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Virginie Bonnaillie-Noël, Nicolas Raymond, Frédéric Hérau
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Magnetic WKB Constructions

V. Bonnaillie-Noël∗, F. Hérau†and N. Raymond‡

January 21, 2016

Abstract

This paper is devoted to the semiclassical magnetic Laplacian. Until now WKB
expansions for the eigenfunctions were only established in presence of a non-zero elec-
tric potential. Here we tackle the pure magnetic case. Thanks to Feynman-Hellmann
type formulas and coherent states decomposition, we develop here a magnetic Born-
Oppenheimer theory. Exploiting the multiple scales of the problem, we are led to
solve an effective eikonal equation in pure magnetic cases and to obtain WKB expan-
sions. We also investigate explicit examples for which we can improve our general
theorem: global WKB expansions, quasi-optimal Agmon estimates and upper bound
of the tunelling effect (in symmetric cases). We also apply our strategy to get more ac-
curate descriptions of the eigenvalues and eigenfunctions in a wide range of situations
analyzed in the last two decades.

Keywords. WKB expansion, magnetic Laplacian, Born-Oppenheimer approximation,
coherent states, Agmon estimates, tunnel effect.
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1 Motivation and main results

1.1 Context and motivation

This paper is devoted to the analysis of the self-adjoint operators on L2(Rms × Rnt , dsdt)
of the following type

Lh = (hDs +A1(s, t))2 + (Dt +A2(s, t))2, (1.1)

where A1 and A2 are smooth functions (on which we will sometimes assume more), D =
−i∇, and where the space L2(Rms ×Rnt , dsdt) is equipped with the standard scalar product:

〈ψ1, ψ2〉L2(Rms ×Rnt , dsdt) =

∫
Rm×Rn

ψ1ψ2 dsdt.

The corresponding quadratic form is denoted by Qh. We would like to describe the lowest
eigenpairs (eigenvalues and eigenfunctions) of this operator in the limit h → 0 under
elementary confining assumptions.

1.1.1 The Born-Oppenheimer strategy

The problem of considering partial semiclassical problems appears for instance in the
context of [36, 34] where the main issue is to approximate the eigenpairs of operators with
electrical potentials in the form:

− h2∆s −∆t + V (s, t). (1.2)

The main idea, due to Born and Oppenheimer in [11], is to replace, for fixed s, the operator
−∆t + V (s, t) by its eigenvalues µk(s) (by convention we omit the index for k = 1).
Then we are led to consider for instance the reduced operator (called Born-Oppenheimer
approximation)

−h2∆s + µ(s),

and to apply the semiclassical techniques à la Helffer-Sjöstrand [30, 31] to analyze in
particular the tunnel effect when the potential µ admits symmetries. The main point is to
make the reduction of dimension rigorous. Note that we have always the following lower
bound

− h2∆s −∆t + V (s, t) ≥ −h2∆s + µ(s), (1.3)

which usually involves accurate Agmon estimates with respect to s: the eigenfunctions
of the operator (1.2) satisfy the same decay estimates as the eigenfunctions of the one
dimensional operator (see for instance [22]).

Our paper aims at understanding the analogy between magnetic case (1.1) and electric
case (1.2). In particular even the formal dimensional reduction seems to be a little more
problematic than in the electric case. Let us write the operator valued symbol of Lh. For
(x, ξ) ∈ Rm × Rm, we introduce the electro-magnetic Laplacian acting on L2(Rn, dt):

Mx,ξ = (Dt +A2(x, t))2 + (ξ +A1(x, t))2.

Let us introduce the notation for the bottom of the spectrum of this operator.

Definition 1.1 For all (x, ξ) ∈ Rm × Rm, the bottom of the spectrum of the essentially
self-adjoint operator Mx,ξ is denoted by µ(x, ξ).
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We would like to replace Lh by the m-dimensional pseudo-differential operator:

µ(s, hDs).

Under different assumptions, such reductions are considered in [38, Theorem 2.1 and re-
mark thereafter] where it is suggested that the spectrum of Lh could be completely de-
termined by an effective Hamiltonian (a matrix of pseudo-differential operators) whose
principal symbol can be described thanks to the spectral invariants of the operator valued
symbol of Lh. For the present situation the low lying spectrum of Lh could be described
by the one of µ(s, hDs) modulo O(h) and we will see that, under generic assumptions,
O(h) is precisely the order of the spectral gap between the first eigenvalues in the simple
well case.

1.1.2 Multiple scales induced by the fully semiclassical magnetic Laplacian

Another important motivation to analyze partially semiclassical problems with magnetic
fields comes in fact from the fully semiclassical case (i.e. when the parameter h multiplies
all the derivatives). Let us now explain in which sense. The study of the discrete spectrum
magnetic Laplacian (−i~∇+ A)2 has given rise to many contributions in the last twenty
years, especially in the semiclassical limit. To have an overview on the subject one may
refer to the book by Fournais and Helffer [20], the survey by Helffer and Kordyukov
[26] and the lecture notes by Raymond [49]. Many papers are concerned with finding
approximations of the first eigenfunctions. Such approximations are difficult to obtain due
to the geometry of a possible boundary (carrying in general a Neumann type condition)
and to the possible variations of the magnetic field B = ∇×A. In dimension two the case
of the disk is investigated in [3, 5, 4, 15] and generalized to smooth domains in [28] where
it is proved that

λ1(~) = Θ0~− C1κmax~3/2 + o(~3/2), (1.4)

where κmax is the maximal curvature of the boundary and where Θ0 > 0 and C1 > 0

are universal constants related to a half-line model (actually we have Θ0 = h[0](ζ
[0]
0 ), see

Section 4). An important point to notice is that, in the above mentioned papers, nothing
is told about the simplicity of the first eigenvalue or about the approximation of the
eigenfunctions. A reason for this is that the spirit of the analysis is essentially variational:
it is based on the construction of appropriate test functions for the first Rayleigh quotient
so that, even if the simplicity of the eigenfunctions were known, nothing could be deduced
for the approximation of the eigenfunctions.

The paper [19] is the first one to establish, in a smooth case and under non-degeneracy
assumptions, the approximation of the eigenfunctions and the simplicity of the lowest
eigenvalues. The crucial idea to get such results is to understand a double scale structure
due to the inhomogeneity of the pure magnetic Laplacian, which is specific to problems
with smooth boundaries or without boundary, and to apply the spectral mapping theorem.
In such situations it appears that the microlocalization (on possibly different scales) of the
eigenfunctions plays an important role in the determination of the spectral asymptotics.
In particular the papers [47, 17, 45], which are concerned with varying magnetic fields,
establish full asymptotic expansions of the low lying eigenvalues and eigenfunctions by
the reduction to the (electric) Born-Oppenheimer approximation which naturally involves
different scales. The analysis of [17], related to vanishing magnetic fields, is motivated by
the papers [40, 27, 23, 25] and solves one of their conjectures on the asymptotic simplicity
of the eigenvalues. This paper will provide simple examples suggested by all the above
mentioned models. Moreover, as we will see, the proof of the simplicity of the eigenvalues
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as well as the expansions of the eigenfunctions strongly relies on the multiscale analysis of
microlocal models as it is done while studying hypoellipticity. We will see that an analysis
à la Born-Oppenheimer will allow us to deal with all the above mentioned situations.

1.1.3 Magnetic WKB expansions and Agmon estimates

In all the papers about asymptotic expansions of the magnetic eigenfunctions, one of
the methods consists in using a formal power series expansion. It turns out that these
constructions are never in the famous WKB form, but in a weaker and somehow more
flexible one. When there is an additional electric potential providing easy confinement
estimates, the WKB expansions are possible as we can see in [32] and [39]. The reason
for which we would like to have a WKB description of the eigenfunctions is to get a
precise estimate of the magnetic tunnel effect in the case of symmetries. Until now, such
estimates are only investigated in two dimensional corner domains in [7] and [8] for the
numerical counterpart. It turns out that the crucial point to get an accurate estimate
of the exponentially small splitting of the eigenvalues is to establish exponential decay of
Agmon type. These localization estimates are rather easy to obtain (at least to get the
good scale in the exponential decay) in the corner cases due to the fact that the operator
is “more elliptic” than in the regular case in the following sense: the spectral asymptotics
is completely determined by the principal symbol. Nevertheless, let us notice here that,
on the one hand, the numerics suggests that the eigenvalues do not seem to be simple (see
for instance the case of the square in [8] or of the ellipse in Figure 9) and, on the other
hand, that establishing the optimal Agmon estimates is still an open problem. In smooth
cases, due to a lack of ellipticity and to the multiple scales, the localization estimates
obtained in the literature are in general not optimal or rely on the presence of an electric
potential (see [41, 42]): the principal symbol provides only a partial confinement whereas
the precise localization of the eigenfunctions seems to be determined by the subprincipal
terms. As far as we know, the present paper provides the first examples of WKB expansions
in pure magnetic situations as well as quasi-optimal – optimal in terms of power of h
but with no exhibited distance of Agmon – Agmon estimates in model situations. In
particular, we prove for a wide range of situations analyzed in the past decades that the
magnetic eigenfunctions are in the WKB form under generic assumptions. This paper can
be considered as the first necessary step (WKB expansions and rather accurate Agmon
estimates) towards the complete comprehension of the magnetic tunnel effect.

1.2 Main results and strategy of the proofs

1.2.1 Spectrum of the simple magnetic wells

In the simple well situation, we will work under the following assumptions. The first
assumption states that the lowest eigenvalue of the operator symbol of Lh admits a unique
and non degenerate minimum and the second one concerns the simplicity of the spectrum
of the effective harmonic oscillator.

Assumption 1.2 - The function Rm × Rm 3 (x, ξ) 7→ µ(x, ξ) is continuous and
admits a unique and non degenerate minimum µ0 at a point denoted by (x0, ξ0) and
such that lim inf |x|+|ξ|→+∞ µ(x, ξ) > µ0.

- The family (Mx,ξ)(x,ξ)∈Rm×Rm can be extended into a holomorphic family of type (A)
in the sense of Kato [33, Chapter VII] in a complex neighborhood V0 of (x0, ξ0).

- For all (x, ξ) ∈ V0 ∩ (Rm × Rm), µ(x, ξ) is a simple eigenvalue.
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Remark 1.3 Let us explain an example that we have in mind when stating Assumption
1.2. As we will see in Section 4, we will consider operator symbols (acting on L2(Rt)) in
the form

M[k]
x,ξ = D2

t + V (x, ξ), with V (x, ξ) =

(
ξ − γ(x)

tk+1

k + 1

)2

, (x, ξ) ∈ Rm × Rm ,

where k ≥ 1 and γ is uniformly bounded from below by a positive constant. In this case,

the domain of M[k]
x,ξ does not depend on (x, ξ) and M[k]

x,ξ depends on (x, ξ) analytically
as soon as γ is analytic. Therefore it is a real analytic family of type (A) and it is not
difficult to extend locally this family into a holomorphic family. The operator has clearly
a compact resolvent so that µ(x, ξ) is always an eigenvalue (and it is simple by a standard
ODE argument). By the min-max principle, it is rather direct to see that the function µ
is continuous on Rm ×Rm and that it behaves nicely at infinity (for example with γ as in
Proposition 1.16). The uniqueness of the minimum and its non degeneracy are related to
more advanced considerations (see Section 4).

Remark 1.4 Under Assumption 1.2, the function µ is analytic with respect to (x, ξ) and
it is associated with an L2-normalized eigenfunction ux,ξ ∈ S(Rn) which also analytically
depends on (x, ξ).

In a neighborhood V0 of (x0, ξ0), we still denote by ux,ξ and µ(x, ξ) the holomorphic
extensions of u and µ and we have locally:∫

Rn
ux,ξux,ξ dt = 1. (1.5)

Note that the holomorphic extension of u is not always L2-normalized.

Assumption 1.5 Under Assumption 1.2, let us denote by Hess µ(x0, ξ0) the Hessian ma-
trix of µ at (x0, ξ0). We assume that the spectrum of the operator Hess µ(x0, ξ0)(σ,Dσ) is
simple.

Remark 1.6 Assumption 1.5 is automatically satisfied when m = 1.

The last assumption is a spectral confinement.

Assumption 1.7 For R ≥ 0, we let ΩR = Rm+n \ B(0, R). We denote by LDir,ΩR
h the

Dirichlet realization on ΩR of (Dt +A2(s, t))2 + (hDs +A1(s, t))2. We assume that there
exist R0 ≥ 0, h0 > 0 and µ∗0 > µ0 such that for all h ∈ (0, h0), the bottom of the spectrum

of L
Dir,ΩR0
h satisfies:

λ
Dir,ΩR0
1 (h) ≥ µ∗0.

Remark 1.8 In particular, due to the monotonicity of the Dirichlet realization with re-
spect to the domain, Assumption 1.7 implies that there exist R0 > 0 and h0 > 0 such that
for all R ≥ R0 and h ∈ (0, h0):

λDir,ΩR
1 (h) ≥ λDir,ΩR0

1 (h) ≥ µ∗0.

By using the Persson’s theorem (see [43]), we have the following proposition.
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Proposition 1.9 Under Assumption 1.7, there exists h0 > 0 such that for all h ∈ (0, h0):

inf spess(Lh) ≥ µ∗0.

Theorem 1.10 Under Assumptions 1.2, 1.5 and 1.7, and assuming in addition that A1

and A2 are polynomials, for all n ≥ 1, there exists h0 > 0 such that for all h ∈ (0, h0) the
n-th eigenvalue of Lh exists and satisfies

λn(h) = λn,0 + λn,1h+ o(h),

where λn,0 = µ0 and λn,1 is the n-th eigenvalue of 1
2Hess µ(x0, ξ0)(σ,Dσ).

Remark 1.11 In fact using the double scale construction developed in the proof of the
previous theorem, it is possible to get a complete asymptotic expansion of the following
type

λn(h) ∼
h→0

∑
j≥0

ln,jh
j/2,

where ln,0 = µ0, ln,1 = 0 and ln,2 = λn,1.

Strategy of the proof of Theorem 1.10. The proof of Theorem 1.10 is divided into
two main steps. The first step is to construct quasimodes as formal series expansions and
to apply the spectral theorem. In order to succeed we will establish Feynman-Hellmann
formulas with multiple parameters which are consequences of the perturbation theory of
Kato. The second step which is slightly more difficult is to get an accurate estimate of the
spectral splitting between the eigenvalues. For that purpose, we will follow the strategy
of [48] by using a partial coherent states decomposition with respect to the semiclassical
variables s and use it to establish polynomial estimates (in the spirit of [46] and also
[24]) in the phase space satisfied by the eigenfunctions. Then the Feshbach-Grushin type
reduction is used to rigorously reduce the dimension and get the spectral splitting. The
proof of Theorem 1.10 is the aim of Section 2.

1.2.2 Magnetic WKB expansions: simple well case

We provide now WKB expansions of the lowest eigenpairs in a pure magnetic case. We
reduce here our study to the case when A2 = 0 for reasons motivated in Remark 1.15. We
therefore focus now on operators of the form

Lh = D2
t + (hDs +A1(s, t))2. (1.6)

Let us state one of the most important results of this paper.

Theorem 1.12 We assume that A2 = 0 and that A1 is real analytic. Under Assumptions
1.2, 1.5 and 1.7, there exist a function Φ = Φ(s) defined in a neighborhood V of x0 with
ReHessΦ(x0) > 0 and, for any n ≥ 1, a sequence of real numbers (λn,j)j≥0 such that

λn(h) ∼
h→0

∑
j≥0

λn,jh
j ,

in the sense of formal series, with λn,0 = µ0. Besides there exists a formal series of smooth
functions on V × Rnt

an(.;h) ∼
h→0

∑
j≥0

an,jh
j

7



with an,0 6= 0 such that

(Lh − λn(h))
(
an(.;h)e−Φ/h

)
= O (h∞) e−Φ/h.

Furthermore the functions t 7→ an,j(s, t) belong to the Schwartz class uniformly in s ∈ V.
In addition, if A1 is a polynomial function, there exists c0 > 0 such that for all h ∈ (0, h0)

B
(
λn,0 + λn,1h, c0h

)
∩ sp (Lh) = {λn(h)},

and λn(h) is a simple eigenvalue.

In the previous theorem we used the following definition of formal series of functions.

Notation 1.13 Let n ≥ 1. We write an(s, t;h) ∼
h→0

∑
j≥0 an,j(s, t)h

j when for all J ≥ 0

and α ∈ Nm+n, there exist hJ,α > 0 and CJ,α > 0 such that for all h ∈ (0, hJ,α), we have∣∣∣∣∂α(an(s, t;h)−
J∑
j=0

an,j(s, t)h
j
)∣∣∣∣ ≤ CJ,αhJ+1 locally in (s, t) ∈ V × Rn.

We also write a = O(h∞) when all the coefficients in the series are zero. The case of
formal series of numbers is similar.

Let us also recall that for any arbitrary sequence of smooth functions aj one can always
find, by a procedure of Borel type, a smooth function a(s, t;h) (up to O(h∞)) such that
a(s, t;h) ∼

h→0

∑
j≥0 aj(s, t)h

j (see e.g. [37]).

Remark 1.14 Thanks to Theorem 1.10, we have sharp asymptotic expansions of the
eigenvalues. In particular, one knows that they become simple in the semiclassical limit.
Therefore, by applying the spectral theorem, we get the WKB approximation of the corre-
sponding eigenfunctions from Theorem 1.12.

Remark 1.15 When A2 is not zero, it appears that the dimensional reduction is prevented
by the oscillations of the eigenfunctions of the model operator Mx,ξ. The problem already
appears in the case t ∈ R: we can gauge out A2 at the price to replace A1 by A1+h∇sϕ(s, t)
which is h dependent. As a consequence of our analysis, we can check that the spectrum
associated with the potential (A1 + h∇sϕ, 0) is shifted by a factor O(h) compared to the
one associated with (A1, 0). In dimension one for t, we can even prove with our method
(and a change of gauge) that the phase Φ in the WKB expansion is (s, t)-dependent.

Strategy of the proof of Theorem 1.12. The new Ansatz considered here is given
by a partial WKB expansion with respect to the variable s. Under some analyticity
assumptions, the effective eikonal equation will be solved thanks to the classical stable
manifold theorem and analytic extensions of the eigenpairs of the “model” operators. The
corresponding effective transport equation will be obtained as the Fredholm condition
of an operator valued transport equation jointly with the Feynman-Hellmann formulas.
Theorem 1.12 will be proved in Section 3.
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1.2.3 Generalized Montgomery operators: towards the magnetic tunnel effect

Let us introduce a family of magnetic Laplacians in dimension two which is related to [29]
and the more recent result by Fournais and Persson [21]. For k ∈ N \ {0}, we consider the
so-called generalized Montgomery operator on L2(R2, ds dt):

L[k],gM
~ = ~2D2

t +

(
~Ds − γ(s)

tk+1

k + 1

)2

,

where γ is analytic and does not vanish. The corresponding magnetic field is

B[k](s, t) = γ(s)tk .

We call λ
[k],gM
n,~ the n-th eigenvalue (if exists) of this operator. In order to stick to the

previous analysis, we start by the following naive but fundamental rescaling

s = s, t = ~
1
k+2 t. (1.7)

The operator becomes

~
2k+2
k+2

(
D2
t +

(
~

1
k+2Ds − γ(s)

tk+1

k + 1

)2
)
.

The investigation is then reduced to the one of

L
[k]
h = D2

t +

(
hDs − γ(s)

tk+1

k + 1

)2

, (1.8)

with h = ~
1
k+2 .

Under some assumptions, the operator L
[k]
h is a particular case of the previous theory.

We will see in Section 4.1 (Proposition 4.2) that it satisfies Assumptions 1.2, 1.5 and 1.7.
As a consequence, we could directly apply Theorem 1.12. But, at least in the case when the
oscillations of the function γ are small enough, we can prove that the first eigenfunctions
are globally in the WKB form.

Proposition 1.16

• If γ is a polynomial function and admits a unique minimum γ0 > 0 at s0 = 0 which
is non degenerate, then Theorem 1.12 applies.

• If γ is an analytic function and if
∥∥∥1− γ0

γ

∥∥∥
∞

is small enough, then the conclusion

of Theorem 1.12 is valid and we can take x0 = s0, V = R.

Remark 1.17 For the second point of Proposition 1.16, the simplicity of the eigenvalues
is established in [47, 17] for k = 0, 1 whereas slight adaptations have to be done to deal
with the case k ≥ 2.

