species have several survival strategies such as resting
conidia or chlamydospores in soil, debris infestation, and infecting
a wide range of host plant species.5,103 Fusarium chlamydospores
can survive in the soil for many years.104 Crop rotation has been
proposed as an environment-friendly approach for soil-borne
pathogen management.105 Experiments testing short-term rota-
tions have obtained mixed results, without a clear trend. For
example, Pérez-Brandán et al.66 found that SDS incidence was sig-
nificantly higher under soybeanmonoculture than when soybean
was grown in rotation with maize. Other studies reported that the
current corn-soybean rotation is insufficient to reduce the risk of
damage by SDS,67,68 probably because F.v. can remain asymptom-
atic in maize tissues.106 These authors suggested that soil sup-
pressiveness is an important component that can impact the
SDS pathogens independently of short-term crop rotations. The
impact of long-term crop rotation practices on SDS severity has
also been evaluated.69,70 In particular, SDS incidence and severity
were evaluated in a 6-year study including a 3-year cropping sys-
tem that incorporated corn-soybean-oat + red clover and a 4-year
cropping system that included corn-soybean-oat + alfalfa-alfalfa
rotation compared with a 2-year cropping system consisting of
corn-soybean rotation.69 Interestingly, the diversification of the
cropping system reduced SDS incidence and severity and
increased soybean yield in 5 of 6 years compared with the
2-year system. In this study, the crop rotations were confounded
with fertility regime, andmay have been affected by the crop rota-
tion as well as the fertility regime used. Thus, the factors involved
in the reduction of SDS severity need further characterization.
Long-term rotations may help the development of suppressive-
ness and improvement of soil health, which is a key factor in
reducing the onset of SDS.38,66,73 The succession of crops also

Table 2. Efficacy of the management tools reported for SDS control

SDS management practices Efficacya Availabilityb Reference

Fungicide seed treatments
-fluopyram + USA 21,54-59

-pydiflumetofen + USA 60

-cyclobutrifluram ? c 61,62

Tillage ? ARG, BRA, USA 63,64

Late-plantingd + ARG, BRA, USA 65

Short-term crop rotations − ARG, BRA, USA 66-68

Long-term crop rotations + ARG, BRA, USA 69,70

Soil suppressiveness development + ARG, BRA, USA 38

Legume cover crops − ARG, BRA, USA 71

Other cover crops (grasses, Brassicaceae) + ARG, BRA, USA 72

Green manures + ARG, BRA, USA 73

Remote sensing methods + USA 74-76

Disease risk prediction models + USA 45,77

Plant nutrition + ARG, BRA, USA 37,78,79

Biological control + ARG, USA 80-85

Plant defense induction + under research 86-88

Host-induced gene silencing * under research 82,89

Genetic resistance + ARG, BRA, USA 83,86,90

a –, not effective; +, effective; ?, mixed results; *, expected results in the coming years.
b Management practices that are being used or are available.
c Registration and commercial release are planned for Latin America in 2021/2022.
d There is no conclusive evidence to recommend growers to sacrifice yield at late planting to combat SDS regarding early planting.
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influences the outcome of the rotation, since not all nonsoybean
crops are effective in reducing the soil population densities of
Fusarium species causing SDS. For example, when fescue was
incorporated in the rotation, F.v. density in soil was higher than
when wheat and sorghum were included.70 In connection with
this, other cultural practices that can impact SDS development
are growing cover crops and green manures. Cover crops are
increasingly being used as a soil conservation practice when
planted to improve soil structure, suppress the growth of weeds,
and protect the soil from erosion caused by wind and water. How-
ever, while several species of legumes used as cover crops, such as
Trifolium spp.,Medicago sativa, and Pisum sativum, are considered
hosts of F.v., other legumes, grasses, cereals, and Brassicaceae
cover crops, such as Vicia villosa, Camelina sativa, Brassica juncea,
Pennisetum glaucum, Secale cereale, Lolium multiflorum, Triticale
hexaploide, and Triticum aestivum, are nonhosts or poor hosts.71

