
Time-Efficient Read/Write Register in Crash-prone

Asynchronous Message-Passing Systems

Achour Mostefaoui, Michel Raynal

To cite this version:

Achour Mostefaoui, Michel Raynal. Time-Efficient Read/Write Register in Crash-prone Asyn-
chronous Message-Passing Systems. [Research Report] IRISA. 2016, pp.14. <hal-01256067>

HAL Id: hal-01256067

https://hal.inria.fr/hal-01256067

Submitted on 15 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/52993827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01256067

Time-Efficient Read/Write Register

in Crash-prone Asynchronous Message-Passing Systems

Achour Mostéfaoui†, Michel Raynal⋆,‡

†LINA, Université de Nantes, 44322 Nantes, France
⋆Institut Universitaire de France

‡IRISA, Université de Rennes, 35042 Rennes, France

Tech Report #2031, 14 pages, January 2016

IRISA, University of Rennes 1, France

Abstract

The atomic register is certainly the most basic object of computing science. Its implementation

on top of an n-process asynchronous message-passing system has received a lot of attention. It has

been shown that t < n/2 (where t is the maximal number of processes that may crash) is a necessary

and sufficient requirement to build an atomic register on top of a crash-prone asynchronous message-

passing system. Considering such a context, this paper visits the notion of a fast implementation of

an atomic register, and presents a new time-efficient asynchronous algorithm. Its time-efficiency is

measured according to two different underlying synchrony assumptions. Whatever this assumption,

a write operation always costs a round-trip delay, while a read operation costs always a round-trip

delay in favorable circumstances (intuitively, when it is not concurrent with a write). When design-

ing this algorithm, the design spirit was to be as close as possible to the one of the famous ABD

algorithm (proposed by Attiya, Bar-Noy, and Dolev).

Keywords: Asynchronous message-passing system, Atomic read/write register, Concurrency, Fast

operation, Process crash failure, Synchronous behavior, Time-efficient operation.

1

1 Introduction

Since Sumer time [7], and –much later– Turing’s machine tape [13], read/write objects are certainly the

most basic memory-based communication objects. Such an object, usually called a register, provides its

users (processes) with a write operation which defines the new value of the register, and a read operation

which returns the value of the register. When considering sequential computing, registers are universal

in the sense that they allow to solve any problem that can be solved [13].

Register in message-passing systems In a message-passing system, the computing entities communi-

cate only by sending and receiving messages transmitted through a communication network. Hence, in

such a system, a register is not a communication object given for free, but constitutes a communication

abstraction which must be built with the help of the communication network and the local memories of

the processes.

Several types of registers can be defined according to which processes are allowed to read or write

it, and the quality (semantics) of the value returned by each read operation. We consider here registers

which are single-writer multi-reader (SWMR), and atomic. Atomicity means that (a) each read or write

operation appears as if it had been executed instantaneously at a single point of the time line, between

is start event and its end event, (b) no two operations appear at the same point of the time line, and

(c) a read returns the value written by the closest preceding write operation (or the initial value of the

register if there is no preceding write) [8]. Algorithms building multi-writer multi-reader (MWMR)

atomic registers from single-writer single-reader (SWSR) registers with a weaker semantics (safe or

regular registers) are described in several textbooks (e.g., [3, 9, 12]).

Many distributed algorithms have been proposed, which build a register on top of a message-passing

system, be it failure-free or failure-prone. In the failure-prone case, the addressed failure models are the

process crash failure model, or the Byzantine process failure model (see, the textbooks [3, 9, 10, 11]).

The most famous of these algorithms was proposed by H. Attiya, A. Bar-Noy, and D. Dolev in [2].

This algorithm, which is usually called ABD according to the names its authors, considers an n-process

asynchronous system in which up to t < n/2 processes may crash (it is also shown in [2] that t < n/2
is an upper bound of the number of process crashes which can be tolerated). This simple and elegant

algorithm, relies on (a) quorums [14], and (b) a simple broadcast/reply communication pattern. ABD

uses this pattern once in a write operation, and twice in a read operation implementing an SWMR

register.

Fast operation To our knowledge, the notion of a fast implementation of an atomic register operation,

in failure-prone asynchronous message-passing systems, was introduced in [5] for process crash failures,

and in [6] for Byzantine process failures. These papers consider a three-component model, namely there

are three different types of processes: a set of writers W , a set of readers R, and a set of servers S which

implements the register. Moreover, a client (a writer or a reader) can communicate only with the servers,

and the servers do not communicate among themselves.

