
Quantum Weighted Model Counting

Fabrizio Riguzzi1

Abstract. In Weighted Model Counting (WMC) we assign weights
to Boolean literals and we want to compute the sum of the weights
of the models of a Boolean function where the weight of a model is
the product of the weights of its literals.

WMC was shown to be particularly effective for performing infer-
ence in graphical models, with a complexity of O(n2w) where n is
the number of variables and w is the treewidth.

In this paper, we propose a quantum algorithm for performing
WMC, Quantum WMC (QWMC), that modifies the quantum model
counting algorithm to take into account the weights. In turn, the
model counting algorithm uses the algorithms of quantum search,
phase estimation and Fourier transform.

In the black box model of computation, where we can only query
an oracle for evaluating the Boolean function given an assignment,
QWMC solves the problem approximately with a complexity of
Θ(2

n
2) oracle calls while classically the best complexity is Θ(2n),

thus achieving a quadratic speedup.

1 Introduction

Weighted Model Counting (WMC) is the problem of computing the
sum of the weights of the models of a propositional formula, where
the weight of a model is given by the product of the weights of the lit-
erals in it. WMC has been proved effective for performing inference
in graphical models [5, 21]. While other graphical model inference
algorithms [17, 26, 9, 8] take time Θ(n2w) where n is the num-
ber of variables and w is the treewidth of the network, WMC takes
time O(n2w), i.e., exponential in the treewidth in the worst case [5].
WMC does so by exploiting structure in the graphical model in the
form of context-specific independence and determinism.

In this paper we propose to perform WMC using a quantum com-
puter, i.e., Quantum WMC (QWMC). Quantum computing [19] is
the use of quantum mechanics to perform computation. Various al-
gorithms have been proposed for quantum computers that improve
over their classical counterpart, the most prominent are: Shor’s al-
gorithm [23], that factorizes integers in polynomial time while no
classical polynomial algorithm is known, and quantum search, that
has a quadratic speedup over classical search [14, 15, 16].

To perform QWMC, we use various quantum algorithms. In par-
ticular, we adapt the method of quantum model counting [2, 3] to take
into account weights. Quantum model counting in turn is based on
quantum search using Grover’s algorithm [14, 15, 16] and on quan-
tum phase estimation [6], the latter using the quantum Fourier trans-
form [7].

Here we consider the problem of WMC under a black box compu-
tation model where we don’t know anything about the propositional
1 Department of Mathematics and Computer Science, University of Ferrara

Via Saragat 1, 44122, Ferrara Italy, Gruppo Nazionale per il Calcolo Scien-
tifico, Istituto Nazionale di Alta Matematica “Francesco Severi”, P.le Aldo
Moro 5, 00185, Roma Italy, email: fabrizio.riguzzi@unife.it

formula, we only have the possibility of querying an oracle giving
the value of the formula for an assignment of the propositional vari-
ables, and we consider the complexity in terms of oracle calls. In
this computation model, QWMC solves the problem approximately
with a complexity of Θ(2

n
2) while classically the best complexity is

Θ(2n), thus achieving a quadratic speedup.
QWMC may be useful for models with high treewidth: supposing

the cost of implementing the oracle is linear in n, if the treewidth
is larger than half the number of variables, then QWMC performs
better than other inference algorithms.

QWMC can also be used as a subroutine for probabilistic infer-
ence system over graphical models. For example, in the junction tree
algorithm [22, 17], it can be used after the probabilities are propa-
gated in the tree to compute the marginals of the variables in tree
nodes.

The paper is organized as follows. Section 2 presents the WMC
problem. Section 3 briefly introduces quantum computing. Then sec-
tions 4, 5, 6 and 3 describe the quantum Fourier transform, quantum
phase estimation, quantum search and quantum counting algorithms
respectively. Section 8 is the main contribution of this paper and
presents the quantum weighted model counting algorithm. Section
9 compares the complexity of the algorithm to the one of classical
algorithms. Section 10 discusses related work and Section 11 con-
cludes the paper.

2 Weighted Model Counting

Propositional satisfiability (SAT) is the problem of deciding whether
a logical formula over Boolean variables evaluates to true for some
truth value assignment of the Boolean variables. If an assignment M
makes formula φ true we write M |= φ. Model counting or #SAT
[12] aims at computing the number of satisfying assignments of a
propositional sentence.

Weighted model counting (WMC) [5] generalizes model counting
by giving each assignment a weight and aiming at computing the sum
of the weights of all satisfying assignments.

Definition 1 Given a formula φ in propositional logic over literals
L (Boolean variables or their negation), and a weight function w :
L → R≥0, the weighted model count (WMC) is defined as:

WMC(φ,w) =
∑
M|=φ

weight(M,w)

where weight(M,w) =
∏

l∈M w(l)

Example 1 Let us consider an example inspired by the sprinkler
problem of [20]: we have three Boolean variable, s, r, w represent-
ing respectively propositions “the sprinkler was on”, ‘ı̀t rained last
night” and “the grass is wet”. We know that if the sprinkler was on

ECAI 2020
G.D. Giacomo et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200401

2640

the grass is wet (s → w), if it rained last night the grass is wet
(r → w) and that the the sprinkler being on and rain last night can-
not be true at the same time (s, r →). Transforming the formula into
conjunctive normal formal we obtain the formula

φ = (¬s ∨ w) ∧ (¬r ∨ w) ∧ (¬s ∨ ¬r)