As a direct reformulation and using the rescaling (1.7), we get the following result in
the original variables.
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Corollary 1.18 The n-th eigenvalue of L
[k],gM
~ and the corresponding WKB solution on

R2
s,t are given, as ~→ 0, by

λ
[k],gM
n,~ = ~

2k+2
k+2 λn(~

j
k+2 )∼~

2k+2
k+2

∑
j≥0

λn,j~
j

k+2 ,

and

u
[k],gM
n,~ (s, t)∼an(s, ~−

1
k+2 t; ~

1
k+2 )e−Φ(s)/~

1
k+2

where an and λn are given by Theorem 1.12.

In the perspective of the analysis of the magnetic tunnelling, we will now suppose that
γ, instead of having a unique non degenerate minimum, satisfies the following assumption
of double well type.

Proposition 1.19 Let us assume that the function γ is even and has two non degenerate
minima at s− < 0 and s+ = −s− > 0. Let us fix δ ∈ (0, s+) and let

z(s) = χδ,−(s)

∣∣∣∣∣
∫ s

s−

χ̃(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′

∣∣∣∣∣+ χδ,+(s)

∣∣∣∣∣
∫ s

s+

χ̃(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′

∣∣∣∣∣,
where 0 ≤ χ̃ ≤ 1 is a smooth cutoff function whose support contains s− and s+ and where
χδ,− and χδ,+ are smooth cutoff functions such that

χδ,−(s) =

{
1 for s ≤ δ

2 ,

0 for s ≥ δ,
and χδ,+(s) =

{
1 for s ≥ − δ

2 ,

0 for s ≤ −δ.

Let us consider C0 > 0. There exist ε0 > 0, C > 0 and h0 > 0 such that for all eigenpairs

(λ, ψ) of L
[k]
h satisfying λ ≤ µ0 + C0h we have, for all h ∈ (0, h0),

‖eε0z/hψ‖ ≤ C‖ψ‖ and Q
[k]
h (eε0z/hψ) ≤ C‖ψ‖2.

We can now give a rough upper bound for the tunnel effect for the rescaled Montgomery
models. For that purpose, let us fix δ ∈ (0, s+) and define the two symmetric model wells.
We assume that γ is even and has two non degenerate minima at s− < 0 and s+ = −s− > 0.

We consider the Dirichlet realizations on L2((−∞, s−+δ)×R) and L2((s+−δ,+∞)×R)

of D2
t +

(
hDs − γ(s) t

k+1

k+1

)2
respectively denoted by HDir

h,− and HDir
h,+. These operators are

isospectral by symmetry. We want to compare the spectrum of L
[k]
h with the one of the

direct sum Hh = HDir
h,− ⊕ HDir

h,+.

Theorem 1.20 Let us consider C0 > 0. There exist c > 0, C > 0, h0 > 0 such that for

all µ ∈ sp (Hh) and λ ∈ sp
(
L

[k]
h

)
with µ, λ ≤ µ0 + C0h, we have, for all h ∈ (0, h0),

range
(
1[µ−Ce−c/h,µ+Ce−c/h]

(
L

[k]
h

))
= 2

and
dist (λ, sp (Hh)) ≤ Ce−c/h.

The following corollary is a direct consequence of the previous theorem.

Corollary 1.21 In terms of operator L[k],gM
~ the gap between pairs of eigenvalues is given

by

λ
[k],gM
2n,~ − λ

[k],gM
2n−1,~ = O

(
e−c/~

1
k+2
)
,

for ~ small enough depending on n.
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Strategy of the analysis of L
[k]
h In the simple well case the study of L

[k]
h follows

the same lines as for Theorem 1.12 jointly with a normal form argument inspired by
[47, 17, 50] which permits simultaneously to make the WKB expansions global and to
get quasi-optimal Agmon estimates. Concerning the double well case, in order to get the
tunneling effect, we can follow the classical procedure based on the spectral theorem and
the previous Agmon estimates.

1.3 WKB constructions: influence of the geometry

This section is devoted to the fully semiclassical magnetic Laplacian (~Dx+A)2 on L2(R2).
We now investigate three kinds of models for which the geometry is more intricate and
for which our theorems do not directly apply. Nevertheless, our WKB strategy is robust
enough and still effective: we are able to exhibit WKB expansions. Note that all the
forthcoming situations have already been studied in the literature but never with the
accuracy of the WKB point of view. The geometric perturbations at stake are: vanishing
magnetic fields on curves or possibly singular boundary.

1.3.1 Vanishing magnetic fields... or not

We will work under the following assumption on B as in [23] and [17] which concerns its
vanishing order k ≥ 1 (whereas the limit case k = 0 will be described afterwards).

Assumption 1.22 We work in the two dimensional case. The zero locus of B is a smooth
closed non empty curve Γ:

Γ = {B(x) = 0},

and B vanishes exactly at the order k ≥ 1 on Γ. Moreover we assume that the k-th normal
derivative of B admits a non degenerate minimum on Γ at x0.

Remark 1.23 Here we work in dimension two, but there is no doubt that we could adapt
the presentation, modulo a few technicalities, to cover the case of magnetic fields vanishing
at a given order on hypersurfaces as in [23].

In Section 5.1 we will construct, in a neighborhood of x0 and in normal coordinates, WKB

expansions which come within the study of the generalized Montgomery operator L[k],gM
~ .

Under the additional assumption that the minimum is uniquely reached at x0, the splitting
between the lowest eigenvalues has been established in [17] (for the case k = 1 and the
proof is completely similar for k ≥ 2) so that these WKB expansions are local (in the sense
of Theorem 1.12) approximations of the true eigenfunctions.

These considerations can be extended to the case k = 0. We consider here a magnetic
field which does not vanish on Ω. The curve Γ represents the boundary of an enclosed
open set Ω carrying a magnetic Neumann condition. In other words, we can perform a
WKB construction, for the Neumann realization on Ω of (~Dx + A)2, near each x0 where
B|∂Ω is not degenerately minimal. Assuming moreover that

Θ0 min
∂Ω

B < min
Ω

B,

and that B|∂Ω admits a unique and non degenerate minimum, we can get, by using the
spectral splitting proved in [47], the local WKB approximation of the lowest eigenfunctions.
All the scaling properties, stated in normal coordinates, will be addressed in Section 5.1.

11



1.3.2 Varying edge

The strategy of this paper can also deal with more singular situations in dimension three.
Such a situation is described in the paper [45] where the semiclassical analysis is done when
the boundary of the domain contains a varying edge. We propose to perform the WKB
constructions for a simplified version of the operator introduced there. We are interested
in the operator defined on L2(Wα, dsdtdz) and with Neumann conditions

Le~ = ~2D2
t + ~2D2

z + (~Ds − t)2,

where
Wα =

{
(s, t, z) ∈ R3, |z| ≤ T (s)t

}
,

with T (s) = tan
(
α(s)

2

)
and where α : R→ R is an analytic function which represents the

(varying) opening of the wedge Wα. We will work under the following assumption.

Assumption 1.24 The function s 7→ α(s) admits a unique and non degenerate maximum
α0 at s = 0.

In Section 5.2, we will provide local (near the point of the edge giving the maximal aper-
ture) WKB expansions of the lowest eigenfunctions.

1.3.3 Curvature induced magnetic bound states

As we have seen, in many situations the spectral splitting appears in the second term
of the asymptotic expansion of the eigenvalues. It turns out that we can also deal with
more degenerate situations. The next lines are motivated by the initial paper [28] whose
main result is recalled in (1.4). Their fundamental result establishes that a smooth Neu-
mann boundary can trap the lowest eigenfunctions near the points of maximal curvature.
These considerations are generalized in [19, Theorem 1.1] where the following complete
asymptotic expansion of the eigenvalues is proved

λcn,~ = Θ0~− C1κmax~3/2 + (2n− 1)C1Θ
1/4
0

√
3k2

2
~7/4 + o(~7/4), (1.9)

where k2 = −κ′′(0). In our paper, as in [19], we will consider the magnetic Neumann
Laplacian on a smooth domain Ω such that the algebraic curvature κ satisfies the following
assumption.

Assumption 1.25 The function κ is smooth and admits a unique and non degenerate
maximum at 0.

We will prove that the lowest eigenfunctions are approximated by local WKB expansions
which can be made global when for instance ∂Ω is the graph of a smooth function. In

particular we will recover the term C1Θ
1/4
0

√
3k2
2 by a method different from the one in

[19].

1.4 Organization of the paper

The paper is organized as follows. Section 2 is devoted to models with simple magnetic
wells and to the proof of Theorem 1.10. Section 3 is concerned with the proof of The-
orem 1.12. In Section 4 we establish that the generalized Montgomery operators satisfy
the assumptions of Theorem 1.12, we prove that the WKB expansions are global (Propo-
sition 1.16) and we give an upper bound of the tunnel effect (proof of Theorem 1.20).
These theoretical results are illustrated by numerical simulations. Section 5 deals with the
geometrical examples introduced in Section 1.3.
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2 Simple magnetic wells

This section is devoted to the proof of Theorem 1.10. In order to perform the investigation
we use the following rescaling

s = x0 + h1/2σ, t = τ, (2.1)

and a gauge transform eiξ0σ/h
1/2

, so that Lh becomes

Lh = (Dτ +A2(x0 + h1/2σ, τ))2 + (ξ0 + h1/2Dσ +A1(x0 + h1/2σ, τ))2. (2.2)

The corresponding quadratic form is denoted by Qh.

2.1 Formal series and general Feynman-Hellmann formulas

Let us start by proving the following proposition.

Proposition 2.1 Under Assumption 1.2, we assume furthermore that A1 and A2 are
polynomials. For all n ≥ 1, there exist C > 0 and h0 > 0 such that, for h ∈ (0, h0),

dist (λn,0 + λn,1h, sp(Lh)) ≤ Ch3/2,

where λn,0 = µ0 and λn,1 is the n-th eigenvalue of 1
2Hess µ(x0, ξ0)(σ,Dσ).

We will need the so-called Feynman-Hellmann formulas:

Proposition 2.2 Let η and θ denote one of the xj or ξk. Then we have

(Mx,ξ − µ(x, ξ))(∂ηu)x,ξ = (∂ηµ(x, ξ)− ∂ηMx,ξ)ux,ξ (2.3)

and

(Mx0,ξ0 − µ0)(∂η∂θu)x0,ξ0

= ∂η∂θµ(x0, ξ0)ux0,ξ0 − ∂ηMx0,ξ0(∂θu)x0,ξ0 − ∂θMx0,ξ0(∂ηu)x0,ξ0 − ∂η∂θMx0,ξ0ux0,ξ0 ,
(2.4)

where (∂ηu)x0,ξ0 denotes (∂ηux,ξ)|(x,ξ)=(x0,ξ0) and similarly for the other derivatives of ux,ξ.
In a neighborhood of (x0, ξ0) in Rm × Cm, we have,

∂ηµ(x, ξ) =

∫
Rn

(∂ηMx,ξ ux,ξ)(τ)ux,ξ(τ) dτ. (2.5)

Proof: Feynman-Hellmann formulas (2.3)–(2.5) are obtained by taking the derivative
of the eigenvalue equation

Mx,ξux,ξ = µ(x, ξ)ux,ξ, (2.6)

with respect to xj and ξk.

Proof of Proposition 2.1: Since A1 and A2 are polynomials, we can write, for some
M ∈ N,

Lh =

M∑
j=0

hj/2Lj ,
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with

L0 =Mx0,ξ0 , L1 =
m∑
k=1

(∂xkM)x0,ξ0σk +
m∑
k=1

(∂ξkM)x0,ξ0Dσk ,

L2 =
1

2

m∑
k,j=1

(
(∂xj∂xkM)x0,ξ0σjσk + (∂ξj∂ξkM)x0,ξ0DσjDσk + (∂ξj∂xkM)x0,ξ0Dσjσk

+(∂xk∂ξjM)x0,ξ0σkDσj

)
.

(2.7)
We look for quasimodes in the form

ψ =

2∑
j=0

hj/2ψj and l =

2∑
j=0

hj/2lj ,

so that they solve in the sense of formal series

Lhψ = lψ +O(h3/2).

Let us now deal with each power of h.

Terms of order h0. By collecting the terms of order h0, we get the equation

Mx0,ξ0ψ0 = l0ψ0.

This leads to take
l0 = µ0 and ψ0(σ, τ) = f0(σ)u0(τ),

where u0 = ux0,ξ0 and f0 is a function to be determined in the Schwartz class.

Terms of order h1/2. By collecting the terms of order h1/2, we find

(Mx0,ξ0 − µ(x0, ξ0))ψ1 = (l1 − L1)ψ0.

By using (2.3) and the Fredholm alternative (applied for σ fixed) we get l1 = 0 and

ψ1(σ, τ) =
m∑
k=1

(∂xku)x0,ξ0(τ)σkf0(σ) +
m∑
k=1

(∂ξku)x0,ξ0(τ)Dσkf0(σ) + f1(σ)u0(τ), (2.8)

where f1 is a function to be determined in the Schwartz class.

Terms of order h. The equation reads

(Mx0,ξ0 − µ(x0, ξ0))ψ2 = (l2 − L2)ψ0 − L1ψ1.

The Fredholm condition gives

〈L2ψ0 + L1ψ1, u0〉L2(Rn, dτ) = l2f0. (2.9)

Let us examine each term which appears when computing the l.h.s. and recall that Propo-
sition 2.2 holds (especially the Fredholm condition of (2.4)).
The coefficient in front of σjσkf0 is

〈(∂xjM)x0,ξ0(∂xku)x0,ξ0 , u0〉L2(Rn, dτ) + 〈(∂xkM)x0,ξ0(∂xju)x0,ξ0 , u0〉L2(Rn, dτ)

+ 〈(∂xj∂xkM)x0,ξ0u0, u0〉L2(Rn, dτ) = ∂xj∂xkµ(x0, ξ0).
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The coefficient in front of DσjDσk is

〈(∂ξjM)x0,ξ0(∂ξku)x0,ξ0 , u0〉L2(Rn, dτ) + 〈(∂ξkM)x0,ξ0(∂ξju)x0,ξ0 , u0〉L2(Rn, dτ)

+ 〈(∂ξj∂ξkM)x0,ξ0u0, u0〉L2(Rn, dτ) = ∂ξj∂ξkµ(x0, ξ0).

To deal with the coefficient in front of Dσjσk + σkDσj , we use the formula

〈(∂ξjM)x0,ξ0(∂xku)x0,ξ0 , u0〉L2(Rn, dτ) + 〈(∂xkM)x0,ξ0(∂ξju)x0,ξ0 , u0〉L2(Rn, dτ)

+ 〈(∂ξj∂xkM)x0,ξ0u0, u0〉L2(Rn, dτ) + 〈(∂ξkM)x0,ξ0(∂xju)x0,ξ0 , u0〉L2(Rn,dτ)

+ 〈(∂xjM)x0,ξ0(∂ξku)x0,ξ0 , u0〉L2(Rn,dτ) + 〈(∂ξk∂xjM)x0,ξ0u0, u0〉L2(Rn,dτ)

= ∂xj∂ξkµ(x0, ξ0) + ∂xk∂ξjµ(x0, ξ0).

Therefore the Fredholm condition (2.9) becomes

1

2

m∑
j,k=1

(
∂xj∂xkµσjσk + ∂ξj∂ξkµDσjDσk + ∂ξj∂xkµDσjσk + ∂xk∂ξjµσkDσj

)
f0 = l2f0,

where for shortness, we write ∂η∂θµ := (∂η∂θµ)(x0, ξ0). In other words, we have

1
2Hess µ(x0, ξ0)(σ,Dσ)f0 = l2f0.

We take l2 = ln,2 the n-th eigenvalue of 1
2Hess µ(x0, ξ0)(σ,Dσ) and we choose f0 a corre-

sponding normalized eigenfunction. We take f1 = 0. The spectral theorem completes the
proof of Proposition 2.1 (with λn,1 = ln,2).

Remark 2.3 This construction can be continued at any order by using the same kind of
double scale procedure which can be found in [47, 46, 17] (see also [19] more in the Grushin
spirit or [9] in an electric case). The odd terms in the eigenvalues expansion may easily
be cancelled thanks to the parity of the harmonic oscillator.

We deduce from Propositions 1.9 and 2.1:

Corollary 2.4 For all n ≥ 1 there exist h0 > 0 and C > 0 such that for all h ∈ (0, h0)
the n-th eigenvalue of Lh exists and satisfies:

λn(h) ≤ µ0 + Ch.

2.2 Semiclassical Agmon-Persson estimates

This section is devoted to the rough localization and microlocalization estimates satisfied
by the eigenfunctions and resulting from Assumptions 1.2 and 1.7 and Corollary 2.4.

Proposition 2.5 Let C0 > 0. There exist h0, C, ε0 > 0 such that for all eigenpairs (λ, ψ)
of Lh with λ ≤ µ0 + C0h, we have∥∥∥eε0|t|ψ

∥∥∥2
≤ C‖ψ‖2, Qh

(
eε0|t|ψ

)
≤ C‖ψ‖2.

Proof: The proof is standard but we recall it for completeness. We consider a smooth
cutoff function χ1 supported in a fixed neighborhood of 0 and, for ` ≥ 1, we introduce
χ`(t) = χ1(`−1t). We let Φ`(t) = ε0χ`(t)|t| and we write the Agmon identity (see [1, 2])

Qh(eΦ`ψ) = λ‖eΦ`ψ‖2 + ‖ |∇Φ`|eΦ`ψ‖2.
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There exists C > 0 such that for all ` ≥ 1 we have

‖ |∇Φ`|eΦ`ψ‖2 ≤ Cε2
0‖eΦ`ψ‖2.

We infer that
Qh(eΦ`ψ) ≤ (µ0 + C0h+ Cε2

0)‖eΦ`ψ‖2.

For R > 0, we introduce a partition of unity (χ1,R, χ2,R) in t-variables such that

χ2
1,R(t) + χ2

2,R(t) = 1, |∇χ1,R|2 + |∇χ2,R|2 ≤ CR−2 and suppχ2,R ∩ B(0, R) = ∅.

With the so-called IMS formula (see [13, Chapter 3]), we deduce

Qh(χ1,ReΦ`ψ) + Qh(χ2,ReΦ`ψ)− CR−2‖eΦ`ψ‖2 ≤ (µ0 + C0h+ Cε2
0)‖eΦ`ψ‖2.

Since eΦ` is bounded on the support of χ1,R, we get the existence of C, C̃ > 0 such that
for all ` ≥ 1 and h ∈ (0, 1):

Qh(χ2,ReΦ`ψ)− (µ0 + C0h+ Cε2
0 + CR−2)‖χ2,ReΦ`ψ‖2 ≤ C̃‖ψ‖2.

By using Assumption 1.7 and Remark 1.8, there exist R0 > 0 and h0 > 0 such that for all
R ≥ R0 and h ∈ (0, h0) we have

Qh(χ2,ReΦ`ψ) ≥ µ∗0‖χ2,ReΦ`ψ‖2.

We infer the existence of c > 0 such that for h ∈ (0, h0)

c‖χ2,ReΦ`ψ‖2 ≤ C̃‖ψ‖2.

Then there exist C > 0 and h0 > 0 such that for all ` ≥ 1 and h ∈ (0, h0)

‖eΦ`ψ‖2 ≤ C‖ψ‖2.

It remains to consider the limit `→ +∞ and to use the Fatou lemma and the conclusion
follows.

Proposition 2.6 Let C0 > 0. There exist h0, C, ε0 > 0 such that for all eigenpairs (λ, ψ)
of Lh with λ ≤ µ0 + C0h, we have∥∥∥eε0|s|ψ

∥∥∥2
≤ C‖ψ‖2, Qh

(
eε0|s|ψ

)
≤ C‖ψ‖2.

Proof: The proof is the same as that of Proposition 2.5 with Φ(s) = ε0χ`(s)|s|.

We get the following.

Corollary 2.7 Let C0 > 0 and k, l, d ∈ N. There exist h0, C, ε0 > 0 such that for all
eigenpairs (λ, ψ) of Lh with λ ≤ µ0 + C0h and all h ∈ (0, h0), we have

‖tkslψ‖ ≤ C‖ψ‖, Qh(tkslψ) ≤ C‖ψ‖2,
‖(Dτ )dsltkψ‖ ≤ C‖ψ‖2, ‖(hDs)

dsltkψ‖ ≤ C‖ψ‖2.

