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Abstract. We introduce a class of one-dimensional linear kinetic equations of Boltz-
mann and Fokker–Planck type, describing the dynamics of individuals of a multi-agent
society questing for high status in the social hierarchy. At the Boltzmann level, the
microscopic variation of the status of agents around a universal desired target, is built
up introducing as main criterion for the change of status a suitable value function in
the spirit of the prospect theory of Kahneman and Twersky. In the asymptotics of
grazing interactions, the solution density of the Boltzmann type kinetic equation is
shown to converge towards the solution of a Fokker–Planck type equation with vari-
able coefficients of diffusion and drift, characterized by the mathematical properties of
the value function. The steady states of the statistical distribution of the social status
predicted by the Fokker–Planck equations belong to the class of Amoroso distributions
with Pareto tails, which correspond to the emergence of a social elite. The details of
the microscopic kinetic interaction allow to clarify the meaning of the various param-
eters characterizing the resulting equilibrium. Numerical results then show that the
steady state of the underlying kinetic equation is close to Amoroso distribution even
in an intermediate regime in which interactions are not grazing.

Keywords. Amoroso distribution; Generalized Gamma distribution; Log-Normal dis-
tribution; Kinetic models; Fokker–Planck equations.
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1. Introduction

More than one century ago, the economist Vilfredo Pareto [67, 68] observed that human
societies tend to organize in a hierarchical manner, with the emergence of social elites. He
further noticed that social mobility in this hierarchical state appears to be higher in the middle
classes than in the upper and lower part of the hierarchy. The correctness of Pareto’s social
analysis has been recently investigated in a number of studies dealing with the modeling of the
dynamics of social networks in which individuals quest for high status in the social hierarchy
[2, 53, 54, 80]. There, the social status of individuals is usually ranked according to a certain
measure strongly related to centrality in the society. Since individuals in top ranked positions
enjoy social advantages compared to those with low rankings, individuals are motivated to
climb the social ladder to reach a better rank [27].

These models captured at a numerical level some key ingredients enough to reproduce the
main characteristics predicted by the sociological analysis of Pareto [67, 68]. In particular
the numerical simulations of the dynamics driven by the models introduced in [2, 27] led
to conclude that, in accord with Pareto’s observations, the hierarchical state reached by
individuals in the social network looking for high status is very stable.
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By contrast with the numerical simulations that form the core of most previous studies, we
show that the analytic techniques of statistical mechanics are ideally suited to the study of
the phenomenon of social climbing, and can shed much light on its structure and behavior. In
particular, by resorting to the well-established mathematical tools of kinetic theory of multi-
agent systems [65], we pursue an almost entirely analytic approach. Starting from a suitable
description of the microscopic behavior of agents, we build a class of one-dimensional linear
kinetic equations of Boltzmann and Fokker–Planck type, suitable to describe the dynamics of
individuals of a multi-agent society tending for high ranking in the social hierarchy, in which
both the properties of the transient and of the steady state are explicitly computable. This
approach is coherent with the classical kinetic theory of rarefied gases, where the formation
of a Maxwellian equilibrium in the spatially uniform Boltzmann equation is closely related to
the microscopic details of the binary collisions between molecules [24, 44].

The methods and results of this paper are part of the numerous studies dealing with
the modeling of social and economic phenomena in a multi-agent system. In economics,
this modeling attempted to justify the genesis of the formation of Pareto curves in wealth
distribution of western countries [26, 28, 29, 32, 34, 43, 73], and to share light on the reasons
behind opinion formation [11, 12, 13, 14, 16, 17, 18, 30, 35, 39, 40, 41, 42, 74, 76].

Due to the human nature of social phenomena, these investigations naturally included
specific behavioral aspects of agents in the modeling. In the field of collisional kinetic theory
a pioneering approach has been proposed in [61] to model price formation of a good in a
multi-agent market. The kinetic model of Boltzmann type describes the dynamics of two
different trader populations, playing different rules of trading, including the possibility for
agents to move from one population to other. The kinetic description, inspired by the well-
known Lux–Marchesi model [59, 60] (cf. also [55, 56]) included in the mechanism of trading
the opinion of traders [76], and behavioral components of the agents, like risk’s perception.
This last component has been done, by resorting to the prospect theory by Kahneman and
Twersky [50, 51], in terms of a suitable value function.

The analysis of [61] enlightened the importance of modeling kinetic interactions by taking
into account aspects of human behavior [7, 8, 9, 10], as pioneered by Zipf in [81] (a recent
collection of contributions on this topic can be found in two special Issues of this journal
[5, 6]). The possible connections between the kinetic modeling of human phenomena and
their description in terms of value functions, has been recently developed in [45], where the
mathematical translation of this relationship justified at a microscopic level first the mecha-
nism of formation of the service time distribution in a call center, and subsequently a number
of other social phenomena which lead to a stationary state in the form of a lognormal distri-
bution [46].

The leading idea in [45] is based on a general principle which can be easily verified in a
number of social activities of agents in which one identifies the possibility of a certain addiction
[33, 77].

The forthcoming kinetic modeling follows along the lines of the recent approaches of [33, 45,
46], where a relevant number of phenomena involving measurable quantities of a population
and fitting suitable probability distributions (in particular log-normal distribution) was shown
to be consequence of a certain human behavior. The list of social phenomena to which the
kinetic description furnishes a convincing explanation of the reasons behind the formation
of a certain statistical profile is remarkable. Furthermore, the kinetic approach of [45, 46],
recently extended to addiction phenomena [33, 77], gives a unified view to various social
aspects, previously treated resorting to different methods. The list include the distribution of
body weight [22], women’s age at first marriage [69], drivers behavior [47], the level of alcohol
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consumption [52, 70], or, from the economic world, the level of consumption in a western
society [3], the size of cities [4], the length of call-center service times [21].

In agreement with the modeling assumption of [46], the microscopic agent’s behavior is
expressed by assuming that the agents change their state aiming to approach an optimal
target, and that this change requires an asymmetric effort, depending on whether the current
state is above or below the optimal one. On the basis of the prospect theory by Kahneman
and Tversky [50, 51], the elementary changes of state of agents depend on a suitable value
function expressing this asymmetry in the whole range of possible values. In the situation
leading to the log-normal or other rapidly decaying probability densities, the asymmetry of
the value function translates at the mathematical level a fundamental property: it is easier
to reach the optimal target starting from below, than to approach it from above.

To clarify this idea through a simple example, an asymmetry of this type is present when
looking at body weight of individuals characterized by common age and sex, where the desired
target can be identified in the mean ideal weight. It is clearly easier to reach the ideal weight
starting from lower values, since this implies no restrictions on eating, while it is hard to
reduce the weight when above the ideal target, since this requires to respect a certain diet.

In analogy with the previous phenomena, the analysis of social climbing leads to conclude
that the microscopic dynamics still contains a marked asymmetry, which, however, for low
values of the social rank, works in the opposite direction. Indeed, while it is clear that agents
tend as before to improve their social status, trying to approach an optimal target that can
be identified in a certain level of well-being, it is usually hard to exit from the very low zone,
since this implies to possess, in addition to personal skills and competences, a certain amount
of financial resources, possibility of access to good schools, and other facilities.

With respect to the choice made in [46, 77], this asymmetry will be expressed through a
new class of value functions, still obtained from the classical ones proposed by Kahneman and
Tversky [50, 51], which now express Pareto’s analysis about social mobility: the microscopic
variations are higher for agents in the middle class than for agents in the upper and lower
part of the hierarchy. The new value functions are used to built the microscopic interaction
suitable to describe the elementary variation of the social rank, and to study in this way the
phenomenon through the variation in time of the density f = f(w, t) of agents in the system
with social rank measured by w > 0, at time t ≥ 0.