Suppose the weights of literals are w(s) = 0.3, w(¬s) = 0.7,
w(r) = 0.2, w(¬r) = 0.8, w(w) = 0.5 and w(¬w) = 0.5, Table
1 shows the worlds of φ together with the weight of each world. The
WMC of φ is thus WMC(φ,w) = 0.28+0.28+0.07+0.12 = 0.75

s r w φ W
0 0 0 1 0.7 · 0.8 · 0.5 = 0.28
0 0 1 1 0.7 · 0.8 · 0.5 = 0.28
0 1 0 0 0.7 · 0.2 · 0.5 = 0.07
0 1 1 1 0.7 · 0.2 · 0.5 = 0.07
1 0 0 0 0.3 · 0.8 · 0.5 = 0.12
1 0 1 1 0.3 · 0.8 · 0.5 = 0.12
1 1 0 0 0.3 · 0.2 · 0.5 = 0.03
1 1 1 0 0.3 · 0.2 · 0.5 = 0.03

Table 1. Worlds for formula φ of Example 1.

3 Quantum Computing

Here we provide a brief introduction to quantum computing follow-
ing [19]. As the bit is at the basis of classical computing, the quan-
tum bit or qubit is at the basis of quantum computing. A qubit is a
mathematical object that can have various physical implementations.
Mathematically it is a unit vector in the C2 space where C is the set
of complex numbers. A bit can be in one of two states, similarly a
qubit has a state which is its vector in C2. Usually qubits are rep-
resented using the Dirac notation where |ψ〉 is a two dimensional
column vector representing the state of a qubit while 〈ψ| is a two
dimensional row vector also representing the state. The special states
|0〉 and |1〉 are identified: they are called computational basis states
and form the orthonormal basis[

1
0

] [
0
1

]

for C2. Any qubit state |ψ〉 can thus be expressed as a linear combi-
nation of the computational basis states:

|ψ〉 = α |0〉+ β |1〉 =
[

α
β

]

where α and β are complex number such that |α|2 + |β|2 = 1. In
this case we say that |ψ〉 is in a superposition of states |0〉 and |1〉.

In this paper we follow the quantum circuit model of computa-
tion where each qubit corresponds to a wire and quantum gates are
applied to sets of wires.

Quantum gates are represented by matrices with complex ele-
ments. The adjoint or Hermitian conjugate of a matrix M , denoted
by M†, is the conjugate and transpose matrix M† = (M∗)T . A
matrix is unitary if M†M = I . Quantum gates are represented by
unitary matrices. The simplest gates are those operating on a single
qubit and belong to C2×2. For example, the counterpart of the NOT
Boolean gate for classical bits is X defined as

X =

[
0 1
1 0

]

and represented as in Figure 1 top left. Another important gate is the
Hadamard gate (see Figure 1 top center)

H =
1√
2

[
1 1
1 −1

]
.

A gate that we will use in the following is:

Ry(θ) =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]

that applies a rotation of θ/2 radians, with θ user defined, see Figure
1 top right.

X H Ry(θ)

|a〉
|b〉

|a〉
|b⊕ a〉

Figure 1. Examples of quantum gates.

Another operation we can apply to a qubit is measurement. There
are various types of measurements, here we consider only the one
with respect to the computational basis that, given a qubit α |0〉 +
β |1〉, returns a classical bit, namely 0 with probability |α|2 and 1
with probability |β|2. Since qubits are unit vectors, this operation is
well-defined. Measurement is represented as in Figure 1 bottom left.

Whenever we have more than one bit, we have a composite phys-
ical system and the state space expands accordingly: for n qubits,
there are 2n computational basis states, e.g., if n = 2 the basis states
are |00〉, |01〉, |10〉 and |11〉 and the state of the qubits can be written
as

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉
Moreover, the state space of a composite physical system is the tensor
product of the state spaces of the component physical systems.

The tensor product of two column vectors a and b is abT . So the
tensor product of two qubits

|a〉 = a0 |0〉+ a1 |1〉 =
[

a0

a1

]

|b〉 = b0 |0〉+ b1 |1〉 =
[

b0
b1

]
is

|a〉 ⊗ |b〉 =

⎡
⎢⎢⎣

a0b0
a0b1
a1b0
a1b1

⎤
⎥⎥⎦ =

a0b0 |00〉+ a0b1 |01〉+ a1b0 |10〉+ a1b1 |11〉
For two qubits, the most important gate is the controlled-NOT or
CNOT gate that has two inputs, the control and the target qubits, and
acts by flipping the target qubit if the control bit is set to 1 and does
nothing if the control bit is set to 0. It can also be defined as a gate
that operates as |ab〉 → |a, b⊕ a〉 where ⊕ is the XOR operation,
see Figure 1 bottom right.

Any multiple qubit logic gate may be composed from CNOT and
single qubit gates.

CNOT may be generalized to the case of more than two bits: in
this case, the extra qubits act as controls and the target is flipped if
all controls are 1. Moreover, given an operator U , it is possible to
define a control-U operator defined as |ab〉 → |a, Uab〉: if a = 0 it
does nothing, otherwise it applies operator U to b.