Proof: For d = 1, this is an immediate consequence of Propositions 2.5 and 2.6.
Taking successive derivatives of the eigenvalue equation Lhψ = λψ we deduce the result
for d ≥ 2.
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For another purpose, we will need the following localization result which is again a conse-
quence of Propositions 2.5 and 2.6.

Proposition 2.8 Let k ∈ N. Let η > 0 and χ a smooth cutoff function defined on R+

and being zero in a neighborhood of 0. There exists h0 > 0 such that for all eigenpairs
(λ, ψ) of Lh with λ ≤ µ0 + C0h and all h ∈ (0, h0), we have

‖χ(hη|s|)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖, ‖χ(hη|t|)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖,

where ‖ · ‖Bk(Rn+m) is the standard norm on

Bk(Rm+n) = {ψ ∈ L2(Rm+n)|yqj∂
p
yl
ψ ∈ L2(Rn+m), ∀j, l ∈ {1, . . . ,m+ n}, p+ q ≤ k}.

By using a rough pseudo-differential calculus jointly with the space localization of Propo-
sition 2.8 and standard elliptic estimates, we get

Proposition 2.9 Let k ∈ N. Let η > 0 and χ a smooth cutoff function being zero in
a neighborhood of 0. There exists h0 > 0 such that for all eigenpairs (λ, ψ) of Lh with
λ ≤ µ0 + C0h, we have

‖χ(hηhDs)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖, ‖χ(hηDt)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖.

2.3 Microlocalization and coherent states

In this section we follow the same philosophy as in [48].

2.3.1 Formalism and application

Let us recall the formalism of coherent states (see for instance [18] and [12]). We define

g0(σ) = π−m/4e−|σ|
2/2,

and the usual creation and annihilation operators

aj = 1√
2
(σj + ∂σj ), a∗j = 1√

2
(σj − ∂σj ),

which satisfy the commutator relations

[aj , a
∗
j ] = 1, [aj , a

∗
k] = 0 if k 6= j.

We notice that

σj = 1√
2
(aj + a∗j ), ∂σj = 1√

2
(aj − a∗j ), aja

∗
j = 1

2(D2
σj + σ2

j + 1). (2.10)

For (u, p) ∈ Rm × Rm, we introduce the coherent state

fu,p(σ) = eip·σg0(σ − u),

and the associated projection, defined for ψ ∈ L2(Rm × Rn) by

Πu,pψ = 〈ψ, fu,p〉L2(Rm, dσ)fu,p = ψu,pfu,p.

We have the identity resolution formula

ψ =

∫
R2m

Πu,pψ dudp, (2.11)
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and the Parseval-type formula

‖ψ‖2 =

∫
Rn

∫
R2m

|ψu,p|2 du dp dτ.

Let us emphasize here that the coherent states decomposition (2.11) is performed only
with respect to the variable σ. We recall that

ajfu,p =
uj + ipj√

2
fu,p

and

(aj)
`(a∗k)

qψ =

∫
R2m

(
uj + ipj√

2

)`(uk − ipk√
2

)q
Πu,pψ dudp. (2.12)

We recall that (see (2.2))

Lh =
(
Dτ +A2(x0 + h1/2σ, τ)

)2
+
(
ξ0 + h1/2Dσ +A1(x0 + h1/2σ, τ)

)2
and, since A1 and A2 are polynomials, we get an expansion in the form

Lh = L0 + h1/2L1 + hL2 + . . .+ hM/2LM .

Let us now replace σj and ∂σj by their expressions in terms of aj and a∗j (see (2.10)).
Then, we write the anti-Wick ordered operator. In other words, we commute a and a∗ to
put all the a on the left (in order to apply Formula (2.12)) and we deduce

Lh = L0 + h1/2L1 + hLW2 + . . .+ (h1/2)MLWM︸ ︷︷ ︸
LWh

+hR2 + . . .+ (h1/2)MRM︸ ︷︷ ︸
Rh

, (2.13)

where the Rd are the remainders in the anti-Wick ordering and satisfy, for d ≥ 2,

hd/2Rd = hd/2Od−2(σ,Dσ), (2.14)

where the notation Od(σ,Dσ) stands for a polynomial operator with total degree in (σ,Dσ)
less than d. We recall that

LWh =

∫
R2m

Mx0+h1/2u,ξ0+h1/2p dudp.

Proposition 2.10 There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh with
λ ≤ µ0 + C0h and all h ∈ (0, h0), we have

Qh(ψ) ≥
∫
R2m

Qh,u,p(ψu,p) du dp− Ch‖ψ‖2 ≥ (µ0 − Ch)‖ψ‖2, (2.15)

where Qh,u,p is the quadratic form associated with the operator Mx0+h1/2u,ξ0+h1/2p.

Proof: We use (2.13). Then the terms ofRh (see (2.14)) are in the form hhd/2σlDq
σταD

β
τ

with l + q ≤ d and β = 0, 1. With Corollary 2.7 and the rescaling (2.1), we have

‖hd/2σlDq
στ

αDβ
τ ψ‖ ≤ C‖ψ‖

and the conclusion follows.
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2.3.2 Localization in the phase space

This section is devoted to elliptic regularity properties (both in space and frequency)
satisfied by the eigenfunctions. We will use the following generalization of the “IMS”
formula the proof of which can be found in [48].

Lemma 2.11 (“Localization” of P 2 with respect to A) Let H be a Hilbert space and
P and A be two unbounded operators defined on a domain D ⊂ H. We assume that P is
symmetric and that P (D) ⊂ D, A(D) ⊂ D, A∗(D) ⊂ D. Then, for ψ ∈ D, we have

Re 〈P 2ψ,AA∗ψ〉 = ‖P (A∗ψ)‖2 − ‖[A∗, P ]ψ‖2 + Re 〈Pψ, [[P,A],A∗]ψ〉

+ Re
(
〈Pψ,A∗[P,A]ψ〉 − 〈Pψ,A[P,A∗]ψ〉

)
. (2.16)

The following lemma is a straightforward consequence of Assumption 1.2.

Lemma 2.12 Under Assumption 1.2, there exist ε0 > 0 and c > 0 such that

µ(x0 + x, ξ0 + ξ)− µ(x0, ξ0) ≥ c(|x|2 + |ξ|2), ∀(x, ξ) ∈ B(ε0),

and
µ(x0 + x, ξ0 + ξ)− µ(x0, ξ0) ≥ c, ∀(x, ξ) ∈ {B(ε0),

where B(ε0) = {(x, ξ) : |x|+ |ξ| ≤ ε0} and {B(ε0) is its complement.

Notation 2.13 In what follows we will denote by η̃ > 0 all the quantities which are
multiples of η > 0,i.e. in the form jη for j ∈ N \ {0}. We recall that η > 0 can be chosen
arbitrarily small.

Proposition 2.14 There exist h0, C, ε0 > 0 such that for all eigenpairs (λ, ψ) of Lh with
λ ≤ µ0 + C0h, we have

‖σψ‖2 + ‖∇σψ‖2 ≤ C‖ψ‖2.

Proof: We recall that (2.15) holds. We have

Qh(ψ) = λ‖ψ‖2 ≤ (µ0 + C0h)‖ψ‖2.

We deduce that ∫
R2m

Qh,u,p(ψu,p)− µ0|ψu,p|2 dudp ≤ Ch‖ψ‖2

and thus by the min-max principle∫
R2m

(
µ(x0 + h1/2u, ξ0 + h1/2p)− µ0

)
|ψu,p|2 du dp ≤ Ch‖ψ‖2.

Let ε0 > 0 be given in Lemma 2.12. We split the integral into two parts and find∫
B(h−1/2ε0)

(|u|2 + |p|2)|ψu,p|2 dudp ≤ C‖ψ‖2, (2.17)∫
{B(h−1/2ε0)

|ψu,p|2 dudp ≤ Ch‖ψ‖2. (2.18)

The first inequality is not enough to get the conclusion. We also need a control of momenta
in the region {B(h−1/2ε0). For that purpose, we write:

Qh(a∗jψ) =

∫
R2m

Qh,u,p

(
uj − ipj√

2
ψu,p

)
dudp+ 〈Rha∗jψ, a∗jψ〉. (2.19)
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Up to lower order terms we must estimate terms in the form:

h〈hd/2σlDq
στ

αDβ
τ a
∗
jψ, a

∗
jψ〉,

with l + q = d, α ∈ N and β = 0, 1. By using the a priori estimates of Propositions 2.8
and 2.9, we have

‖hd/2σlDq
στ

αDβ
τ a
∗
jψ‖ ≤ Ch−η̃‖a∗jψ‖.

The remainder is controlled by

|〈Rha∗jψ, a∗jψ〉| ≤ Ch1−η̃(‖Dσψ‖2 + ‖σψ‖2).

Then we analyze Qh(a∗jψ) by using Lemma 2.11 with A = aj . We need to estimate the
different remainder terms. We notice that

‖[a∗j , Pk,r,h]ψ‖ ≤ Ch1/2‖ψ‖,
|〈Pk,r,hψ, a∗j [Pk,r,h, aj ]ψ〉| ≤ ‖Pk,r,hψ‖ ‖a∗j [Pk,r,h, aj ]ψ‖,
|〈Pk,r,hψ, aj [Pk,r,h, a∗j ]ψ〉| ≤ ‖Pk,r,hψ‖ ‖aj [Pk,r,h, a∗j ]ψ‖,

|〈Pk,r,hψ, [[Pk,r,h, aj ], a∗j ]ψ〉| ≤ ‖Pk,r,hψ‖ ‖[[Pk,r,h, aj ], a∗j ]ψ‖,

where P1,r,h denotes the magnetic momentum h1/2Dσr + A1,r(x0 + h1/2σ, τ) and P2,r,h

denotes Dτr + A2,r(x0 + h1/2σ, τ) and Ak,r is the r-th component of Ak (k = 1, 2). We
have

‖Pk,r,hψ‖ ≤ C‖ψ‖

and
‖a∗j [Pk,r,h, aj ]ψ‖ ≤ Ch1/2‖a∗jQ(h1/2σ, τ)ψ‖,

where Q is polynomial. The other terms are bounded in the same way. We apply the
estimates of Propositions 2.8 and 2.9 to get

‖a∗jQ(h1/2σ, τ)ψ‖ ≤ Ch−η̃‖a∗jψ‖.

We have

Qh(a∗jψ) = λ‖a∗jψ‖2 +O(h)‖ψ‖2 +O(h
1
2
−η̃)(‖∇σψ‖2 + ‖σψ‖2),

so that
Qh(a∗jψ) ≤ µ0‖a∗jψ‖2 + Ch‖ψ‖2 + Ch

1
2
−η̃(‖∇σψ‖2 + ‖σψ‖2).

By using (2.19) and splitting again the integral into two parts, it follows∫
B(h−1/2ε0)

(|u|2 + |p|2)|(uj − ipj)ψu,p|2 dudp ≤ C‖ψ‖2 + Ch−
1
2
−η̃(‖∇σψ‖2 + ‖σψ‖2),∫

{B(h−1/2ε0)
|(uj − ipj)ψu,p|2 dudp ≤ Ch‖ψ‖2 + Ch

1
2
−η̃(‖∇σψ‖2 + ‖σψ‖2).

Choosing η̃ small enough so that η̃ < 1
2 , combining the last inequality with the first one

of (2.17) and the Parseval formula we get the conclusion.

Proposition 2.15 Let P ∈ C2[X1, . . . , X2m]. There exist h0, C, ε0 > 0 such that for all
eigenpairs (λ, ψ) of Lh with λ ≤ µ0 + C0h, we have

‖P (σ,Dσ)ψ‖2 ≤ Ch−
1
2
−η̃‖ψ‖2.
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Proof: From the proof of Proposition 2.14, we infer∫
B(h−1/2ε0)

(|u|2 + |p|2)|(uj − ipj)ψu,p|2 dudp ≤ Ch−
1
2
−η̃‖ψ‖2, (2.20)∫

{B(h−1/2ε0)
|(uj − ipj)ψu,p|2 dudp ≤ Ch

1
2
−η̃‖ψ‖2. (2.21)

Then we use Lemma 2.11 with A = ajaj . The worst remainders in (2.16) are

‖[Pk,r,h, a∗ja∗j ]ψ‖2 ≤ Ch‖ψ‖2,

|〈Pk,r,hψ, a∗ja∗j [Pk,r,h, ajaj ]ψ〉| ≤ Ch
1
2
−η̃‖ψ‖‖a∗ja∗jψ‖.

We infer
Qh(a∗ja

∗
jψ) ≤ µ0‖a∗ja∗jψ‖2 + Ch

1
2
−η̃‖ψ‖2 + Ch

1
2
−η̃‖a∗ja∗jψ‖2.

We deduce∫
B(h−1/2ε0)

(|u|2 + |p|2)|(uj − ipj)2ψu,p|2 dudp ≤ Ch−
1
2
−η̃‖ψ‖2 + Ch−

1
2
−η̃‖a∗ja∗jψ‖2,∫

{B(h−1/2ε0)
|(uj − ipj)2ψu,p|2 dudp ≤ Ch

1
2
−η̃‖ψ‖2 + Ch

1
2
−η̃‖a∗ja∗jψ‖2. (2.22)

Jointly with Proposition 2.14, estimates (2.20) and (2.22) imply that∫
R2m

(|u|4 + |p|4)|ψu,p|2 dudp ≤ Ch−
1
2
−η̃‖ψ‖2.

The conclusion follows from the Parseval formula and Proposition 2.14.

2.4 Spectral gap

We introduce the projection

Ψ0 = Π0ψ = 〈ψ, ux0,ξ0〉L2(Rn, dτ)ux0,ξ0

and, inspired by (2.8) where f0 is replaced by 〈ψ, ux0,ξ0〉L2(Rn, dτ) and f1 by 0,

Ψ1 =
m∑
j=1

(∂xju)x0,ξ0 σj〈ψ, ux0,ξ0〉L2(Rn, dτ) +
m∑
j=1

(∂ξju)x0,ξ0 Dσj 〈ψ, ux0,ξ0〉L2(Rn, dτ). (2.23)

This leads to define the corrected Feshbach projection

Πhψ = Ψ0 + h1/2Ψ1 (2.24)

and
Rh = ψ −Πhψ

Note that the functions Ψ0 and Ψ1 will be a priori h-dependent. By the L2-normalization
of ux,ξ (when ξ ∈ Rm), Ψ1 and Rh are orthogonal (with respect to the τ -variable) to
u0 (and Ψ0). Let us recall that the Lj were defined in (2.7). Furthermore, we have by
construction and Proposition 2.2

(L0 − µ0)Ψ1 = −L1Ψ0 (2.25)

and, by the Fredholm alternative,

〈L1Ψ0,Ψ0〉L2(Rn, dτ) = 0.
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2.4.1 Approximation results

We can prove a first approximation.

Proposition 2.16 There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh with
λ ≤ µ0 + C0h, we have

‖ψ −Π0ψ‖ ≤ Ch
1
2
−η̃‖ψ‖.

Proof: We can write

(L0 − µ0)ψ = (λ− µ0)ψ − h1/2L1ψ − hL2ψ − . . .− hM/2LMψ.

By using the rough microlocalization given in Propositions 2.8 and 2.9 and Proposition
2.15, we infer that for d ≥ 2

hd/2‖ταDβ
τ σ

lDq
σψ‖ ≤ Ch

d
2
− d−2

2
− 1

4
−η̃‖ψ‖ = Ch

3
4
−η̃‖ψ‖, (2.26)

and thanks to Proposition 2.14

‖L1ψ‖ ≤ Ch−η̃‖ψ‖,

so that
‖(L0 − µ0)ψ‖ ≤ Ch

1
2
−η̃‖ψ‖,

and the conclusion follows.

Corollary 2.17 There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh with λ ≤
µ0 + C0h, we have

‖σ(ψ −Π0ψ)‖ ≤ Ch
1
4
−η̃‖ψ‖, ‖Dσ(ψ −Π0ψ)‖ ≤ Ch

1
4
−η̃‖ψ‖.

We can now estimate ψ −Πhψ.

Proposition 2.18 There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh with
λ ≤ µ0 + C0h, we have

‖Rhψ‖ = ‖ψ −Πhψ‖ ≤ Ch
3
4
−η̃‖ψ‖.

Proof: Let us write
Lhψ = λψ.

We have
(L0 + h1/2L1)ψ = (µ0 +O(h))ψ − hL2ψ − . . .− hM/2LMψ.

Let us notice that, as in (2.26), we have, for d ≥ 2,

hd/2‖Ldψ‖ ≤ Ch
3
4
−η̃‖ψ‖.

We get

(L0 − µ0)Rh = −h1/2L1(ψ −Ψ0) +O(h)ψ − hL2ψ − . . .− hM/2LMψ

It remains to apply Corollary 2.17 and obtain

h1/2‖L1(ψ −Ψ0)‖ ≤ C̃h
3
4
−η̃‖ψ‖.
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2.4.2 Proof of Theorem 1.10

Let us introduce a subspace of dimension P ≥ 1. For j ∈ {1, . . . , P} we can consider an
L2-normalized eigenfunction of Lh denoted by ψj,h and so that the family (ψj,h)j∈{1,...,P}
is orthogonal. We let

EP (h) = span
j∈{1,...,P}

ψj,h.

Remark 2.19 We can extend the estimates of Propositions 2.14 and 2.15 as well as the
approximations proved in Section 2.4.1 to ψ ∈ EP (h).

We can now prove the following proposition.

Proposition 2.20 For all n ≥ 1, there exists h0 > 0 such that, for all h ∈ (0, h0), we
have

λn(h) ≥ µ0 + λn,1h+ o(h),

where we recall that λn,1 is the n-th eigenvalue of 1
2Hess µ(x0, ξ0)(σ,Dσ).

Proof: Since we want to establish a lower bound for the eigenvalues, let us prove a
lower bound for the quadratic form on EP (h), for P ≥ 1. By definition of the Lj in (2.7),
we have, for ψ ∈ EP (h),

Qh(ψ) = 〈L0ψ,ψ〉+ h1/2〈L1ψ,ψ〉+ h〈L2ψ,ψ〉+ . . .+ hp/2〈Lpψ,ψ〉+ . . .+ hM/2〈LMψ,ψ〉.

Using Propositions 2.14, 2.15, 2.8 and 2.9, we have, for d ≥ 3

|hd/2〈Ldψ,ψ〉| ≤ Ch
d
2
− d−3

2
−η̃− 1

4 ‖ψ‖2 = Ch
5
4
−η̃‖ψ‖2.

We infer
Qh(ψ) ≥ 〈L0ψ,ψ〉+ h1/2〈L1ψ,ψ〉+ h〈L2ψ,ψ〉 − Ch

5
4
−η̃‖ψ‖2.

It remains to analyze the different terms. We have

〈L0ψ,ψ〉 = 〈L0(Ψ0 + h1/2Ψ1 +Rh),Ψ0 + h1/2Ψ1 +Rh〉.

The orthogonality (with respect to τ) cancels the terms 〈L0Ψ1,Ψ0〉 and 〈Rh,Ψ0〉. More-
over, we have, with Propositions 2.8 and 2.9,

h1/2|〈L0Rh,Ψ1〉| ≤ h1/2−η̃‖Rh‖‖Ψ1‖,

and we use Proposition 2.14 to get

‖Ψ1‖ ≤ C‖ψ‖,

so that, with Proposition 2.18,

〈L0ψ,ψ〉 = µ0‖Ψ0‖2 + h〈L0Ψ1,Ψ1〉+O(h
5
4
−η̃)‖ψ‖2.

We have

〈L1ψ,ψ〉 = 〈L1Ψ0,Ψ0〉+ 2h1/2〈L1Ψ0,Ψ1〉+ h〈L1Ψ1,Ψ1〉+ 2〈L1ψ,Rh〉.

Then, a Feynman-Hellmann formula provides 〈L1Ψ0,Ψ0〉 = 0. Using again Propositions
2.8, 2.9, 2.14, 2.15 and 2.18, we notice that

〈L1ψ,ψ〉 = 2h1/2〈L1Ψ0,Ψ1〉+O(h
3
4
−η̃)‖ψ‖2.
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We notice
〈L2ψ,ψ〉 = 〈L2Ψ0,Ψ0〉+ 〈L2(ψ −Ψ0), ψ〉+ 〈L2ψ,ψ −Ψ0〉.

Writing ψ −Ψ0 = h1/2Ψ1 +Rh, we have the estimate

|〈L2(ψ −Ψ0), ψ〉+ 〈L2ψ,ψ −Ψ0〉| ≤ Ch−
1
4
−η̃h

1
2
−η̃‖ψ‖2.