Therefore, knowledge of the susceptibility of cover crops to
SDS-causing Fusarium species can help farmers choose which
species should be planted in field plots with a history of SDS epi-
demics. Similarly, recent research reported promising results
when green manure amendments were tested for SDS suppres-
sion in experimental plots in the greenhouse.72 Amendments of
oat and rye reduced root rot severity of soybean by 85% and
67%, respectively. However, these experiments involved a short
period, until the soybean plants reached growth stage V3
(approximately 40 days after plating), and thus long-term field
studies, involving rotations with different crops, are necessary to
evaluate the real impact of this practice.
Along with these agronomic measures, precision farming prac-

tices, such as the quantification of inoculum level and the deter-
mination of the disease risk, are being implemented in some
countries.45,74,75,89,107-109 For example, Roth et al.45 showed that
the quantification of F.v. abundance in soil at planting provides
valuable information that can be used to develop SDS risk predic-
tion models. This tool may allow farmers to minimize the risk of
yield loss, reducing treatment costs and the environmental
impact associated with chemical treatments by applying these
treatments only where they are required.89 Additionally, detect-
ing SDS-diseased patches using remote sensing methods is a
promising tool that would allow the identification of infected
fields and adapt the management strategy for the following
growing seasons in specific field-patches.74,107-109

4 PLANT NUTRITION
Soil-borne pathogens cause root rot symptoms that affect nutri-
ent uptake. Additionally, fungal toxins and enzymes with hydro-
lytic and catalytic activities can alter nutrient translocation and
utilization.110 Consequently, nutrition can influence crop dis-
eases and can help to reduce infection symptoms in plants.111

For example, high calcium (Ca) concentration in plant tissues is
correlated with resistance to root diseases caused by Fusarium
solani (F.s.).112 In addition, potassium fertilization has been
linked to a significant reduction in the incidence of many infec-
tious diseases.111 Nevertheless, while the addition of KCl to the
soil notably reduced the SDS severity, different potassium salts
had different effects on the growth of F.v.36 Therefore, the role
of nutrients such as K in disease increase or suppression must
be examined in conjunction with other mineral elements.
Additionally, sulfur (S) and micronutrients (MNs) such as Mn,

copper (Cu), boron (B), zinc (Zn), and molybdenum (Mo) have
been suggested as capable of priming systemic defense

responses.95,111 In particular, it was observed that treatment of
soybean plants with nanomaterials (NMs) of CuO, B, MoO3 or
ZnO significantly decreases the impact of SDS, causing a reduc-
tion of 17–25% in root rot severity.76 The direct effect of NPs over
the pathogen was tested in vitro, showing no effect. Therefore,
the authors suggest that the NPs may act through the increase
of plant defenses. Another recent investigation confirmed that
foliar applications of Cu-based NMs at the seedling stage signifi-
cantly reduce SDS symptoms.77 In addition, the authors demon-
strated that Cu treatment alleviates the increased expression of
antioxidant enzymes together with the changes in the fatty acid
profile, and induces the expression of a set of defense genes.
These investigations show that the use of Cu, Zn, B and Bo-based
NMs have the potential to be used for management of SDS.
Although these responses have been known for many years, it is
not yet clear how specifically these ions can trigger defense
responses in plants. Even thoughmany studies discuss the impact
of macro andmicronutrients on host-pathogen relationships, very
little research examines the role of nutrition in the control of SDS.

5 BIOLOGICAL CONTROL
Biological pesticides employ a wide range of beneficial microor-
ganisms (biological control agents, BCAs) that control or suppress
populations of plant pathogens, reducing plant disease inci-
dence.113 In recent years, biological pesticides have gained
increased interest due to their eco-friendly properties compared
to the use of chemical pesticides. Biopesticides are less prone to
generate tolerance in the target pathogens, are less harmful
to other beneficial microorganisms, and show an extended persis-
tence due to their natural reproduction capacity.114 Because of
these properties, various investigations have evaluated the use
of BCAs and their mode of action for the control of SDS. For exam-
ple, Trichoderma harzianum and two arbuscular mycorrhizal fun-
gus (AMF), Rhizophagus irregularis and R. intraradices, reduced
SDS severity caused by F.v.78-80 On the other hand, plant
growth-promoting bacteria (PGPB) also proved to be effective in
controlling SDS-causing Fusarium species. Pin viso et al.81

reported a significant F.t. and F.v. mycelial growth inhibition
caused by Bacillus subtilis, Pseudomonas fluorescens, and Chryseo-
bacterium vietnamense in vitro. In the case of Lysobacter enzymo-
genes strain C3, inoculated plants show increased biomass
compared to noninoculated plants.82 Regarding the mode of
action, both T. harzianum and Lysobacter enzymogenes strain C3
directly suppress F.v. mycelial growth.78,82 Additionally,
T. harzianum induces the activation of defense responses in soy-
bean plants, increasing the expression of defense-related genes
associated with the salicylic acid (SA) and jasmonic acid/ethylene
(JA/ET) pathways. The up-regulation of SA and JA defense-related
genes was also detected in the soybean/AMF/F.v. interaction,105

highlighting the importance of these defense pathways in the
control of SDS. For the R. intraradices/soybean interaction, it was
proposed that AMF-mediated root growth may alleviate SDS
symptoms.79 Altogether, these studies show that biological con-
trol may be an effective tool for the management of SDS,
although additional studies should be performed to evaluate
the efficacy of these treatments in field conditions.