F. Riguzzi / Quantum Weighted Model Counting 2641

|s〉
|r〉
|w〉
|1〉
|1〉
|1〉
|0〉

X

|s〉
|r〉
|¬w〉
|¬(s ∧ r)〉 = |¬s ∨ ¬r〉
|¬(r ∧ ¬w)〉 = |¬r ∨ w〉
|¬(s ∧ ¬w)〉 = |¬s ∨ w〉
|(¬s ∨ ¬r) ∧ (¬s ∨ w) ∧ (¬r ∨ w)〉

Figure 2. Quantum circuit for computing φ

Example 2 The quantum circuit for computing the value of formula
φ from Example 1 is shown in Figure 2.

Quantum circuits should be read from left to right. Each line or
wire correspond to a qubit and starts in a computational basis state,
usually |0〉 unless otherwise indicated. The circuit in Figure 2 con-
tains one wire for each Boolean variable of Example 1 plus four other
wires that represent the so called ancilla qubits. Ancilla qubits are
used in order to make the circuit reversible. The bottom ancilla qubit
contains the truth value of function φ.

4 Quantum Fourier Transform

The discrete Fourier transform computes a vector of complex num-
bers y0, . . . yN−1 given a vector of complex numbers x0, . . . , xN−1

as follows

yk =
1√
N

N−1∑
j=0

xje
2πijk/N

The quantum Fourier transform [7] is similar, it takes an orthonormal
basis |0〉 , . . . , |N − 1〉 and transforms it as:

|j〉 → 1√
N

N−1∑
k=0

e2πijk/N |k〉

It is a Fourier transform because the action on an arbitrary state is

N−1∑
j=0

xj |j〉 →
N−1∑
k=0

yk |k〉

with yk as in the discrete Fourier transform.
Assuming N = 2n, the quantum Fourier transform can be given a

product representation [6, 13]:

|j1, . . . , jn〉 →
1

2n/2

∑2n−1
k=0

e2πijk/2n |k〉

= 1

2n/2

∑1
k1=0 . . .

∑1
kn=0 e

2πij
(∑n

l=1 kl2
−l

)
|k1 . . . kn〉

= 1

2n/2

∑1
k1=0 . . .

∑1
kn=0

⊗n
l=1 e2πijkl2

−l |kl〉

= 1

2n/2

⊗n
l=1

[∑1
kl=0 e2πijkl2

−l |kl〉
]

= 1

2n/2

⊗n
l=1

[
|0〉 + e2πij2−l |1〉

]

=

(
|0〉+e2π0.jn |1〉

)
⊗

(
|0〉+e

2π0.jn−1jn |1〉
)
⊗···

(
|0〉+e2π0.j1j2···jn |1〉

)

2n/2
(1)

where the state |j〉 is written using the binary representation
j = j1j2 . . . jn and 0.jljl+1 . . . jm represents the number jl/2 +
jl+1/4+ . . .+jm/2m−l+1. The quantum Fourier transform requires
Θ(n2) gates.

5 Quantum Phase Estimation

In the problem of quantum phase estimation [6], we are given an
operator U and one of its eigenvectors |u〉 with eigenvalue e2πiϕ

and we want to find the value of ϕ. We assume that that we have
black boxes that can prepare the state |u〉 and perform controlled-
U2j operations for non negative integers j.

Phase estimation uses two registers, one with t qubits initially in
state |0〉 and the other with as many qubits as are necessary to store
|u〉 that is also its initial state.

The first stage of phase estimation is shown in Figure 3. A
controlled-U2j operation on control qubit b and target register in an
eigenvector state |u〉 of U acts as follows. If b is |0〉, U2j is not ap-
plied and the output is |0〉 |u〉. If b is |1〉, then U2j is applied to |u〉.
Since |u〉 is an eigenvector of U , |u〉 is brought to e2πi2jϕ |u〉 and
|1〉 |u〉 becomes e2πi2jϕ |1〉 |u〉.

The result of the controlled-U2j operation on (H |0〉) |u〉 =
|0〉+|1〉√

2
|u〉 is (

|0〉+ e2πi2jϕ |1〉√
2

)
|u〉

Thus the final state of the first register after the first phase of phase
estimation is

1

2t/2

(
|0〉 + e2πi2t−1ϕ |1〉

)
⊗

(
|0〉 + e2πi2t−2ϕ |1〉

)
. . .

(
|0〉 + e2πi20ϕ |1〉

)

= 1

2t/2

∑2t−1
k=0

e2πiϕk |k〉
(2)

If the phase can be represented with exactly t bits as ϕ =
0.ϕ1 . . . ϕt, Equation (2) can be rewritten as
(
|0〉 + e2π0.ϕt |1〉

)
⊗

(
|0〉 + e

2π0.ϕt−1ϕt |1〉
)

⊗ · · ·
(
|0〉 + e2π0.ϕ1···ϕt |1〉

)

2n/2

This form is exactly the same as that of Equation (1) so, if we apply
the inverse of the Fourier transform, we obtain |ϕ1, . . . , ϕt〉. The
inverse of an operator is its adjoint so the overall phase estimation
circuit is shown in Figure 4.

If ϕ cannot be represented exactly with t bits, the algorithm pro-
vides approximation guarantees: if we want to approximate ϕ to
m bits with probability of success at least 1 − ε we must choose
t = m+
log2

(
2 + 1

2ε

)� [19].