In these papers, fast means that a read or write operation must entail exactly one communication

round-trip delay between a client (the writer or a reader) and the servers. When considering the process

crash failure model (the one we are interested in in this paper), it is shown in [5] that, when (|W | =

1) ∧ (t ≥ 1) ∧ (|R| ≥ 2), the condition (|R| < |S|
t
− 2) is necessary and sufficient to have fast read

and write operations (as defined above), which implement an atomic register. It is also shown in [5] that

there is no fast implementation of an MWMR atomic register if
(

(|W | ≥ 2) ∧ (|R| ≥ 2) ∧ (t ≥ 1)
)

.

Content of the paper The work described in [5, 6] is mainly on the limits of the three-component

model (writers, readers, and servers constitute three independent sets of processes) in the presence of

process crash failures, or Byzantine process failures. These limits are captured by predicates involving

2

the set of writers (W), the set of readers (R), the set of servers (S), and the maximal number of servers

that can be faulty (t). Both the underlying model used in this paper and its aim are different from this

previous work.

While keeping the spirit (basic principles and simplicity) of ABD, our aim is to design a time-efficient

implementation of an atomic register in the classical model used in many articles and textbooks (see,

e.g., [2, 3, 9, 12]). This model, where any process can communicate with any process, can be seen as

a peer-to-peer model in which each process is both a client (it can invoke operations) and a server (it

manages a local copy of the register that is built).1

Adopting the usual distributed computing assumption that (a) local processing times are negligible

and assumed consequently to have zero duration, and (b) only communication takes time, this paper fo-

cuses on the communication time needed to complete a read or write operation. For this reason the term

time-efficiency is defined here in terms on message transfer delays, namely, the cost of a read or write

operation is measured by the number of “consecutive” message transfer delays they require to terminate.

Let us notice that this includes transfer delays due to causally related messages (for example round trip

delays generated by request/acknowledgment messages), but also (as we will see in the proposed algo-

rithm) message transfer delays which occur sequentially without being necessarily causally related. Let

us notice that this notion of a time-efficient operation does not involve the model parameter t.
In order to give a precise meaning to the notion of a “time-efficient implementation” of a register

operation, this paper considers two distinct ways to measure the duration of read and write operations,

each based on a specific additional synchrony assumption. One is the “bounded delay” assumption,

the other one the “round-based synchrony” assumption. More precisely, these assumptions and the

associated time-efficiency of the proposed algorithm are the following.

• Bounded delay assumption.

Let us assume that every message takes at most ∆ time units to be transmitted from its sender

to any of its receivers. In such a context, the algorithm presented in the paper has the following

time-efficiency properties.

– A write operation takes at most 2∆ time units.

– A read operation which is write-latency-free takes at most 2∆ time units. (The notion of

write-latency-freedom is defined in Section 3. Intuitively, it captures the fact that the behav-

ior of the read does not depend on a concurrent or faulty write operation, which is the usual

case in read-dominated applications.) Otherwise, it takes at most 3∆ time units, except in

the case where the read operation is concurrent with a write operation and the writer crashes

during this write, where it can take up to 4∆ time units. (Let us remark that a process can

experience at most once the 4∆ read operation scenario.)

• Round-based synchrony assumption.

Here, the underlying communication system is assumed to be round-based synchronous [3, 8, 11].

In such a system, the processes progress by executing consecutive synchronous rounds. In every

round, according to its code, a process possibly sends a message to a subset of processes, then

receives all the messages sent to it during the current round, and finally executes local computa-

tion. At the end of a round, all processes are directed to simultaneously progress to the next round.

In such a synchronous system, everything appears as if all messages take the very same time to

go from their sender to theirs receivers, namely the duration δ associated with a round. When

executed in such a context, the proposed algorithm has the following time-efficiency properties.

– The duration of a write operation is 2δ time units.

1Considering the three-component model where each reader is also a server (i.e., R = S), we obtain a two-component

model with one writer and reader-server processes. In this model, the necessary and sufficient condition (|R| < |S|
t
− 2) can

never be satisfied, which means that, it is impossible to design a fast implementation of a SWMR atomic register in such a

two-component model.

3

– The duration of a read operation is 2δ time units, except possibly in the specific scenario

where the writer crashes while executing the write operation concurrently with the read, in

which case the duration of the read can be 3δ time units (as previously, let us remark that a

process can experience at most once the 3δ read operation scenario.)

Hence, while it remains correct in the presence of any asynchronous message pattern (e.g., when

each message takes one more time unit than any previous message), the proposed algorithm is particu-

larly time-efficient when “good” scenarios occur. Those are the ones defined by the previous synchrony

patterns where the duration of a read or a write operation corresponds to a single round-trip delay. More-

over, in the other synchronous scenarios, where a read operation is concurrent with a write, the maximal

duration of the read operation is precisely quantified. A concurrent write adds uncertainty whose reso-

lution by a read operation requires one more message transfer delay (two in the case of the ∆ synchrony

assumption, if the concurrent write crashes).

