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ABSTRACT 

Researchers have found that students as young as elementary school can 

engage in mathematical reasoning. Specifically, particular tasks tend to encourage 

this reasoning. This paper provides insight into some general characteristics of tasks 

that may lead to arguments that represent varied forms of reasoning. In this paper we 

report on arguments built by diverse student groups, of different ages, that were used 

to justify their solutions to problems from the fraction and counting strands of 

longitudinal and cross-sectional studies. We compare the characteristics of the two 

tasks and suggest how the implementation of tasks such as these can help elicit 

varied student reasoning. 
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1. INTRODUCTION  

Recently, mathematicians and mathematics educators have called for an 

increased emphasis on reasoning and proof at all levels of the curriculum. This focus 

on reasoning and proof is a crucial component of elementary and middle-grade 

mathematics learning, in that reasoning and proof are the foundation of mathematical 

understanding and are necessary for acquiring and communicating mathematical 

knowledge and building sustainable understanding in mathematics (Hanna, 2000; 

Hanna & Jahnke, 1996; Polya, 1981; Stylianides, 2007). Researchers have shown 

that children as young as eight and nine years old make conjectures, and justify their 

claims with sound arguments if they are supported in the classroom and afforded 

opportunities to reason collaboratively (Author, 2005). Author and Other (1996) 

traced the development of an elementary student’s mathematical reasoning while 

attending to counting tasks over 5-year span. In grade three Stephanie was 

presented with the task of finding all possible towers four cubes high when selecting 

from plastic cubes in two colors and this task was extended and built upon in the 

fourth and fifth grades. Author and Other found that Stephanie’s justifications 

progressed from the use of trial and error and finding patterns to elaborate direct and 

indirect proofs. By grade five Stephanie created a detailed written version of “proof by 

cases” to show all possible towers n-high that could be built. Another example can be 

found in a year- long study in an elementary classroom, where Lampert (1990) found 

that students moved back and forth between inductive and deductive arguments 

while working on a task involving finding the last digit in multi-digit numbers without 

doing multiplication. In justifying their assertions, the students were able to provide 

proofs about the patterns and interpret each other’s justifications. 

Unfortunately after over ten years, we are still only beginning to understand 

how students’ mathematical reasoning develops and which environments can best 

support the development of student reasoning (Yackel and Hanna, 2003). Author 

(2008) suggests that children as young as eight years old can develop arguments 

that take the form of mathematical proof; however, this act is not instinctive. Instead 

this argumentation emerged as teachers questioned and prompted students to justify 

solutions. Once students did begin to naturally justify solutions, they expanded their 
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arguments in response to the challenge to convince themselves and others of the 

reasonableness of their arguments. 

In this paper we attempt to identify general task characteristics that may elicit 

specific forms of reasoning. This is accomplished by studying in detail, using a 

modified grounded theory approach, the nature of student reasoning across three 

settings and across elementary and middle grade populations. The settings are 

diverse in that they range from low to high socioeconomic, and across urban, working 

class, and rural/suburban environments. We report on children’s arguments that 

represent forms of reasoning across these ages and student groups that were used 

in justifying solutions to problems from the fraction and counting strands of 

longitudinal and cross-sectional studies. Analysis of children’s arguments indicated 

that certain tasks tended to elicit particular forms of reasoning across all age groups 

and populations. Interest in studying the commonalities among these tasks led to the 

following question: Are there identifiable characteristics of mathematical tasks that 

might contribute to the co-construction of meaning and the development of varied 

forms of reasoning?  

 

2. THEORETICAL FRAMEWORK  

 

2.1 The Notion of Proof 

Many researchers stress the role of discourse in the mathematics classroom 

to encourage reasoning and proof (Balacheff, 1991; Hanna, 1991; Author, 1995, 

2008). Other and Author (2005) highlight the importance of emphasizing justification 

of solutions to problems in school mathematics, rather than formal proving. They 

argue that the rigor and form required for formal proof is not accessible to young 

children who have not yet acquired the algebraic tools to represent their arguments.  