6 Quantum Search

The problem of quantum search is, given a Boolean function φ :
{0, 1}n → {0, 1}, return a configuration of bits x such that φ(x) =
1 [14, 15, 16]. We assume we have a black box that evaluates φ, we
call it an oracle O, that is such that

|x〉 →O (−1)φ(x) |x〉
i.e., the oracle marks solutions to the search problems by changing
their sign. The oracle may use extra ancilla bits to do so. For the
case of the function of Example 1, the oracle will use a circuit such
as the one of Figure 2 in its internals. Figure 5 shows the circuit
performing quantum search operating on an n-qubit register r and
the oracle workspace o. All qubits of register r start in state |0〉. The
circuit includes a gate G that is called the Grover operator and is
implemented as show in Figure 6. The first gate of the search circuit
applies the H gate to each qubit in register r. Since all qubits in
register r start as |0〉 and the effect of H is to bring |0〉 to the state
|0〉+|1〉√

2
, then register r is brought to

|ψ〉 = |0〉+|1〉√
2

⊗ |0〉+|1〉√
2

· · · ⊗ |0〉+|1〉√
2

= |00〉+|01〉+|10〉+|11〉√
22

· · · ⊗ |0〉+|1〉√
2

= |000〉+|001〉+|010〉+|011〉+|100〉+|101〉+|110〉+|111〉√
23

· · · ⊗ |0〉+|1〉√
2

= 1

N1/2

∑N−1
x=0 |x〉

F. Riguzzi / Quantum Weighted Model Counting2642

First register
t qbits |0〉

Second register |u〉

H

H

H

H

· · ·

U20 U21 U22

· · ·

U2t−1

|0〉+ e2πi(2t−1ϕ) |1〉

|0〉+ e2πi(22ϕ) |1〉
|0〉+ e2πi(21ϕ) |1〉
|0〉+ e2πi(20ϕ) |1〉

|u〉

Figure 3. First stage of phase estimation. On the right we have omitted normalization factors of 1√
2

.

|0〉

|u〉

t

n

First phase
Fig. 3

FT †

|u〉

Figure 4. The complete phase estimation circuit.

r = |0〉
o

n

q

H⊗n

G G · · · G

O(
√
N)

Figure 5. Quantum search algorithm.

where N = 2n. This state is also called the uniform superposition
state.

The Grover operator can be written as

G = (2 |ψ〉 〈ψ| − I)O

We now show that the Grover operator is a rotation. Consider the two
states

|α〉 = 1√
N −M

∑
x:φ(x)=0

|x〉

|β〉 = 1√
M

∑
x:φ(x)=1

|x〉

where M is the number of solutions to φ(x) = 1. These two states
are orthonormal. The uniform superposition state |ψ〉 can be written
as a linear combination of |α〉 and |β〉:

|ψ〉 =
√

N −M

N
|α〉+

√
M

N
|β〉

so |ψ〉 belongs to the plane defined by |α〉 and |β〉. In this plane, the
effect of the oracle operation O is to perform a reflection about the
vector α because O(|α〉+ |β〉) = |α〉 − |β〉, see Figure 7.

The other component of Grover operator, 2 |ψ〉 〈ψ| − I , also
performs a reflection in the plane defined by |α〉 and |β〉, about
the vector |ψ〉. The overall effect is that of a rotation [1]. Define
cos θ/2 =

√
(N −M)/N , then |ψ〉 = cos θ/2 |α〉+ sin θ/2 |β〉.

From Figure 7 we can see that the rotation applied by G is exactly
θ so

G |ψ〉 = cos
3θ

2
|α〉+ sin

3θ

2
|β〉

Repeated applications of G take the state to

Gk |ψ〉 = cos

(
2k + 1

2
θ

)
|α〉+ sin

(
2k + 1

2
θ

)
|β〉 .

r

o

n

q

oracle
|x〉 → (−1)f(x) |x〉

H⊗n

phase
|0〉 → |0〉
|x〉 → − |x〉

for x > 0

H⊗n

Figure 6. Grover operator.

|α〉

|β〉

|ψ〉

O |ψ〉

G |ψ〉

θ/2

θ/2

θ

Figure 7. Visualization of the effect of Grover operator.

These rotations bring |ψ〉 closer and closer to |β〉. If we perform
the right number of rotations, an observation in the computational
basis produces with high probability one of the outcomes superposed
in |β〉, i.e., a solution to the search problem. It turns out that the
number of applications of G (and thus of oracle calls) required to
maximise the probability of measuring one of the solutions to the
search problem is O(

√
N/M), while classically by treating φ as a

black box the number of oracle calls would be O(N/M).
The algorithm works if M ≤ N/2. If this is not true, it is enough

to consider an extra qubit e, defining a new function φ′(x) that is true
only if e is true, i.e., φ′(x) = φ(x) ∧ e. This leaves M unchanged
but multiplies N by 2.

7 Quantum Counting

With quantum counting we want to count the number of solutions to
the equation φ(x) = 1 where φ is a Boolean function as above. In
the notation of the previous section, it means computing M .

Suppose |a〉 and |b〉 are the two eigenvectors of the Grover op-
erator G in the space spanned by |α〉 and |β〉. Since G is a ro-
tation of angle θ in such a space, the eigenvalues of |a〉 and |b〉
are eiθ and ei(2π−θ). If we know θ, we can compute M from
sin2(θ/2) = M/2N (supposing the oracle has been augmented with
an extra qubit). Since sin(θ/2) = sin(π − θ/2), it does not matter
which eigenvalue is estimated.