Roadmap The paper consists of 6 sections. Section 2 presents the system model. Section 3 defines the

atomic register abstraction, and the notion of a time-efficient implementation. Then, Section 4 presents

an asynchronous algorithm providing an implementation of an atomic register with time-efficient oper-

ations, as previously defined. Section 5 proves its properties. Finally, Section 6 concludes the paper.

2 System Model

Processes The computing model is composed of a set of n sequential processes denoted p1, ..., pn.

Each process is asynchronous which means that it proceeds at its own speed, which can be arbitrary and

remains always unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctly its local algorithm until it

possibly crashes. The model parameter t denotes the maximal number of processes that may crash in a

run. A process that crashes in a run is said to be faulty. Otherwise, it is correct or non-faulty.

Communication The processes cooperate by sending and receiving messages through bi-directional

channels. The communication network is a complete network, which means that any process pi can

directly send a message to any process pj (including itself). Each channel is reliable (no loss, corruption,

nor creation of messages), not necessarily first-in/first-out, and asynchronous (while the transit time of

each message is finite, there is no upper bound on message transit times).

A process pi invokes the operation “send TAG(m) to pj” to send pj the message tagged TAG and

carrying the value m. It receives a message tagged TAG by invoking the operation “receive TAG()”. The

macro-operation “broadcast TAG(m)” is a shortcut for “for each j ∈ {1, . . . , n} send TAG(m) to pj
end for”. (The sending order is arbitrary, which means that, if the sender crashes while executing this

statement, an arbitrary – possibly empty– subset of processes will receive the message.)

Let us notice that, due to process and message asynchrony, no process can know if an other process

crashed or is only very slow.

Notation In the following, the previous computation model, restricted to the case where t < n/2, is

denoted CAMPn,t[t < n/2] (Crash Asynchronous Message-Passing).

It is important to notice that, in this model, all processes are a priori “equal”. As we will see, this

allows each process to be at the same time a “client” and a “server”. In this sense, and as noticed in the

Introduction, this model is the “fully connected peer-to-peer” model (whose structure is different from

other computing models such as the client/server model, where processes are partitioned into clients and

servers, playing different roles).

4

3 Atomic Register and Time-efficient Implementation

3.1 Atomic register

A concurrent object is an object that can be accessed by several processes (possibly simultaneously).

An SWMR atomic register (say REG) is a concurrent object which provides exactly one process

(called the writer) with an operation denoted REG .write(), and all processes with an operation denoted

REG .read(). When the writer invokes REG .write(v) it defines v as being the new value of REG . An

SWMR atomic register (we also say the register is linearizable [4]) is defined by the following set of

properties [8].

• Liveness. An invocation of an operation by a correct process terminates.

• Consistency (safety). All the operations invoked by the processes, except possibly –for each faulty

process– the last operation it invoked, appear as if they have been executed sequentially and this

sequence of operations is such that:

– each read returns the value written by the closest write that precedes it (or the initial value

of REG if there is no preceding write),

– if an operation op1 terminated before an operation op2 started, then op1 appears before op2
in the sequence.

This set of properties states that, from an external observer point of view, the object appears as if it

was accessed sequentially by the processes, this sequence (a) respecting the real time access order, and

(ii) belonging to the sequential specification of a read/write register.

3.2 Notion of a time-efficient operation

The notion of a time-efficient operation is not related to its correctness, but is a property of its implemen-

tation. It is sometimes called non-functional property. In the present case, it captures the time efficiency

of operations.2

As indicated in the introduction, we consider here two synchrony assumptions to define what we

mean by time-efficient operation implementation. As we have seen, both are based on the duration of

read and write operations, in terms of message transfer delays. Let us remember that, in both cases, it is

assumed that the local processing times needed to implement these high level read and write operations

are negligible.

3.2.1 Bounded delay-based definition of a time-efficient implementation

Let us assume an underlying communication system where message transfer delays are upper bounded

by ∆.

Write-latency-free read operation and interfering write Intuitively, a read operation is write-latency-

free if its execution does “not interleave” with the execution of a write operation. More precisely, let

τr be the starting time of a read operation. This read operation is write-latency-free if (a) it is not con-

current with a write operation, and (b) the closest preceding write did not crash and started at a time

τw < τr −∆.

Let opr be a read operation, which started at time τr. Let opw be the closest write preceding opr. If

opw started at time τw ≥ τr −∆, it is said to be interfering with opr.

2Another example of a non-functional property is quiescence. This property is on algorithms implementing reliable com-

munication on top of unreliable networks [1]. It states that the number of underlying implementation messages generated by

an application message must be finite. Hence, if there is a time after which no application process sends messages, there is a

time after which the system is quiescent.

5

Bounded delay-based definition An implementation of a read/write register is time-efficient (from a

bounded delay point of view) if it satisfies the following properties.

• A write operation takes at most 2∆ time units.