As usual in the kinetic setting [37], the change of f due microscopic interactions generates a
linear kinetic equation of Boltzmann type for the density of agents, that will be subsequently
studied in the asymptotic regime of grazing effects [79]. The grazing regime describes the
situation in which a single interaction produces only a very small change of the variable w.
In this regime, the variation of density of the social rank of the agent’s system is driven by a
partial differential equation of Fokker–Planck type. If we denote by g = g(w, t) the density of
agents which have a social rank equal to w at time t ≥ 0, this density is solution of a linear
Fokker–Planck equation with variable coefficients of diffusion and drift, given by

(1.1)
∂g(w, t)

∂t
=

{
σ

2

∂2

∂w2

(
w2+δg(w, t)

)
+
µ

2

∂

∂w

[
1

δ

(
1−

( w̄L
w

)δ)
w1+δg(w, t)

]}
.

In (1.1) w̄L represents the target value of social rank that agents tend to reach, while σ, µ
and δ are positive constants closely related to the typical quantities of the phenomenon under
study, satisfying further bounds imposed by the physical conditions on the value function
in the microscopic interaction. In particular 0 < δ ≤ 1. The equilibrium density of the
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Fokker–Planck equation (1.1) is given by the Amoroso-type distribution [1]

(1.2) g∞(w) = g∞(w̄L)
( w̄L
w

)2+δ+γ/δ

exp

{
− γ
δ2

(( w̄L
w

)δ
− 1

)}
.

In (1.2) γ = µ/σ, where σ and µ are the coefficients of the diffusion (respectively of the drift)
terms of the Fokker–Planck equation (1.1). This asymptotic procedure was used in [31, 36]
for a kinetic model for the distribution of wealth in a simple market economy subject to
microscopic binary trades in presence of risk, showing formation of steady states with Pareto
tails, in [78] on kinetic equations for price formation, and in [76] in the context of opinion
formation in presence of self-thinking. A general view about this asymptotic passage from
kinetic equations based on general interactions towards Fokker–Planck type equations can
be found in [37], where also an exhaustive discussion about the large-time behavior of the
solution to equations (1.1) is presented. Other relationships of this asymptotic procedure
with the classical problem of the grazing collision limit of the Boltzmann equation in kinetic
theory of rarefied gases have been recently enlightened in [45].

Assuming that the steady state distribution (1.2) is taken of unit mass, the equilibrium
state is a probability density belonging to the class

(1.3) f∞(w; θ, α, β) =
1

Γ(α)

∣∣∣∣βθ
∣∣∣∣ (wθ )αβ−1

exp
{
− (w/θ)β

}
,

for non-negative values of w and positive values of the parameters α, θ and β 6= 0. When β > 0,
the function (1.3) was considered as a generalization of the Gamma distribution by Stacy [75],
and includes the familiar Gamma, Chi, Chi-squared, exponential and Weibull densities as
special cases. Generalized Gamma distributions, also known as Amoroso and Stacy-Mihram
distributions [1, 48], are widespread in physical and biological sciences [49, 57, 58], as well as
in the field of social sciences [20, 33].

Note that the density (1.2) corresponds to the choice of the negative value β = −δ in (1.3).
Negative values of β lead to distributions with only a limited number of moments bounded,
and represent, among others, a careful approximation of the statistical distribution of wealth,
in accord with Pareto’s discovery of fat tails in this case [66]. In particular, if δ = 1 the
function (1.2) coincides with an inverse Gamma distribution.

The choice of β = −1 establishes a strong connection between the steady distributions of
social rank, and, respectively, of wealth. As a matter of fact, this connection is evident if
we consider that the social status of individuals is closely related to their wealths. However,
the mechanism of wealth formation in a multi-agent system has been modeled at a kinetic
level in terms of binary trades. Beside the kinetic models of Boltzmann type introduced in
recent years to enlighten the formation of an unequal distribution of wealth among trading
agents [25, 65], a Fokker–Planck type equation assumed a leading role. This equation, which
describes the time-evolution of the density f(t, w) of a system of agents with personal wealth
w ≥ 0 at time t ≥ 0 reads

(1.4)
∂f(w, t)

∂t
=
σ

2

∂2

∂w2

(
w2f(w, t)

)
+
λ

2

∂

∂w
((w −m)f(w, t)) .

In (1.4), σ, λ, and m denote positive constants related to essential properties of the trade rules
of the agents.

The Fokker–Planck equation (1.4) has been first obtained by Bouchaud and Mézard [19]
through a mean field limit procedure applied to a stochastic dynamical equation for the wealth
density. Then, the same equation was derived in [32] by resorting to an asymptotic procedure



SOCIAL CLIMBING AND AMOROSO DISTRIBUTION 5

applied to a Boltzmann-type kinetic model for binary trading in presence of risk. Note that
the steady state of equation (1.4) is an inverse Gamma density.

The Boltzmann-type equation leading to (1.4), was assumed to satisfy the strong hypothesis
of Maxwellian molecules. This choice has been critically revisited in [38], to give a more
coherent (from the economical point of view) interaction kernel. There, the choice of a variable
kernel gave in the grazing limit a Fokker–Planck equation different from (1.4), that while
possessing an inverse Gamma density as steady state, allowed to prove that the solution is
converging to equilibrium at exponential rate, a result that is missing for the solution to (1.4).
The new Fokker–Planck equation considered in [38] is

(1.5)
∂f(w, t)

∂t
=
σ

2

∂2

∂w2

(
w2+νf(w, t)

)
+
λ

2

∂

∂w
((w −m)wνf(w, t)) ,

where 0 < ν ≤ 1 is a constant parameter related to the intensity of the frequencies described
by the kernel in the Boltzmann equation. The Fokker–Planck equation (1.5) interpolates
between equation (1.4) (ν = 0) and equation (1.1) (ν = δ = 1).

The forthcoming kinetic modeling is not restricted to the sociological aspect of the formation
of elites, but it can be easily adapted to describe the distribution of knowledge in a society
[44, 64], where the elites in this case can be identified for example in the members of the
scientific academies, or in the description of social climbing in sports with a large participation,
such as the football game, where the elites correspond to the footballers playing in the best
clubs of a country. This last example is particularly interesting since one can be easily access
data, and furthermore allows to understand in a clear way the main assumptions leading to
the general kinetic description.

In details, in the forthcoming Section 2 we will present on the example of social climbing in
football activity, the main universal assumptions modeling the microscopic kinetic interaction,
and the consequent interaction kernel. Then, in Section 3, we discuss from a different point of
view the classical description of the trading interaction in the linear kinetic model for wealth
distribution leading to the Fokker–Planck equation (1.4), which is now rewritten in terms of
the value function formulation adopted in [45]. This preliminary discussion allows to clarify the
main differences between the kinetic models for wealth distribution based on linear trades, and
the present one for social climbing, mainly motivated by social reasons. This will be presented
in Section 4, where we describe a multi-agent system, in which agents can be characterized
in terms of their social rank, measured in terms of a certain unit, and subject to microscopic
interactions which contain the microscopic rate of change of the value of their rank, according
to the previous general principle. The relevant mechanism of the microscopic interaction is
indeed based on a suitable value function, in the spirit of the analysis of Kahneman and
Twersky [50, 51], which reproduces at best the asymmetries present in the human behavior
in this situation. Then in Section 5 we will show that in a suitable asymptotic procedure
(hereafter called grazing limit) the solution to the kinetic model tends towards the solution
of the Fokker-Planck type equation (1.1).

Once the Fokker–Planck equation (1.1) has been derived, some numerical examples will be
collected in Section 6, together with a detailed explanation of the relevant mechanism which
leads to the typical microscopic interaction in terms of the value function. The numerical
experiments will put in evidence that the time behavior of both the kinetic model and its
Fokker–Planck asymptotics is very similar, and that the steady states are very close each
other even in for moderate values of the grazing parameter.
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Figure 2.1. Distribution of football players in Italy from youth schools to
top clubs, 2017-2018 census.