6 PRIMING OF PLANT DEFENSES
Priming is an adaptation mechanism that increases plant defense
responses after exposure to abiotic or biotic stimuli. Following the
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stimulus perception, induced defense mechanisms are acti-
vated.115,116 In general, after the pathogen perception by plant
cells systemic acquired resistance (SAR), a long-lasting broad-
spectrum systemic defense response, is induced.117 Generally,
priming is triggered by molecules produced by pathogens
(PAMPs, from pathogen-associated molecular patterns) that are
perceived by plants through appropriate protein receptors. Typi-
cal fungal PAMPs include chitosan, a natural biopolymer com-
posed of D-glucosamine and N-acetyl-D-glucosamine that is
found in fungal cell walls118 and generates an immune response
in plants called chitosan triggered immunity (CTI).119 It has been
shown that chitosan delayed SDS symptom expression when
applied preventively on soybean leaves. Interestingly, chitosan
treatment increased the level of chitinase activity in fungal
infected leaves, suggesting that it can induce defense responses
through CTI against SDS-causing Fusarium species in soybean
plants. Additionally, chitosan effectively inhibited the in vitro
growth of Fusarium.120 Priming can also be induced by treatment
with defense hormones or some natural secondary metabolites.
The effect of salicylic acid (SA) treatment in the induced resistance
against F.s. has been characterized. Pretreatment of soybean
seedlings with 200 μmol L–1 of SA reduced the disease symptoms
caused by F.s. and the relative levels of fungal biomass in soybean
seedlings 3 days post-inoculation. Moreover, SA treatment signif-
icantly increased the activity of antioxidant enzymes and reduced
the levels of malondialdehyde and hydrogen peroxide. Addition-
ally, the level of SA-responsive genes in fungal infected seedlings
was increased compared to nontreated infected seedlings. These
results indicate that SA plays a role in the defense against F.s., alle-
viating SDS symptoms.121 Similarly, the efficacy of ethephon, an
ethylene inducer, was evaluated by Abdelsamad et al.122 This
compound was able to lower SDS foliar symptoms compared
to control treatments in both susceptible and SDS-resistant
cultivars. Moreover, ethephon treatment induced the ethylene
biosynthesis genes, ethylene synthase and ethylene oxidase,
and defense response genes like pathogenesis-related pro-
teins, basic peroxidase (IPER), chalcone synthase, and
defense-associated transcription factors. In particular, IPER
was highly upregulated 24 h after ethephon application com-
pared to the control treatment. Although the precise role of
this enzyme was not characterized, additional studies may
shed light on its role during F.v. infection. Finally, levels of pipe-
colic acid (Pip), a nonproteinaceous product of lysine catabo-
lism that can induce SAR,123 were increased in the xylem sap
of leaves of F.v. infected plants.124 Thus, this compound may
be implicated in the defense response against SDS. Further
studies evaluating the L-Pip exogenous effect are needed to
clarify the role of this compound in the defense response
against F.v. Altogether, these results indicate that treatments
with natural compounds such as plant hormones and PAMPs
could be a promising sustainable approach for partial control
of SDS.
Other defense inductors like phosphites (PO3