We infer the lower bound

Qh(ψ) ≥ µ0‖Ψ0‖2+h〈L0Ψ1,Ψ1〉+h〈L1Ψ0,Ψ1〉+h〈L1Ψ1,Ψ0〉+h〈L2Ψ0,Ψ0〉−Ch
5
4
−η̃‖ψ‖2.

Using (2.25), we get

h〈L0Ψ1,Ψ1〉+ h〈L1Ψ0,Ψ1〉 = hµ0‖Ψ1‖2,

so that, by orthogonality,

Qh(ψ) ≥ µ0‖Ψ0 + h1/2Ψ1‖2 + h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉 − Ch
5
4
−η̃‖ψ‖2.

Since 〈Rh,Ψ0〉 = 0 we deduce that

‖Ψ0 + h1/2Ψ1‖2 = ‖Ψ0 + h1/2Ψ1 +Rh‖2 +O(h
5
4
−η̃)‖ψ‖2.

It follows that

Qh(ψ)− µ0‖ψ‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2,

and, since Qh(ψ) ≤ λP (h)‖ψ‖2, we have

(λP (h)− µ0)‖ψ‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2.

Thus we get

(λP (h)− µ0)‖Ψ0‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2.

We recall that (see (2.9) and below)

〈L1Ψ1,Ψ0〉+ 〈L2Ψ0,Ψ0〉
=
〈

1
2Hess µ(x0, ξ0)(σ,Dσ)(〈ψ, u0〉L2(Rn, dτ)), 〈ψ, u0〉L2(Rn, dτ)

〉
L2(Rm, dσ)

.

Finally we apply the min-max principle to the P -dimensional space 〈EP (h), u0〉L2(Rn, dτ)

to get the wished lower bound.

Theorem 1.10 is a consequence of Propositions 2.20 and 2.1.

3 Magnetic WKB constructions

3.1 Stable manifold and eikonal equation

In this section we study the construction of WKB solutions in the general case

Lh = (hDs +A1(s, t))2 + (Dt +A2(s, t))2 with D = −i∇.
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As mentioned in the introduction, for (x, ξ) ∈ Rm×Rm, we are interested in the following
electro-magnetic Laplacian acting on L2(Rn, dt), when looking at the partial semiclassical
symbol of Lh in variable s,

Mx,ξ = (Dt +A2(x, t))2 + (ξ +A1(x, t))2. (3.1)

Denoting by µ(x, ξ) its lowest eigenvalue, we would like to replace (in spirit) Lh by the
m-dimensional pseudo-differential operator µ(x, hDx). In order to complete this program,
the main assumption on the operator Mx,ξ in variable t concerns its lowest eigenvalue µ
and is stated in Assumption 1.2 in the introduction.

In order to build suitable quasimodes for Lh, it will be of great use to first study the
following eikonal equation

µ(x0 + x, ξ0 + i∇Φ(x)) = µ0, (3.2)

with unknown Φ, where we recall that (x0, ξ0) is the point where the minimum µ0 of µ,
is attained (as a real function of (x, ξ) ∈ R2m). Although certainly well-known (see e.g.
[51]), in particular in the context of Sjöstrand’s theory of FIO with complex phases, we
recall in the next subsections this construction with elementary tools. In order to simplify
the notation, we denote in the following

p(x, ξ) = µ\(x, ξ)− µ0 with µ\(x, ξ) = µ(x0 + x, ξ0 + ξ).

With these notations, we deal with a real analytic symbol p defined at least in a neigh-
borhood of (0, 0) in the complex plane, and such that

p(0, 0) = 0, ∇p(0, 0) = 0, and Hess p(0, 0) is (real) positive definite.

The point ρ0 = (0, 0) is then a so-called doubly characteristic point for p, and the eikonal
equation now reads

p(x, i∇Φ(x)) = 0.

In the next subsection, we introduce our general framework.

3.1.1 Framework

In order to stick to the standard theory (see e.g. [16]), we introduce

q(x, ξ) = −p(x, iξ)

and the eikonal equation reads
q(x,∇Φ(x)) = 0. (3.3)

We focus from now on (3.3). In general, the symbol q is not necessarily real, so that we
cannot expect to get a real phase Φ. Anyway the classical construction in C2m of the
phase remains true as we shall shortly recall below (both in quadratic and general cases).
We can look at the Hamiltonian vector field Hq, in a small neighborhood of ρ0 = (0, 0),

Hq(x, ξ) =
∂q

∂ξ
(x, ξ) · ∇x −

∂q

∂x
(x, ξ) · ∇ξ,

and its linearization Fq, at ρ0, called the fundamental matrix, is

Fq = JHess q(ρ0) =

 ∂2q
∂x∂ξ (ρ0) ∂2q

∂ξ2
(ρ0)

− ∂2q
∂x2

(ρ0) − ∂2q
∂x∂ξ (ρ0)

 , J =

(
0 I
−I 0

)
.
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Since p is real, the Hessian of p is real, and of the form

Mp = Hess p(ρ0) =

(
A B
B C

)
,

with A, B and C real symmetric matrices. If Mq denotes the Hessian of q, we therefore
get that

Mq =

(
−A −iB
−iB C

)
.

Since ρ0 is a non degenerate minimum of p, the Hessian of p at ρ0 is positive definite. We
directly check that Fq = JMq and we have

Fq =

(
−iB C
A iB

)
.

Now using that Fp = JMp, we also have

Fp = F0 =

(
B C
−A −B

)
,

so that

Fq = −i
(
I 0
0 −iI

)
Fp

(
I 0
0 iI

)
. (3.4)

We now deal with the eikonal equation in the quadratic case.

3.1.2 The quadratic case

In this subsection we recall basic facts from [51] about the quadratic case and also about
symplectic geometry. Recall that T ∗Rm is endowed with the canonical symplectic 2-form
which can be written as ω =

∑
j dξj ∧ dxj in coordinates, and that this form naturally

extends to a symplectic 2-form in T ∗Cm with the same expression

ω
(
(x, ξ), (y, η)

)
= ξ · y − x · η, (x, ξ), (y, η) ∈ T ∗Cm, (3.5)

where we denote x · y =
∑m

j=1 xjyj . Note that

1

i
ω(X,X) =

1

i
(ξ · x− x · ξ) = 2Im (ξ · x) ∈ R. (3.6)

We recall that an endomorphism κ0 of T ∗Rm is said to be symplectic if ω(κ0., κ0.) =
ω(., .). In coordinates, ω is represented by the matrix J so that ω(X,Y ) = tY JX. Let
X = (x, ξ) ∈ T ∗Cm and consider a quadratic form p0 associated with the bilinear form b0,

X 7→ b0(X,X) = p0(X) on T ∗Cm,

which is real positive definite when restricted to T ∗Rm. Note that this implies that

b0(X,X) > 0, ∀X ∈ T ∗Cm \ {0} .

We first recall that the fundamental matrix F0 of p0 may be defined through the symplectic
form via the following formula

2b0(X,Y ) = ω(X,F0Y ), ∀X,Y ∈ T ∗Cm.
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Let us recall some properties of F0 (see [16, 37]). Let M be the matrix of the quadratic form
p0. We have F0 = JM . Since M is positive, we may consider M1/2 and M1/2F0M

−1/2 =
M1/2JM1/2 is a real antisymmetric matrix. Its eigenvalues are purely imaginary and
conjugate (the matrices are real). We denote them by ±iϑj with ϑj > 0. Following
[30, 16], we introduce

Λ0
+ =

⊕
j

Eiϑj , Λ0
− =

⊕
j

E−iϑj ,

and note that Λ0
+ and Λ0

− are Lagrangian vector spaces of T ∗Cm (we recall that both
families (Eiϑj )j , (E−iϑj )j are ω-orthogonal).

The next step is to show a transversality property.

Lemma 3.1 We have Λ0
+ ∩ T ∗Rm = {0}.

Proof: Let us take X ∈ Λ0
+ ∩ T ∗Rm. Then by stability of Λ0

+, we also have F0X ∈ Λ0
+

and we get
2b0(X,X) = ω(X,F0X) = 0,

since Λ0
+ is Lagrangian. In addition we know that p0 is positive definite, and this implies

X = 0.

We now show that

Lemma 3.2 For all X ∈ Λ0
+ \ {0}, we have 1

iω(X,X) > 0.

Proof: This is done by a perturbation argument. For X = (x, ξ) ∈ T ∗Cm, we denote
p1(X) = x2 + ξ2 the harmonic oscillator, and we introduce

pt = (1− t)p0 + tp1, ∀t ∈ [0, 1],

and we denote by Ft the fundamental matrix of pt. The eigenvalues of F1 = J are ±i and
the Lagrangian subspaces are given by

Λ1
+ = {ξ = ix} , Λ1

− = {ξ = −ix} .

In particular we have from (3.6) that for all X = (x, ix) ∈ Λ1
+ \ {0},

1

i
ω(X,X) =

1

i
ω((x, ix), (x, ix)) = 2Im (ix · x) = 2|x|2 > 0. (3.7)

Now we can consider
Λt+ =

⊕
j

Eiϑtj ,

where iϑtj are the eigenvalues of Ft.
For R > 0, let γR be the contour made of a segment [−R,R] and the semi-circle

C(0, R) ∩ {Im z > 0}. Since ϑtj > 0 for all t ∈ [0, 1] and j ≥ 1, the open semi-disk
surrounded by γR contains all eigenvalues iϑtj as soon as R is sufficiently large. We get

Λt+ = range
1

2iπ

∫
γR

(z − Ft)−1 dz

so that the application t 7→ Λt+ is a continuous family of subspaces.
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Now we want to show that

1

i
ω(X,X) > 0, ∀X ∈ Λt+ \ {0}, ∀t ∈ [0, 1]. (3.8)

This is already known for t = 1 by (3.7). Let us prove (3.8) by contradiction. Let us
consider the largest t0 ∈ [0, 1] so that there exists X0 ∈ Λt0+ \ {0} with

1

i
ω(X0, X0) = 0.

By definition of t0 and continuity this implies that (X,Y ) −→ 1
iω(X,Y ) is a non negative

Hermitian form on Λt0+ . By the Cauchy-Schwarz inequality, we get∣∣∣1
i
ω(X,Y )

∣∣∣2 ≤ 1

i
ω(X,X)

1

i
ω(Y, Y ), ∀X,Y ∈ Λt0+ .

Applying this to Y = X0, we have

ω(X,X0) = 0, ∀X ∈ Λt0+ ,

which implies X0 ∈ (Λt0+)⊥ω = Λt0+ , since Λt0+ is Lagrangian. As a consequence we get that

ReX0 =
1

2
(X0 +X0) ∈ Λt0+ ∩ T ∗Rm, ImX0 =

1

2i
(X0 −X0) ∈ Λt0+ ∩ T ∗Rm.

From Lemma 3.1, we get that X0 = 0, which gives a contradiction and proves (3.8). Taking
t = 0 in (3.8) gives the lemma.

Let us now prove that Λ0
+ is a graph. For this we establish first a transversality lemma.

Lemma 3.3 Λ0
+ ∩ {x = 0} = {0}.

Proof: Let us consider (0, ξ0) ∈ Λ0
+. Applying (3.6) gives 1

iω((0, ξ0), (0, ξ0)) = 0.
Using Lemma 3.2 with X = (0, ξ0), we get ξ0 = 0.

Then we describe a parametrization of the graph.

Lemma 3.4 There exists a unique matrix L ∈Mm(C) such that Λ0
+ = {(x, Lx), x ∈ Cm}

and it satisfies tL = L and ImL > 0.

Proof: By Lemma 3.3, we know that there exists a matrix L such that Λ0
+ =

{(x, Lx) : x ∈ Cm}. We have to check that L satisfies the required properties. Since Λ0
+ is

Lagrangian, we have, with (3.5),

0 = ω((x, Lx), (y, Ly)) = Lx · y − Ly · x = x(tL− L)y, ∀x, y ∈ Cm.

This implies tL = L. From (3.6), we also have for all x ∈ Cm \ {0},

0 < 1
iω((x, Lx), (x, Lx)) = 1

i

(
Lx · x− Lx · x

)
= 1

i (L−
tL)x · x = 2ImLx · x. (3.9)

This implies ImL > 0 which is the desired result.

We can now solve the so-called eikonal equation in the quadratic case.
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Proposition 3.5 Let L given by Lemma 3.4 and define Φ0(x) = 1
2iLx · x.

Then Φ0 is a quadratic homogeneous polynomial with ReHessΦ0 > 0 and such that

Λ0
+ = {ξ = i∇Φ0(x)} , Λ0

− =
{
ξ = −i∇Φ0(x)

}
.

Furthermore this function satisfies the eikonal equations

p0(x, i∇Φ0(x)) = 0, p0(x,−i∇Φ0(x)) = 0, ∀x ∈ Rm.

Proof: Since tL = L, we have ∇Φ0(x) = 1
iLx and ReHessΦ0 = ImL > 0. For the

eikonal equation, we check that for X = (x, Lx) ∈ Λ0
+,

p0(x, i∇Φ0(x)) = b0(X,X) = ω(X,F0X) = 0,

since X and F0X ∈ Λ0
+, and Λ0

+ is Lagrangian. We can deal similarly with Λ0
−. This

concludes the proof.

Let us now explain the relation with the transport equation. We will later need some
information about the transport operator

T0(x) = 1
2 (∇ξq(x,∇Φ0(x)) · ∇x +∇x · ∇ξq(x,∇Φ0(x))) .

We let
v0(x) = 1

2i∇x · ∇ξq(x, i∇Φ0(x)) = 1
2∇x · ∇ξq(x,∇Φ0(x)).

Then the transport T0 is exactly the projection on TRmx of the Hamiltonian vector field
of q(x, ξ) at the point (x,∇Φ0(x)) ∈ Λ0

+,

T0(x) = πx(Hq(x,∇Φ0(x))) + v0(x),

which reads in suitable coordinates

T0(x) =
m∑
j=1

ϑjyj∇yj + v0(κ−1(y)),

where (y, η) = (κ(x),t dκ(x)−1ξ) is the corresponding symplectic change of variable (the
existence of κ is justified by the transversality of Λ0

+ with {x = 0} stated in Lemma 3.8).

Remark 3.6 We recall that the spectrum of the operator T0 acting on L2(e−Φ/h dx) is
nothing but the one of Opwh (p).

3.1.3 General case

Let us now deal with the general case. By Proposition 3.5, we have the following lemma.

Lemma 3.7 The matrix Fq is antisymmetric with respect to ω. The eigenvalues of Fq are
of the form (−ϑj ,+ϑj), j ∈ {1, . . . ,m}, where the ϑj > 0 are counted with multiplicity. In
addition, for q0 the quadratic approximation of q at 0, we have

q0(x,∇Φ0(x)) = 0,

where Φ0 is defined in Proposition 3.5 with the p0 associated with q0.
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Here we recall that Λ0
+ = {(x, Lx) : x ∈ Cm} is the Lagrangian subspace associated

with the eigenvalues iϑj of Fp (ϑj > 0). The transformation

U : (x, ξ) 7→ (x,−iξ)

and (3.4) give directly that Λ0,q
+ = UΛ0

+ = {(x,−iLx) : x ∈ Cm} is also a Lagrangian
subspace associated to eigenvalues of positive real part {ϑj , 1 ≤ j ≤ m}. We have another

interpretation of the set Λ0,q
+ : For this we study the linearized flow at ρ0 given by

Z ′(t) = Fq(Z) · ∇Z.

This is clear that Λ0,q
+ and Λ0,q

− are respectively the unstable and stable manifolds associated
with the vector field Fq(Z) · ∇. By this we mean that

∀Z0 ∈ Λ0,q
∓ , lim

t→±∞
Z(t) = ρ0. (3.10)

As already noted, these two spaces Λ0,q
± are Lagrangian. Now we show that the stable and

unstable manifolds Λq± associated with the vector field Hq are also Lagrangian. Knowing
the spectrum of the linearization of Hq, we just have to apply the (complex) stable manifold
theorem and we directly get that there exists one unstable holomorphic manifold Λq+ and
one stable holomorphic manifold Λq−, for which we have

Tρ0Λq± = Λ0,q
± . (3.11)

Since Λ0,q
± are m dimensional, so are Λq±. Our next result is the following

Lemma 3.8 The manifolds Λq± are transverse to {x = 0} and {ξ = 0}.

Proof: The first result is a direct consequence of Lemma 3.3 for p0 and (3.11).

Now we can solve the eikonal equation, near q0, in the general case.

Proposition 3.9 There exists a holomorphic function Φ such that

Λq+ = {ξ = ∇Φ(x)} .

In addition Φ solves (locally) the eikonal equation q(x,∇Φ(x)) = 0 and Λq− =
{
ξ = −∇Φ(x)

}
,

and ReHessΦ(ρ0) is positive definite.

Proof: The existence of Φ is a consequence of the fact that Λq+ ∩ {x = 0} = {0} and
that Λq+ is Lagrangian. We first recall that at the linearization level (see Proposition 3.5),
we have

Λ0,q
+ =

{
ξ = ∇Φ0(x)

}
,

where ∇Φ0(x) = −iLx is exactly the linear part of the expansion of ∇Φ(x) at ρ0 and
ReHessΦ(ρ0) is a real positive definite quadratic form.

Now for x in a neighborhood of ρ0 in Cm, and looking at the characteristic X(t) of Hq

starting at X0 = (x,∇Φ(x)), we get that

q(x,∇Φ(x)) = q(X0) = lim
t→−∞

q(X(t)) = q(ρ0) = 0,

where we have used that q is constant along the characteristics of Hq, (3.10) and the stable
manifold theorem. The phase Φ therefore solves the eikonal equation. For the description
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of Λq−, we first check that for all x in a neighboorhood of ρ0 in Cm, x also belongs to a
neighborhood of ρ0 and therefore q(x,∇Φ(x)) = 0. Taking the complex conjugate and
using that p is real analytic we get

0 = q(x,∇Φ(x)) = −p(x, i∇Φ(x)) = −p(x,−i∇Φ(x)) = q(x,−∇Φ(x)) (3.12)

which gives that q is zero on
{
ξ = −∇Φ(x)

}
. This holomorphic manifold is of dimension

m, is clearly Lagrangian and we only have to check that it coincides with Λq−, with tangent

space Λ0,q
− . For this, it is sufficient to check that (x,−∇Φ(x)) ∈ Λq−. If we look at the

solution of X ′(t) = Hq(X(t)) with initial condition X0 = (x,−∇Φ(x)), we get, by the
stable manifold theorem, that limt→+∞X(t) = ρ0. From dimensional considerations, we
get that

{
ξ = −∇Φ(x)

}
= Λq−.

3.2 WKB expansions

We assume that A2 = 0 in (1.1) (note that this was not the case in the previous subsection).
Before starting our magnetic WKB analysis we center the operator Lh at x0 and perform
a change of gauge in order to center the phase at ξ0. This means that we rather consider

L\h = D2
t + (hDs +A\)2, A\(s, t) = ξ0 +A1(x0 + s, t).

In order to lighten the notation, we introduce

M\
x,ξ =Mx+x0,ξ+ξ0 , u\x,ξ = ux+x0,ξ+ξ0 , µ\(x, ξ) = µ(x+ x0, ξ + ξ0).

We always have (
M\

x,ξ

)∗
=M\

x,ξ
, ∀(x, ξ) ∈ Rm × Cm

and the assumption A2 = 0 implies the fundamental property:

u\x,ξ = u\
x,ξ
, ∀(x, ξ) ∈ Rm × Cm. (3.13)

We conjugate L\h via a weight function Φ = Φ(s) and define

L\Φ = eΦ(s)/h L\h e−Φ(s)/h

= D2
t + (hDs + i∇Φ +A\)2

= L\0 + hL\1 + h2L\2,

with

L\0 = D2
t + (i∇Φ +A\)2 =M\

s,i∇Φ(s),

L\1 = Ds · (i∇Φ +A\) + (i∇Φ +A\) ·Ds = 1
2

(
Ds · (∇ξM\)s,i∇Φ(s) + (∇ξM\)s,i∇Φ(s) ·Ds

)
,

L\2 = D2
sΦ,

where we have used
(∇ξM\)s,i∇Φ(s) = 2(i∇Φ(s) +A\). (3.14)

We now look for a formal solution on the form

λ ∼
∑
j≥0

λjh
j , a ∼

∑
j≥0

ajh
j

such that L\Φa = λa. We cancel each power of h step by step.
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3.2.1 Term in h0: Solving the operator valued eikonal equation

We have to find (λ0, a0) such that

L\0a0 = λ0a0.