They posit that by encouraging the use of informal justification, students will have the 

opportunity to engage in proof-like activities before writing formal proofs using 

symbolic notations that enable them to express their ideas in general form. They 

argue that it is important for students to grow accustomed to the necessity of 
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convincing others of the validity of their ideas so that “proof-making” can become an 

integral part of the mathematical process of problem solving activity. 

Stylianides (2007) suggests a definition of proof as it applies to elementary 

school mathematics. She proposes that proof in school mathematics can be 

identified when a sequence of assertions fulfills three conditions: It must use 

statements that are accepted by the classroom community as true, which may be 

definitions, axioms, or theorems; it employs forms or modes of argumentation that 

are accepted by the community as reasonable or within their conceptual reach; and it 

is communicated using representations or forms of expression that are understood 

by the community. She emphasizes that what may constitute a proof in a high school 

class may not be valid in an elementary school classroom, if it uses terms or forms of 

reasoning that are outside of the students' experience or ability. By introducing proof 

in this way, students who are exposed to mathematics in elementary school should 

get a sense of what mathematicians do. Students gain an authentic mathematical 

experience when they are allowed to use forms of argumentation to the best of their 

cognitive ability while retaining the accepted modes of argumentation and methods of 

proof that are used by mathematicians. Stylianides (2007) suggests that the notion of 

proof is dependent upon the community in which it emerges, indicating that as 

students engage in reasoning and justifying, their reasoning to others, they begin to 

develop proofs that are appropriate to that community.  

 

2.2 A Problem Solving Environment  

There is general agreement that mathematical reasoning and argumentation 

are often manifested through the process of mathematical communication in learning 

communities (Yackel and Cobb 1996; Forman, 2003). Communities of mathematical 

inquiry include students participating in mathematical discussions, proposing and 

defending arguments, and responding to the ideas and conjectures of their peers 

(Goos, 2004). According to McCrone (2005), this type of mathematical discourse 

increases when teachers and students share the responsibility of creating working 

norms and communicating about mathematical concepts. 
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Social norms for small-group activities include but are not limited to 

persistence in problem solving, explaining solutions to partners, listening and making 

sense of partner’s explanations, and attempting to come to agreement on answers 

solutions processes. Social norms for the whole-class discussions often consist of 

explaining and justifying solutions, listening to and attempting to understand 

explanations of others, questioning each other, and sharing agreement or 

disagreement (Cobb, Yackel, and Wood 1995). Through the establishment of social 

norms, an effective mathematical community or micro-culture can be created. The 

mathematical community that includes established social norms as described above 

is often the impetus for sense making that leads to mathematical understanding. 

Through extensive analysis of an 18-year longitudinal/cross-sectional study, Other 

and Author (2005) found that mathematical reasoning was promoted when students 

were afforded opportunities to work collaboratively on strands of complex tasks and 

encouraged to take ownership of solution strategies and offer justifications. They 

suggest that by presenting students with a complex task, rather than scaffolding a set 

of simpler tasks, mathematical reasoning that leads to sense-making can evolve.  

 

2.3 Tasks that Support Reasoning and Proof 

Researchers note that a well-defined, open-ended task can provide the 

stimulus for reasoning as students are encouraged to explain and justify their ideas. 

Open-ended tasks are often defined as problems that offer students multiple options 

for solution strategies and at times have more than one correct solution (Hancock, 

1995). Open-ended tasks often involve deeper thinking, making conjectures, 

defending solutions, and making generalizations (Kulm, 1994). Conversely, closed 

tasks questions involve responses from memory or the performance of rote 

procedures (Burns, 1997). Well-defined, open ended tasks can become the stage 

that allows students to make their ideas public especially when multiple 

representations and multiple strategies for solutions emerge (Author, 2002; Fransisco 