So quantum counting is performed by using quantum phase esti-

F. Riguzzi / Quantum Weighted Model Counting 2643

|0〉⊗t

|0〉⊗n+1

H⊗t

H⊗n+1
G20 G21

· · ·

G2t−1

FT †

Figure 8. Circuit for quantum counting.

mation to compute the eigenvalues of the Grover operator G. The
circuit for quantum counting is shown in Figure 8 [2, 3].

The upper register in Figure 8 has t qubits while the lower register
n + 1. θ is estimated to m bits of accuray with probability at least
1− ε if t = m+
log2(2 + 1/2ε)�. The error on the estimate of the
count M is given by [19]:

|ΔM |
2N

=

∣∣∣∣sin2

(
θ + Δθ

2

)
− sin

2

(
θ

2

)∣∣∣∣ =
(
sin

(
θ + Δθ

2

)
+ sin

(
θ

2

)) ∣∣∣∣sin
(

θ + Δθ

2

)
− sin

(
θ

2

)∣∣∣∣
Since | sin((θ + Δθ)/2) − sin(θ/2)| ≤ |Δθ|/2 and | sin((θ +
Δθ)/2)| < sin(θ/2) + |Δθ|/2 from calculus and trigonometry re-
spectively, we get

|ΔM |
2N

<

(
2 sin

(
θ

2

)
+

|Δθ|
2

) |Δθ|
2

Using sin2(θ/2) = M/2N and |Δθ| ≤ 2−m we obtain

|ΔM | <
(√

2MN +
N

2m+1

)
2−m

Consider this case: let m =
n/2� + 2 and ε = 1/12. Then t =

n/2� + 5. The number of applications of the Grover operator is
Θ(

√
N) and so is the number of oracle calls. The error is |ΔM | <√

M/8 + 1/32 = O(
√
M).

8 Quantum Weighted Model Counting

For the moment suppose that the literal weights sum to 1, i.e., that
w(xi) + w(¬xi) = 1 for all bits xi.

The circuit for performing quantum weighted model counting is
shown in Figure 9 and differs from the one in Figure 8 because the
Hadamard operations applied to the lower register are replaced by
rotations Ry(θi) where i is the qubit index except for the extra qubit
for which the Hadamard operator is kept. θi is computed as

θi = 2arccos
√
1− wi

where wi = w(xi). So

cos θi/2 = cos arccos
√
1− wi =

√
1− wi

and
sin θi/2 =

√
1− (cos θi/2)2 =

√
wi

The effect of the rotation on the ith bit is

Ry(θi) |0〉 =
[

cos θi
2

− sin θi
2

sin θi
2

cos θi
2

] [
1
0

]
=

[
cos θi

2

sin θi
2

]
=

[√
1− wi√
wi

]
=

√
1− wi |0〉+√

wi |1〉

Register 1
|0〉⊗t

Register 2
|0〉⊗n+1

Ancilla
|0〉⊗q

H⊗t

Ry(θ1)

Ry(θ2)

Ry(θ3)

· · ·
Ry(θn)

H

G20 G21

· · ·

G2t−1

FT †

Figure 9. Circuit for quantum weighted model counting.

Therefore the rotations prepare the state

ψ =
n⊗

i=1

(
√
1− wi |0〉+√

wi |1〉)⊗ 1√
2
(|0〉+ |1〉) =

=

2n+1−1∑
bn+1bn...b1=0

√
w′

n . . . w′
1

2
|bn+1bn . . . b1〉

where w′
i is

w′
i =

{
wi if bi = 1
1− wi if bi = 0

Define Wbnbn−1...b1 as w′
nw

′
n−1 . . . w

′
1 and normalized states

|α〉 = 1√∑
x;φ(x)=0 Wx

2

∑
x;φ(x)=0

√
Wx

2
|x〉

|β〉 = 1√∑
x;φ(x)=1 Wx

2

∑
x;φ(x)=1

√
Wx

2
|x〉 ,

then |ψ〉 can be expressed as

|ψ〉 =
⎛
⎝
√∑

x;φ(x)=0 Wx

2

⎞
⎠ |α〉+

⎛
⎝
√∑

x;φ(x)=1 Wx

2

⎞
⎠ |β〉

so the initial state of the quantum computer is in the space spanned
by |α〉 and |β〉

Let cos θ/2 =

√∑
x;φ(x)=0 Wx

2
and sin θ/2 =

√∑
x;φ(x)=1 Wx

2

so that
|ψ〉 = cos θ/2 |α〉+ sin θ/2 |β〉

From this point we can repeat the reasoning used for quantum count-
ing: the application of the Grover operator rotates |ψ〉 in the space
spanned by |α〉 and |β〉 by angle θ and eiθ and ei(2π−θ) are the
eigenvalues of G. θ can be found by quantum phase estimation. From
sin2(θ/2) =

∑
x;φ(x)=1 Wx

2
we obtain

WMC(φ,w) =
∑

x:φ(x)=1

Wx = 2 sin2(θ/2)

If the literal weights do not sum to 1, i.e., w(xi) + w(¬xi) = 1,
consider the normalized weights, i.e., the new weights ŵ(xi) =

w(xi)
w(xi)+w(¬xi)

and ŵ(¬xi) = w(¬xi)
w(xi)+w(¬xi)

. Let Vi be w(xi) +

w(¬xi) for i = 1, . . . , n. Then we perform QWMC with ŵ replac-
ing w. We get a normalized WMC ̂WMC(φ,w)