2. The example of football activity

The social hierarchy represents a fundamental aspect of life observed in many different
animal species, including insects, mammals and birds. Depending on the situation, a hierarchy
may be established in different manners but it often results in a ranking of the animals in
a group and, its importance is such that can influence the quality of life of the entire group
[71]. It is clear that human beings are far from being unaffected from this phenomenon. On
the contrary, in human societies, one can observe in everyday life, an enormous number of
examples which could be possibly, in last instance, be related to a construction of a hierarchical
structure. At this subject, Figure 2.1 shows the distribution of football players in Italy starting
from the young player academies up to professionalism. In this plot, Top players are considered
those players belonging to the top five Italian clubs. The image is produced using the data
reported in Table 2 extrapolated from the Annual Report of the National Football Italian
Association (FIGC)1.This table shows the number of Italians playing per categories together
with the inverse cumulated number of people belonging to each class. The first level regards
children starting to play football, the second one people that play independently on the age at
different amateur levels, while the third level contains the young professionals (referred to as
semi-professionals). In the fourth class, we extrapolated the estimated number of professional
players coming from the Italian sport Academies. This datum has been obtained eliminating
the number of players from Foreign countries from the total number of registered professionals
playing in the Italian leagues at the moment of the survey. Finally, the last level (the football
elite) gives the number of estimated players coming from the Italian Academy sector arriving
in the top five Italian clubs. This last information has been extrapolated considering the
average number of players in each club and discarding the number of foreign practitioners.
The Figure is obtained by reporting the relative number of players belonging to each category
versus the inverse cumulative distribution, which is intended as the measure of the social
position in the football society, in logarithmic scale. One can observe that the empirical
inverse cumulated distribution exhibits tails. A similar Figure, concerning the distribution
of school knowledge in Italy, has been obtained in [44] using the data relative to the 2011
census. In this case, the knowledge elite was represented by members of the historical scientific
academies.

The example of climbing in football activity can serve as a prototype case to understand
and justify the main rules of both the personal and social behavior of players characterizing

1https://www.figc.it/it/federazione/federazione-trasparente/reportcalcio/
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Level Italians (%) Cumulated values (%)
Youth players 673555 63.6% 1054791 100%
Amateurs 370540 35.1% 381236 36.14%
Young professional 9480 0.9% 10696 1.014%
Professional 1136 0.108% 1216 0.1152%
Top players 80 0.007% 80 0.007%
Totals 1054791 100

Table 2.1. Distribution of the players for level of activity. Data from FIGC1

the kinetic model described in the rest of the paper. Inherently to the football activity,
progress into the social ladder can be undoubtedly identified in playing for the best clubs of
the first Italian league. Referring to players at any level to as agents (borrowing this term
from classical microscopic modeling approaches), it is reasonable to assume that improving
in the practice of football (or any sport in general) can be reached only through a very large
number of small steps: everyday trainings routine for example. In this context, an agent tries
to reach an optimal target identified as the level in which a young football player aims to
play when becoming an adult. In this long process, it is also clear that while it is hard to
improve at the beginning, progresses become faster as the young players grow and learn how
to practice. This point of view shares similarities with the common perception that people
belonging to low social classes have low chances to improve their status for lack of means
and thus often remain in the so-called bottom of the hierarchy. In the same way, animals
in dominant hierarchies do not consider themselves sufficiently strong to attempt any climb
and so they simply give up. Coming back to the football example, it is considered usually
hard to overcome the low skills level zone in football, since this implies to possess, in addition
to inbred skills, a certain possibility of access to good instructors and facilities. Trying to
make quantitative the previous observations, we will in the next part of the paper introduce
a variable w identifying the social status in a society (the football skills in our example).
In the same way, as it will be made clear next, we will introduce a value w̄ identifying the
limit below which an agent does not expect to be able to climb the social ladder. This point
will characterize a change in the way in which the agent will be able to adjust its social
status: passed this value his improvements will be faster. In the same way, many football
players consider reaching a certain level in the league enough satisfactory for them. This is
also analogous to what happens to people satisfied of obtaining a certain job not questing for
changes. In order to take into account this second fact, we will define then with w̄L > w̄ this
perceived level which is assumed, at first glance, equal for all agents. The other ingredients
which completely defines the dynamic under study are the will of football players to improve,
as well as, a certain dose of uncertainty depending on external factors which cannot in general
be controlled. All these aspect will be condensed in a so-called value function Ψ in the sense of
Kahneman and Twersky.[50] Finally, regarding players which already reached the professional
level, we expect for them as natural to be difficult to descend back to lower levels apart if
rare circumstances happen. In the next Section, we will discuss the analogies of the proposed
model with more classical models describing wealth distribution [65].
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3. Learning from kinetic theory of wealth distribution

The brief discussion of Section 2 illustrates the main reasons which can justify the profile
of Figure 2.1. These reasons need now to be translated at a mathematical level in a model,
in order to verify if, in consequence of these rules, this steady behavior appears.

Among other approaches, the description of social phenomena in a multi-agent system can
be successfully obtained by resorting to statistical physics, and, in particular, to methods
borrowed from kinetic theory of rarefied gases. The main goal of the mathematical modeling
is to construct master equations of Boltzmann type, usually referred to as kinetic equa-
tions, describing the time-evolution of some characteristic of the agents, like wealth, opinion,
knowledge, or, as in the case treated in this paper, of agent’s ranking in the social ladder
[23, 25, 33, 63, 65, 72].

The building block of kinetic theory is represented by the details of microscopic interactions,
which, similarly to binary interactions between particles velocities in the classical kinetic
theory of rarefied gases, describe the variation law of the selected agent’s trait. Then, the
microscopic law of variation of the number density consequent to the (fixed-in-time) way of
interaction, is able to capture both the time evolution and the steady profile.

In economics, the microscopic interactions attempted to simulate the trading activity, aim-
ing to justify in this way the formation of Pareto curves in wealth distribution of western
countries [26, 28, 29, 32, 34, 43, 73]. The qualitative results obtained in [36, 62] then showed
the possibility that Pareto tails could be obtained in consequence of the linear binary trades
between agents introduced in [32]. For a better understanding of the reasons leading in gen-
eral to the formation of Pareto tails, in the rest of this section we will give a new insight to
this linear trading.

We consider a system of agents characterized by their wealths. To fix notations, the amount
of wealth will be denoted by v ≥ 0, and measured with respect to some unit. As usual, the
population is considered homogeneous with respect to the way of trading. In addition, it is
assumed that agents are indistinguishable [65]. This means that at any instant of time t ≥ 0
agents in the system are completely characterized by the amount of their wealths. Conse-
quently, the statistical distribution of wealth of the agents system will be fully characterized
by the unknown density f = f(v, t), of the wealth v ∈ R+ and the time t ≥ 0.

The precise meaning of the density f is the following. Given the system of traders, and
given an interval or a more complex sub-domain D ⊆ R+, the integral∫

D
f(v, t) dv

measures the amount of traders which are characterized by a wealth v ∈ D at time t ≥ 0. It
is assumed that the density function is normalized to one, that is for all t ≥ 0

(3.6)
∫
R+

f(v, t) dv = 1.

The change in time of the density is due to the fact that agents of the system are subject
to trades, and continuously upgrade their amounts of wealth w at each trade. To maintain
the connection with classical kinetic theory of rarefied gases, it is usual to define elementary
interaction a single upgrade of the quantity v.

Following [38], we will limit ourselves to consider a linear interaction, which while taking
into account all the trading aspects of the original nonlinear model considered in [32], and
giving in the asymptotics of grazing collisions the same Fokker–Planck equation, it is easier
to handle. According to the binary trade introduced in [32] the elementary change of wealth
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v ∈ R+ of an agent of the system trading with the market is the result of three different
contributes

(3.7) v∗ = (1− ελ)v + ελv̄ + ηε v.