According to Theorem 1.10, we must choose

λ0 = µ0.

Thus we have to find a0 such that

L\0a0 = µ0a0, (3.15)

that is to say
M\

s,i∇Φ(s)a0 = µ0a0.

To solve (3.15), we choose a0 in the form

a0(s, t) = u\s,i∇Φ(s)(t)b0(s), (3.16)

where b0 has to be determined and Φ is the solution constructed in Section 3.1 of the
following eikonal equation

µ\(s, i∇sΦ) = µ0.

3.2.2 Term in h1

Collecting the terms in h1, we obtain the first transport equation

(L\0 − µ0)a1 = −(L\1 − λ1)a0.

Pointwise in s, the Fredholm compatibility condition can be written as

(λ1 − L\1)a0 ∈ (Ker(L\0 − µ0)∗)⊥ = (Ker(L\0
∗
− µ0))⊥. (3.17)

Lemma 3.10 The condition (3.17) is equivalent to

T b0 = λ1b0,

where
T = 1

2

(
∇ξµ\ ·Ds +Ds · ∇ξµ\

)
.

Proof: From Assumption 1.2, we have Ker(L\0
∗
−µ0) = span(u\

s,−i∇Φ(s)
), so that, with

(3.16), the compatibility condition is equivalent to

λ1

〈
u\s,i∇Φ(s)b0(s), u\

s,−i∇Φ(s)

〉
L2(Rm,dt)

=
〈
L\1u

\
s,i∇Φ(s)b0(s), u\

s,−i∇Φ(s)

〉
L2(Rm, dt)

, ∀s ∈ Rm.

By (1.5), we have ∫
Rn
u\s,i∇Φ(s)(t)u

\

s,−i∇Φ(s)
(t)dt = 1, ∀s ∈ Rm. (3.18)
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Let us rewrite the first term:

λ1

〈
u\s,i∇Φ(s)b0(s), u\

s,−i∇Φ(s)

〉
L2(Rm,dt)

= λ1b0(s). (3.19)

Let us deal with the second term. Differentiating the relationM\
x,ξu

\
x,ξ = µ\(x, ξ)u\x,ξ with

respect to (the complex variable) ξ leads to (see Proposition 2.2)(
M\

x,ξ − µ
\(x, ξ)

)
∇ξu\x,ξ =

(
∇ξµ\(x, ξ)−∇ξM\

x,ξ

)
u\x,ξ. (3.20)

The Fredholm condition associated with (3.20) can be written as

〈(∇ξM\
x,ξ −∇ξµ

\(x, ξ))u\x,ξ, u
\

x,ξ
〉L2(Rn,dt) = 0.

Consequently, taking ξ = i∇Φ(s) and using (3.13), we get

∇ξµ\(s, i∇Φ(s)) =

∫
Rn

(∇ξM\)s,i∇Φ(s) u
\
s,i∇Φ(s)(t)u

\
s,i∇Φ(s)(t) dt. (3.21)

Multiplying by b0 and differentiating with respect to s, we infer

Ds · (b0(s)∇ξµ\(s, i∇Φ(s))) =

∫
Rn
Ds ·

(
(∇ξM\)s,i∇Φ(s)b0(s)u\s,i∇Φ(s)(t)

)
u\s,i∇Φ(s)(t) dt

+

∫
Rn

(∇ξM\)s,i∇Φ(s)b0(s)u\s,i∇Φ(s)(t) ·Dsu
\
s,i∇Φ(s)(t) dt

=

∫
Rn
Ds ·

(
(∇ξM\)s,i∇Φ(s)b0(s)u\s,i∇Φ(s)(t)

)
u\s,i∇Φ(s)(t) dt

+

∫
Rn

(∇ξM\)s,i∇Φ(s)u
\
s,i∇Φ(s)(t) ·Ds

(
b0(s)u\s,i∇Φ(s)(t)

)
dt

−Dsb0(s) ·
∫
Rn

(∇ξM\)s,i∇Φ(s)u
\
s,i∇Φ(s)(t)u

\
s,i∇Φ(s)(t) dt,

where we have used b0Dsu = Ds(b0u) − uDsb0. We recognize the expression of L\1 and
using (3.21), this yields

〈L\1u
\
s,i∇Φ(s)b0(s), u\

s,−i∇Φ(s)
〉L2(Rm,dt)

= 1
2

(
∇ξµ\(s, i∇Φ(s)) ·Dsb0(s) +Ds ·

(
∇ξµ\(s, i∇Φ(s))b0(s)

))
.

Combining this last relation with (3.19), the compatibility condition gives the effective
transport equation

1
2

(
∇ξµ\ ·Ds +Ds · ∇ξµ\

)
b0 = λ1b0,

where µ\ stands for µ\(s, i∇Φ(s)) for short.

3.2.3 Solving the effective transport equation

We recall now some notations from Section 3.1 in order to solve the standard transport
equation given in Lemma 3.17. We let

q(s, ξ) = µ0 − µ\(s, iξ)
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so that with this notation

T (s) = 1
2 (∇ξq(s,∇Φ(s)) · ∇s +∇s · ∇ξq(s,∇Φ(s))) . (3.22)

We let
v(s) = 1

2i∇s · (∇ξµ
\(s, i∇Φ(x))) = 1

2∇s · (∇ξq(s,∇Φ(s)).

Then the transport T is exactly the projection on TCms of the Hamiltonian of q(s, ξ) at
the point (s,∇Φ(s)) ∈ Λq+,

T (s) = πs(Hq(s,∇Φ(s))) + v(s),

which reads in suitable coordinates

T =

m∑
j=1

ϑjyj∇yj +O(y2)∇yj + v,

where (y, η) = (κ(s),t dκ(s)−1ξ) is the corresponding symplectic change of variable (the
existence of κ is justified by the transversality of Λq+ with {x = 0} stated in Lemma 3.8).

Using again this change of coordinates, we also directly get that

v(s) =
∑
j

1
2ϑj +O(s).

We are reduced to the study of a standard transport equation (see e.g. [16]) and we can at
least formally solve the equation T b0 = λ1b0 in the space of formal series first, provided
that

λ1 ∈
{ m∑
j=1

(1
2 + αj)ϑj , α ∈ Nm

}
.

By Remark 3.6, these values are exactly the eigenvalues of 1
2Hess µ(x0, ξ0)(σ,Dσ), with in

particular 1
2

∑
j ϑj for the smallest one and recall that they were supposed to be simple by

Assumption 1.5. This is of course coherent with the statement of Theorem 1.10. Following
again e.g. [16], we can also solve this first transport equation in C∞ in a neighborhood of
0 and so determine b0.

3.2.4 Determination of a1

Let us now take α ∈ Nm fixed and let b0 be the corresponding solution of the transport
equation. Let us come back to

(L\0 − µ0)a1 = −(L\1 − λ1)a0,

where a0 is given in (3.16). We look at a function a1 not necessary given in a tensor form,
but with an orthogonal decomposition in the form

a1(s, t) = u\s,i∇Φ(s)(t)b1(s) + ã1(s, t), (3.23)

with
ã1 ∈ (Ker(L\0 − µ0))⊥.

From the transport equation, we see that we can directly find

ã1 = −(L\0 − µ0)−1(L\1 − λ1)a0,
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where by operator (L\0 − µ0)−1 we mean the inverse of the operator

(L\0 − µ0) : Dom(L\0 − µ0) ∩ (Ker(L\0 − µ0))⊥ −→ (Ker(L\0
∗
− µ0))⊥

where Dom(L\0−µ0) is the domain in L2(Rm, dt) of operator L\0−µ0, pointwise in s. Note

that a0(s, .) belongs to Dom(L\0 − µ0) because of the properties of u\, and that we indeed
get that ã1 is smooth by elliptic regularity.

To summarize, at this point, and whatever b1 is, we have been able to find a function

a[1](s, t) = a0(s, t) + ha1(s, t)

such that
(L\h − µ0 − hλ1)a[1]e−Φ/h = r[1]e−Φ/h.

Furthermore, there exist a neighborhood V of 0 ∈ Rm and for all α ∈ Nm, β ∈ Nn, a
constant C > 0 such that

|∂αs ∂
β
t r

[1](s, t)| ≤ Ch2, ∀s ∈ V,∀t ∈ Rn.

3.2.5 Full asymptotic expansion

The first step is to find the function b1 built in the previous section. For this we look at
the next transport equation, which reads

(L\0 − µ0)a2 = −(L\1 − λ1)a1 − (L\2 − λ2)a0.

We look at the compatibility Fredholm condition which gives, pointwise in s,

(L\1 − λ1)a1 + (L\2 − λ2)a0 ∈ (Ker(L\0 − µ0)∗)⊥.

This condition is equivalent to〈
(L\1 − λ1)a1(s), u\

s,−i∇Φ(s)

〉
L2(Rm, dt)

= −
〈
L\2a0(s), u\

s,−i∇Φ(s)

〉
L2(Rm,dt)

+ λ2

〈
a0(s), u\

s,−i∇Φ(s)

〉
L2(Rm, dt)

= −
〈
L\2a0(s), u\

s,−i∇Φ(s)

〉
L2(Rm,dt)

+ λ2b0(s), ∀s ∈ Rm,

where we used (3.19). Using the splitting (3.23) and the expression for a0 in (3.16) we get
that for all s ∈ Rm,〈

(L\1 − λ1)u\s,i∇Φ(s)b1(s), u\
s,−i∇Φ(s)

〉
L2(Rm,dt)

= −
〈
L\2a0(s), u\

s,−i∇Φ(s)

〉
L2(Rm, dt)

+ λ2

〈
a0(s), u\

s,−i∇Φ(s)

〉
L2(Rm, dt)

+
〈

(L\1 − λ1)ã1(s), u\
s,−i∇Φ(s)

〉
L2(Rm,dt)

= −
〈
L\2a0(s), u\

s,−i∇Φ(s)

〉
L2(Rm, dt)

+ λ2b0(s) +
〈

(L\1 − λ1)ã1(s), u\
s,−i∇Φ(s)

〉
L2(Rm, dt)

.

Using the definition of the reduced transport introduced in (3.22), this equation reads

T b1 = λ1b1 + λ2b0 +R1,
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where λ2 has to be determined and R1 is already known and defined by

R1(s) = −
〈
L\2a0(s), u\

s,−i∇Φ(s)

〉
L2(Rm, dt)

+
〈

(L\1 − λ1)ã1(s), u\
s,−i∇Φ(s)

〉
L2(Rm, dt)

.

Using again the theory of formal series, this completely determines the value of λ2 as well
as the Taylor expansion of b1. Now, exactly as we did for b0 in the previous section, we
can also solve in C∞ the transport equation on b1.

We can look for the next function a2 in the form

a2(s, t) = u\s,i∇Φ(s)(t)b2(s) + ã2(s, t) (3.24)

with
ã2 ∈ (Ker(L\0 − µ0))⊥.

From the transport equation, we see that we can directly find

ã2 = −(L\0 − µ0)−1(L\1 − λ1)a1.

At this stage, whatever b2 is, we have found a function

a[2](s, t) = a0(s, t) + ha1(s, t) + h2a2(s, t)

such that
(L\h − µ0 − hλ1 − h2λ2)a[2]e−Φ/h = r[2]e−Φ/h

where, for all α ∈ Nm, β ∈ Nn,

|∂αs ∂
β
t r

[2]| = O(h3), locally in s.

The same procedure can be continued at any order and we are able to find a full family
of functions aj and λj such that the formal series

a ∼
∑
j≥0

ajh
j λ ∼

∑
j≥0

λjh
j ,

solve the equation
(L\h − λ)ae−Φ/h = O(h∞)e−Φ/h.

Then we consider a truncated (with respect to s) C∞ realization of a and we apply the
spectral theorem. Using Theorem 1.10, this completes the proof of Theorem 1.12.

4 Generalized Montgomery operators

We focus on the operator

L
[k]
h = D2

t +

(
hDs − γ(s)

tk+1

k + 1

)2

obtained in (1.8) after the rescaling described there. We denote by λ
[k]
n (h) its n-th eigen-

value if it exists.
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4.1 Verifying assumptions

The aim of this section is to prove that the operator L
[k]
h fulfills the assumptions mentioned

in Section 1.2.

Definition 4.1 If k ≥ 0 is an integer, we let Ωk = R for k ≥ 1 and Ωk = R+ for k = 0.

Let us introduce the generalized Montgomery operators h
[k]
ζ as the self-adjoint realization,

on L2(Ωk, dτ), of

D2
τ +

(
ζ − τk+1

k + 1

)2

, (4.1)

with Neumann condition in the case k = 0. Let u
[k]
ζ be an L2-normalized eigenfunction

depending analytically on ζ and associated with the first eigenvalue ν[k](ζ).

For k = 0, h
[k]
ζ is nothing but the de Gennes operator (see [14] or [20, Chapter 3]) and

in this case we omit the superscript [0].

Proposition 4.2 Let us assume that either γ is polynomial and admits a unique minimum
γ0 > 0 at s0 = 0 which is non degenerate, or γ is analytic with lim infx→±∞ γ = γ∞ ∈
(γ0,+∞). For k ∈ N \ {0}, the operator L

[k]
h satisfies Assumptions 1.2, 1.5 and 1.7.

This proposition is proved in the following two sections.

4.1.1 Uniqueness and non-degeneracy

The symbol of L
[k]
h with respect to s is

M[k]
x,ξ = D2

t + V (x, ξ), with V (x, ξ) =

(
ξ − γ(x)

tk+1

k + 1

)2

.

The family (M[k]
x,ξ)(x,ξ)∈R2m is clearly analytic of type (A). Given a point (x1, ξ1) ∈ R2m,

there exist c, C > 0 and a C-neighborhood V of (x1, ξ1) such that,

ReV (x, ξ) ≥ −C + cV (x1, ξ1) ≥ −C, ∀(x, ξ) ∈ V.
Therefore, for (x, ξ) ∈ V, the operator Mx,ξ is well defined thanks to the Lax-Milgram

theorem. This extension is holomorphic of type (A). The lowest eigenvalue of M[k]
x,ξ,

denoted by µ[k](x, ξ), satisfies

µ[k](x, ξ) = (γ(x))
2
k+2 ν[k]

(
(γ(x))−

1
k+2 ξ

)
.

It is proved in [21, Theorem 1.3] that R 3 ζ 7→ ν[k](ζ) admits a unique and non degenerate
minimum. Therefore Assumption 1.2 is satisfied. Note that Assumption 1.5 is satisfied
since m = 1 according to Remark 1.6.

Notation 4.3 We denote by ζ
[k]
0 the point ζ where the minimum of ν[k] is reached.

4.1.2 Confinement

This verification is a little more delicate. It is based on a normal form procedure. Let us

denote by Q
[k]
h the quadratic form associated with L

[k]
h . For ψ ∈ Dom(Q

[k]
h ), we have

Q
[k]
h (ψ) =

∫
R2

|Dtψ|2 +

∣∣∣∣(hDs − γ(s)
tk+1

k + 1

)
ψ

∣∣∣∣2 dt ds.

We would like to prove a lower bound for Q
[k]
h (ψ) when ψ ∈ C∞0 (R2) is supported away

from the square [−R0, R0]2.
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Magnetic confinement for the variable t. If ψ is supported in {(s, t) ∈ R2 : |t| > R},
we can use the standard inequality (see for instance [20, Lemma 1.4.1]):

Q
[k]
h (ψ) ≥

∫
R2

γ(s)|t|k|ψ|2 dsdt ≥ Rkγ0‖ψ‖2. (4.2)

Spectral confinement for the variable s. If ψ is supported in the set {(s, t) ∈ R2 :
|t| < R, |s| ≥ R}, we use the canonical transformation associated with the change of
variables

t = (γ(σ))−
1
k+2 τ, s = σ, (4.3)

we deduce that L
[k]
h is unitarily equivalent to the operator on L2(R2, dσ dτ)

L
[k],[
h = γ(σ)

2
k+2D2

τ +

(
hDσ − γ(σ)

1
k+2

τk+1

k + 1
+

h

2(k + 2)

γ′(σ)

γ(σ)
(τDτ +Dττ)

)2

.

Let us denote by ψ[ the function ψ transported by the canonical transformation. In terms
of the quadratic from, we have

Q
[k]
h (ψ) = Q

[k],[
h (ψ[).

Let us notice that ψ[ is supported in
{

(σ, τ) ∈ R2 : |σ| ≥ R, |τ | ≤ Rγ(σ)
1
k+2

}
. We can

write, for all ε ∈ (0, 1)

Q
[k],[
h (ψ[) ≥ (1− ε)

∫
R2

γ(σ)
2
k+2

(
|Dτψ

[|2 +

∣∣∣∣(hγ(σ)−
1
k+2Dσ −

τk+1

k + 1

)
ψ[
∣∣∣∣2
)

dσ dτ

− ε−1h2

(2(k + 2))2

∫
R2

∣∣∣∣γ′(σ)

γ(σ)
(τDτ +Dττ)ψ[

∣∣∣∣2 dσ dτ. (4.4)

In the analytical case for γ, there exists η0 > 0 and for all η ∈ (0, η0), R0 > 0 such that,
on {|σ| ≥ R0}

γ(σ)
2
k+2 min

ζ∈R
ν[k](ζ) ≥

{
γ

2
k+2
∞ − η

}
min
ζ∈R

ν[k](ζ) > µ[k](x0, ξ0). (4.5)

Note that in the polynomial case for γ, we can replace γ∞ by any positive constant larger
than γ0. Up to choosing R0 larger, we may also assume that(

R0

2

)k
γ0 ≥

{
γ

2
k+2
∞ − η

}
min
ζ∈R

ν[k](ζ). (4.6)

Moreover, we have∫
R2

∣∣∣∣γ′(σ)

γ(σ)
(τDτ +Dττ)ψ[

∣∣∣∣2 dσ dτ ≤ C
∫
R2

|ψ[|2 dσ dτ

+ 4

∫
R2

(
γ′(σ)

γ(σ)

)2

|τDτψ
[|2 dσ dτ. (4.7)
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Using support considerations, we get∫
R2

∣∣∣∣γ′(σ)

γ(σ)
(τDτ +Dττ)ψ[

∣∣∣∣2 dσ dτ

≤ C
∫
R2

|ψ[|2 dσ dτ + 4R2

∫
R2

γ(σ)
2
k+2
−2γ′(σ)2|Dτψ

[|2 dσ dτ

≤ C
∫
R2

|ψ[|2 dσ dτ + 4CR2

∫
R2

|Dτψ
[|2 dσ dτ.

We deduce

Q
[k],[
h (ψ[) ≥ (1− ε)

(
γ

2
k+2
∞ − η

)∫
R2

(
|Dτψ

[|2 +
∣∣∣(hγ(σ)−

1
k+2Dσ −

τk+1

k + 1

)
ψ[
∣∣∣2)dσ dτ

− Cε−1h2

∫
R2

∣∣∣ψ[∣∣∣2 dσ dτ − 4CR2ε−1h2

∫
R2

∣∣∣Dτψ
[
∣∣∣2 dσ dτ.

We choose ε = h, we infer that

Q
[k],[
h (ψ[) ≥

{
(1− h)

(
γ

2
k+2
∞ − η

)
− 4CR2h

}
q

[k],[
h (ψ[)− Ch

∫
R2

∣∣∣ψ[∣∣∣2 dσ dτ, (4.8)

where

q
[k],[
h (ψ[) =

∫
R2

(
|Dτψ

[|2 +

∣∣∣∣(hγ(σ)−
1
k+2Dσ −

τk+1

k + 1

)
ψ[
∣∣∣∣2
)

dσ dτ.

We have

q
[k],[
h (ψ[) =∫

R2

(
|Dτψ

[|2 +

∣∣∣∣(hΞ(σ,Dσ)− τk+1

k + 1
− ih

2k + 4
γ′(σ)γ(σ)−

k+3
k+2

)
ψ[
∣∣∣∣2
)

dσ dτ, (4.9)

with Ξ(σ,Dσ) = γ(σ)−
1

2k+4Dσγ(σ)−
1

2k+4 . We get the lower bound:

q
[k],[
h (ψ[) ≥

∫
R2

(
|Dτψ

[|2 +

∣∣∣∣(hΞ(σ,Dσ)− τk+1

k + 1

)
ψ[
∣∣∣∣2
)

dσ dτ

+
2h

2k + 4
Re

∫
R2

iγ′(σ)γ(σ)−
k+3
k+2

(
hΞ(σ,Dσ)− τk+1

k + 1

)
ψ[ ψ[ dσ dτ.