̂WMC(φ,w) =
∑

x:φ(x)=1

Ŵx

F. Riguzzi / Quantum Weighted Model Counting2644

where Ŵbnbn−1...b1 is ŵ′
nŵ

′
n−1 . . . ŵ

′
1 and

ŵ′
i =

{
ŵ(xi) if bi = 1
1− ŵ(xi) if bi = 0

Then

̂WMC(φ,w) =∑
x:φ(x)=1

Ŵx =

∑
bn...b1:φ(bn...b1)=1

Ŵbn...b1 =

∑
bn...b1:φ(bn...b1)=1

ŵ′
n . . . ŵ′

1 =

∑
bn...b1:φ(bn...b1)=1

w(bn)

Vn
. . .

w(b1)

V1
=

∑
bn...b1:φ(bn...b1)=1

1∏n
i=1 Vi

w(bn) . . . w(b1) =

1∏n
i=1 Vi

∑
bn...b1:φ(bn...b1)=1

w(bn) . . . w(b1) =

1∏n
i=1 Vi

WMC(φ,w)

where w(bi) = w(xi) if bi = 1 and w(bi) = w(¬xi) if bi = 0. So
if we multiply ̂WMC(φ,w) by

∏n
i=1 Vi we obtain WMC(φ,w)

also when the weights do not sum to 1.
Let us consider the complexity of the algorithm.

Theorem 1 QWMC on n bits requires Θ(
√
N) oracle calls to

bound the error to 2−
n+1
2 with probability 1/12 using t =
n/2�+5

bits.

Proof : We can repeat the derivation of the previous section where M
is replaced by N × ̂WMC(φ,w). We get

|Δ ̂WMC(φ,w)|
2

<

(
2 sin

(
θ

2

)
+

|Δθ|
2

) |Δθ|
2

Using sin2(θ/2) = ̂WMC(φ,w)/2 and |Δθ| ≤ 2−m we obtain

|Δ ̂WMC(φ,w)| <
(√

2 ̂WMC(φ,w) + 2−m−1

)
2−m

Since ̂WMC(φ,w) ≤ 1 we have

|Δ ̂WMC(φ,w)| <
(√

2 + 2−m−1
)
2−m < 2−m+ 1

2 + 2−2m−1

If we choose m =
n/2� + 2 and ε = 1/12, then t =
n/2� + 5
and the algorithm requires Θ(

√
N) oracle calls. The error becomes

(for n even, for n odd the result is similar):

|Δ ̂WMC(φ,w)| < 2−
n
2
−2+ 1

2 + 2−n−5 <

2−
n
2
− 3

2 + 2−
n
2
− 3

2 < 2−
n
2
− 1

2

so the error is bounded by 2−
n+1
2 �

9 Complexity of Classical Algorithms

Let us now discuss the advantages fo QWMC with respect to WMC.
We consider a black box model of computation [19], where the only
knowledge we have on the Boolean function φ is the possibility of
evaluating it given an assignment of the Boolean variables, i.e., we
have an oracle that answers queries over φ. We want to know what is
the minimum number of evaluations that are needed to solve counting
problems.

Consider first an unweighted counting problem. A classical algo-
rithm for probabilistically solving it proceeds by taking k samples
uniformly from the search space. This can be performed by sampling
each Boolean variable uniformly and combining the bit samples ob-
taining an assignment sample. For each assignment sample, we query
the oracle and we obtain a value Xi with i = 1, . . . , k, where Xi is
1 if φ evaluates to true for the sample and Xi is 0 if φ evaluates to
false. Then we can estimate the count as

S =
N

k
×

k∑
i=1

Xk =
NX

k

where X =
∑k

i=1 Xk. Variable X = Sk/N is binomially dis-
tributed with k the number of trials and probability of success M/N
where M is the model count of φ. Therefore the mean of X is kM/N
and the mean of S is (N/k)k(M/N) = M , so S is an unbiased es-
timate of M .

Theorem 2 [19, Exercise 6.13]. The complexity of the classical al-
gorithm for estimating M with a probability of at least 3/4 within an
accuracy of

√
M is Ω(N) oracle calls.

Proof : We can use the normal approximation of the binomial propor-
tion confidence interval according to which the true success proba-
bility of the binomial variable lies in the interval

p̂± z

√
p̂ (1− p̂)

k

where p̂ is the estimated probability and z is the quantile of a standard
normal distribution that depends on the confidence (in our case the
confidence is 75% and so z = 0.6744898). The size of the interval
where the true probability lies is therefore

2z

√
S/N(1− S/N)

k

and the the size of the interval of the number of solutions is

2zN

√
S/N(1− S/N)

k
.

We replace the estimated probability with the true one to get a better
estimate:

2zN

√
M/N(1−M/N)

k
.

We want this to be smaller than
√
M so

√
M ≥ 2zN

√
M/N(1−M/N)

k

M ≥ 4z2N2M/N(1−M/N)

k

k ≥ 4z2N2M/N(1−M/N)

M

k ≥ 4z2N(1−M/N)

F. Riguzzi / Quantum Weighted Model Counting 2645

so k = Ω(N) �
It turns out that this is the best bound, in the sense that any classical

counting algorithm with a probability at least 3/4 for estimating M
correctly to within an accuracy c

√
M for some constant c must make

Ω(N) oracle calls [19, Exercise 6.14], [18, Table 2.5]. So quantum
computing gives us a quadratic speedup.