• A read operation which is write-latency-free takes at most 2∆ time units.

• A read operation which is not write-latency-free takes at most

– 3∆ time units if the writer does not crash while executing the interfering write,

– 4∆ time units if the writer crashes while executing the interfering write (this scenario can

appear at most once for each process).

3.2.2 Round synchrony-based definition of a time-efficient implementation

Let us assume that the underlying communication system is round-based synchronous, where each mes-

sage transfer delay is equal to δ. When considering this underlying synchrony assumption, it is assumed

that a process sends or broadcasts at most one message per round, and this is done at the beginning of a

round.

An implementation of a read/write register is time-efficient (from the round-based synchrony point

of view) if it satisfies the following properties.

• The duration of a write operation is 2δ time units.

• The duration of a read operation is 2δ time units, except possibly in the “at most once” scenario

where the writer crashes while executing the write operation concurrently with the read, in which

case the duration of the read can be 3δ time units.

What does the proposed algorithm As we will see, the proposed algorithm, designed for the asyn-

chronous system model CAMPn,t[t < n/2], provides an SWMR atomic register implementation which

is time-efficient for both its “bounded delay”-based definition, and its “round synchrony”-based defini-

tion.

4 An Algorithm with Time-efficient Operations

The design of the algorithm, described in Figure 1, is voluntarily formulated to be as close as possible

to ABD. For the reader aware of ABD, this will help its understanding.

Local variables Each process pi manages the following local variables.

• regi contains the value of the constructed register REG , as currently known by pi. It is initialized

to the initial value of REG (e.g., the default value ⊥).

• wsni is the sequence number associated with the value in regi.

• rsni is the sequence number of the last read operation invoked by pi.

• swsni is a synchronization local variable. It contains the sequence number of the most recent

value of REG that, to pi’s knowledge, is known by at least (n − t) processes. This variable

(which is new with respect to other algorithms) is at the heart of the time-efficient implementation

of the read operation.

• resi is the value of REG whose sequence number is swsni.

6

local variables initialization: regi ← ⊥; wsni ← 0; swsni ← 0; rsni ← 0.

operation write(v) is

(1) wsni ← wsni + 1; regi ← v; broadcast WRITE(wsni, v);

(2) wait
(

WRITE(wsni,−) received from (n− t) different processes
)

;

(3) return()
end operation.

operation read() is % the writer may directly return regi %

(4) rsni ← rsni + 1; broadcast READ(rsni);

(5) wait
(

(messages STATE(rsn,−) received from (n− t) different processes) ∧ (swsni ≥ maxwsn)

where maxwsn is the greatest sequence number in the previous STATE(rsn,−) messages
)

;

(6) return(resi)
end operation.

%———————————————————————————————————————–

when WRITE(wsn, v) is received do

(7) if (wsn > wsni) then regi ← v; wsni ← wsn end if;

(8) if (not yet done) then broadcast WRITE(wsn, v) end if;

(9) if
(

WRITE(wsn,−) received from (n− t) different processes
)

(10) then if (wsn > swsni) ∧ (not already done) then swsni ← wsn; resi ← v end if

(11) end if.

when READ(rsn) is received from pj do

(12) send STATE(rsn,wsni) to pj .

Figure 1: Time-efficient SWMR atomic register in AMPn,t[t < n/2]

Client side: operation write() invoked by the writer When the writer pi invokes REG .write(v), it

increases wsni, updates regi, and broadcasts the message WRITE(wsni, v) (line 1). Then, it waits until

it has received an acknowledgment message from (n − t) processes (line 2). When this occurs, the

operation terminates (line 3). Let us notice that the acknowledgment message is a copy of the very same

message as the one it broadcast.

Server side: reception of a message write(wsn, v) when a process pi receives such a message, and

this message carries a more recent value than the one currently stored in regi, pi updates accordingly

wsni and regi (line 7). Moreover, if this message is the first message carrying the sequence number wsn,

pi forwards to all the processes the message WRITE(wsn, v) it has received (line 8). This broadcast has

two aims: to be an acknowledgment for the writer, and to inform the other processes that pi “knows”

this value.3

Moreover, when pi has received the message WRITE(wsn, v) from (n − t) different processes, and

swsni is smaller than wsn, it updates its local synchronization variable swsni and accordingly assigns

v to resi (lines 9-11).

Server side: reception of a message READ(rsn) When a process pi receives such a message from a

process pj , it sends by return to pj the message STATE(rsn,wsni), thereby informing it on the freshness

of the last value of REG it knows (line 12). The parameter rsn allows the sender pj to associate the

messages STATE(rsn,−) it will receive with the corresponding request identified by rsn.

Client side: operation read() invoked by a process pi When a process invokes REG .read(), it first

broadcasts the message READ(rsni) with a new sequence number. Then, it waits until “some” predicate

3Let us observe that, due to asynchrony, it is possible that wsni > wsn when pi receives a message WRITE(wsn, v) for

the first time.