This becomes

q
[k],[
h (ψ[) ≥

∫
R2

(
|Dτψ

[|2 +

∣∣∣∣(hΞ(σ,Dσ)− τk+1

k + 1

)
ψ[
∣∣∣∣2
)

dσ dτ

+
2h2

2k + 4
Re

∫
R2

iγ′(σ)γ(σ)−
k+3
k+2 Ξ(σ,Dσ)ψ[ ψ[ dσ dτ.

By using in particular that 2Re
(
∂σψ

[ ψ[
)

= ∂σ|ψ[|2 and by integrating by parts, we infer∣∣∣∣ 2h2

2k + 4
Re

∫
R2

iγ′(σ)γ(σ)−
k+3
k+2 Ξ(σ,Dσ)ψ[ ψ[ dσ dτ

∣∣∣∣ ≤ Ch2

∫
R2

|ψ[|2 dσ dτ.

39



By using the functional calculus, we get

q
[k],[
h (ψ[) ≥

(
min
ζ∈R

ν[k](ζ)− Ch2

)∫
R2

|ψ[|2 dσ dτ. (4.10)

Fixing R = R0 and η0 defined in (4.5) and (4.6) and combining (4.8) and (4.10), we infer
the existence of h0 > 0 and C > 0 such that for h ∈ (0, h0) and all η ∈ (0, η0)

Q
[k],[
h (ψ[) ≥

(
γ

2
k+2
∞ min

ζ∈R
ν[k](ζ)− η − Ch

)∫
R2

|ψ[|2 dσ dτ

or equivalently

Q
[k]
h (ψ) ≥

(
γ

2
k+2
∞ min

ζ∈R
ν[k](ζ)− η − Ch

)∫
R2

|ψ|2 dsdt,

for all ψ ∈ C∞0 (R2) supported in {(s, t) ∈ R2 : |t| < R0, |s| ≥ R0}.

Gluing the lower bounds. Using (4.2) (with R = R0
2 ) and (4.6), we deduce

Q
[k]
h (ψ) ≥

(
γ

2
k+2
∞ min

ζ∈R
ν[k](ζ)− η − Ch

)∫
R2

|ψ|2 dsdt,

for all ψ ∈ C∞0 (R2) supported either in {(s, t) ∈ R2 : |t| < R0, |s| ≥ R0} or in {(s, t) ∈
R2 : |t| > R0

2 }. We now use a standard partition of unity with respect to t such that

χ2
1,R0

+ χ2
2,R0

= 1, χ1,R0 =

{
1 for |t| ≤ R0

2 ,

0 for |t| ≥ R0,
and

(
χ′1,R0

)2
+
(
χ′2,R0

)2 ≤ CR−2
0 .

The “IMS” formula provides, for all ψ ∈ C∞0
(
R2 \ [−R0, R0]2

)
:

Q
[k]
h (ψ) ≥ Q

[k]
h (χ1,R0ψ) + Q

[k]
h (χ2,R0ψ)− CR−2

0 ‖ψ‖
2.

By supports considerations we have

supp (χ1,R0ψ) ⊂ {(s, t) ∈ R2 : |t| < R0, |s| ≥ R0}, supp (χ2,R0ψ) ⊂ {(s, t) ∈ R2 : |t| ≥ R0
2 },

so that, for all ψ ∈ C∞0
(
R2 \ [−R0, R0]2

)
, there holds

Q
[k]
h (ψ) ≥

(
γ

2
k+2
∞ min

ζ∈R
ν[k](ζ)− η − Ch− CR−2

0

)∫
R2

|ψ|2 dsdt.

Therefore, for all µ∗0 ∈
(
µ0, γ

2
k+2
∞ min ν[k]

)
, up to choosing η, h small enough and possibly

R0 larger, we have

Q
[k]
h (ψ) ≥ µ∗0

∫
R2

|ψ|2 dsdt, ∀ψ ∈ C∞0
(
R2 \ [−R0, R0]2

)
.
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4.2 Explicit WKB expansions, weak magnetic barrier

4.2.1 Renormalization

The key point to perform the spectral analysis of L
[k]
h is the normal form procedure intro-

duced in [47, 17, 45], see also [50] which is pervaded by this spirit. Let us explain this basic
idea. We again use the canonical transformation associated with the change of variables

t = (γ(σ))−
1
k+2 τ, s = σ.

We deduce that L
[k]
h is unitarily equivalent to the operator on L2( dσ dτ)

L
[k],[
h = γ(σ)

2
k+2D2

τ +

(
hDσ − γ(σ)

1
k+2

τk+1

k + 1
+

h

2(k + 2)

γ′(σ)

γ(σ)
(τDτ +Dττ)

)2

.

In order to estimate the low lying eigenvalues, we may write the heuristic approximation

L
[k],[
h ≈ γ(σ)

2
k+2

(
D2
τ +

(
hγ(σ)−

1
k+2Dσ −

τk+1

k + 1

)2
)

≈ γ(σ)
2
k+2 ν[k]

(
hγ(σ)−

1
k+1Dσ

)
.

Let now make this approximation more rigorous. We may change the gauge

e−ig(σ)/h L
[k],[
h eig(σ)/h

= γ(σ)
2
k+2D2

τ +

(
hDσ + ζ

[k]
0 γ(σ)

1
k+2 − γ(σ)

1
k+2

τk+1

k + 1
+

h

2(k + 2)

γ′(σ)

γ(σ)
(τDτ +Dττ)

)2

,

with

g(σ) = ζ
[k]
0

∫ σ

0
γ(σ̃)

1
k+2 dσ̃.

For some function Φ = Φ(σ) to be determined, we consider

L
[k],wg
h = eΦ/he−ig(σ)/hL

[k],[
h eig(σ)/he−Φ/h = L[k],wg,0 + hL[k],wg,1 + h2L[k],wg,2,

with

L[k],wg,0 = γ
2
k+2

(
D2
τ +

(
V
ζ
[k]
0

+ iγ−
1
k+2 Φ′

)2
)
,

L[k],wg,1 =
(
γ

1
k+2V

ζ
[k]
0

+ iΦ′
)
Dσ +Dσ

(
γ

1
k+2V

ζ
[k]
0

+ iΦ′
)

+ R1(σ, τ ;Dτ ),

L[k],wg,2 = D2
σ + R2(σ, τ ;Dσ, Dτ ),

where

Vζ(τ) = ζ − τk+1

k + 1
,

and where R1(σ, τ ;Dτ ) is of order zero inDσ and cancels for σ = 0 whereas R2(σ, τ ;Dσ, Dτ )
is an operator of order one with respect to the variable σ.

Now, let us solve, as in the previous section, the eigenvalue equation

L
[k],wg
h a = λa

in the sense of formal series in h,

a ∼
∑
j≥0

hjaj , λ ∼
∑
j≥0

hjλj .
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4.2.2 Solving the operator valued eikonal equation

The first equation is
L[k],wg,0a0 = λ0a0.

We must choose

λ0 = γ
2
k+2

0 ν[k]
(
ζ

[k]
0

)
,

and we are led to take

a0(σ, τ) = f0(σ)u
[k]
w(σ)(τ), with w(σ) = ζ

[k]
0 + iγ(σ)−

1
k+2 Φ′(σ). (4.11)

Recall that u
[k]
ζ (with ζ ∈ R) denotes an L2-normalized eigenfunction associated with

ν[k](ζ) for the generalized Montgomery operator (4.1) and that it admits a holomorphic
extension near ζ0. Then the equation becomes

γ(σ)
2
k+2 ν[k]

(
ζ

[k]
0 + iγ(σ)−

1
k+2 Φ′(σ)

)
= γ

2
k+2

0 ν[k]
(
ζ

[k]
0

)
,

and this can be written in the form

ν[k]
(
ζ

[k]
0 + iγ(σ)−

1
k+2 Φ′(σ)

)
− ν[k]

(
ζ

[k]
0

)
=

(
γ

2
k+2

0 γ(σ)−
2
k+2 − 1

)
ν[k]
(
ζ

[k]
0

)
.

Therefore we are in the framework of the following elementary lemma.

Lemma 4.4 For r > 0, let us consider a holomorphic function ν : B(0, r)→ C such that
ν(0) = ν ′(0) = 0 and ν ′′(0) ∈ R+. Let us also introduce a smooth and real-valued function
F defined in a real neighborhood of σ = 0 such that σ = 0 is a non degenerate maximum.
Then, there exists a neighborhood of σ = 0 such that the equation

ν(iϕ(σ)) = F (σ) (4.12)

admits a smooth solution ϕ such that ϕ(0) = 0 and ϕ′(0) > 0.

Proof: We can apply the Morse lemma to deduce that (4.12) is equivalent to

ν̃(iϕ(σ))2 = −f(σ)2,

where f is a non negative function such that f ′(0) =

√
−F ′′(0)

2 and F (σ) = −f(σ)2 and

ν̃ is a holomorphic function in a neighborhood of 0 such that ν̃2 = ν and ν̃ ′(0) =

√
ν′′(0)

2 .
This provides the equations

ν̃(iϕ(σ)) = if(σ), or ν̃(iϕ(σ)) = −if(σ).

Since ν̃ is a local biholomorphism and f(0) = 0, we can write the equivalent equations

ϕ(σ) = −iν̃−1(if(σ)), or ϕ(σ) = −iν̃−1(−if(σ)).

The function ϕ = −iν̃−1(if) satisfies our requirements since ϕ′(0) =
√
−F ′′(0)
ν′′(0) .
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We use Lemma 4.4 with F (σ) =

(
γ

2
k+2

0 γ(σ)−
2
k+2 − 1

)
ν[k]
(
ζ

[k]
0

)
and, for the function ϕ

given by the lemma, we have (up to a translation by ζ
[k]
0 ):

Φ′(σ) = γ(σ)
1
k+2ϕ(σ)

and we take

Φ(σ) =

∫ σ

0
γ(σ̃)

1
k+2ϕ(σ̃) dσ̃,

which is defined in a fixed neighborhood of 0 and satisfies Φ(0) = Φ′(0) = 0 and

Φ′′(0) = γ
1
k+2

0

√√√√ 2

k + 2

γ′′(0) ν[k]
(
ζ

[k]
0

)
γ(0)

(
ν[k]
)′′ (

ζ
[k]
0

) > 0. (4.13)

Therefore (4.11) is well defined in a neighborhood of σ = 0.

4.2.3 Solving the transport equation

We can now deal with the operator valued transport equation

(L[k],wg,0 − λ0)a1 = (λ1 − L[k],wg,1)a0.

For each σ the Fredholm condition is〈
(λ1 − L[k],wg,1)a0, u

[k]
w(σ)

〉
L2(R, dτ)

= 0.

Using (1.5), (3.13) and a Feynman-Hellmann formula (as in Section 3), we get the transport
equation

λ1f0 =

〈
L[k],wg,1a0, u

[k]
w(σ)

〉
L2(R,dτ)

= 1
2

{
γ(σ)

1
k+2

(
ν[k]
)′

(w(σ))Dσ +Dσγ(σ)
1
k+2

(
ν[k]
)′

(w(σ))

}
f0

+

〈
R1u

[k]
w(σ), u

[k]
w(σ)

〉
L2(R, dτ)

f0.

The term 〈
R1u

[k]
w(σ), u

[k]
w(σ)

〉
L2(R,dτ)

is just a smooth function which cancels in σ = 0 so that we have just to consider the
linearization of the first part of the equation. The linearized operator is

1

2

(
ν[k]
)′′ (

ζ
[k]
0

)
Φ′′(0)(σ∂σ + ∂σσ).

The eigenvalues of this operator in the corresponding weighted space are{(
ν[k]
)′′ (

ζ
[k]
0

)
Φ′′(0)

(
j + 1

2

)
, j ∈ N

}
. (4.14)

Let us notice that(
ν[k]
)′′ (

ζ
[k]
0

)
Φ′′(0) = γ

1
k+2

0

√
2

k + 2

γ′′(0)ν[k](ζ
[k]
0 )
(
ν[k]
)′′ (

ζ
[k]
0

)
γ(0)

.
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4.3 Estimates of Agmon in the normal form spirit

4.3.1 Weighted semiclassical elliptic estimates

Proposition 4.5 Let us assume Assumption 1.7. Let C0 > 0 and z : Rm → R+ be a
Lipschitzian function. There exist ε0 > 0, ε1 > 0, h0 > 0 and C > 0 such that for all
eigenpairs (λ, ψ) of Lh satisfying λ ≤ µ0 + C0h we have, for all p ≥ 1:∥∥∥eε1|t|+ε0h

−1χpzψ
∥∥∥2
≤ C‖eε0h−1χpzψ‖2,

Qh

(
eε1|t|+ε0h

−1χpzψ
)
≤ C‖eε0h−1χpzψ‖2,

where χp(s) = χ1(p−1s), with 0 ≤ χ1 ≤ 1 a smooth cutoff function supported near 0.

Proof: Let us consider an eigenpair (λ, ψ) of Lh such that λ ≤ µ0 +C0h. We have the
Agmon type formula

Qh

(
eΦψ

)
= λ‖eΦψ‖2 + ‖∂tΦeΦψ‖2 + ‖h∂sΦeΦψ‖2,

where Φ is bounded and Lipschitzian. We look for Φ in the form

Φ(s, t) = Φp(s, t) = ε1|t|+ ε0h
−1χp(s)z(s).

We get

Qh

(
eΦpψ

)
≤ (µ0 + C0h+ ε2

1)‖eΦpψ‖2 + 2ε2
0‖z′χpeΦpψ‖2 + 2ε2

0‖zχ′peΦpψ‖2.

Since z is Lipschitzian, there exists K ≥ 0 such that for all s ∈ Rm

|z(s)| ≤ |c(0)|+K|s|.

Therefore there exists C̃ > 0 such that for all p ≥ 1, ε0 > 0 and ε1 > 0 we have

Qh

(
eΦpψ

)
≤ (µ0 + C0h+ ε2

1 + C̃ε2
0)‖eΦpψ‖2,

where we have used that s 7→ χ′p(s)z(s) is uniformly bounded with respect to p. We
introduce the partition of the unity

χ2
1,R(t) + χ2

2,R(t) = 1,

where χ2,R is supported in {|t| ≥ R}. We may assume that there exists C > 0 such that
for all R > 0

χ′21,R + χ′21,R ≤ CR−2.

The so-called “IMS” formula implies that

Qh(χ1,ReΦpψ) + Qh(χ2,ReΦpψ)− CR−2‖eΦpψ‖2 ≤ (µ0 + C0h+ ε2
1 + Cε2

0)‖eΦpψ‖2.

We choose R large enough, ε0 > 0, ε1 > 0, h0 > 0 small enough such that we have for
h ∈ (0, h0) and p ≥ 1

Qh(χ2,ReΦpψ) ≥ µ∗0‖χ2,ReΦpψ‖2

and

C0h+ ε2
1 + C̃ε2

0 + CR−2 <
µ∗0 − µ0

2
.

For these choices of R, ε0, ε1 and h0, we find ĉ, Ĉ > 0 such that for all h ∈ (0, h0) and
p ≥ 1, we have

ĉ‖χ2,ReΦpψ‖2 ≤ Ĉ‖eε0χph−1zψ‖2,
and the conclusion easily follows.
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4.3.2 Agmon estimates

Proposition 4.6 Let us assume that γ is analytic with lim inf±∞ γ ∈ (γ0,+∞) and a
unique minimum which is non degenerate. We let

z(s) =

∣∣∣∣∣
∫ s

s0

χ(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′

∣∣∣∣∣,
with 0 ≤ χ ≤ 1 a smooth cutoff function whose support contains s0. Let us consider

C0 > 0. There exist ε0 > 0, C > 0 and h0 > 0 such that for all eigenpairs (λ, ψ) of L
[k]
h

satisfying λ ≤ µ0 + C0h we have

‖eε0h−1zψ‖ ≤ C‖ψ‖

and
Q

[k]
h (eε0h

−1zψ) ≤ C‖ψ‖2.

Proof: Let us consider an eigenpair (λ, ψ) of L
[k]
h such that λ ≤ µ0 + C0h. We first

use the Agmon estimate

Q
[k]
h (eε0χph

−1zψ) ≤ λ‖eε0χph−1zψ‖2 + C̃ε2
0‖z′eε0χph

−1zψ‖2 + C̃ε2
0‖χ′pzeε0χph

−1zψ‖2. (4.15)

In order to simplify the notation, we consider the weighted ψ:

ψwg = eε0χph
−1zψ.

Now, we shall establish a very fine lower bound of Q
[k]
h (ψwg). For that purpose we use the

normal form already introduced in Section 4.1.2 and associated with the change of variables
(4.3). If we denote by ψwg,[ the function ψwg transported by the canonical transform, we
get

Q
[k]
h (ψwg) = Q

[k],[
h (ψwg,[).

Using again (4.4) with ε = h, we deduce with (4.7)

Q
[k],[
h (ψwg,[) ≥

(1− h)

∫
R2

γ(σ)
2
k+2

(
|Dτψ

wg,[|2 +

∣∣∣∣(hγ(σ)−
1
k+2Dσ −

τk+1

k + 1

)
ψwg,[

∣∣∣∣2
)

dσ dτ

− Ch
∫
R2

∣∣∣τDτψ
wg,[
∣∣∣2 dσ dτ − Ch‖ψwg,[‖2. (4.16)

But we have ∫
R2

∣∣∣τDτψ
wg,[
∣∣∣2 dσ dτ =

∫
R2

|tDtψ
wg|2 dsdt

and we apply Proposition 4.5 to get∫
R2

|tDtψ
wg|2 dsdt ≤ C‖ψwg,[‖2.

With (4.16), we infer

Q
[k],[
h (ψwg,[) ≥

(1− h)

∫
R2

γ(σ)
2
k+2

(
|Dτψ

wg,[|2 +

∣∣∣∣(hγ(σ)−
1
k+2Dσ −

τk+1

k + 1

)
ψwg,[

∣∣∣∣2
)

dσ dτ

− Ch‖ψwg,[‖2. (4.17)
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We can write∫
R2

γ(σ)
2
k+2

(
|Dτψ

wg,[|2 +

∣∣∣∣(hγ(σ)−
1
k+2Dσ −

τk+1

k + 1

)
ψwg,[

∣∣∣∣2
)

dσ dτ

=

∫
R2

(
|Dτφ

wg,[|2 +

∣∣∣∣(hDσγ(σ)−
1
k+2 − τk+1

k + 1

)
φwg,[

∣∣∣∣2
)

dσ dτ

=

∫
R2

(
|Dτφ

wg,[|2 +

∣∣∣∣(hΞ(σ,Dσ)− τk+1

k + 1
+

ih

2k + 4
γ′(σ)γ(σ)−

k+3
k+2

)
φwg,[

∣∣∣∣2
)

dσ dτ,

with
φwg,[(σ, τ) = γ(σ)

1
k+2ψwg,[(σ, τ).

We are reduced to the same analysis as after (4.9). We deduce that

Q
[k],[
h (ψwg,[) ≥ (1− h)q

[k],[
h (γ

1
k+2ψwg,[)− Ch‖ψwg,[‖2.

We may use the functional calculus for the self-adjoint operator γ−
1

2k+4Dσγ
− 1

2k+4 and it
follows that

Q
[k],[
h (ψwg,[) ≥ (1− h) min

ζ∈R
ν[k](ζ)‖γ

1
k+2ψwg,[‖2 − Ch‖ψwg,[‖2.

We now come back in the variables (s, t) and we have proved

min
ζ∈R

ν[k](ζ)‖γ
1
k+2ψwg‖2 − Ch‖ψwg‖2 ≤ λ‖ψwg‖2 + C̃ε2

0‖z′ψwg‖2 + C̃ε2
0‖χ′pzψwg‖2.

We deduce that

min
ζ∈R

ν[k](ζ)

∫
R2

(
γ

2
k+2 − γ

2
k+2

0

)
|ψwg|2 dsdt− C̃h‖ψwg‖2

≤ C̃ε2
0‖z′ψwg‖2 + C̃ε2

0‖χ′pzψwg‖2. (4.18)

We infer that there exist c > 0, C̃ > 0, h0 > 0 and ε0 > 0 such that for all h ∈ (0, h0) and
p ≥ 1 we have:

c

∫
R2

(
γ

2
k+2 − γ

2
k+2

0

)
|ψwg|2 dsdt− C̃h‖ψwg‖2 ≤ C̃ε2

0‖χ′pzψwg‖2. (4.19)

We deduce by standard arguments that there exist Ĉ > 0, h0 > 0 and ε0 > 0 such that
for all h ∈ (0, h0) and p ≥ 1 we have:

‖ψwg‖2 ≤ Ĉ‖ψ‖2 + h−1Ĉε2
0‖χ′pzψwg‖2.