& Author, 2005). When used effectively, open-ended tasks promote higher-order 

thinking (Dyer & Moynihan, 2000). As students grapple with creating their own 

strategies and conjectures rather relying on memorization or given rules or 

procedures they develop “deep understanding” of the mathematics (Hiebert, 
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Carpenter, Fennema et al, 1996). In addition, researchers note that tasks that are 

open-ended and challenging encourage students to rely on their own mathematical 

resources and make possible the building of new knowledge. They suggest, based 

on the results of detailed longitudinal studies of students’ mathematical thinking, that 

affording students’ sufficient time to work with each other with minimal teacher 

interventions, and time to revisit tasks and reflect on their prior work and the 

explanations of others tends to promote justifications and reasoning (Author, 2002; 

Author & Other, 1996). 

Henningsen and Stein (1997) identify certain task features that promote 

student learning, including opportunities for multiple representations, multiple solution 

approaches, and mathematical communication. In addition, they suggest that making 

connections between students’ prior knowledge and the ideas presented in the task 

can further promote higher level thinking. Lithner (2008) suggests that through task 

construction one can evaluate the type of reasoning that students will engage and 

often this prediction correlates with the reasoning students actively use. 

In a study of how two middle-grade teachers supported student mathematical 

reasoning, Doerr and English (2006) found that in changing from an evaluative role to 

one of a listener, the teachers encouraged the students to create their own ideas and 

strategies. They denote the Self Evaluation Principle as the ability of students to 

evaluate their own solution strategies, and emphasize that this is a significant task 

feature in that it encouraged teachers to listen to student ideas. Thus students are 

given the opportunity to decide what is reasonable and revise their own ideas. 

As indicated earlier, Other and Author (2005) contend that affording students 

opportunities to work on complex tasks, rather than scaffolding a series of simpler 

problems, enhances mathematical reasoning in students. In addition, rather than 

revisiting the same task, they recommend engaging students in strands of structurally 

similar and more complex problems over time. Engaging in strands of related 

problems supports students building of connections and stabilizes mathematical 

understanding of complex concepts. Findings from a longitudinal study show that 

when students were given the opportunity to work collaboratively, they began to 

question each others’ arguments and ideas and ultimately developed a sense of 

ownership of the given tasks (Other & Author, 2005). This ownership can help 
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students become more confident in their ideas, and can contribute to making the 

mathematics personally meaningful, an important prerequisite for building individual 

understanding. 

Recent research in the area of task design that can elicit reasoning (Author, 

Author, and Author, 2010) indicated that very specific aspects of tasks encourage the 

elicitation of multiple forms of reasoning. This report, resulting from extensive 

analyses of the commonalities between reasoning on one fraction task implemented 

in the fourth and sixth grades, suggested that certain features of the task were crucial 

in the ultimate elicitation of indirect reasoning, reasoning using upper and lower 

bounds, and reasoning by cases. These features included non-existence and the use 

of finite sets, among others. Our present study differs from this research by 

examining the work of students that represent certain forms of reasoning across ages 

and from diverse student groups that were used in justifying solutions to tasks from 

both the fraction and counting strands of longitudinal and cross-sectional studies. 

The added challenge present in this analysis is that highly specific aspects of the 

tasks could not be readily identified, given the structural differences inherent in the 

tasks. However, since the tasks that are analyzed here were the catalysts of similar, 

varied forms of reasoning, our goal here was to identify somewhat more general 

characteristics of the tasks that may also be contributing factors in the consistent 

elicitation of varied reasoning. We present our method of analysis, detailed results, 

and a discussion of our findings below.  

 

3. METHODOLOGY 

 

3.1 Data Sets 

The episodes presented in this paper come from three data sources4. The first 

is a yearlong study of students’ mathematical thinking that was conducted by 

researchers in a fourth grade classroom in a suburban/rural school. These students 

                                                           
4
 The research for these studies was supported, in part, by the following grants: MDR 

xxx from the National Science Foundation (NSF) and by grant xx from the N.J. Department of Higher 
Education; NSF grant xxx; and NSF grants: xxx and xxx. The views expressed in this paper are those 
of the authors and not necessarily those of the funding agencies. 
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were from a suburban/rural socioeconomic district and were nine to ten years of age. 