3−) may be effec-
tive for the priming of plant defenses against SDS. Phosphites
induce transcriptional changes that primes plants to defend
themselves against several fungal pathogens, as was demon-
strated in the case of Phakopsora pachyrhizi in soybean. Particu-
larly, phosphites highly induced the expression of the enzyme
phenylalanine ammonia-lyase in soybean plants125 which was
also up-regulated in a SDS partially resistant soybean
cultivar,126 and thus they could be promising compounds for
the activation of defense responses against FSSC. Additionally,

manganese phosphite inhibited F.v. and F.t. mycelial growth
in vitro.127

7 HOST-INDUCED GENE SILENCING
Host-induced gene silencing (HIGS) refers to the strategy that
employs plant produced sRNAs (small RNAs) to silence specific
genes in a nonviral pathogen to generate protection against path-
ogens. Hairpin RNA structures can be introduced into the plant
genome by transgenesis to trigger the silencing mechanism.
Alternatively, a nontransgenic strategy, named spray-induced
gene silencing (SIGS), involves the exogenous application of
double-stranded RNAs (dsRNAs) or small interfering RNAs (siR-
NAs) to plants. In recent years, HIGS and SIGS have been pro-
posed as an emerging approach to control filamentous fungi
such as F. graminearum, F. oxysporum, F. verticilloides, and
F. culmorum.84,128 However, this approach has not yet been
exploited against SDS-causing Fusarium species. Considering
the potential of this technique against filamentous fungi, here
we briefly emphasize some relevant aspects for the selection of
putative targets that could confer resistance against members
of the FSSC. Also, we discuss the advantages of this technique
in the light of sustainable management.
To design an effective strategy for SDS control by HIGS, the

selection of a suitable pathogen gene that will be targeted by
sRNAsmust be very well established. Its role in pathogenesis must
be considered to avoid those target genes that are redundant for
the infection process. Also, it is important to prevent the off-target
silencing of host plant or beneficial microorganism genes.84

Genes involved in protein transport, cell differentiation, conidia-
tion, regulation of primary metabolism, and modulation of
plant-hormone pathways are generally essential for pathogenic-
ity, making them good targets for silencing. Moreover, cell wall-
degrading enzymes (CWDEs) are induced during the F.v. late
infection phase110 and are required for the invasion of plant
tissues,129 and hence could be interesting targets for HIGS.
Despite the impact of SDS on soybean yield, only a few F.v. genes
involved in the pathogenesis process have been characterized to
date. FvSTR1, a striatin orthologue in F.v., plays a role in asexual
development and virulence.130 Interestingly, the disruption of
FvSTR1 resulted in complete loss of virulence in F.v. in a green-
house experiment, showing that this gene could be a promising
target for the HIGS strategy against SDS-causing Fusarium species.
The sucrose nonfermenting protein kinase 1 gene (FvSNF1) could
also be a target for HIGS against SDS. This gene codifies for a key
component of the glucose de-repression pathway and its disrup-
tion abolishes the expression of the galactose oxidase gene.
Moreover, Fvsnf1 mutants exhibit a reduced expression of
CWDE-coding genes in contrast to the wild-type strain and are
severely impaired in their ability to cause SDS on challenged soy-
bean.131 Additional identification of new fungal genes involved in
pathogenesis will increase the repertoire of HIGS targets and
therefore allow the successful implementation of this strategy
against SDS.
HIGS has some advantages over the use of fungicides for SDS

management since it can avoid the off-target effects against ben-
eficial microorganisms through the careful selection and design
of the fungal targets. Furthermore, the scarce availability of fungi-
cide target molecules increases the risk of selecting resistant
strains. The HIGS strategy is advantageous since it is highly versa-
tile in terms of the availability of target RNAmolecules in the path-
ogen, hence the appearance of HIGS-resistant strains could be

Current recommendations and novel strategies www.soci.org

Pest Manag Sci 2021; 77: 4238–4248 © 2021 Society of Chemical Industry. wileyonlinelibrary.com/journal/ps

4243

http://wileyonlinelibrary.com/journal/ps


easily overcome.84 Finally, the use of SIGS can replace the employ-
ment of transgenic crops and in this way bypass the regulatory
process required for their approval.

8 BREEDING FOR SDS RESISTANCE
Tolerant cultivars are the most effective way of managing SDS.
Despite the efforts of breeding programs, to date onlymoderately
resistant genotypes have been identified which can exhibit SDS
foliar symptoms under favorable environmental conditions. In
recent years, several loci and SNPs involved in tolerance against
SDS have been identified through quantitative trait loci (QTL)
and genotyping-by-sequencing (GBS) analysis, contributing to
marker-assisted breeding programs.34 These findings have been
extensively summarized in a previously published review.124 Con-
sidering that the development of improved cultivars by conven-
tional breeding methods takes several years, new breeding
techniques (NBTs) have recently appeared as a faster strategy that
allows breeders to generate improved varieties in a few genera-
tions. NBTs comprise a wide range of techniques that include
genome editing, cisgenesis, and intragenesis. Occasionally,
changes to DNA sequences introduced by these techniques can
be indistinguishable from those that can occur by conventional
breeding and therefore the regulatory process may be short com-
pared to the time required for the approval of transgene breeding
cultivars.132 The use of NBTs involves the identification of single
major resistance genes or the discovery of disease-susceptibility
loci. Here, we review some recent works that characterize soybean
genes whose modification may enable the development of novel
SDS resistance cultivars through NBTs.
Two single major genes conferring SDS resistance have been