In (3.7) λ is a positive constant, while ε � 1 is a small parameter that adjusts the intensity
of the exchange, and guarantees that ελ � 1. The first term in (3.7) measures the wealth
that remains in the hands of the trader who entered into the trading market with a (small)
percentage ελv of his wealth. The constant ελ quantifies the saving propensity of the agent,
namely the human perception that it results quite dangerous to trade the whole amount of
wealth in a single interaction. The second term represents the amount of wealth the trader
receives from the market as result of the trading activity. Here v̄ > 0 is sampled by a
certain distribution E which describes the (independent of time) distribution of wealth in the
market. Note that in principle the constant in front of the wealth v̄ could be different from
λ, say ξ. However, the choice λ 6= ξ will not introduce essential differences in the subsequent
discussion. Finally, the last term takes into account the risks connected to the trading activity.
The uncertainty of the trading result is represented in terms of a random variable ηε, centered
and with finite variance εσ � 1, which in general is assumed such that ηε ≥ −1 + ελ, to
ensure that even in a risky trading market, the post trading wealth remains non negative. In
[62] it is further assumed that the random variable ηε takes values on a bounded set, that
is −1 + ελ ≤ ηε ≤ ελ∗ < +∞. This condition is coherent with the trade modeling, and
corresponds to put a bound from above at the possible random gain that a trader can have
in a single interaction.

Since v̄ > 0, the elementary interaction (3.7) is a particular case of interactions in which
the value v of the wealth can be modified by two quantities which describe the predictable,
and, respectively, the unpredictable behavior of the outcome. The general form of these
interactions can be written in the form

(3.8) v∗ = v −Ψε
(v
v̄

)
v + ηε v.

Using the form (3.8) for the interaction (3.7) we obtain that, for s = v/v̄ ≥ 0

(3.9) Ψε(s) = ελ

(
1− 1

s

)
.

Note that Ψε(s) is a dimensionless increasing concave function, which ranges from −∞ to
ελ, equal to zero at the point s = 1. This point is usually referred as reference point. The
role played by the function Ψε(·) in the interaction is clear. Since Ψε(v̄/v) is negative when
v < v̄, and positive when v > v̄ the interaction will increase the value of the wealth in the
former case, while it will decrease the value in the latter. Hence, in absence of randomness,
the interaction will move the wealth v towards the value v̄.

According to the prospect theory of Kahneman and Twersky [50], the function Ψε satisfies
most of the properties of a value function. The notion of value function was originally related
to various situations concerned with decision under risk. Kahneman and Twersky in [50]
identified the main properties characterizing a value function Φ(s), where s ≥ 0, in a certain
behavior around the reference point s = 1, expressed by the conditions

(3.10) − Φ (1−∆s) > Φ (1 + ∆s) ,

and

(3.11) Φ′ (1 + ∆s) < Φ′ (1−∆s) .
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where ∆s > 0 is such that 1 − ∆s ≥ 0. These properties are well defined for deviations
from the reference point s = 1, and imply that the value function below the reference point
is steeper than the value function above it. In other words, a value function is characterized
by a certain asymmetry with respect to the reference point s = 1. This asymmetry has a
precise meaning. Given two agents starting at the same distance ∆s from the reference value
s = 1 from below and above, it will be easier for the agent starting below to move closer
to the reference value, than for the agent starting above.The function Ψε(s) in (3.9) satisfies
properties (3.10) and (3.11). A third property follows by considering its behavior as ε → 0.
Since

(3.12) lim
ε→0

Ψε(s)

ε
= λ

(
1− 1

s

)
.

the scaled function Ψε(s)/ε is inversely proportional to s.
The main result in [32] was to show that, in the limit ε → 0, the solution to the kinetic

equation of Boltzmann type converges towards the solution to the Fokker–Planck equation
(1.4), with a steady state in the form of an inverse Gamma density. The inverse Gamma
density is obtained as the distribution of the random variable 1/X, where X is Gamma
distributed. This suggests that a Fokker–Planck equation with a steady state in the form of
a Gamma density is obtained by looking at the interaction (3.8), characterized by a value
function that gives the variation of z = 1/v. To this aim, let us study of the variation of
z = 1/v. In absence of risk, the interaction (3.8), rewritten in terms of z reads

(3.13)
1

z∗
=

1

z
−Ψε

( z̄
z

) 1

z
.

Hence, starting from (3.13), simple computations show that the elementary variation of z is
given by

(3.14) z∗ = z − Φε
(z
z̄

)
z.

In (3.14) the function Φε, for s ≥ 0 is given by

(3.15) Φε(s) = ελ
s− 1

ελ(s− 1) + 1
.

Note that the condition ελ < 1 implies the positivity of the denominator. The function Φε(s)
satisfies the bounds

− ελ

1− ελ
≤ Φ(s) ≤ 1.

Hence, at difference with interaction (3.7), the elementary variation of z = 1/v is driven by a
function Φε, bounded from below and above.

It is interesting to remark that Φε still satisfies properties (3.10) and (3.11), typical of
a value function. Moreover, as it happens for Ψε, the quotient between Φε and ε remains
well-defined in the limit ε→ 0, and

(3.16) lim
ε→0

Φε(s)

ε
= λ (s− 1) ,

so that the scaled function is proportional to s. Motivated by the study of the statistical
distribution of alcohol consumption, in [33] a value function suitable to describe the elementary
interaction was identified in

(3.17) Φε
1(s) = µ

eε(s−1) − 1

eε(s−1) + 1
, s ≥ 0,
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where the constants 0 < µ < 1 and ε > 0 characterize the intensity of the interaction. This
function satisfies properties (3.10) and (3.11), and

(3.18) lim
ε→0

Φε
1(s)

ε
= µ(s− 1),

namely the same scaling property of the function (3.15). As proven in [33], in presence of a
elementary interaction of type (3.8), with value function (3.17), the kinetic model leads indeed
to a statistical distribution in the form of a Gamma distribution.

This suggests that value functions satisfying the limit property (3.18) generate statistical
distribution with thin tails, while fat tails are generated by value functions satisfying a scaling
property like (3.12). We will make use of this observation in the next Section.

To conclude this discussion, it is important to remark that interaction (3.7), while leading
to a kinetic equation with a steady state that can have fat tails in presence of high risk [62], it
is based on the value function (3.9) which gives a big increment to a small wealth v � v̄. This
behavior is clearly in contrast with the common belief that to increase the personal wealth by
trading, starting from a low value of wealth, is usually much more difficult than to increase
it starting from a high level. As recently discussed in [38], this apparent inconsistency of
the model can be corrected by introducing a variable frequency of interactions that penalizes
interactions in which the wealth v put into the trade is small. We will be back to this question
later on.

4. The kinetic description of social climbing

4.1. Modeling the elementary interaction. In this Section, we will deal with the math-
ematical modeling of the elementary interaction in the social climbing, treasuring the discus-
sions of Section 2 about climbing in football activity, and that of Section 3 about the kinetic
modeling of wealth distribution. As before, we assume that the behavior of the population
with respect to the climbing of social ladder is homogeneous. This homogeneity assumption is
clearly quite strong in general, since it requires at least to restrict the population with respect
to some characteristics, like age, sex and degree of education.

Once the homogeneity assumption is satisfied, the agent’s state at any instant of time t ≥ 0
is completely characterized by the value w ≥ 0 of the social rank occupied in the society. We
assume that this value can be measured in terms of some reasonable unit. If the relationship
between social rank and personal wealth is identified as substantial, it is possible to measure
the value w with the unit of the wealth of agents. However, depending on the homogeneous
group of the society we are considering, other choices can be equally possible. The unknown
is the density (or distribution function) f = f(w, t), where w ∈ R+ and the time t ≥ 0, and
the target is to study the statistical features of the subsequent steady state.