The class was composed of twenty-five students, fourteen girls and eleven boys. The 

researchers conducted interventions over the course of fifty sessions during the 

school year. Half of those sessions focused on the building of fraction ideas using 

manipulatives, including Cuisenaire rods. 

The second source of data is from an informal after-school math program 

consisting of twenty-four twelve to thirteen year old students that was conducted by 

researchers in a low socioeconomic urban community, drawn from a school 

consisting of 99% Latino and African American students (see author 2007 for a more 

detailed analysis of data). The students voluntarily met twice a week during an after-

school program to work on strands of open-ended math tasks. The first eight 

sessions focused on fraction activities involving Cuisenaire rods. 

The third source is a longitudinal study, now completing its 21st year, in which 

students from a working-class community engaged in strands of mathematical 

investigations as a context for research on the development of students’ reasoning 

and constructing of mathematical knowledge and understanding. This study followed 

a focus group throughout their K-12 students and beyond, and included a 

heterogeneous group of twelve students during grades 4-8. One strand of tasks that 

was introduced to these students focused on combinatorics, and took place during 

several sessions every year over the course of these students’ elementary and 

secondary schooling. The data discussed in this paper was collected when the 

students were in fourth and fifth grade.  Although the task was initiated during whole 

class and small group sessions, the results focus on group interviews of one to four 

students.  

 

3.2 Procedure 

In each study, the students were placed in heterogeneous groups; problems 

were posed and students were invited to explore solutions in their groups. The tasks 

were designed carefully, as task choice played an important role in the project’s 

objectives. The researchers worked on the assumption that if the tasks were too 

simple, the students’ schemas would not be enhanced, but, on the other hand, if they 
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were too difficult, the students would not be engaged in finding solutions. In all three 

studies, students were encouraged to provide justification for their solutions and to 

challenge and question the explanations of others. 

In order to support this, learning environments that fostered collective 

mathematical learning and individual growth were created. Similar characteristics of 

all three environments included: (1) engaging students in solving open-ended, tasks; 

(2) encouraging small group and whole class discussions; (3) encouraging students 

to share their own ways of thinking; (4) affording students’ opportunities to defend 

their ideas and challenge the ideas of others; and (5) allotting sufficient time to 

explore and build understanding (Bauersfeld 1995; Author, 1996). 

This paper reports on data from the first seven 60 minute sessions from the 

fourth-grade study and the first five 60-75 minute sessions from the sixth grade 

study. Data from the third study includes segments from sessions as fourth and fifth 

grade students investigated problems in counting and combinatorics.  

 

3.2.1 Exploring fractions with Cuisenaire rods 

The students in the first two groups worked collaboratively on tasks involving 

fraction relationships. Many of the tasks were identical in both studies. Students were 

offered Cuisenaire rods to build models of their solutions to the tasks. A set of 

Cuisenaire rods (see Figure 1) contains 10 colored wooden or plastic rods that 

increase in length by increments of one centimeter. For these activities, the rods are 

given variable number names and permanent color names.  

 

 

 

 

 

 

Figure 1. Staircase model of rods 
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A task that was posed early in both cycles is: “What number name would you 

give to the dark green rod if the light green rod is called one? Discuss the answer 

with your group”.  

 

3.2.2 Exploring Combinatorics with Unifix Cubes 

The students in the third source worked on building towers using plastic Unifex 

cubes selecting from two different colors (see figure 2). They investigated two similar 

tasks, one that required them to find all combinations of towers that were four cubes 

tall when selecting from two colors, and the other that asked them to find the same 

for towers that were five cubes tall. Over a period of three years, the students worked 

on these tasks in pairs and small groups and participated in whole class discussions 

as well as task-based interviews that focused on this set of tasks. In this intervention, 

as in the fraction interventions, the group investigations allowed students multiple 

opportunities to extend, revise, and share their solutions. 