characterized.86,133 These authors found a set of soybean genes
whose expression is down-regulated following F.v. infection and
hypothesized that F.v. suppresses the transcription of these genes
to induce host susceptibility.86 In agreement with this, the overex-
pression of two of these genes, ankyrin repeat-containing protein
(GmARP1) and a plasma membrane protein named Glycine max
disease resistance 1 (GmDR1), were shown to enhance resistance
against F.v. in transgenic soybean lines. Additionally, the overex-
pression of GmDR1 confers resistance against a broad spectrum
of pathogens such as the soybean cyst nematode, spider mites,
and soybean aphids, presumably through the recognition of
PAMPs.133 Interestingly, both defense genes, GmARP1 and
GmDR1, were overexpressed under root-specific and infection
inducible soybean promoters and thus these cultivars could be
considered intragenic since soybean genetic elements were
employed for the design of expression constructs. Therefore,
these findings show that the overexpression of single major
genes under endogenous promoters can be an effective strategy
to provide resistance against SDS. Nevertheless, more research is
needed at the field level to evaluate the durability and applicabil-
ity of resistant-modified plants.
In recent years, the appearance of genome editing (GE) tech-

niques such as the CRISPR-Cas system has made it possible to
improve plant tolerance to biotic stress. This system is more
adaptable and cheaper than other GE techniques and enables
either DNA mutation or DNA base editing, expanding its uses.129

CRISPR/Cas can be employed to reduce the susceptibility to
fungal pathogens by disrupting the expression of susceptible genes
(S genes) that are involved in plant sensitivity to phytotoxins.134,135

Based on this, the study of S loci against SDS has gained relevance
in the last years. In the searching for S loci, two soybean STAY-GREEN

genes (GmSGR1 and GmSGR2) were found to be associated
with the resistance to SDS foliar chlorosis.130 However, soy-
bean plants with a double mutation of GmSGR1 and GmSGR2
stayed green but displayed necrosis and reduced photosyn-
thesis in response to F.v. phytotoxins. These detrimental agro-
nomic traits make it impractical to use these S loci for the
improvement of soybean tolerance against SDS. Further char-
acterization of not deleterious S loci may be an effective strat-
egy in the control of SDS. In this regard, the analysis of
FvTox1-induced transcriptional changes in soybean leaves
may help characterize additional S loci involved in FvTox1 rec-
ognition and to develop new SDS tolerant cultivars.136-139

Future research on this topic, combined with the development
of precise and reproducible SDS phenotyping methods,85 will
favor the generation of new tools for the management of SDS.

9 CONCLUSIONS AND FUTURE OUTLOOK
Innovative technologies that emerged in recent years, such as
gene editing and HIGS, together with a better understanding of
the FSSC/soybean interaction, can be exploited to develop new
sustainable management strategies for the control of SDS. The
adoption of these tools is driven by the lack of efficient manage-
ment options for the control of this disease. In particular, the cur-
rent management options for SDS are limited because no
completely resistant cultivars are available. Additionally, only
two fungicide seed treatments, fluopyram and pydiflumetofen,
are commercially available for the control of SDS. There is also
an increased risk of fungicide resistance as these two molecules
have the same specific target site. Moreover, fungicides generally
impact both pathogenic and nonpathogenic fungi, and conse-
quently tend to reduce the population of beneficial microorgan-
isms that help to avoid soil-borne pathogen epidemics. While
efforts to develop resistant and tolerant soybean varieties con-
tinue, all available management measures should be applied in
an integrated approach to control the incidence of SDS. In the
present review, we discuss currently used strategies for SDS con-
trol. In addition, we propose new potential approaches that can
be implemented. It is expected that in the coming years new strat-
egies based on recent technologies (HIGS, CRISPR, the use of nano
micronutrients) will expand the repertoire of effective tools for the
management of SDS. Finally, the implementation of each of these
tools should be part of an integrated management strategy for
the control of SDS.
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