Since agents in the system tend to improve their social rank, the density f(w, t) continuously
changes in time by elementary interactions. It is clear that these interactions are more general
than the trading activity described by (3.7), since the social climbing is not only achieved by
trading to increase the wealth, but it involves a variety of different activities finalized to this
goal. Similarly to the problems treated in [33, 45, 46], the mechanism of social climbing
in modern societies can be postulated to depend on some universal features that can be
summarized by saying that agents likely tend to increase the value w of their ranking by
interactions, while manifest a certain resistance to decrease it.

To obtain a computable and acceptable (from the sociological point of view) expression of
the elementary variation of the social ranking of agents, we identify the mean values which
characterize, at least in a very stylized way, the multi-agent society. A first value, denoted
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by w̄, defines the upper limit of the low social ranking. This value identifies the limit below
which agents do not expect to be able to climb the social ladder. The second value, denoted
by w̄L, with w̄L > w̄, denotes the value that it is considered as the level of a satisfactory well-
being by a large part of the population. Note that both these values are in general differently
perceived by agents. However, since the variations of these values from agent to agent can be
assumed small, we can consider them as mean values universally perceived by agents.

The elementary interaction is consequently modeled to describe the behavior of agents in
terms of these values, and it will express the natural tendency of individuals to reach (at
least) the value w̄L.

Similarly to the case of football activity introduced in Section 2, and to the case of wealth
distribution treated in the previous Section, there is a strong asymmetry in the realization
of this target. With respect to individuals which enjoy a high level of social ranking, this
asymmetry expresses the objective difficulty of individuals to increase the value w of the rank
to reach the desired value w̄ from below.

Proceeding as in Section 3 we will model the elementary interaction by resorting both to
value functions and to uncertainties. Hence we write the elementary variation of social rank
in the form

(4.19) w∗ = w −Ψε

(
w

w̄L

)
w + ηεw.

In any interaction the value w of the social rank can be modified for two different reasons,
both quantified by dimensionless coefficients acting on the actual social rank variable w.
The first one is the (value) function Ψε(w/w̄L), which can assume assume both positive
and negative values, that characterizes the asymmetric predictable behavior of agents. The
second coefficients characterized a certain amount of unpredictability always present in human
activities. The uncertainty is contained in the random variable η, and , according to the
wealth interactions (3.7), it is designed to be negligible in the mean, and in any case are
not so significant to produce a sensible variation of the value w. Hence, the social rank of
individuals can be both increasing and decreasing by interactions, and the mean intensity of
this variation is fully determined by the function Ψε. Last, the positive parameter ε � 1
quantifies the intensity of a single interaction.

On the basis of the discussion of Section 3, and resorting to the class of value functions
considered in [33], we will describe the microscopic variation of z = 1/w, in absence of
uncertainty, in the form

(4.20) z∗ = z − Φε

(
z

z̄L

)
z.

In [33], to suitably model the alcohol consumption, the value function was assumed in the
form (3.17). Similarly to (3.15) the function (3.17) satisfies conditions (3.10) and (3.11)
originally postulated by Kahneman and Twersky in [50], including the property to be positive
and concave above the reference value (s > 1), while negative and convex below (s < 1).[33]
This function is bounded from above and below, and satisfies the bounds

(4.21) − µ 1− e−ε

1 + e−ε
≤ Φε

1(s) ≤ 1.

This property implies that, for small values of the parameter ε, the maximal amount of increase
of z is of the order of ε. The function (3.17) belongs to the class of value functions

(4.22) Φε
δ(s) = µ

eε(s
δ−1)/δ − 1

eε(sδ−1)/δ + 1
, s ≥ 0,
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Figure 4.2. Value function as a function of δ and µ.

with 0 < δ ≤ 1, that interpolate between Φε
0(s) and Φε

1(s), where

(4.23) Φε
0(s) = µ

sε − 1

sε + 1
, s ≥ 0,

The class of value functions (4.22) describe the situation in which it is easier to increase the
value of z than to decrease it, in the whole range of possible values of the variable z. Then,
the Fokker–Planck equations generated in the grazing limit of interactions based on value
functions like (4.22) correctly possess a steady state with thin tails.

As discussed in Section 3, a correct value function for the problem of the social climbing is
then obtained from (4.20) by writing it with respect to w = 1/z. If the value function Φε in
(4.20) is given by (4.22), one obtains that the elementary variation of the social rank value w
is given by (4.19), where, if s = w/w̄L

(4.24) Ψε(s) = Ψε
δ(s) = −µ eε(s

−δ−1)/δ − 1

(1− µ)eε(s−δ−1)/δ + 1 + µ
, s ≥ 0.

The value function Ψε
δ is bounded from below and above, and satisfies the bounds

(4.25) − µ

1− µ
≤ Ψε

δ(s) ≤ µ
1− e−ε/δ

(1− µ)e−ε/δ + 1 + µ
.

Starting from s = 0, for any fixed value of the positive parameters ε and δ, the function Ψε
δ(s)

is convex in a small interval contained in the interval (0, 1), with an inflection point in s̄ < 1,
then concave. A picture of the value function for different values of the parameter is shown
in Figure 4.2.

We can now relate the inflection point s̄ < 1 and the reference point s = 1 to the previously
mentioned mean values characterizing the social climbing. Clearly, the value w = w̄L, namely
the perceived level of a satisfactory well-being corresponds to the reference point s = 1. Then,
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Figure 4.3. Inflection points for the value function as a function of δ and µ.

the upper limit of the low social ranking w̄ characterizes the inflection point s̄ < 1, in view of
the relationship

(4.26) s̄ =
w̄

w̄L
< 1.

Indeed, the graph of the function Ψ(s) can be split in the three regions (0, s̄), (s̄, 1) and
(1,+∞), such that the graph is steeper in the middle region than in the other two, thus
characterizing the middle region (the region of the middle social ranks) as the region in which
a higher value of the mobility is present, and it is easier to improve the rank. On the contrary,
the mobility is lower for values of the rank below w̄ and above w̄L. In Figure 4.3, we show
the location of the inflection points as a function of δ for different values of µ. This behavior
of the function Ψε is clearly in agreement with the original believe of Pareto.[68]

It is interesting to remark that, in the limit δ → 0 the value function (4.24) becomes

(4.27) Ψε
0(s) = µ

sε − 1

(1 + ν)sε + 1− µ
, s ≥ 0,

namely a value function of the same type of (4.23). Note however that in this case the
limit value function (4.27), at difference with the value functions (4.24), is concave, and
the inflection point w̄ is lost. These value functions were originally considered in [45, 46],
where it was shown that they characterize the lognormal distribution. Hence, the lognormal
distribution can be defined as a border case that separates fat tailed distributions from thin
tailed ones.

4.2. The kinetic model. Once the interaction (4.19) has been modeled, for any choice of
the value function Ψε in the class (4.24) the study of the time-evolution of the statistical
distribution of the social rank follows by resorting to kinetic collision-like models [24, 65].
For any given value of the small parameter ε, the variation of the density fε(w, t) is easily
shown to obey to a linear Boltzmann-like equation, fruitfully written in weak form. The weak
form corresponds to say that the solution f(w, t) satisfies, for all smooth functions ϕ(w) (the
observable quantities)

(4.28)
d

dt

∫
R+

ϕ(w) fε(w, t) dw =
〈∫

R+

χ
(w
u

) (
ϕ(w∗)− ϕ(w)

)
fε(w, t) dw

〉
.

Here expectation 〈·〉 takes into account the presence of the random parameter ηε in (4.19). In
(4.28) the positive dimensionless function χ(w/u) measures the interaction frequency of the
interactions with social rank w with respect to the some unit of measure u.
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The right-hand side of equation (4.28) quantifies the variation of the observable quantity
ϕ of the agents that modify their value from w to w∗ according to the elementary interaction
(4.19).