 

Figure 2. A tree diagram showing all possible towers 4-cubes high 

 

3.3. Analysis  

The primary source of data for this study was the database of video recordings 

that was created during each intervention. Analysis followed a modified grounded 

theory approach using widely accepted video data analysis methodology. Each of the 

 Blue   Red 
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three series of sessions was videotaped with at least two cameras. The video data 

were viewed, transcribed, and coded for critical events (forms of reasoning). The 

arguments were coded based on the form of reasoning used, including contradiction, 

cases, upper and lower bounds, recursive, and direct. Subcodes were developed for 

incomplete arguments and faulty reasoning. Then, the data sets were compared, and 

similarities and differences in the forms of reasoning used and the contexts in which 

they were elicited were noted (for an in-depth analysis of these sessions and a 

detailed record of the frequencies of each form of reasoning that was exhibited, see 

Author, 2007; Author, 2009; Author & Author, in press; Author, Sran, & Author, in 

press). Finally, the tasks were examined and analyzed according to what students 

were asked to produce and the forms of reasoning that occurred and connections 

were made across the data sources.  

 

4. RESULTS 

 

For the purpose of this paper, we focus on the two tasks described above. In 

the process of working on these tasks, students built arguments taking the form of 

both direct and indirect reasoning. In particular, for the fraction task, student argued 

using cases, contradiction, upper/lower bounds, and recursion. For the combinatorics 

task, reasoning took the form of cases, contradiction, and recursion. In addition, 

direct reasoning was flagged during the fraction tasks but was coded as faulty. No 

simple direct arguments were used correctly to support solutions while working on 

either task. Numerous examples of the above forms of reasoning have been 

documented (Other and Author, 1993; Author and Other, 1996, 2000: Other and 

Author, 2005; Author, in press; Author and Author, 2007, 2008). Here we offer 

representative examples that we regularly observed with a wide range of students 

from a variety of communities. Table 1 summarizes the representative sample of 

reasoning of each form of reasoning as it occurred across the three groups of 

students that will be the topic of this paper. Although these forms of reasoning were 

noted numerous times during each of the studies (for frequencies of occurrence of 

each form of reasoning, see Author & Other, 2009, Other, Other, & Author, 2010a, 
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2010b; Author, 2009), this paper focuses on one task from each study that 

successfully elicited a wide variety of reasoning from multiple students.   

 

Form of Reasoning Grade Task Student 

Contradiction 

4 Fractions David, Alan, Jessica 

6 Fractions Chris 

4 Towers Stephanie 

Cases 
6 Fractions Justina 

5 Towers Stephanie 

Upper & Lower 
Bounds 

4 Fractions David 

6 Fractions Dante 

Recursive 
4 Fractions Michael 

4 Towers Milin 

Table 1. Forms of reasoning that occurred across the three populations. 

 

4.1 Reasoning by Contradiction 

Reasoning by contradiction (also known as the indirect method; based on the 

assumption that whenever a statement is true, its contrapositive is also true) was 

used by all three groups of students. When working on the fraction task, contradiction 

was used to convince their classmates that there was not a rod whose length was 

half of the blue rod and that they had built all of the towers of a given (n) height. 

When investigating the towers task, this form of argument was used to show that all 

towers of a specific case were accounted for. 

 

4.1.1 Fractions, Grade Four 

After a student suggested that the yellow rod and the purple rod could each be 

called one half if the blue rod was called one, David used reasoning by contradiction 

to explain in order for each of two rods to be called one half the length of the blue 

rod, the two rods would need to be the same length. He then showed that the two 

rods in question differed in length He used a model of a purple rod and a yellow rod 

placed next to a blue rod and argued using the definition of one-half, explaining that 

in order to be called half of the blue rod the two rods would need to be the same 
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length. Alan and Jessica built on David’s argument and together formulated a 

contradiction. 