7

is satisfied (line 5), and finally returns the current value of resi. Let us notice that the value resi that is

returned is the one whose sequence number is swsni.

The waiting predicate is the heart of the algorithm. Its first part states that pi must have received a

message STATE(rsn,−) from (n−t) processes. Its second part, namely (swsni ≥ maxwsn), states that

the value in pi’s local variable resi is as recent or more recent than the value associated with the greatest

write sequence number wsn received by pi in a message STATE(rsn,−). Combined with the broadcast

of messages WRITE(wsn,−) issued by each process at line 8, this waiting predicate ensures both the

correctness of the returned value (atomicity), and the fact that the read implementation is time-efficient.

5 Proof of the Algorithm

5.1 Termination and atomicity

The properties proved in this section are independent of the message transfer delays (provided they are

finite).

Lemma 1 If the writer is correct, all its write invocations terminate. If a reader is correct, all its read

invocations terminate.

Proof Let us first consider the writer process. As by assumption it is correct, it broadcasts the message

WRITE(sn,−) (line 1). Each correct process broadcasts WRITE(sn,−) when it receives it for the first

time (line 8). As there are at least (n− t) correct processes, the writer eventually receives WRITE(sn,−)
from these processes, and stops waiting at line 2.

Let us now consider a correct reader process pi. It follows from the same reasoning as before that

the reader receives the message STATE(rsn,−) from at least (n − t) processes (lines 5 and 12). Hence,

it remains to prove that the second part of the waiting predicate, namely swsni ≥ maxwsn (line 5)

becomes eventually true, where maxwsn is the greatest write sequence number received by pi in a

message STATE(rsn,−). Let pj be the sender of this message. The following list of items is such that

item x =⇒ item (x+ 1), from which follows that swsni ≥ maxwsn (line 5) is eventually satisfied.

1. pj updated wsnj to maxwsn (line 7) before sending STATE(rsn,maxwsn) (line 12).

2. Hence, pj received previously the message WRITE(maxwsn,−), and broadcast it the first time it

received it (line 8).

3. It follows that any correct process receives the message WRITE(maxwsn,−) (at least from pj),

and broadcasts it the first time it receives it (line 8).

4. Consequently, pi eventually receives the message WRITE(maxwsn,−) from (n − t) processes.

When this occurs, it updates swsni (line 10), which is then ≥ maxwsn, which concludes the

proof of the termination of a read operation.
2Lemma 1

Lemma 2 The register REG is atomic.

Proof Let read[i, x] be a read operation issued by a process pi which returns the value with sequence

number x, and write[y] be the write operation which writes the value with sequence number y. The

proof of the lemma is the consequence of the three following claims.

• Claim 1. If read[i, x] terminates before write[y] starts, then x < y.

• Claim 2. If write[x] terminates before read[i, y] starts, then x ≤ y.

• Claim 3. If read[i, x] terminates before read[j, y] starts, then x ≤ y.

8

Claim 1 states that no process can read from the future. Claim 2 states that no process can read over-

written values. Claim 3 states that there is no new/old read inversions [3, 11].

Proof of Claim 1.

This claim follows from the following simple observation. When the writer executes write[y], it first

increases its local variable wsn which becomes greater than any sequence number associated with its

previous write operations (line 1). Hence if read[i, x] terminates before write[y] starts, we necessarily

have x < y.

Proof of Claim 2.

It follows from line 2 and lines 7-8 that, when write[x] terminates, there is a set Qw of at least (n − t)
processes pk such that wsnk ≥ x. On another side, due to lines 4-5 and line 12, read[i, y] obtains a

message STATE() from a set Qr of at least (n− t) processes.

As |Qw| ≥ n − t, |Qr| ≥ n − t, and n > 2t, it follows that Qw ∩ Qr is not empty. There is

consequently a process pk ∈ Qw ∩ Qr, such that that wsnk ≥ x. Hence, pk sent to pi the message

STATE(−, z), where z ≥ x.

Due to (a) the definition of maxwsn ≥ z, (b) the predicate swsni ≥ maxwsn ≥ z (line 5), and

(c) the value of swsni = y, it follows that y = swsni ≥ z when read[i, y] stops waiting at line 5. As,

z ≥ x, it follows y ≥ x, which proves the claim.

Proof of Claim 3.

When read[i, x] stops waiting at line 5, it returns the value resi associated with the sequence number

swsni = x. Process pi previously received the message WRITE(x,−) from a set Qr1 of at least (n− t)
processes. The same occurs for pj , which, before returning, received the message WRITE(y,−) from a

set Qr2 of at least (n− t) processes.