The importance of a variable collision frequency has been outlined in [38] for the kinetic
description of wealth distribution. There, starting from a careful analysis of the microscopic
economic transactions of the kinetic model, expressed by (3.7), allowed to conclude that the
choice of a constant collision kernel included as possible also interactions which human agents
would exclude a priori. This was evident for example in the case of interactions in which an
agent that trades with a certain amount of wealth, does not receive (excluding the risk) some
wealth back from the market. In strong analogy with the rarefied gas dynamics [15], where
the analysis of the Boltzmann equation for Maxwell pseudo-molecules leads to the possibility
to make use of the Fourier transformed version, this makes clear that, in the socio-economic
modeling, the main advantages of the Maxwellian assumption are linked to the possibility to
obtain analytical results.

In agreement with [38], and treasuring the remarks about the frequency of interactions
made in Section 2, we express the mathematical form of the kernel χ(·) by assuming that, for
a given value w of the social rank, the frequency of interactions trying to improve the rank is
directly proportional to the rank itself. This choice leads to consider collision kernels in the
form

(4.29) χ
(w
u

)
=
(w
u

)β
· α,

for some constants α > 0 and β > 0. This kernel assigns a low frequency to interactions in
which individuals have a low rank, and assigns a high frequency to interactions in which the
value of the rank is greater. This assumption translates in a simple mathematical form that
the motivations to climb the social ladder are stronger in individuals belonging to the middle
and upper classes, which clearly see, at difference with individuals belonging to the low class,
the possibility to succeed.

The values of the constants α and β need to be suitably chosen to guarantee at best that
the characteristics of both the value function and the collective phenomenon are maintained
even for small values of the parameter ε, and do not disappear in the limit ε→ 0 .

To simplify computations, and to retain the essentials of the reasoning, let us set the unit
of measure u = w̄L. Consequently

(4.30) χ
(w
u

)
= α ·

(
w

w̄L

)β
= α sβ,

For a given value function Ψε
δ(s), the individual rate of growth is given by

(4.31)
∂Ψε

δ(s)

∂s
= 2µ

ε[
(1− µ)ey/2 + (1 + µ)e−y/2

]2 s−(1+δ),

where y is defined by

y = ε
s−δ − 1

δ
.

Now, consider that, since ε < 1, for any given s ≥ 0,

y ≥ − ε
δ
≥ −2

δ
,

and the function
z(y) =

[
(1− µ)ey/2 + (1 + µ)e−y/2

]2
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has a maximum in the point

ȳ = log
1 + µ

1− µ
,

where
z(ȳ) = 4(1− µ)2.

Therefore we easily conclude with the bounds

(4.32)

cδ =
1[

(1 + µ)e1/δ + (1− µ)e−1/δ
]2 ≤

1[
(1− µ)ey/2 + (1 + µ)e−y/2

]2 ≤ Cδ =
1

4(1− µ2)
.

This implies that, for a given s > 0, the individual growth is vanishing as ε→ 0. To maintain
a collective growth different from zero as ε→ 0, it is enough to fix

(4.33) α =
1

τε

This corresponds to increase the frequency at the order 1/ε, and to introduce at the same
time a relaxation parameter τ . Once the choice of α has been justified to retain a collective
memory of the growth of the value function, one has to face with the collective variation of
the social rank, now given by

1

τε
Ψε
δ(s)s

β.

Let us consider first the case s ≤ 1, namely to the increasing of the social rank. Since
Ψ0
δ (s) = 0, Lagrange theorem implies

1

ε
Ψε
δ (s) =

Ψε
δ (s)−Ψ0

δ (s)

ε
=
∂Ψε

δ (s)

∂ε

∣∣∣∣
ε=ε̄

, 0 ≤ ε̄ ≤ ε.

Then

(4.34) −
∂Ψε

δ (s)

∂ε
= 2µ

1[
(1− µ)ey/2 + (1 + µ)e−y/2

]2 1

δ

(
s−δ − 1

)
> 0.

Using the upper bound in (4.32) we can conclude that, when s < 1, with the choice β = δ the
collective variation of the social rank is uniformly bounded with respect to ε, and satisfies the
bound ∣∣∣∣1εΨε

δ (s)

∣∣∣∣ sδ ≤ µ

2δ(1− µ2)
(1− sδ).

Note that, if we choose β < δ, the variation of the collective growth of social rank is extremely
high for values of s close to zero, namely in the part of population that do not possess many
possibilities to succeed. Hence, this choice is something that we have to exclude a priori.
Also, values of β > δ would imply that for values of s close to zero, the collective growth is
extremely small, thus practically excluding the possibility to increase the social rank starting
from very low levels. Hence, the choice β = δ represents a good compromise for most societies.

With these assumptions, the weak form of the Boltzmann-type equation (4.28) takes the
form

(4.35)
d

dt

∫
R+

ϕ(w) fε(w, t) dx =
1

ετ

〈∫
R+

(w
u

)δ (
ϕ(w∗)− ϕ(w)

)
fε(w, t) dw

〉
.
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Note that, in consequence of the choice made on the interaction kernel χ, the evolution of
the density fε(x, t) is tuned by the parameter ε, which characterizes both the intensity of
interactions and the interaction frequency.

Due to the presence in the microscopic interaction (4.19) of the nonlinear value function
(4.24), it is immediate to show that the only conserved quantity of equation (4.35) is obtained
in correspondence to ϕ = 1. This conservation law implies that the solution to (4.35) remains
a probability density for all subsequent times t > 0. The evolution of higher moments is not
known analytically, and it is quite difficult to obtain explicit bounds, which could guarantee
the precise value of the expected tail of the stationary solution.

5. Quasi-invariant limit and the Fokker-Planck equation

5.1. The grazing limit. The linear kinetic equation (4.28) describes the evolution of the
density consequent to interactions of type (4.19), and it is valid for any choice of the parameters
δ, µ and ε. In real situations, however, it is reasonable to assume that in most cases a single
interaction determines only an extremely small change of the value w. This is certainly true
for the deterministic part of the interaction (4.19), and it is true in the mean for the random
part. This situation is well-known in kinetic theory of rarefied gases, where interactions of
this type are called grazing collisions [65, 79]. In the value functions (4.22) the smallness
assumption requires to fix ε � 1. At the same time [37], the balance of this smallness with
the random part is achieved by setting

(5.36) ηε =
√
εη,

where η is a centered random variable of variance equal to σ. In this way the variance of
ηε is of order ε. Consequently, the scaling assumption (5.36) allows to retain the effect of
all parameters in (4.20) in the limit procedure. An exhaustive discussion on these scaling
assumptions can be found in [37] (cf. also [46] for analogous computations in the case of the
lognormal distribution, in which the value function is given by (4.23)). For these reasons, we
address the interested reader to these review papers for exhaustive details.

In what follows we only deal with the main differences in the computations, essentially due
to the presence of a non-Maxwellian interaction kernel, and to the presence of a new type of
value functions. Without loss of generality, in the rest of the paper we fix in (4.29) the value
of the unit of measure to u = 1. Note that a different choice will simply correspond to a
scaling of time.

Let us suppose that the solution to the kinetic equation (4.35) has moments bounded up to
the order two. To have a precise idea of the evolution of the observable in the scaling ε� 1,
we start by studying the evolution of the mean value

mε(t) =

∫
R+

w fε(w, t) dw.