Alan: When you’re dividing things into halves, both halves have to be 

equal – in order to be considered a half. 

Jessica: [inaudible] this isn’t a half.  Those two aren’t both even halves. 

 

4.1.2 Fractions, Grade Six 

In the sixth grade, Chris reasoned using a contradiction and lined up a train of 

nine white rods next to a blue rod, showing that the blue rod was equivalent to an 

odd number of white rods, and that it could not be divided in half. Chris explained:  

There is not a rod that is half of the blue rod because there’s 
nine little white rods, you can’t really divide that into a half, so you 
can’t really divide by two because you get a decimal or a remainder… 

 

4.1.3 Towers, Grade Four 

Stephanie approached the task of finding how many towers (height of five) 

could be built by applying the procedure of constructing a tower and it’s “opposite” to 

find the 32 unique towers that were five cubes tall. Stephanie explained how she 

knew that she had accounted for all the ways that towers could be formed from two 

red cubes and three yellow cubes: 

With the two [red cubes] together you can make four [towers]. 
With one [yellow cube] in between you can make three [towers]. With 
two [yellow cubes] in between you can make two [towers]. With … 
three [yellow cubes] in between you can make one [tower], but you 
can’t make four in between or five in between [four or five yellow 
cubes between the two red cubes] …or anything else because you 
don’t have enough … because you can only use five blocks [towers of 
height five].  

 

4.2 Reasoning by Cases 

For the purpose of this study, critical events were coded as reasoning by 

cases when students defended an argument by defining separate instances and 

discussing the implications or inferences drawn from each instance.  
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4.2.1 Fractions, Grade Four 

David offered an argument by cases to show that all of the rods could be 

organized as either odd or even based on whether or not they could be divided in 

half.  He explained that the white, light green, yellow, black and blue rods were all 

“odd” since there was not a rod equal to half of their length. He then showed that the 

red, purple, dark green, brown, and orange rods were “even”, using a model to show 

that two purple rods are equivalent to the length of the brown rod and two yellow rods 

are equal to the length of the orange rod (in order to demonstrate that these rods had 

a half).  The overhead transparency view of David’s model is shown in Figure 3.  

 

 

Figure 3 David’s categorization of (A) even and (B) odd rods. 

 

4.2.2 Fractions, Grade Six 

Justina explained that her strategy of showing that the blue rod does not have 

a rod that is equivalent to half of its length was to instead find all of the rods that do 

have a rod equal to half of their length. She drew all of the rods that have a half next 

to the two identical rods that could each be called one half. For example, she lined up 

two yellow rods next to an orange rod, and did the same for all other rods of its kind. 

She named this set of rods “singles”. 

 

4.2.3 Towers, Grade Five 

Stephanie explained how she organized her groups of towers (4-high) 

according to color categories (e.g., exactly one of a color and exactly two of a color 

adjacent to each other) in order to justify her count of 16 towers (see figure 2). She 
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showed how she accounted for all possible color combination of each color category 

thereby accounting for all cases of towers with a height of four.  

 

4.3 Reasoning using Upper and Lower Bounds 

When reasoning using upper and lower bounds, students defined a set by the 

outer limits of the set, and talked about the elements of the set that were contained 

within the bounds, and about elements that were not part of that set because they 

were larger than the upper bound or smaller than the lower bound that was defined. 

When reasoning about the rods, the students defined the set as containing one 

element - that which was half the length of the blue rod. They then showed that none 

of the rods were contained within their specified bounds, thus proving that no rod 

existed that was half the length of the blue rod. 

 

4.3.1 Fractions, Grade Four 

David began the task of convincing his classmates that there was not a rod 

whose length was half of blue by offering an argument using upper and lower 

bounds, explaining, “I don’t think that you can do that because if you put two yellows 

that’d be too big, but then if you put two purples that’s uh, that’s uh, that’d be too 

short.” He then showed that the purple rod was one white rod shorter than the yellow 

rod, and lined up the rods in a staircase pattern in order to illustrate that each rod 

was one white rod longer than the previous rod. He used this model (shown in figure 

4) to show that there is no rod that is shorter than the yellow rod or longer than the 

purple rod. 