As |Qr1| ≥ n− t, |Qr2| ≥ n− t, and n > 2t, it follows that Qr1∩Qr2 is not empty. Hence, there is

a process pk which sent STATE(, x) to pi, and later sent STATE(−, y) to pj . As swsnk never decreases,

it follows that x ≤ y, which completes the proof of the lemma. 2Lemma 2

Theorem 1 Algorithm 1 implements an SWMR atomic register in CAMPn,t[t < n/2].

Proof The proof follows from Lemma 1 (termination) and Lemma 2 (atomicity). 2Theorem 1

5.2 Time-efficiency: the bounded delay assumption

As already indicated, this underlying synchrony assumption considers that every message takes at most

∆ time units. Moreover, let us remind that a read (which started at time τr) is write-latency-free if it is

not concurrent with a write, and the last preceding write did not crash and started at time τw < τr −∆.

Lemma 3 A write operation takes at most 2∆ time units.

Proof The case of the writer is trivial. The message WRITE() broadcast by the writer takes at most ∆
time units, as do the acknowledgment messagesWRITE() sent by each process to the writer. In this case

2∆ correspond to a causality-related maximal round-trip delay (the reception of a message triggers the

sending of an associated acknowledgment). 2Lemma 3

9

When the writer does not crash while executing a write operation The cases where the writer does

not crash while executing a write operation are captured by the next two lemmas.

Lemma 4 A write-latency-free read operation takes at most 2∆ time units.

Proof Let pi be a process that issues a write-latency-free read operation, and τr be its starting time.

Moreover, Let τw the starting time of the last preceding write. As the read is write latency-free, we

have τw + ∆ < τr. Moreover, as messages take at most ∆ time units, and the writer did not crash

when executing the write, each non-crashed process pk received the message WRITE(x,−) (sent by the

preceding write at time τw + ∆ < τr), broadcast it (line 8), and updated its local variables such that

we have wsnk = x (lines 7-11) at ime τw +∆ < τr. Hence, all the messages STATE() received by the

reader pi carry the write sequence number x. Moreover, due to the broadcast of line 8 executed by each

correct process, we have swsni = x at some time τw + 2∆ < τr + ∆. It follows that the predicate of

line 5 is satisfied at pi within 2∆ time units after it invoked the read operation. 2Lemma 4

Lemma 5 A read operation which is not write-latency-free, and during which the writer does not crash

during the interfering write operation, takes at most 3∆.

Proof Let us consider a read operation that starts at time τr, concurrent with a write operation that starts

at time τw and during which the writer does not crash. From the read operation point of view, the worst

case occurs when the read operation is invoked just after time τw−∆, let us say at time τr = τw−∆+ǫ.
As a message STATE(rsn,−) is sent by return when a message READ(rsn) is received, the messages

STATE(rsn,−) received by pi by time τr + 2∆ can be such that some carry the sequence number x
(due to last previous write) while others carry the sequence number x+1 (due to the concurrent write)4.

Hence, maxwsn = x or maxwsn = x + 1 (predicate of line 5). If maxwsn = x, we also have

swsni = x and pi terminates its read. If maxwsn = x+ 1, pi must wait until swsni = x + 1, which

occurs at the latest at τw +2∆ (when pi receives the last message of the (n− t) messages WRITE(y,−)
which makes true the predicates of lines 9-10, thereby allowing the predicate of line 5 to be satisfied).

When this occurs, pi terminates its read operation. As τw = τr+∆−ǫ, pi returns at the latest τr+3∆−ǫ
time units after it invoked the read operation. 2Lemma 4

When the writer crashes while executing a write operation The problem raised by the crash of the

writer while executing the write operation is when it crashes while broadcasting the message WRITE(x,−)
(line 1): some processes receive this message by ∆ time units, while other processes do not. This issue

is solved by the propagation of the message WRITE(x,−) by the non-crashed processes that receive it

(line 8). This means that, in the worst case (as in synchronous systems), the message WRITE(x,−) must

be forwarded by (t + 1) processes before being received by all correct processes. This worst scenario

may entail a cost of (t+ 1)∆ time units.

Figure 2 presents a simple modification of Algorithm 1, which allows a fast implementation of read

operations whose executions are concurrent with a write operation during which the writer crashes. The

modifications are underlined.

When a process pi receives a message READ(), it now returns a message STATE() containing an

additional field, namely the current value of regi, its local copy of REG (line 12).

When a process pi receives from a process pj a message STATE(−, wsn, v), it uses it in the waiting

predicate of line 5, but executes before the lines 7-11, as if this message was WRITE(wsn, v). According

to the values of the predicates of lines 7, 9, and 10, this allows pi to expedite the update of its local

variables wsni, regi, swsni, and resi, thereby favoring fast termination.

4Messages STATE(rsn, x) are sent by the processes that received READ(rsn) before τw, while the messages

STATE(rsn,x+ 1) are sent by the processes that received READ(rsn) between τw and τr +∆ = τw + ǫ.