Since c is bounded and |χ′p| ≤ Cp−1, it remains to take the lim inf
p→+∞

and to apply the Fatou

lemma.

In fact, when γ admits two non degenerate minima, we also have Agmon estimates. Let
us now prove Proposition 1.19.
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Proof: The proof is essentially the same as for Proposition 4.6. The inequality (4.19)
becomes in this case

c

∫
R2

(
γ

2
k+2 − γ

2
k+2

0

)
|ψwg|2 dsdt− C̃h‖ψwg‖2

≤ C̃ε2
0‖χ′pzψwg‖2 + Cε2

0‖f−ψwg‖2 + Cε2
0‖f+ψ

wg‖2,

with

f−(s) = χ′−,d(s)

∣∣∣∣∣
∫ s

s−

χ̃(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′

∣∣∣∣∣ ,
f+(s) = χ′+,d(s)

∣∣∣∣∣
∫ s

s−

χ̃(s′)

√
γ(s′)

2
k+2 − γ

2
k+2

0 ds′

∣∣∣∣∣ .
We can deal with the last two terms by using the positivity of γ

2
k+2 − γ

2
k+2

0 away from the
minima and the conclusion standardly follows from an electric type case.

4.4 Tunnelling estimates

Let us first state an elementary result.

Proposition 4.7 The asymptotic expansions (modulo h∞) of the n-th eigenvalue of HDir
h,−

are the same as for L
[k]
h . In particular, the spectral gap between two consecutive eigenval-

ues is of order h. Moreover the eigenfunctions of HDir
h,− satisfy the same kind of Agmon

estimates as in Proposition 4.6.

Proof: The construction of quasimodes is the same as for Proposition 2.1. We have
just to add a suitable cutoff function and to use the exponential decay of the explicit
quasimodes. In order to estimate the spectral gap between the lowest eigenvalues of HDir

h,−,

by the min-max principle, we have just to notice that HDir
h,− is bounded from below by the

realization on L2(R2) of D2
t +

(
hDs − γ̃(s) t

k+1

k+1

)2
where the smooth function γ̃ coincides

with γ on (−∞, s−+ δ) and admits a unique minimum at s−. This lower bound is enough
to deduce the Agmon estimates.

Let us now prove that the low lying eigenvalues of L
[k]
h are exponentially close to the

eigenvalues of Hh.

Proposition 4.8 Let us consider C0 > 0. There exist c > 0, C > 0, h0 > 0 such that for

all µ ∈ sp
(
L

[k]
h

)
with µ ≤ µ0 + C0h, we have, for all h ∈ (0, h0),

dist (µ, sp (Hh)) ≤ Ce−c/h.

Proof: The proof is based on the introduction of suitable quasimodes for the operator

Hh and on the Agmon estimates satisfied by the eigenfunctions of L
[k]
h . Let us consider an

eigenpair (λ, ψ) of L
[k]
h such that λ ≤ µ0 + C0h. One knows that ψ satisfies the estimates

of Proposition 1.19. In particular, we deduce that

HDir
h,−(χ−,d′ψ) = λ(χ−,d′ψ) +O(e−c/h)‖ψ‖2, HDir

h,+(χ+,d′ψ) = λ(χ+,d′ψ) +O(e−c/h)‖ψ‖2.

The spectral theorem provides the conclusion.
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In fact, exponentially close to each eigenvalue of Hh there are at least two eigenvalues of
Lh.

Proposition 4.9 Let us consider C0 > 0. There exist c > 0, C > 0, h0 > 0 such that for
all µ ∈ sp (Hh) satisfying µ ≤ µ0 + C0h, we have, for all h ∈ (0, h0),

range
(
1[µ−Ce−c/h,µ+Ce−c/h]

(
L

[k]
h

))
≥ 2.

Proof: Let us consider µ ∈ sp (Hh) such that µ ≤ µ0+C0h. We can find a corresponding
normalized eigenfunction (ϕ−, ϕ+) of Hh. The Agmon estimates imply that(

L
[k]
h − µ

)
(χ−,d′ϕ−) = O(e−c/h),

(
L

[k]
h − µ

)
(χ+,d′ϕ+) = O(e−c/h),

and where χ−,d′ϕ− and χ+,d′ϕ+ are orthogonal. The proof follows again from the spectral
theorem.

We have now all the elements for our tunnelling result. It remains to prove that, in
Proposition 4.9, the range of the spectral projection is exactly 2. By contradiction, if this

range were at least 3, then we could consider three eigenfunctions (u
[k]
j,h) of L

[k]
h mutually

orthogonal associated with an eigenvalue λ such that there exists µ ∈ sp (Hh) satisfying
|µ−λ| ≤ Ce−c/h. Then one could apply the same argument as in the proof of Proposition
4.8 with ψ = ψj . The spectral theorem would imply that the multiplicity of µ is at least
3 but this is impossible since the multiplicity of the lowest eigenvalues of Hh is 2.

4.5 Numerical simulations

4.5.1 Method

Let us now deal with numerical simulations for the model operator L
[k]
h on R2 if k = 1 and

on the half-plane R2
+ if k = 0. In each case, we propose simulations for the simple and

double well models. We analyze the convergence of the eigenvalues as h→ 0 and give the
first eigenfunctions for small h. This illustrates the localization of the modulus and the
behavior of the phase.

To approximate the eigenpairs (λ
[k]
n (h), u

[k]
n,h) of the operator L

[k]
h on Ωk (with Ω0 = R2

+

and Ω1 = R2), we use the Finite Element Library Mélina++ [35]. Since the domain Ωk

is unbounded, we use an artificial domain Rk,a,b = Ωk ∩ (−a, a) × (−b, b). We compute

the eigenpairs (λ
[k]
n (h, a, b), u

[k]
n,h(a, b)) on Rk,a,b and impose Dirichlet conditions on the

artificial boundaries {|x| = a} ∪ {|y| = b}. We use quadrangular elements and polynomial
approximation Qp and a mesh nx × ny.

By this way, we obtain upper bounds for λ
[k]
n (h) and we know that

λ[k]
n (h, a, b)→ λ[k]

n (h) as min(a, b)→ +∞.

We compute the eigenpairs for several sets of parameters (a, b) with several combinations
of degree of approximation p and of size of the meshes nx×ny until convergence is found.

We normalize the computed eigenfunctions so that ‖u[k]
n,h(a, b))‖∞ = 1.
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4.5.2 Simple well models

For the numerical simulations, we take

γ(s) = 1 + 4s2, s ∈ R.

Parameters used for the numerical simulations are given in Table 1. Among the compu-
tations, we take, for each value of h, the smallest numerical eigenvalues for the different
choices of a, b, p, nx, ny.

a nx b ny p 1/h
1 5 20 20 16 1 : 1 : 100, 110 : 10 : 1000
1 5 40 20 14 10 : 10 : 1000

1.5 5 30 20 14 1 : 1 : 100
2 5 40 20 14 1 : 1 : 100

Table 1: Simple well: Parameters of the numerical simulations for L
[k]
h , k = 0, 1.

In Figure 1, we analyze the convergence of the eigenvalues λ
[k]
n (h) as h→ 0 for 1 ≤ n ≤

12. Figure 1(a) gives an approximation of the first twelve eigenvalues λ
[k]
n (h), 1/h ∈ [1, 100]

and corroborates the convergence

λ[k]
n (h)→ ν[k] = ν[k]

(
ζ

[k]
0

)
as h→ 0.

Using [10, 6], we know that

ν[1] ' 0.5698, ν[0] = Θ0 ' 0.5901.

To catch the next term in the expansion of the eigenvalues, we plot in Figure 1(b)

ln
1

h
7→ ln

λ
[k]
n (h)− ν[k]

h
.

We observe a linear convergence: the slope r illustrates the behavior

λ[k]
n (h) = ν[k] + Cnh

r + o(hr).

In Figure 2, we give the approximation of the first two eigenfunctions u
[k]
n,h for h = 1/20

if k = 1 and h = 1/15 if k = 0. We draw the modulus, the logarithm of the modulus and
the phase.

4.5.3 Double well models

Let us now consider the double well model and take

γ(s) = 1 + (s2 − 1)2, s ∈ R.

Parameters used for the numerical simulations are given in Table 2.
Figure 3 illustrates Corollary 1.18, Theorem 1.20 and Remark 1.21 in the scale h instead

of ~. The first line concerns the low eigenvalues λ
[k]
n (h) with k = 0 (on the half-plane) and

the second line with k = 1 (on the plane). The first column illustrates the convergence

λ[k]
n (h)→ ν[k] as h→ 0.
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(a) λ
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n (h) vs. 1

h
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Figure 1: Convergence of the eigenvalues λ
[k]
n (h).

(a) First eigenfunction u
[0]
1,h, h = 1

15
(b) Second eigenfunction u

[0]
2,h, h = 1

15

(c) First eigenfunction u
[1]
1,h, h = 1

20
(d) Second eigenfunction u

[1]
2,h, h = 1

20

Figure 2: Moduli, log10(moduli) and phases of the first two eigenfunctions, u
[k]
n,h.
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a nx b ny p 1/h
2 5 40 20 12 1 : 0.1 : 500
2 5 40 20 16 10 : 1 : 1000
3 5 60 20 14 10 : 1 : 300
4 5 40 20 14 10 : 1 : 300
5 5 40 20 14 10 : 1 : 200
10 10 50 50 10 10 : 1 : 200

Table 2: Double well: Parameters of the numerical simulations for L
[k]
h , k = 0, 1.

λ
[k]
n (h) λ

[k]
2n(h)− λ[k]

2n−1(h) −h ln(λ
[k]
2 (h)− λ[k]

1 (h))
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Figure 3: First eigenvalues λ
[k]
n (h) vs. 1/h, k = 0, 1.

The second column represents the splitting λ
[k]
2n(h)−λ[k]

2n−1(h) according to 1/h ∈ {1, . . . , 50}.
We recover the exponential decay of Remark 1.21. This decay is faster when k = 0. In
the last column, we aim at catching the exponential decay rate and we plot

1/h 7→ −h ln
(
λ

[k]
2 (h)− λ[k]

1 (h)
)
.

Let us discuss this last column a little more. We observe a break of the curve when 1/h
becomes too large (1/h ≥ 24 for k = 0 and 1/h ≥ 33 for k = 1). For smaller h, the

gap between the first two eigenvalues is very small: λ
[k]
2 (h) − λ[k]

1 (h) < 3 10−12, which is
the accuracy of the computations. So the gap is no more significant when h becomes too
small: the error due to the computations and the splitting is at the same order ' 10−12.
We try here to catch two scales: a polynomial scale for the convergence of the eigenvalues
as h → 0 and an exponential scale for the splitting. Thus the range of h to have the two
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convergences is small. Let us recall that, from Remark 1.21, we have

λ
[k]
2 (h)− λ[k]

1 (h) = O(e−ck/h).

The third column in Figure 3 gives the following estimates

1.25 ≤ c0 ≤ 1.3, 0.86 ≤ c1 ≤ 0.9.

In Figure 4, we give the first two eigenfunctions (modulus, logarithm of the modulus and

(a) First eigenfunction h = 1
15

(b) Second eigenfunction h = 1
15

(c) First eigenfunction h = 1
20

(d) Second eigenfunction h = 1
20

Figure 4: Moduli, log10(moduli) and phases of the first two eigenfunctions.

phase) of L
[k]
h for h = 1/15 if k = 0 and h = 1/20 if k = 1. To compute them, we use

a Q10 approximation and Rk,2,5 as artificial domain for computations. We observe the
change of symmetry between the first two eigenfunctions: the first eigenfunction satisfies
the Neumann condition along the symmetry axis x = 0 whereas the second one is anti-
symmetric as it can be seen on the phase or on the logarithm of the modulus. If we take
too small values for h (h ≤ 1/24 if k = 0 and h ≤ 1/33 if k = 1), then the accuracy of our
computations is no more sufficient to catch the tunneling effect and the modulus the first
two eigenfunctions is no more symmetric: The first computed eigenfunction is essentially
localized in one well whereas the second one is localized in the other well.

5 Geometric models: an application of the strategy

In this section, we use the same notation as previously but add an exponent ] = vf, e, c to
distinguish between our three geometric operators.

5.1 Vanishing magnetic fields

This section is concerned with the result announced in Section 1.3.1.
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5.1.1 Description of the operator in curvilinear coordinates

If k ≥ 0 is an integer, we let Ωk = R if k ≥ 1 and Ωk = R+ if k = 0. By using the standard
tubular coordinates near Γ (see [20, Appendix F]), we are reduced to analyze the following
operator, depending on the integer k ≥ 0 and acting on L2(R× Ωk, (1− tκ(s)) dsdt) and
with Neumann condition on t = 0 if k = 0:

Lvf,[k]
~ = (1− tκ(s))−1~Dt(1− tκ(s))~Dt

+ (1− tκ(s))−1(~Ds −Avf,[k](s, t))(1− tκ(s))−1(~Ds −Avf,[k](s, t)),

with

Avf,[k](s, t) =

∫ t

0
(1− t′κ(s))Bvf,[k](s, t′) dt′

and where Bvf,[k] is a magnetic field which satisfies

Bvf,[k](s, t) = γ(s)tk + δ(s)tk+1 +O(tk+2)

so that

Avf,[k](s, t) = γ(s)
tk+1

k + 1
+ δ̃(s)

tk+2

k + 2
+O(tk+3)

where
δ̃(s) = δ(s)− γ(s)κ(s).

The function κ is nothing but the curvature function of the zero line of the magnetic field
(if k ≥ 1) or of the boundary (if k = 0). We will work under the following assumption.

Assumption 5.1 The functions κ and B (or equivalently Bvf,[k]) are smooth, γ is analytic
and admits a positive and non degenerate minimum at s = 0.

Let us perform the rescaling

h = ~
1
k+2 , s = σ, t = hτ.

We denote by L
vf,[k]
h the rescaled operator divided by h2k+2:

L
vf,[k]
h = (1− hτκ(σ))−1Dτ (1− hτκ(σ))Dτ

+ (1− hτκ(σ))−1(hDσ −Avf,[k]
h (σ, τ))(1− hτκ(σ))−1(hDσ −Avf,[k]

h (σ, τ)),

with
A

vf,[k]
h (σ, τ) = h−(k+1)Avf,[k](σ, hτ).

Theorem 5.2 Under Assumption 5.1, there exist a function Φ = Φ(σ) defined in a neigh-
borhood V of (0, 0) with ReHessΦ(0) > 0 and, for any n ≥ 1, a sequence of real numbers

(λ
vf,[k]
n,j )j≥0 such that

λvf,[k]
n (h) ∼

h→0

∑
j≥0

λ
vf,[k]
n,j hj ,

in the sense of formal series. Besides there exists a formal series of smooth functions on
V

avf,[k]
n (.;h) ∼

h→0

∑
j≥0

a
vf,[k]
n,j hj ,
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with a
vf,[k]
n,0 (0, 0) 6= 0 such that(

L
vf,[k]
h − λvf,[k]

n (h)
)(

an(.;h)e−Φ/h
)

= O (h∞) e−Φ/h.

We also have that λ
vf,[k]
n,0 = γ(0)

2
k+2 ν[k](ζ

[k]
0 ) and that λ

vf,[k]
n,1 is the n-th eigenvalue of the

operator
1
2Hess µ

[k](0, ζ
[k]
0 )(σ,Dσ) +Rvf,[k](0), (5.1)

with

Rvf,[k](0) = 2γ(0)

(
δ(0) +

κ(0)γ(0)

k + 1

)∫
Ωk

τ2k+3

(k + 1)(k + 2)

(
u

[k]
0,iΦ′(0)(τ)

)2
dτ

+ κ(0)

∫
Ωk

∂τu
[k]
0,iΦ′(0)(τ)u

[k]
0,iΦ′(0)(τ) dτ. (5.2)

The main term in the Ansatz is

a
vf,[k]
n,0 (σ, τ) = f

vf,[k]
n,0 (σ)u

[k]
σ,iΦ′(σ)(τ),

where f
vf,[k]
n,0 (σ) is the n-th normalized eigenfunction of (5.1). Moreover, for all n ≥ 1,

there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B
(
λ
vf,[k]
n,0 + λ

vf,[k]
n,1 h, ch

)
∩ sp

(
L
vf,[k]
h

)
= {λvf,[k]

n (h)},

and λ
vf,[k]
n (h) is a simple eigenvalue.

5.1.2 WKB expansion

Let us now prove Theorem 5.2. We have the expansion (in powers of h):

A
vf,[k]
h (σ, τ) = γ(σ)

τk+1

k + 1
+ δ̃(σ)h

τk+2

k + 2
+O(h2τk+3).

We can write the following formal series expansion

eΦ(σ)/h L
vf,[k]
h e−Φ(σ)/h ∼

∑
j≥0

hjLj ,

where we have

L0 = D2
τ +

(
iΦ′(σ)− γ(σ)

τk+1

k + 1

)2

and

L1 = − τ
k+1

k + 1
(Dσγ(σ) + γ(σ)Dσ) +

2γ(σ)δ̃(σ)τ2k+3

(k + 2)(k + 1)
+ κ(σ)∂τ + 2τκ(σ)

(
γ(σ)

τk+1

k + 1

)2

.

Our Ansätze are again in the form

a ∼
∑
j≥0

hjaj , λ ∼
∑
j≥0

hjλj .

The first equation is given by
L0a0 = λ0a0.
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This leads to the choice
a0(σ, τ) = f0(σ)u

[k]
σ,iΦ′(σ)(τ)

and Φ must be such that
µ[k](σ, iΦ′(σ)) = λ0

and λ0 = γ(0)
2
k+2 ν[k](ζ

[k]
0 ). The next equation to solve is

(L0 − µ0)a1 = (λ1 − L1)a0

and the associated Fredholm condition is given by〈
L1a0, u

[k]

σ,−iΦ′(σ)

〉
L2(Ωk, dτ)

= λ1f0(σ).

We get the transport equation(
Dσ∂ζµ

[k](σ, iΦ′(σ)) + ∂ζµ
[k](σ, iΦ′(σ))Dσ

)
f0 +Rvf(σ)f0 = λ1f0,

where Rvf is an explicit smooth function. Considering the linearized equation near σ = 0,
we are led to choose λ1 in the set

sp
(

1
2Hess µ

[k](0, ζ
[k]
0 )(σ,Dσ)

)
+Rvf(0).

We recognize the set which appears in [47, γn,2 in Theorem 1.3] (for k = 0), [17, θn2 in
Theorem 1.6] (for k = 1) and in the conjecture of [23, A for our Rvf(0) in (4.5)] (for k ≥ 1).
In particular the simplicity of the eigenvalues is established in [47, 17] for k = 0, 1 whereas
slight adaptations have to be done to deal with the case k ≥ 2.

5.2 Along a varying edge in dimension three

Let us now deal with the situation described in Section 1.3.2. Let us recall that the bottom
of the spectrum of the magnetic Neumann Laplacian on the wedge Wα with constant
aperture α with a magnetic field normal to the symmetry plane is a non increasing function
with respect to α (see [44]). The wedge is so that Wα = R× Sα where Sα is the angular
sector in R2.

5.2.1 Framework

We will need the Neumann realization of the operator defined on L2(Sα0 , dtdz) by

Me
s,η = D2

t + T (s)−2T (0)2D2
z + (η − t)2,

whose form domain is

Dom(Qe
s,η) =

{
ψ ∈ L2(Sα0) : Dtψ ∈ L2(Sα0), Dzψ ∈ L2(Sα0), tψ ∈ L2(Sα0)

}
and with operator domain

Dom(Me
s,η) =

{
ψ ∈ Dom(Qe

s,η) :Me
s,ηψ ∈ L2(Sα0),T(s)ψ = 0

}
,

where
T(s) = −sgn(z)Dt + T (s)−2T (0)Dz.

The family (Me
s,η)(s,η)∈R2 is analytic of type (A). Note that, near each point (s1, η1) ∈ R2,

this family can be holomorphically extended. The lowest eigenvalue ofMe
s,η is denoted by

µe(s, η). As in [45], we will also investigate the consequences of the following conjecture
(see [45, Remark 1.8]).
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Conjecture 5.3 For all α0 ∈ (0, π), the function η 7→ µe(0, η) admits a unique critical
point η0 which is a non degenerate minimum.