 

 

Figure 4 David’s model for his argument using upper and lower bounds 
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4.3.2 Fractions, Grade Six 

Dante explained that the combination of two purple rods was too short to be 

equivalent to half of blue and the combination of two yellow rods was too long. He 

further explained that the yellow rod was one white rod too long and the purple rod 

was one white rod too short.  

 

4.4 Reasoning Using a Recursive Argument  

Recursive reasoning was noted when a student used the repetition of a basic 

case or operation to define and discuss a class of objects, and then used this 

repetition to explain what a complex case would look like or to show that a calculation 

was impossible. 

 

4.4.1 Fractions, Grade Four 

After the students determined that there was no rod that was half the length of 

the blue rod, the class then discussed the possibility of “cutting” a rod in half to create 

a new rod and therefore finding rods that were one half the length of “odd” rods. 

Michael explained, “If you’re going to make a new rod, then you’d have to make a 

whole new set because there’d have to be a half of that rod, too”. David reinforced 

Michael’s argument by explaining that each time a smaller rod was cut in half, it’s half 

would have to be cut in half and therefore a new set would emerge. 

 

4.4.2 Towers, Grade Four 

Milin’s explanation was based on building from a shorter tower exactly two 

towers that were one cube taller. For example, when asked to explain why from two 

towers he created four, Milin pointed to his towers that were one cube high and 

explained,  

“Because – for each one of them, you could add one – No – 
two more – because there’s a black, I mean a blue, and a red- See 
for that you just put one more – for red you put a black on top and a 
red on top – I mean a blue on top instead of a black. And blue – you 
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put a blue on top and a red on top – and you keep doing that and for 
each one you keep on doing that and for 6 you’d get 64”. 

 

5. Discussion  

Our results indicate that both tasks, one focusing on fraction ideas and the 

other on combinatorics, elicited similar forms of reasoning at multiple grades levels 

across different socioeconomic communities. While attending to both tasks, students’ 

arguments took the forms of reasoning by contradiction, cases, using upper and 

lower bounds, and by recursion. Although one of the highlighted tasks focuses on 

fractional relationships and the other on combinatorics, specific characteristics of 

these tasks may have elicited these complicated forms of reasoning.  

 

5.1 The Fractions Task 

In this task students were challenged with finding a non-existent rod. The 

open-ended nature of this task led to more complicated forms of reasoning. David 

and Chris built a contradiction based on the definition of one-half. Justina used a 

pattern to organize the two types of rods (those with and without a half) into cases in 

order to make sense of why the blue rod did not have a rod equivalent to half of its 

length. David and Dante found the most likely rods to equal half of the blue and 

created the upper and lower bounds. Finally, in trying to make sense of an endless 

task, Michael and David showed the endless possibilities. 

 

5.2 The Towers Task  

When attending to the towers tasks students were looking at many variations 

of the task and trying to find a pattern to use for organization. Stephanie based her 

argument on the contradiction of the definition of the task (5 cubes tall). Stephanie 

then used patterns to reorganize her towers into cases in an effort to account for all 

possibilities. Milin found a formula to use to calculate combinations for ever 

increasing tower heights.  
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5.3 Characteristics of Both Tasks 

While one task focused on fractions and the other combinatorics, and the 

tasks seem quite different on the surface, both tasks encouraged students to use 

various forms or reasoning  and share specific characteristics that may help explain 

why the particular forms of reasoning emerged. In both tasks, students were invited 

to use manipulative materials but could also approach the tasks with other 

representations. The building of models naturally led to student collaboration. 

Students were engaged in discussion as they worked together to build these models. 

The models that they built required understanding of the problem and they worked 

together to achieve this understanding. The varieties of representations that the 

students used to express their ideas were shared in open discussion with others, 

providing opportunity to build on each other’s ideas.  