10

when WRITE(wsn, v) or STATE(rsn,wsn, v) is received do

(7) if (wsn > wsni) then regi ← v; wsni ← wsn; broadcast WRITE(wsn,v) end if;

(8) if (not yet done) then broadcast WRITE(wsn, v) end if;

(9) if
(

WRITE(wsn,−) received from (n− t) different processes
)

(10) then if (wsn > swsni) ∧ (not already done) then swsni ← wsn; resi ← v end if

(11) end if.

when READ(rsn) is received from pj do

(12) send STATE(rsn,wsni, regi) to pj .

Figure 2: Modified algorithm for time-efficient read in case of concurrent writer crash

The reader can check that these modifications do not alter the proofs of Lemma 1 (termination) and

Lemma 2 (atomicity). Hence, the proof of Theorem 1 is still correct.

Lemma 6 A read operation which is not write-latency-free, and during which the writer crashes during

the interfering write operation, takes at most 4∆ time units.

Proof Let τr be the time at which the read operation starts. As in the proof of Lemma 4, the mes-

sages STATE(rsn,−,−) received pi by time τr + 2∆ can be such that some carry the sequence number

wsn = x (due to last previous write) while some others carry the sequence number wsn = x+ 1 (due

to the concurrent write during which the writer crashes). If all these messages carry wsn = x, the

read terminates by time τr + 2∆. If at least one of these messages is STATE(rsn, x + 1,−), we have

maxwsn = x+1, and pi waits until the predicate swsni ≥ maxwsn (= x+ 1) becomes true (line 5).

When it received STATE(rsn, x + 1,−), if not yet done, pi broadcast the message WRITE(rsn, x +
1,−), (line 8 of Figure 2), which is received by the other processes within ∆ time units. If not yet done,

this entails the broadcast by each correct process of the same message WRITE(rsn, x+1,−). Hence, at

most ∆ time units later, pi has received the message WRITE(rsn, x + 1) from (n− t) processes, which

entails the update of swsni to (x + 1). Consequently the predicate of line 5 becomes satisfied, and pi
terminates its read operation.

When counting the number of consecutive communication steps, we have: The message READ(rsn)
by pi, followed by a message STATE(rsn, x+1,−) sent by some process and received by pi, followed by

the message WRITE(rsn, x+1) broadcast by pi, followed by the message WRITE(rsn, x+1) broadcast

by each non-crashed process (if not yet done). Hence, when the writer crashes during a concurrent read,

the read returns within at most τr + 4∆ time units. 2Lemma 6

Theorem 2 Algorithm 1 modified as indicated in Figure 2 implements in CAMPn,t[t < n/2] an

SWMR atomic register with time-efficient operations (where the time-efficiency notion is based on the

bounded delay assumption).

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 3, Lemma 4, Lemma 5,

and Lemma 6 (time-efficiency). 2Theorem 2

5.3 Time-efficient implementation: the round-based synchrony assumption

As already indicated, this notion of a time-efficient implementation assumes an underlying round-based

synchronous communication system, where the duration of a round (duration of all message transfer

delays) is δ.

Lemma 7 The duration of write operation is 2δ.

11

Proof The proof follows directly from the observation that the write operation terminates after a round-

trip delay, whose duration is 2δ. 2Lemma 7

Lemma 8 The duration of a read operation is 2δ time units if the writer does not crash while executing

a write operation concurrent with the read. Otherwise, it can be 3δ.

Proof Considering a read operation that starts at time τr, let us assume that the writer does not crash

while concurrently executing a write operation. At time τr + δ all processes receives the message

READ(rsn) sent by the reader (line 4), and answer with a message STATE(rsn,−) (line 12). Due the

round-based synchrony assumption, all these messages carry the same sequence number x, which is

equal to both their local variable wsni and swsni. It follows that at time τr + 2δ, the predicate of line 5

is satisfied at the reader, which consequently returns from the read operation.

If the writer crashes while concurrently executing a write operation, it is possible that during some

time (a round duration), some processes know the sequence number x, while other processes know only

x−1. But this synchrony break in the knowledge of the last sequence number is mended during the next

round thanks to the message WRITE(x, v) sent by the processes which are aware of x (See Figure 2).

After this additional round, the read terminates (as previously) in two rounds. Hence, the read returns at

the latest at time τr + 3δ. 2Lemma 8

Theorem 3 Algorithm 1 modified as indicated in Figure 2 implements in CAMPn,t[t < n/2] an

SWMR atomic register with time-efficient operations (where the time-efficiency notion is based on the

round-based synchrony assumption).

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 7, and Lemma 8 (time-

efficiency). 2Theorem 3

6 Conclusion

This work has presented a new distributed algorithm implementing an atomic read/write register on top

of an asynchronous n-process message-passing system in which up to t < n/2 processes may crash.