For QWMC, consider the following classical algorithm: take k
assignment samples by sampling each bit according to its normal-
ized weight. For each assignment sample, query the oracle obtaining
value Xi with i = 1, . . . , k and estimate the WMC as for the un-
weighted case: S = N

k

∑k
i=1 Xi Variable Sk/N is again binomi-

ally distributed with k the number of trials and probability of suc-
cess ̂WMC(φ,w). In fact, the probability P (Xi = 1) is given by
P (Xi) =

∑
x P (Xi, x) =

∑
x P (Xi|x)P (x) where P (Xi|x) is 1

if x is a model of φ and 0 otherwise. So

P (Xi) =
∑

x:φ(x)=1

P (x) =

∑
bn...b1:φ(bn...b1)=1

P (bn . . . b1) =

∑
bn...b1:φ(bn...b1)=1

P (bn) . . . P (b1) =

∑
bn...b1:φ(bn...b1)=1

n∏
i=1

ŵ′
i =

∑
bn...b1:φ(bn...b1)=1

n∏
i=1

w(bi)

Vi
=

WMC(φ,w)∏n
i=1 Vi

= ̂WMC(φ,w)

Theorem 3 The complexity of the classical algorithm for estimating
̂WMC(φ,w) with a probability of at least 3/4 within an accuracy of
2−	n

2

 is Ω(N). oracle calls and this is the best bound for a classical

algorithm.

Proof : We can repeat the reasoning performed with counting: the
size of the interval where the true value of ̂WMC(φ,w) lies is

2z

√
S/N(1− S/N)

k

Let us replace S/N by its true value ̂WMC(φ,w) obtaining

2z

√
̂WMC(φ,w)(1− ̂WMC(φ,w))

k

Suppose we want the error below 2−	n
2

 so

2−	n
2

 ≥ 2z

√
̂WMC(φ,w)(1− ̂WMC(φ,w))

k

Squaring both members we get (if n is even, if it is odd the result
is similar)

2−n ≥ 4z2
̂WMC(φ,w)(1− ̂WMC(φ,w))

k

and
k ≥ 4z22n ̂WMC(φ,w)(1− ̂WMC(φ,w))

We want the bound to work for all valules of ̂WMC(φ,w) and
̂WMC(φ,w)(1− ̂WMC(φ,w)) ≤ 1/4 so we have

k ≥ z22n

Therefore k = Ω(N) This is also the best bound for a classical al-
gorithm, as otherwise we could solve model counting with a better
bound than Ω(N) by setting all weights to 0.5 �

Therefore QWMC offers a quadratic speedup over classical com-
putation in the black box model.

10 Related Work

Recently the problem of computing the weighted count of eigenstates
of Hamiltonians was tackled by [24]. The authors proposed mixed
quantum-Monte Carlo algorithms that repeat several times quantum
computations and then use statistics from the results to approximate
the weighted count. In particular, they propose applications of Adia-
batic quantum optimization (AQO), quantum approximate optimiza-
tion algorithm (QAOA) and Grover’s algorithm to find the eigen-
states and provide individual samples. The authors prove (numeri-
cally for QAOA) that the number of samples needed to achieve a cer-
tain relative error is lower than that of classical optimal Monte Carlo
simulation. This work can be used to perform weighted model count-
ing, we differ from it because we rely on quantum phase estimation
rather than sampling.

An approximate algorithm for counting was also proposed by [4]:
the algorithm uses a logarithmic number of calls to a SAT oracle. We
differ from this work because in our case the oracle is the evaluation
of the Boolean function which is much cheaper than a SAT call.

Another work on approximate weighted model counting is [11]
that exploits a dynamic programming algorithm on tree decomposi-
tion and can be parallelized using GPUs. However, the method re-
quire the treewidth of the formula to be small, while we have no such
requirement.

11 Conclusion

We have proposed an algorithm for performing quantum weighted
model counting. The algorithm minimally modifies the quantum
counting algorithm by just changing the preparation of the state of
the second register. In turn QWMC also uses quantum search, phase
estimation and the Fourier transform.

Using the black box model of computation, QWMC makes
Θ(

√
N) oracle calls to return a result whose errors is bounded by

2−
n+1
2 with probability 11/12. By contrast, the best classical al-

gorithm requires Θ(N) calls to the oracle. Thus QWMC offers a
quadratic speedup that may be useful for example for computing
marginals for the variables of a tree node in the junction tree algo-
rithm

We have implemented the algorithm in two versions, one for
Microsoft’s Q# [25] and one for IBM’s Qiskit [10], two program-
ming languages for quantum computers. The code is available from
https://bitbucket.org/machinelearningunife/
qwmc. Performing ten QWMC operations on the sprinkler example
takes 605 ms on a PC with Intel Core i7 @ 3.20 Ghz using the
Q# simulator and 11.99 seconds for the Qiskit version using the
qasm_simulator on the IBM Q Experience web application.

F. Riguzzi / Quantum Weighted Model Counting2646

https://bitbucket.org/machinelearningunife/qwmc
https://bitbucket.org/machinelearningunife/qwmc

REFERENCES

[1] Dorit Aharonov, ‘Quantum computation’, in Annual Reviews of Com-
putational Physics VI, 259–346, World Scientific, (1999).