In this simple case we have

(5.37)
d

dt
mε(t) = −1

τ
w̄1+δ
L

∫
R+

1

ε
Ψε
δ (w/w̄L)

(
w

w̄L

)1+δ

fε(w, t) dw,
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where the integral has been written in terms of the quotient w/w̄L. Using the bounds (4.32)
into (5.37) we obtain

(5.38)

d

dt
mε(t) =≤ Cδ

1

τ
w̄1+δ
L

∫ w

0

1

δ

(( w̄L
w

)δ
− 1

)(
w

w̄L

)1+δ

fε(w, t) dw

+ cδ
1

τ
w̄1+δ
L

∫ ∞
w

1

δ

(( w̄L
w

)δ
− 1

)(
w

w̄L

)1+δ

fε(w, t) dw

≤ 1

τ
w̄1+δ
L

(
Cδ

∫
R+

w

w̄L
fε(w, t) dw − cδ

∫
R+

( w̄L
w

)1+δ

fε(w, t) dw

)
.

Finally, Jensen’s inequality implies∫
R+

( w̄L
w

)1+δ

fε(w, t) dw ≥
(∫

R+

w

w̄L
fε(w, t) dw

)1+δ

.

Let us set

Mε(t) =
mε(t)

w̄L
.

Then M(t) satisfies the differential inequality

(5.39)
d

dt
Mε(t) ≤

1

τ
w̄δL

(
CδMε(t)− cδMε(t)

1+δ
)
,

which shows that, independently of ε, Mε(t) satisfies the inequality

(5.40) Mε(t) ≤ max

{
Mε(t = 0),

(
Cδ
cδ

)1/δ
}
.

Coupling inequality (5.39) with the uniform bound (5.40) shows that the scaling (5.36) is
such that, for any given fixed time t > 0, the consequent variation of the mean value mε(t) is
bounded from above independently of ε. Since pointwise

(5.41) Aδ,ε

(
w

w̄L

)
=

1

ε
Ψε
δ (w/w̄L)→ µ

2δ

(
1−

( w̄L
w

)δ)
,

we have a computable evolution of the mean even in the limit ε → 0. As explained in [37],
there is a further physical motivation leading to the scaling of the frequency of interactions,
as given by (4.33). Since for ε � 1 the interactions produce a very small change of the rank
value w, in the limit ε→ 0, a finite variation of the mean density can be observed only if each
agents in the system undergo a great number of interactions in a fixed period of time. By
using the bounds (4.32) one can observe, at the price of an increasing number of computations,
the existence of bounds for the evolution of the second moment of fε(w, t), which remains
well-defined also in the limit ε→ 0 (cf. the analysis in [37]).

It is now easy to justify the passage from the kinetic model (4.28) to its continuous coun-
terpart given by a Fokker–Planck type equation [37]. Given a smooth function ϕ(w), and a
collision of type (4.20) that produces a small variation of the difference w∗ − w, one obtains

〈w∗ − w〉 = −εAδ,ε
(
w

w̄L

)
w; 〈(w∗ − w)2〉 =

(
ε2 Aδ,ε

(
w

w̄L

)2

+ εσ

)
w2.

Therefore, equating powers of ε, it holds

〈ϕ(w∗)− ϕ(w)〉 = ε

(
−ϕ′(w)w

µ

2δ

(
1−

( w̄L
w

)δ)
+
σ

2
ϕ′′(w)w2

)
+Rε(w),
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where the remainder term Rε(w), for a suitable 0 ≤ θ ≤ 1 is such that
1

ε
Rε(w)→ 0

as ε→ 0. Therefore one obtains that the time variation of the (smooth) observable quantity
ϕ(w) satisfies

d

dt

∫
R+

ϕ(w) fε(w, t) dw =

1

τ

∫
R+

wδ
(
−ϕ′(w)w

µ

2δ

(
1−

( w̄L
w

)δ)
+
σ

2
ϕ′′(w)w2

)
fε(w, t) dw +

1

ε
Rε(t),

where Rε(t) denotes the integral remainder term

Rε(t) =

∫
R+

wδRε(w)fε(w, t) dw.

Letting ε → 0, shows that in consequence of the scaling (5.36) the weak form of the kinetic
model (4.28) is well approximated by the weak form of a linear Fokker–Planck equation (with
variable coefficients)

(5.42)

d

dt

∫
R+

ϕ(w) g(w, t) dw =

1

τ

∫
R+

∫
R+

(
−ϕ′(w)w1+δ µ

2δ

(
1−

( w̄L
w

)δ)
+
σ

2
ϕ′′(w)w2+δ

)
g(w, t) dw.

In (5.42) the density function g(w, t) coincides with the limit, as ε→ 0, of the density fε(w, t)
[37]. Provided the boundary terms produced by the integration by parts vanish, equation
(5.42) coincides with the weak form of the Fokker–Planck equation

(5.43)
∂g(w, t)

∂t
=
σ̃

2

∂2

∂w2

(
w2+δg(w, t)

)
+
µ̃

2

∂

∂w

(
1

δ

(
1−

( w̄L
w

)δ)
w1+δ g(w, t)

)
.

In (5.43) we defined σ̃ = σ/τ and µ̃ = µ/τ . Equation (5.43) describes the evolution of the
distribution density g(w, t) of the social rank w ∈ R+ of the agent’s system, in the limit of the
grazing interactions. As often happens with Fokker-Planck type equations, the steady state
density can be explicitly evaluated, and it results to be a generalized Gamma density, with
parameters linked to the details of the microscopic interaction (4.20).

5.2. Steady states are Amoroso distributions. Let us set γ = µ̃/σ̃ = µ/σ. The statio-
nary distribution of the Fokker–Planck equation (5.43) is an integrable function which solves
the first order differential equation

(5.44)
d

dw

(
w2+δg(w)

)
+
γ

δ

(
1−

( w̄L
w

)δ)
w1+δ g(w) = 0.

We solve (5.44) with respect to h(w) = w2+δg(w) by separation of variables. The function
h(w) solves the differential equation

(5.45)
dh(w)

dw
+
γ

δ

(
1

w
−

w̄δL
w1+δ

)
h(w) = 0.

If h(w) 6= 0, equation (5.45) is clearly equivalent to

(5.46)
1

h(w)

dh(w)

dw
= −γ

δ

(
1

w
−

w̄δL
w1+δ

)
,
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that can be rewritten as

(5.47)
d

dw
log h(w) = −γ

δ

{
d

dw
log

w

w̄L
+

1

δ

d

dw

[( w̄L
w

)δ
− 1

]}
.

In this way we find that the unique solutions to (5.44) are the functions

(5.48) g∞(w) = g∞(w̄L)
( w̄L
w

)2+δ+γ/δ

exp

{
− γ
δ2

(( w̄L
w

)δ
− 1

)}
.

If we fix the mass of the steady state (5.48) equal to one, the consequent probability density is
a particular case of the generalized Gamma distribution, usually named Amoroso distribution
[1], as given in (1.3). Note that (5.48) corresponds to values of β = −δ < 0 in the expression
of the generalized Gamma distribution (1.3). The remaining parameters of the equilibrium
state (5.48) are given by

(5.49) α = 1 +
1

δ
+
γ

δ2
, θ = w̄L

( γ
δ2

)1/δ
.

The limit δ → 0 in the Fokker–Planck equation (5.43) corresponds to the drift term induced
by the value function (4.23). In this case, the equilibrium distribution (5.48) takes the form
of a lognormal density [45]. It is remarkable that the lognormal density is achieved as limit
case when looking at the distribution of alcohol consumption [33], where the Fokker–Planck
type equation has been obtained resorting to the value functions (4.22). Hence, the lognormal
density appears as the limit case of both generalized Gamma distributions characterized by
positive values of the parameter β, and the present case of Amoroso distributions, given by
negative values of the parameter β.

The case δ = 1 in (5.48) corresponds to an inverse Gamma distribution. In this case
α = 2 + γ, and θ = γw̄L. The steady state of the distribution of social rank coincides
with the steady state of wealth distribution discussed in Section 3. Hence, in the grazing
limit, the inverse Gamma distribution appears as steady state of two different kinetic models,
characterized by two different value functions (4.22) with δ = 1, and, respectively (3.9).