Both tasks were open-ended, challenging, and allowed for multiple entry 

points. They were open-ended and non-routine, in that a solution was not readily 

available and students were expected to rely on their own resources to solve and 

justify their solutions. This meant that students at different levels of mathematics 

knowledge could all engage in the problem tasks and achieve success. Due to the 

nature of these tasks, students had opportunities to extend their understanding and 

communicate their ideas in the arguments they built to support their solutions. In 

addition, both tasks were open to multiple representations and multiple strategies for 

solutions. These multiple strategies elicited various forms of reasoning, as in the 

case of David, who justified his reasoning using four different forms of reasoning 

when attending to the fraction task. Moreover, students had the opportunity to revisit 

the tasks; this provided further opportunity to reflect on their previous ideas and 

arguments as well those offered by their classmates. Thus, when revisiting the tasks 

students had earlier knowledge on which to build and often revised and/or extended 

their original ideas.  

Due to the complex nature of the tasks, students were not able to form 

arguments using simple direct reasoning. In both fraction groups, students attempted 

to reason directly but created faulty arguments. This was due to the nature of these 

tasks, which required students to build arguments that were more detailed and 

contained other forms of reasoning.  Other more closed tasks used in the teaching 
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interventions elicited less of a variety of reasoning.  For example, during the third 

session of the sixth grade intervention, the students were given the task, “What is the 

number name for red (when blue is named one)?” All of the groups used direct 

reasoning based on the relationship between the red, white, and blue rods to name 

the red rod two-ninths. During the last four sessions of the fourth grade intervention 

the tasks focused on division of fractions. Few counterarguments and indirect 

arguments were noted during these sessions. Only direct arguments were given 

during the last two sessions, and the two preceding those were marked by only five 

indirect counterarguments in total. For example, the students were asked to name 

the white rod when the dark green rod was called one, and then were asked how 

many white rods are in the dark green rod. They then discussed how to write a 

number sentence using that information (1 ÷ 1/6 = 6). These closed tasked were 

could be attended to using straightforward procedures and therefore required 

students to rely on their own thinking and input from their partners to solve and justify 

their solutions. 

We contend that task design must be approached at multiple levels. In 

addition to the precise framing of the task and consideration of structural features of 

tasks that encourage reasoning (Author, Author, & Author, 2010), we suggest 

following our present analysis that careful attention must be paid to the presentation 

of the task, as well as the variety of learning opportunities that the task presents for 

students. In the tasks analyzed here, the tasks were designed with the intention to 

allow students to maximize their learning opportunities to the fullest, and were 

presented, often multiple times, in a way that actualized that intent, in the form of the 

encouragement of varied reasoning. It is important to note that the tasks used in the 

study were not designed to elicit these forms of reasoning; rather the study aimed to 

learn about children’s general mathematical thinking. The variety in the forms of 

reasoning that was later observed, therefore, was not planned in the initial design. 

The commonalities that were observed across the three very different studies, 

therefore, lend credence to the hypothesis that the tasks, as well as the method of 

their implementation, may share characteristics that can be replicated to produce 

similar results in diverse student populations. Although the characteristics of the 

tasks that are discussed here may not have contributed equally to the elicitation of 
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varied reasoning, they are all possible contributing factors that are worthy of further, 

more detailed study.  

We suggest that strands of tasks such as these be integrated into regular 

mathematics instruction and that students be asked to revisit the same or similar 

tasks, so that they can build on and extend their approaches, offering opportunities to 

experience a variety of ways of reasoning. Tasks such as these can serve to engage 

students in doing mathematics and building arguments. Knowing in advance the 

types of tasks that elicit varied forms of reasoning can assist teachers in the goal of 

promoting reasoning at all grade levels. We suggest that strands of open-ended 

tasks that elicit these forms of reasoning be integrated in the curriculum at all grade 

levels. 
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