[2] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp, ‘Tight
bounds on quantum searching’, Fortschritte der Physik: Progress of
Physics, 46(4-5), 493–505, (1998).

[3] Gilles Brassard, Peter Høyer, and Alain Tapp, ‘Quantum counting’, in
25th International Colloquium on Automata, Languages and Program-
ming (ICALP 1998), eds., Kim Guldstrand Larsen, Sven Skyum, and
Glynn Winskel, volume 1443 of Lecture Notes in Computer Science,
pp. 820–831. Springer, (1998).

[4] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi, ‘Algorith-
mic improvements in approximate counting for probabilistic inference:
From linear to logarithmic SAT calls’, in 25th International Joint Con-
ference on Artificial Intelligence (IJCAI 2016), ed., Subbarao Kamb-
hampati, pp. 3569–3576. AAAI Press/IJCAI, (2016).

[5] Mark Chavira and Adnan Darwiche, ‘On probabilistic inference by
weighted model counting’, Artificial Intelligence, 172(6-7), 772–799,
(2008).

[6] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca,
‘Quantum algorithms revisited’, Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences,
454(1969), 339–354, (1998).

[7] Don Coppersmith, ‘An approximate fourier transform useful in quan-
tum factoring’, arXiv preprint quant-ph/0201067, (2002).

[8] Adnan Darwiche, ‘Recursive conditioning’, Artificial Intelligence,
126(1-2), 5–41, (2001).

[9] Rina Dechter, ‘Bucket elimination: A unifying framework for reason-
ing’, Artificial Intelligence, 113(1-2), 41–85, (1999).

[10] Héctor Abraham et al. Qiskit: An open-source framework for quantum
computing, 2019.

[11] Johannes Klaus Fichte, Markus Hecher, Stefan Woltran, and Markus
Zisser, ‘Weighted model counting on the GPU by exploiting small
treewidth’, in 26th Annual European Symposium on Algorithms (ESA
2018), eds., Yossi Azar, Hannah Bast, and Grzegorz Herman, pp. 28:1–
28:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, (2018).

[12] Carla P. Gomes, Ashish Sabharwal, and Bart Selman, ‘Model count-
ing’, in Handbook of Satisfiability, eds., Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh, volume 185, 633–654, IOS Press,
(2009).

[13] Robert B Griffiths and Chi-Sheng Niu, ‘Semiclassical fourier trans-
form for quantum computation’, Physical Review Letters, 76(17), 3228,
(1996).

[14] Lov K. Grover, ‘A fast quantum mechanical algorithm for database
search’, in 28th Annual ACM Symposium on Theory of Computing
(STOC 1996), pp. 212–219, New York, NY, USA, (1996). ACM Press.

[15] Lov K Grover, ‘A fast quantum mechanical algorithm for database
search’, arXiv preprint quant-ph/9605043, (1996).

[16] Lov K Grover, ‘Quantum mechanics helps in searching for a needle in
a haystack’, Physical review letters, 79(2), 325, (1997).

[17] Steffen L Lauritzen and David J Spiegelhalter, ‘Local computations
with probabilities on graphical structures and their application to expert
systems’, Journal of the Royal Statistical Society: Series B (Method-
ological), 50(2), 157–194, (1988).

[18] Michele Mosca, Quantum computer algorithms, Ph.D. dissertation,
University of Oxford. 1999., 1999.

[19] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, Cambridge University Press,
2010.

[20] Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann, 1988.

[21] Tian Sang, Paul Beame, and Henry A. Kautz, ‘Performing bayesian
inference by weighted model counting’, in 20th National Conference on
Artificial Intelligence (AAAI 2005), pp. 475–482, Palo Alto, California
USA, (2005). AAAI Press.

[22] Prakash P. Shenoy and Glenn Shafer, ‘Axioms for probability and
belief-function proagation’, in 4th Conference Conference on Uncer-
tainty in Artificial Intelligence (UAI 1988), eds., Ross D. Shachter,
Tod S. Levitt, Laveen N. Kanal, and John F. Lemmer, pp. 169–198.
North-Holland, (1990).

[23] P. W. Shor, ‘Algorithms for quantum computation: discrete logarithms
and factoring’, in 35th Annual Symposium on Foundations of Computer
Science (FOCS 1994), pp. 124–134. IEEE Press, (1994).

[24] Bhuvanesh Sundar, Roger Paredes, David T Damanik, Leonardo
Duenas-Osorio, and Kaden RA Hazzard, ‘A quantum algorithm to
count weighted ground states of classical spin hamiltonians’, arXiv
preprint arXiv:1908.01745, (2019).

[25] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher
Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, An-
dres Paz, and Martin Roetteler, ‘Q#: Enabling scalable quantum com-
puting and development with a high-level dsl’, in Real World Domain
Specific Languages Workshop (RWDSL 2018), pp. 7:1–7:10, New York,
NY, USA, (2018). ACM.

[26] Nevin Lianwen Zhang and David L. Poole, ‘Exploiting causal indepen-
dence in Bayesian network inference’, Journal of Artificial Intelligence
Research, 5, 301–328, (1996).

F. Riguzzi / Quantum Weighted Model Counting 2647

	Introduction
	Weighted Model Counting
	Quantum Computing
	Quantum Fourier Transform
	Quantum Phase Estimation
	Quantum Search
	Quantum Counting
	Quantum Weighted Model Counting
	Complexity of Classical Algorithms
	Related Work
	Conclusion