Note that for all values of δ > 0 the moments are expressed in terms of the parameters w̄L,
σ, µ and δ denoting respectively the target level of social rank, the variance σ of the random
effects and the values δ and µ characterizing the value function Ψε

δ defined in (4.24).
It is interesting to remark that, in the case of the inverse Gamma distribution, the mean

value of the equilibrium density (5.48) is always less than w̄L. In this case in fact

M = w̄L
γ

γ + 1
.

6. Numerics

In this Section, we perform several numerical experiments with the aim of describing the
behaviors of the social climbing Boltzmann model (4.19) and to quantify the goodness of its
Fokker-Planck counterpart. In more details, we intend to show the effects of different choices
of the parameter appearing in the value function Ψε

δ defined by (4.24). The shape of both the
distribution function in time and its final steady state are indeed modified when µ/σ, ε and
δ are modified. The first quantity determines the intensity of the interaction with respect to
the intensity of the random effects in the climbing dynamic. The second quantity determines
the rate of change of the social status of an agent due to a single interaction while the last
parameter is responsible for the final shape of the social distribution in a given population.
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Figure 6.4. Test 1. Convergence to the Fokker-Planck steady state for the
Boltzmann model as a function of time with δ = 0.5. Top left γ = 5, top right
γ = 2, bottom left γ = 1 and bottom right γ = 2/3.

6.1. Trend to equilibrium. In this first test, we analyse the rate of trend to equilibrium
for the Boltzmann model (4.19) starting from a uniform distribution f(w, t = 0) over the
domain [0, 2]. The convergence to the steady state Amoroso distribution for various values of
the parameters γ = µ/σ are shown in Figure 6.4. The random effects are taken into account
by sampling ηε from a uniform distribution with variance σ. The average level of well-being
w̄L is fixed equal to 1 while the parameter δ which characterizes the exponent of the steady
state is fixed equal to 0.5. The collision frequency is wδ, the number of samples is 106 and
ε = 10−3. We clearly observe that for all tested situations the Boltzmann model converges
towards the corresponding Amoroso equilibrium distribution (5.48).

6.2. Wealth and Social climbing. In this part, we compare the different behaviors of the
Boltzmann model for wealth distribution described by equation (3.8) and the Boltzmann
model for social climbing (4.24). The main difference between the two models relies in the
convexity/concavity properties of the two values functions acting on the lower values of the
wealth (here we identify wealth and social rank value). The first value function, describing
variation of wealth, is always concave while the second, describing the social level, has an
inflection point for w̄ < w̄L. This corresponds to the empirical observation that for people
belonging to the lower level of the social ladder, the change of status is very difficult. For
the tests reported in Figure 6.5, we have chosen δ = 1, which gives an inverse Gamma
distribution as common steady state solution for the Fokker-Planck equation (5.43). The
collision frequency of the wealth model is chosen accordingly to [38] as (vw)δ where v is
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Figure 6.5. Test 2. Comparison of the wealth and the social climbing models
in the case δ = 1, γ = 1 and ε = 0.1. From top left to bottom right the images
show the trend to the steady state solution for the two models. The initial
and the final Fokker-Planck states are also shown.

sampled from a uniform distribution around w̄L. Moreover γ = 1, w̄L = 1 while the scaling
parameter ε = 0.1 is such that the models (3.8) and (4.24) are far from the corresponding
Fokker-Planck limits.

This has been done to highlight the difference between the two dynamics, since, as shown
here and in [38], both share the same steady state in the limit ε → 0 and consequently the
differences in this limit setting would be very small. In Figure 6.6 the same curves are shown
zooming around the lower wealth level where as expected the differences exhibited by the two
models are larger. Each image in Figure 6.5 and 6.6 reports the initial distribution, the final
Fokker-Planck distribution, the distribution of the social status fS(t, w) and of the wealth
fW (t, w) at different times from top left to bottom right. The same results are shown in
Figure 6.7 and 6.8 where γ = 2/3, the other parameters remaining unchanged. As expected,
the agents belonging to the lower social class are the ones for which the two models give larger
differences.

6.3. Wealth and Social climbing: convergence to to the Fokker-Planck dynamics
and Pareto tails. In this last test, we investigate the differences between the Boltzmann and
the Fokker-Planck dynamics for the social climbing interaction (4.24) and the wealth model
(3.8), respectively. The final equilibrium state is in both cases represented by the same inverse
Gamma distribution, i.e. δ = 1. This means that Pareto tails are expected to appear in this
steady state limit when ε→ 0. The Figure 6.9 shows on the left the steady state distributions
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Figure 6.6. Test 2. Comparison of the wealth and the social climbing models
in the case δ = 1, γ = 1 and ε = 0.1. From top left to bottom right the images
show the trend to the steady state solution for the two models. The initial and
the final Fokker-Planck states are also shown. Zoom around the lower wealth
levels.

for wealth and social status for ε = 0.1 and ε = 0.001 as well as the corresponding inverse
Gamma distribution (5.48) equilibrium state. On the right hand side, we plot the results
in log-log scale, which highlights the Pareto tails index. The different behaviors of the two
models far from the Fokker-Planck dynamics are visible, both for the agents possessing a
lower wealth level as well as for the wealthy part of the population living in the tail of the
distribution.

7. Conclusions

The statistical distribution of social rank in a multi-agent society has been described in
this paper by resorting to classical methods of collision-like kinetic theory. The main goal
of our analysis was to provide an explanation of the emergence of steady states in the form
of generalized Amoroso distributions, a family of distributions with polynomial tails that
represent at best the formation of a social elite. The macroscopic behavior is consequent to the
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Figure 6.7. Test 2. Comparison of the wealth and the social climbing models
in the case δ = 1, γ = 2/3 and ε = 0.1. From top left to bottom right the
images show the trend to the steady state solution for the two models. The
initial and the final Fokker-Planck states are also shown.

choice made at the microscopic level, choice that takes into account the essential features of the
human behavior related to the phenomenon of social climbing. The kinetic modeling is similar
to the one introduced in [45], subsequently generalized in [33, 46], in which the human behavior
has been shown to be responsible of the formation of a macroscopic equilibrium in the form
of probability distributions with thin tails, like the lognormal distribution or the Gamma and
Weibull ones. From this point of view, the present results can be considered as an extension
of the kinetic description of [33, 46, 77], which allows to classify, at a microscopic level, the
main differences in the elementary interaction which produce a whole class of generalized
Gamma distributions, that range from the classical Gamma density to the lognormal one.
Well-known arguments of kinetic theory allow to model these phenomena by means of a
Fokker–Planck equation with variable coefficients of diffusion and drift. Interestingly enough,
for this class of Fokker–Planck equations a lot of mathematical results can be proven, including
the exponential convergence towards equilibrium [77].

A relevant part of this analysis relies in a detailed comparison of the main rules of social
climbing with thats of wealth distribution, and helps to share some light on possible improve-
ments of the latter by taking into account in a more substantial way both the individual and
social aspects of human behavior present in the former. The numerical comparison of the two
models reveals indeed a marked difference between the kinetic description in the low part of
the profiles, difference that disappears only in the grazing asymptotics.
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Figure 6.8. Test 2. Comparison of the wealth and the social climbing models
in the case δ = 1, γ = 2/3 and ε = 0.1. From top left to bottom right the
images show the trend to the steady state solution for the two models. The
initial and the final Fokker-Planck states are also shown. Zoom aroung the
lower wealth levels.
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Figure 6.9. Test 3. Asymptotic behavior of the Fokker-Planck model and
the Boltzmann wealth and social climbing models with δ = 0.1, γ = 1, w̄L = 1.
The right image is in log-log scale.
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