Proposition 5.4 Under Assumption 1.24 and if Conjecture 5.3 is true, the function µe

admits a local non degenerate minimum at (0, η0). Moreover the Hessian at (0, η0) is given
by

4κT (0)−1‖Dzu
e
0,η0‖s

2 +
(
∂2
ηµ

e
)

0,η0
η2, (5.3)

where κ = −T
′′(0)
2 > 0.

Proof: The proof follows from the perturbation theory. We have the eigenvalue
equation

Me
s,ηu

e
s,η = µe(s, η)ues,η, T(s)ues,η = 0.

We notice that T′(0) = 0 and T′′(0) = 4κT (0)−2Dz. Let us analyze the derivative with
respect to s. We have

(Me
s,η − µe(s, η)) (∂su

e)s,η = ∂sµ
e(s, η)ues,η −

(
∂sMe

s,η

)
ues,η.

We notice that ∂sMe
0,η = 0 and T(0) (∂su

e)0,η = 0. This implies that ∂sµ
e(0, η) = 0 by

the Fredholm condition. Therefore (0, η0) is a critical point of µe. Let us now consider the
derivative with respect to s and η. We have ∂s∂ηMe

s,η = 0 and by the Feynman-Hellmann
formula

∂sµ
e(0, η) =

∫
Sα0

∂sMe
0,ηu

e
0,ηu

e
0,η dz dt,

we get
∂s∂ηµ

e(0, η0) = 0.

We shall now analyze the second order derivative with respect to s:

(Me
0,η0 − µ

e(0, η0))
(
∂2
su

e
)

0,η0
= ∂2

sµ
e(0, η0)ue0,η0 − ∂

2
sMe

0,η0u
e
0,η0 ,

with boundary condition T(0)
(
∂2
su

e
)

0,η0
= −T′′(0)ue0,η0 . We have ∂2

sMe
0,η0

= 4κT (0)−1D2
z .

With the Fredholm condition, we get ∂2
sµ

e(0, η0) = 4κT (0)−1‖Dzu
e
0,η0
‖2.

The function (5.3) is the symbol of the effective harmonic oscillator introduced in [45].
We will see that our WKB analysis succeeds as soon as we work near a local and non
degenerate minimum of µe. The goal of Assumption 1.24 and Conjecture 5.3 is to provide
sufficient conditions to have such a critical point as well as to get the spectral splitting as
in [45].

5.2.2 Normal form

We introduce the change of variables

š = s, ť = t, ž = T (s)−1T (0)z

and we let

∇̌~ =

 ~Dš

~Dť

~T (š)−1T (0)Dž

+

−ť− ~ T ′2T (žDž +Dž ž)
0
0

 .
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The operator Le
~ is unitarily equivalent to the operator Ľe

~ on L2(Wα0 , dšdť dž) defined
by

Ľe~ =

(
~Dš − ť− ~

T ′(š)
2T (š)

(žDž +Dž ž)

)2

+ ~2D2
ť + ~2T (š)−2T (0)2D2

ž .

The boundary condition becomes, on ∂Wα0 ,

∇̌~ψ̌ · ň = 0, with ň =

−T ′(š)ť−T (š)
±1

 . (5.4)

We now perform the scaling which preserves Wα0 :

h = ~1/2, š = σ, ť = h1/2τ, ž = h1/2
Z.

The operator ~−1Ľe~ becomes Le
h:

Le
h =

(
hDσ − τ − h

T ′(σ)

2T (σ)
(ZDZ +DZZ)

)2

+D2
τ + T (σ)−2T (0)2D2

Z .

Now, the boundary condition is, on ∂Wα0 ,

∇̂hψ · n̂ = 0 with n̂ = n0 + h1/2n1 (5.5)

where

n0 =

 0
−T (σ)
±1

 , n1 =

−T ′(σ)τ
0
0


and

∇̂h =

 hDσ

Dτ

T (σ)−1T (0)DZ

+

−τ − h T
′(σ)

2T (σ)(ZDZ +DZZ)

0
0

 .

Theorem 5.5 Under Assumption 1.24 and Conjecture 5.3, there exist a function Φ =
Φ(σ) defined in a neighborhood V of 0 such that ReHessΦ(0) > 0 on V and sequence of
real numbers (λen,j)j≥0 such that

λen(h) ∼
h→0

∑
j≥0

λen,jh
j .

in the sense of formal series. Besides there exists a formal series of smooth functions
(aen,j(σ, τ, Z)) defined for (σ, τ, Z) ∈ V × Sα0,

aen ∼
h→0

∑
j≥0

aen,jh
j ,

such that
(Le

h − λen(h))
(
aene−Φ/h

)
= O (h∞) e−Φ/h.

We also have that λen,0 = µe(0, η0) and that λen,1 is the n-th eigenvalue of the operator

1
2Hess µ

e(0, η0)(σ,Dσ). (5.6)

The main term in the Ansatz is in the form aen,0(σ, τ, Z) = f en,0(σ)ueσ,iΦ′(σ)(τ, Z). Moreover,

for all n ≥ 1, there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B(λen,0 + λen,1h, ch) ∩ sp (Le
h) = {λen(h)},

and λen(h) is a simple eigenvalue.
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5.2.3 WKB expansion for the normal form

Let us consider the conjugate operator

eΦ(σ)/hLe
he−Φ(σ)/h =

(
hDσ + iΦ′(σ)− τ − h T

′(σ)

2T (σ)
(ZDZ +DZZ)

)2

+D2
τ +
T (0)2

T (σ)2
D2
Z ,

with the corresponding boundary conditions. We can write the formal power series expan-
sion:

eΦ(σ)/hLe
he−Φ(σ)/h ∼

∑
j≥0

hjLj

with
L0 = D2

τ + T (σ)−2T (0)2D2
Z + (iΦ′(σ)− τ)2,

L1 = (iΦ′(σ)− τ)Dσ +Dσ(iΦ′(σ)− τ)− (iΦ′(σ)− τ)
T ′(σ)

T (σ)
(ZDZ +DZZ).

Our Ansätze are in the form:

a ∼
∑
j≥0

hjaj , λ ∼
∑
j≥0

hjλj .

The first equation is given by
L0a0 = λ0a0,

with boundary condition (which is in fact a Neumann condition) −τ
Dτ

T (σ)−1T (0)DZ

 a0 · n0 = 0.

We take
a0(σ, τ, Z) = f0(σ)ueσ,iΦ′(σ)(τ, Z)

and λ0 = µe(0, η0). The equation becomes

µe(σ, iΦ′(σ)) = λ0.

The second equation is
(L0 − λ0)a1 = (λ1 − L1)a0

with boundary condition −τ
Dτ

T (σ)−1T (0)DZ

 a0 · n1 +

 −τ
Dτ

T (σ)−1T (0)DZ

 a1 · n0 = 0.

The Fredholm condition can be rewritten in the form{
1

2

(
∂ηµ

e(σ, iΦ′(σ))Dσ +Dσ∂ηµ
e(σ, iΦ′(σ))

)
+Re(σ)

}
f0 = λ1f0,

where the smooth function σ 7→ Re(σ) vanishes at σ = 0 since T ′(0) = 0. The conclusion
follows by iteration. The simplicity of the lowest eigenvalues follows from [45, Theorem
1.14].
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5.3 Curvature induced magnetic bound states

This section is devoted to the analysis of the result announced in Section 1.3.3.

5.3.1 A higher order degeneracy

Let us consider the following Neumann realization on L2(R2
+,m(s, t) dsdt),

Lc~ = m(s, t)−1~Dtm(s, t)~Dt

+m(s, t)−1

(
~Ds + ζ0~

1
2 − t+ κ(s)

t2

2

)
m(s, t)−1

(
~Ds + ζ0~

1
2 − t+ κ(s)

t2

2

)
, (5.7)

where m(s, t) = 1− tκ(s). Thanks to the rescaling

h = ~1/2, t = hτ, s = σ,

and after division by h2 the operator Lc~ becomes

Lc
h = m(σ, hτ)−1Dτm(σ, hτ)Dτ

+m(σ, hτ)−1

(
hDσ + ζ0 − τ + hκ(σ)

τ2

2

)
m(σ, hτ)−1

(
hDσ + ζ0 − τ + hκ(σ)

τ2

2

)
,

(5.8)

on the space L2(m(σ, hτ) dσ dτ).

Theorem 5.6 Under Assumption 1.25, there exist a function

Φ = Φ(σ) =

(
2C1

ν ′′(ζ0)

)1/2 ∣∣∣∣∫ σ

0
(κ(0)− κ(ς))1/2 dς

∣∣∣∣
defined in a neighborhood V of (0, 0) such that Re Φ′′(0) > 0, and a sequence of real numbers
(λcn,j)j≥0 such that

λcn(h) ∼
h→0

∑
j≥0

λcn,jh
j
2 .

Besides there exists a formal series of smooth functions on V,

acn ∼
h→0

∑
j≥0

acn,jh
j
2

such that

(Lc
h − λcn(h))

(
acne−Φ/h

1
2

)
= O (h∞) e−Φ/h

1
2 .

We also have that λcn,0 = Θ0, λcn,1 = 0, λcn,2 = −C1κmax and λcn,3 = (2n− 1)C1Θ
1/4
0

√
3k2
2 .

The main term in the Ansatz is in the form

acn,0(σ, τ) = f cn,0(σ)uζ0(τ).

Moreover, for all n ≥ 1, there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B
(
λcn,0 + λcn,2h+ λcn,3h

3
2 , ch

3
2

)
∩ sp (Lc

h) = {λcn(h)},

and λcn(h) is a simple eigenvalue.

Remark 5.7 In particular, Theorem 5.6 proves that there are no odd powers of ~
1
8 in the

expansion of the eigenvalues (compare with [19, Theorem 1.1]).

59



5.3.2 WKB expansion

Let us introduce a phase function Φ = Φ(σ) defined in a neighborhood of σ = 0 the unique
and non degenerate maximum of the curvature κ. We consider the conjugate operator

Lc,wg
h = eΦ(σ)/h

1
2 Lc

he−Φ(σ)/h
1
2 .

As usual, we look for

a ∼
∑
j≥0

h
j
2aj , λ ∼

∑
j≥0

λjh
j
2

such that, in the sense of formal series we have

Lc,wg
h a ∼ λa.

We may write

Lc,wg
h ∼ L0 + h

1
2L1 + hL2 + h

3
2L3 + . . . ,

where

L0 = D2
τ + (ζ0 − τ)2,

L1 = 2(ζ0 − τ)iΦ′(σ),

L2 = κ(σ)∂τ + 2

(
Dσ + κ(σ)

τ2

2

)
(ζ0 − τ)− Φ′(σ)2 + 2κ(σ)(ζ0 − τ)2τ,

L3 =

(
Dσ + κ(σ)

τ2

2

)
(iΦ′(σ)) + (iΦ′(σ))

(
Dσ + κ(σ)

τ2

2

)
+ 4iΦ′(σ)τκ(σ)(ζ0 − τ).

Let us now solve the formal system. The first equation is

L0a0 = λ0a0

and leads to take
λ0 = Θ0, a0(σ, τ) = f0(σ)uζ0(τ),

where f0 has to be determined. The second equation is

(L0 − λ0)a1 = (λ1 − L1)a0 = (λ1 − 2(ζ0 − τ)iΦ′(σ))uζ0(τ)f0(σ)

and, due to the Fredholm alternative, we must take λ1 = 0 and

a1(σ, τ) = iΦ′(σ)f0(σ) (∂ζu)ζ0 (τ) + f1(σ)uζ0(τ),

where f1 is to be determined in a next step. Then the third equation is

(L0 − λ0)a2 = (λ2 − L2)a0 − L1a1.

Let us explicitly write the r.h.s. It equals

λ2uζ0f0 + Φ′2(uζ0 + 2(ζ0 − τ)(∂ζu)ζ0)f0 − 2(ζ0 − τ)uζ0(iΦ′f1 − i∂σf0)

+ κ(σ)f0(∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ2(ζ0 − τ)uζ0).

Therefore the equation becomes

(L0 − λ0)ã2 = λ2uζ0f0 +
ν ′′(ζ0)

2
Φ′2uζ0f0 + κf0(−∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ2(ζ0 − τ)uζ0),
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where
ã2 = a2 − (∂ζu)ζ0(iΦ′f1 − i∂σf0) + 1

2(∂2
ζu)ζ0Φ′2f0.

Let us now use the Fredholm alternative (with respect to τ). We will need the following
lemma the proof of which relies on Feynman-Hellmann formulas (like in Proposition 2.2)
and on [19, p. 19] (for the last one).

Lemma 5.8 We have:∫
R+

(ζ0 − τ)u2
ζ0(τ) dτ = 0,

∫
R+

(∂ζu)ζ0(τ)uζ0(τ) dτ = 0,

2

∫
R+

(ζ0 − τ)(∂ζu)ζ0(τ)uζ0(τ) dτ =
ν ′′(ζ0)

2
− 1,∫

R+

(
2τ(ζ0 − τ)2 + τ2(ζ0 − τ)

)
u2
ζ0 + uζ0∂τuζ0 dτ = −C1.

We get the equation

λ2 +
ν ′′(ζ0)

2
Φ′2(σ) + C1κ(σ) = 0, C1 =

u2
ζ0

(0)

3
.

This eikonal equation is the one of a pure electric problem in dimension one whose potential
is given by the curvature. Thus we take

λ2 = −C1κ(0),

and

Φ(σ) =

(
2C1

ν ′′(ζ0)

)1/2 ∣∣∣∣∫ σ

0
(κ(0)− κ(ς))1/2 dς

∣∣∣∣ .
In particular we have:

Φ′′(0) =

(
k2C1

ν ′′(ζ0)

)1/2

,

where k2 = −κ′′(0) > 0.
This leads to take

a2 = f0â2 + (∂ζu)ζ0(iΦ′f1 − i∂σf0)− 1
2(∂2

ηu)ζ0Φ′2f0 + f2uζ0 ,

where â2 is the unique solution, orthogonal to uζ0 for all σ, of

(L0 − ν0)â2 = ν2uζ0 +
ν ′′(ζ0)

2
Φ′2uζ0 + κ

(
−∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ2(ζ0 − τ)uζ0

)
,

and f2 has to be determined.
Finally we must solve the fourth equation given by

(L0 − λ0)a3 = (λ3 − L3)a0 + (λ2 − L2)a1 − L1a2.

The Fredholm condition provides the following equation in the variable σ:

〈L3a0 + (L2 − λ2)a1 + L1a2, uζ0〉L2(R+, dτ) = λ3f0.

Using the previous steps of the construction, it is not very difficult to see that this equation
does not involve f1 and f2 (due to the choice of Φ and λ2 and Feynman-Hellmann formulas).
Using the same formulas, we may write it in the form

ν ′′(ζ0)

2

(
Φ′(σ)∂σ + ∂σΦ′(σ)

)
f0 + F (σ)f0 = λ3f0, (5.9)
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where F is a smooth function which vanishes at σ = 0. Therefore the linearized equation
at σ = 0 is given by

Φ′′(0)
ν ′′(ζ0)

2
(σ∂σ + ∂σσ) f0 = λ3f0.

We recall that
ν ′′(ζ0)

2
= 3C1Θ

1/2
0

so that the linearized equation becomes

C1Θ
1/4
0

√
3k2

2
(σ∂σ + ∂σσ) f0 = λ3f0.

We have to choose λ3 in the spectrum of this transport equation, which is given by the set{
(2n− 1)C1Θ

1/4
0

√
3k2

2
, n ≥ 1

}
.

If λ3 belongs to this set, we may solve locally the transport equation (5.9) and thus find
f0. This procedure can be continued at any order.

5.3.3 Numerical estimates of the magnetic camel

For the numerical computations, we consider the magnetic potential A = (−x2, 0) and we
denote by (λcn(h), ucn,h) the n-th eigenpair of the magnetic Laplacian (hDx1−x2)2 +h2D2

x2
on Ω.

Camel with one bump Let us first consider the case where Ω is an unbounded domain
with a unique point with maximal curvature. We consider

Ω = {(x1, x2) ∈ R2, x2 < −4x2
1}.

For the numerical computations, we proceed as explained in Section 4.5.1: we bound
the domain and impose Dirichlet condition on the artificial boundary. Let us define the
truncated domain

ΩH = {(x1, x2) ∈ Ω, x2 > −H}.
We consider triangular elements of degree P6. For the numerical computations, we take
H = 2.5, 3, 4 and a mesh with approximately 3000, 3600, 4800 triangular elements and
1/h ∈ {1 : 0.1 : 1000}.

Figure 6 illustrates the asymptotic expansion (1.4) for the first eigenvalue:

λc1(h)

h
= Θ0 − C1κmaxh

1/2 + o(h1/2), with C1 =
u2
ζ0

(0)

3
. (5.10)

In our example, we have κmax = 8. Using [6], we have

Θ0 ' 0.59010 and C1 ' 0.873043.

Figure 5(a) shows the convergence to Θ0, which is quite slow because only in O(h1/2). In
Figures 5(b)–5(c), we aim at recovering numerically the power appearing in the expansion.
For this, we plot, according to ln 1

h the quantities

ln
(

Θ0 −
λc1(h)

h

)
and ln

λc1(h)

h
−Θ0 + C1κmaxh

1/2.

In Figure 8, are represented the modulus, the logarithm of the modulus and the phase
of the first eigenfunction for h = 1/20.
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Figure 5: Convergence of the eigenvalues λc1(h).

Figure 6: Moduli, log10(moduli) and phases of the first two eigenfunctions, h = 1
20 .

Camel with two bumps Let us now deal with the case of a double well on the geometry.
For this, we consider

Ω = {(x1, x2) ∈ R2, x2 < −(1− x2
1)2}.

Let us look at the behavior of the first two eigenpairs. Figure 7(a) illustrates the conver-
gence of the first two eigenvalues λcn(h) to Θ0 as h→ 0. We represent

1

h
7→ λcn(h)

h
, n = 1, 2.

To analyze the splitting between the first two eigenvalues, we plot in Figures 7(b)–7(c),
according to ln 1/h

λc2(h)− λc1(h)

h
and − h1/4 ln

λc2(h)− λc1(h)

h
.

For the last figure, we take h ≥ 1/70 otherwise the splitting computed numerically is of
the same order as the accuracy of our computation and the numerics is no more relevant
when h < 1/70. These computations suggest that

λc2(h)− λc1(h)

h
= O(e−C/h

1/4
) with 5.2 ≤ C ≤ 5.4.

Figure 8 gives the modulus, logarithm of the modulus and the phase of the first two
eigenfunctions for h = 1/20.
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6 Perspectives

Let us finally provide some perspectives. As we have seen in Section 4.3.2, even in explicit
situations, the optimal Agmon estimates are still an open problem. If these estimates are
improved, one will obtain an accurate asymptotics of the splitting between the low-lying
eigenvalues. Extended enough WKB constructions for computing the exponentially small
splitting are related to the holomorphic extensions of the model operators eigenpairs (for
instance the generalized Montgomery operators). Furthermore in the case of curvature
induced magnetic bound states, we have proved, at the WKB expansion level, that the
effective operator is purely electric so that we can think that the optimal Agmon estimates
are accessible. Numerically, this paper was concerned with one symmetry (camel with two
bumps) and we observed that the lowest eigenvalues seemed to be simple. With more
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symmetries, we expect multiplicity (see Figure 9). Moreover, in more singular geometrical
situations (see [8]), the WKB structure of the eigenfunctions is not clear at all since there
is no obvious dimensional reduction (for example, the case of polygonal domains is based
on models on angular sectors).
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Figure 9: Eigenpairs on the ellipse, A = (−x2, 0).
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[16] M. Dimassi, J. Sjöstrand. Spectral asymptotics in the semi-classical limit, volume 268 of
London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge
1999.

[17] N. Dombrowski, N. Raymond. Semiclassical analysis with vanishing magnetic fields. J.
Spectr. Theory 3(3) (2013) 423–464.

[18] G. B. Folland. Harmonic analysis in phase space, volume 122 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ 1989.

[19] S. Fournais, B. Helffer. Accurate eigenvalue asymptotics for the magnetic Neumann
Laplacian. Ann. Inst. Fourier (Grenoble) 56(1) (2006) 1–67.

[20] S. Fournais, B. Helffer. Spectral methods in surface superconductivity. Progress in Non-
linear Differential Equations and their Applications, 77. Birkhäuser Boston Inc., Boston, MA
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