When designing it, the constraints we imposed on this algorithm were (a) from an efficiency point of

view: provide time-efficient implementations for read and write operations, (b) and from a design prin-

ciple point of view: remain “as close as possible” to the flagship ABD algorithm introduced by Attiya,

Bar-Noy and Dolev [2].

The “time-efficiency” property of the proposed algorithm has been analyzed according to two syn-

chrony assumptions on the underlying system.

• The first assumption considers an upper bound ∆ on message transfer delays. Under such an

assumption, any write operation takes then at most 2∆ time units, and a read operation takes at

most 2∆ time units when executed in good circumstances (i.e., when there is no write operation

concurrent with the read operation). Hence, the inherent cost of an operation is a round-trip delay,

always for a write and in favorable circumstances for a read. A read operation concurrent with a

write operation during which the writer does not crash, may require an additional cost of ∆, which

means that it takes at most 3∆ time units. Finally, if the writer crashes during a write concurrent

with a read, the read may take at most 4∆ time units. This shows clearly the incremental cost

imposed by the adversaries (concurrency of write operations, and failure of the writer).

12

• The second assumption investigated for a “time-efficient implementation” is the one provided by

a round-based synchronous system, where message transfer delays (denoted δ) are assumed to be

the same for all messages. It has been shown that, under this assumption, the duration of a write is

2δ, and the duration of a read is 2δ, or exceptionally 3δ when the writer crashes while concurrently

executing a write operation.

It is important to remind that the proposed algorithm remains correct in the presence of any asyn-

chrony pattern. Its time-efficiency features are particularly interesting when the system has long syn-

chrony periods.

Differently from the proposed algorithm, the ABD algorithm does not display different behaviors in

different concurrency and failure patterns. In ABD, the duration of all write operations is upper bounded

by 2∆ time units (or equal to 2δ), and the duration of all read operations is upper bounded by 4∆ time

units (or equal to 4δ). The trade-off between ABD and our algorithm lies the message complexity, which

is O(n) in ABD for both read and write operations, while it is O(n2) for a write operation and O(n) for

a read operation in the proposed algorithm. Hence our algorithm is particularly interesting for registers

used in read-dominated applications. Moreover, it helps us better understand the impact of the adversary

pair “writer concurrency + writer failure” on the efficiency of the read operations.

Acknowledgments

This work has been partially supported by the Franco-German DFG-ANR Project 40300781 DISCMAT

devoted to connections between mathematics and distributed computing, and the French ANR project

DISPLEXITY devoted to the study of computability and complexity in distributed computing.

References

[1] Aguilera M.K., Chen W. and Toueg S., On quiescent reliable communication. SIAM Journal of Computing,

29(6):2040-2073, 2000.

[2] Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing systems. Journal of the

ACM, 42(1):121-132, 1995.

[3] Attiya H. and Welch J., Distributed computing: fundamentals, simulations and advanced topics, (2d Edi-

tion), Wiley-Interscience, 414 pages, 2004.

[4] Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects. ACM Transac-

tions on Programming Languages and Systems, 12(3):463-492, 1990.

[5] Dutta P., Guerraoui R., Levy R., and Chakraborty A., How fast can a distributed atomic read be? Proc. 23rd

ACM Symposium on Principles of distributed computing (PODC’04), ACM Press, pp. 236-245, 2004.

[6] Dutta P., Guerraoui R., Levy R., and Vukolic M., Fast access to distributed atomic memory. SIAM Journal

of Computing, 39(8):3752-3783, 2010.

[7] Kramer S.N., History Begins at Sumer: Thirty-Nine Firsts in Man’s Recorded History. University of Penn-

sylvania Press, 416 pages, 1956 (ISBN 978-0-8122-1276-1).

[8] Lamport L., On interprocess communication, Part I: basic formalism. Distributed Computing, 1(2):77-85,

1986.

[9] Lynch N.A., Distributed algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996 (ISBN

1-55860-384-4).

[10] Raynal M., Communication and agreement abstractions for fault-tolerant asynchronous distributed systems.

Morgan & Claypool Publishers, 251 pages, 2010 (ISBN 978-1-60845-293-4).

13

[11] Raynal M., Distributed algorithms for message-passing systems. Springer, 510 pages, 2013 (ISBN: 978-3-

642-38122-5).

[12] Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515 pages, 2013

(ISBN 978-3-642-32026-2).

[13] Turing A.M., On computable numbers with an application to the Entscheidungsproblem. Proc. of the London

Mathematical Society, 42:230-265, 1936.

[14] Vukolic M., Quorum systems, with applications to storage and consensus. Morgan & Claypool Publishers,

132 pages, 2012 (ISBN 978-1-60845-683-3).

14

